ECY-600 Series #### Overview The Eclypse™ 600 (ECY-600) Series controllers are designed to control various building automation applications such as air handling units, chillers, boilers, pumps, cooling towers, and central plant applications. They support BACnet/IP communications and are listed BACnet Building Controllers (B-BC). This series supports the use of the ECY-COM modules as well at two additional ECY-IOM extension modules. These programmable controllers are powered by Eclypse Facilities and include two years of Atrius Facilities - Organize. They feature an embedded visualization interface and web server, which enables web-based application configuration, scheduling, alarming, and logging. Control logic and graphic user interface can be customized as required for the application. ### General Installation Requirements For proper installation and subsequent operation of each controller, pay special attention to the following recommendations: - · Upon unpacking the product, inspect the contents of the carton for shipping damages. Do not install damaged modules. - · Avoid areas where corroding, deteriorating or explosive vapors, fumes or gases may be present. - · Ensure the mounting surface can support the controller, DIN rail, and any user-supplied enclosure. - Allow for proper clearance around the controller's enclosure, wiring terminals, and HOA switches to provide easy access for hardware configuration and maintenance, and to ventilate heat generated by the controller. - The preferred mounting orientation is horizontal, but the controller can be installed in any orientation as long as the internal temperature is within the recommended range. Orient the controller with the ventilation slots and power supply input terminal block connectors towards the top to permit proper heat dissipation. When installed in an enclosure, select one that provides sufficient surface area to dissipate the heat generated by the controller and by any other devices installed in the enclosure. A metal enclosure is preferred. If necessary, provide active cooling for the enclosure. - The controller's spec sheet specifies the power consumption (amount of heat generated), the operating temperature range, and other environmental conditions the controller is designed to operate under. - Ensure that all equipment is installed according to local, regional, and national regulations. - If the controller is used and/or installed in a manner not specified by Distech Controls, the functionality and the protection provided by the controller may be impaired. - SELV (Separated Extra Low Voltage) inputs/outputs must be connected to other SELV equipment inputs/outputs. - Keep this product at room temperature for at least 24 hours before installation to allow any condensation that may have accumulated due to low temperature during shipping/storage to evaporate. - Do not drop the product or subject it to physical shock. Any type of modification to any Distech Controls product will void the product's warranty Take reasonable precautions to prevent electrostatic discharges to the product when installing, servicing or operating the product. Discharge accumulated static electricity by touching one's hand to a well-grounded object before working with the product. ## **Device Markings** Certain markings (symbols) can be found on the controller and are defined as follows: | Symbol | Description | |---------|--| | CE | CE marking: the device conforms to the requirements of applicable EC directives. | | UK | UKCA marking: the device conforms to the requirements of applicable Great Britain regulations. | | | Double Insulation marking: These controllers are built using double insulation. | | | Products must be disposed of at the end of their useful life according to local regulations. | | []i | Read the Hardware Installation Guide for more information. | | | For indoor use only. | | C UL US | UL marking: conforms to the requirements of the UL certification. | | F© | FCC marking: This device complies with FCC rules part 15, subpart B, class B. | | Ŵ | Warning Symbol: Significant information required. Refer to the Hardware Installation Guide | | 4 | HIGH VOLTAGE Symbol: Direct contact will cause electrical shock or burn. | | \sim | Alternating Current | | | Direct Current | | L | Line | | N | Neutral | ### **General Wiring Recommendations** Risk of Electric Shock: Turn off power before any kind of servicing to avoid electric shock. However, it is not necessary to remove power when hot-swapping SELV ECY IO module front assemblies (see Hot-swappable ECY IO Modules). - · All wiring must comply with electrical wiring diagrams as well as national and local electrical codes. - To connect the wiring to a device, use the terminal connectors. Use a small flat screwdriver to tighten the terminal connector screws once the wires have been inserted (strip length: 0.25" (6 mm), maximum tightening torque 0,4 Nm (3.45 in-lb)). - Comply with all network and power supply guidelines outlined in the <u>Network Guide</u>. - · Always use unshielded cabling with a minimum Category 5 (CAT5) cable for ethernet communications. - Keep wiring separate according to their function and purpose to avoid any ambient noise transmission to other wires. Use strapping to keep these wires separated. For example, keep power, hazardous voltage, SELV, PELV, network, and input wiring separate from each other. - Power Wiring: When connecting one wire to a controller's terminal block clamping cage (pole), the wire must be between 18 and 14 gauge (0.82 and 2.1mm² cross-sectional area). When connecting two wires to a controller's terminal block clamping cage, both wires must be the same thickness, must be between 18 and 16 gauge (0.82 and 1.3mm² cross-sectional area), and must be the same type (solid or stranded). Twist the wires together and insert then into the controller's terminal block clamping cage. For any other wiring combination (mixed wire thickness, mixed solid and stranded conductors, more than three wires, wire thickness is out of range), twist the wires together and use a wire nut and a pig tail to connect to the controller's terminal block connector as show below. Figure 1. Using a Wire Nut and Pigtail to Wire the Controller - · Do not connect the universal inputs, analog/digital outputs or common terminals to earth or chassis ground (unless stated otherwise). - · Keep input and output wiring in conduits, trays or close to the building frame if possible. ### **Dimensions** Controllers not equipped with an operator interface Controllers equipped with an operator interface ### **Power Supply** ECY-600 Series controllers do not require an external power supply. However, the ECY-PS24 or ECY-PS100-240 module may be required if surpassing the limits of the controller's integrated power supply. For more information on the external power supply modules, such as dimensions and wiring instructions, please refer to the <u>Eclypse Connected System</u> Controller (ECY-CSC) Installation Guide. For recommendations according to specific applications, refer to the Product Selection Tool available in Builder: https://builder.distech-controls.com. ## **IO Module Enclosure** ECY-600 Series controllers can support up to 1 Communication Module and multiple IO Modules (up to 62 points total). Available Communication and IO modules come in the following dimensions: Narrow models: ECY-8UI, ECY-16DI, ECY-6UO, ECY-6UO-HOA, ECY-4UI4UO, ECY-4UI4UO-HOA, ECY-8UI6UO, ECY-8UI6UO-HOA, ECY-8UI6DOT, ECY-8UI6DOT, ECY-8UI6DOT-HOA, ECY-RS485, and ECY-MBUS Wide models: ECY-8DOR and ECY-8DOR-HOA. For more information about the different IO and Communication Modules, such as their specific dimensions, and wiring and mounting instructions, please refer to the Eclypse Connected System Controller Installation Guide. ### IO Module Assembly Order IO Modules are connected in a left to right order, starting with the ECY-600 Series. When an ECY-RS485 is used, install it immediately to the right of the ECY-600 Series before any input/output module. This is followed by any mix of up to 20 input/output modules, including ECY Power Supplies as needed to power the input/output modules. To interconnect separate rows of module assemblies, an HD15 cable must be used. An ECY-PS power supply module must be added after each HD15 cable. The controller's license may have separate limits that reduce the availability of certain options. The HD15 cable is SELV rated and a safe separation distance must be maintained from any hazardous voltages in order to guarantee insulation between high and low-voltage wiring. ## Input and Output Overview Each ECY IO module has a number of physical connections for inputs and/or outputs. These inputs and outputs are labelled on the ECY IO modules according to the tables below. Input and output options must be configured properly in EC-gfxProgram to ensure correct input readings and output values. The controller's license may have separate limits that reduce the availability of certain options. #### **ECY IO Modules** | | Inputs | | | | | | | | | Outputs | | | | | N | W | D | | | | | |-----------------|-------------------------|-------------|-------------------------|--|----------------------------------|-----------------------------|-----------------------------------|--|------------------------------------|-----------------------------|-------------------------|---|--|----------------------------------|-------------|---|--|-----------------------------------|--------------------|---------------|-------------------------------------| | | Q | Digita | I | | Analog | | | | 1 | | | | | Analog | | | ar
ro | | I
P | | | | | u
a
nt
it
y | C o nt a ct | C
o
u
nt
er | 1
2
0
H
z
P
ul
s
e
C
o
u
nt
in
g | 0
to
1
0
V
D
C | 0
to
5
V
D
C | 0
to
2
0
m
A
a. | R
e
si
st
a
n
c
e | T
h
er
m
is
to
r | 8
VDCP
owerS
upply | u
a
nt
it
y | 0-
2
7
7
V A C /
0-
3
0
V D C F
or m -
C ,
1
0
A | 2
4
V
A
C
Tr
ia
c | 0
or
1
2
V
D
C | P
W
M | FI
o
at
in
g | 0
to
1
0
V
D
C
b. | 0
to
2
0
m
A
b. | w
W
id
th | W
id
th | S w it c h to C o nf ig ur e I/ O s | | ECY-8UI | 8 | U
Ix | U
lx | U
Ix | U
Ix | U
Ix | Х | | | | | ^ | | | | | | | Х | | | | ECY-16DI | 1
6 | D
Ix | D
Ix | D
Ix | | | | | | | | | | | | | | | | Х | | | ECY-6UO | | | | | | | | | | | 6 | U
O
x | U
O
x | U
O
x | U
O
x | U
O
1
U
O
2
U
O
3 | | | X | | X | | ECY-6UO-HOA | | | | | | | | | | | 6 | | | | | | | | | | | | ECY-8DOR | | | | | | | | | | | 8 | | | | | | | | | | | | ECY-8DOR-HOA | | | | | | | | | | | 8 | | | | | | | | | | | | ECY-4UI4UO | 4 | | | | | | | | | | 4 | | | | | | | | | | | | ECY-4UI4UO-HOA | 4 | | | | | | | | | | 4 | | | | | | | | | | | | ECY-8UI6UO | 8 | | | | | | | | | | 6 | | | | | | | | | | | | ECY-8UI6UO-HOA | 8 | | | | | | | | | | 6 | | | | | | | | | | | | ECY-8UI6DOT | 8 | | | | | | | | | | 6 | | | | | | | | | | | | ECY-8UI6DOT-HOA | 8 | | | | | | | | | | 6 | | | | | | | | | | | a.An on-board 18VDC power supply can provide the necessary power for 20mA current loop sensor operation. The 0 to 20mA current loop input option is individually selected through an on-board DIP switch setting. ## End-of-line (EOL) Switch Controllers have an integrated EOL switch located on the side, as shown in the figure below. b to 10VDC is available on UO1 to UO6. 0 to 20 mA is available on UO1, UO2, and UO3; this option is individually selected through an on-board DIP switch setting. RS-485 EOL Termination Option Configuration Switch Location ### Ports and Reset Button Controllers have a Reset button and the following ports as shown in the figures below: Port locations - top view Port locations - bottom view ## Using the Reset Button Depending on the amount of time the reset button is held down, different actions are taken by the controller. The **STATUS** LED will turn off after each time interval. | Hold Reset For | То | |----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 5 seconds | Restart / reboot the controller. | | 10 seconds | Reset both Ethernet and Wi-Fi IP addresses back to factory default settings. | | 20 seconds | Reset the controller to its factory default settings. User accounts (user names and passwords) will also be reset to the factory default settings and the controller license will be cleared. | Always backup the controller's license through the controller's Web interface before you hold the controller's reset button for 20 seconds. Once the controller reboots, you will have to install the license through the controller's Web interface. After you perform a factory reset, the controller's HTTPS security certificates will be regenerated. If you use HTTPS to connect to the controller, you will no longer be able to connect to the controller from any PC that was used in the past to connect to the controller unless you delete the old HTTPS security certificate from these PCs. Once the factory reset procedure is started, it cannot be cancelled. ### Connecting an RTC Adapter to the Clock Port For installations where long-term power outages are expected (e.g., schools during summer break), where there is no internet connection, or where controllers are operated at temperatures higher than 50°C (122°F), an adapter (sold separately as an accessory) can be used to add a CR2032 pill battery to provide additional power to the controller's Real Time Clock. Connect the RTC adapter to the Clock port located on the bottom of the controller (see Figure 8, above) and make sure the switch is set to ON. Make sure that you select a battery that can support the operating temperatures of your installation. Figure 2. Dimensions of the Distech Controls RTC battery adapter (sold separately) ### **Mounting Instructions** The Eclypse Equipment Series controllers are specifically designed to be installed in DIN rail enclosures with an internal cover panel. Each controller or module can be mounted on a DIN rail for fast installation and easier maintenance. Millimeter [Inches] Each controller or module also has four pre-molded mounting holes allowing the module to be mounted in a panel or on a wall. Ensure that the mounting surface can support the controller, DIN rail, and any site-supplied enclosure. ### **Mounting Positions** The controller can be mounted horizontally or vertically to a vertical wall surface. There is no restriction on the orientation of the controller as long as the internal temperature does not exceed the maximum operating temperature. However, the horizontal orientation provides the best heat dissipation. Permitted mounting positions #### **DIN Rail-Mounted Installation** - 1. Securely mount the DIN rail horizontally on the wall. - 2. Clip the controller onto the DIN rail. DIN rail-mounted controller onto the DIN rail - 3. Slide the modules together so that the side connectors of each module are firmly mated with the adjoining module. Use DIN rail clips to keep the row of modules well secured together and to prevent the movement of any module along the DIN rail. Certain modules come with DIN rail clips in the box. - 4. To detach the module from the DIN rail, separate the module from any other module located on either side. Use a flat screwdriver to pull down on the release clip located at the bottom center of the module and pull it off the DIN rail, bottom first. Typical DIN rail-mounting release clip #### Wall-Mounted Installation 1. Use the mounting holes to mark the location of any holes that need to be drilled. You may need to remove terminal block connectors to access some of the mounting holes. Mounting hole locations - 2. Drill the holes and clean the surface. - 3. Mount the module using a No. 8 slotted hex, size: 1/4" (0.6cm) or equivalent mounting hardware appropriate to the wall material type. ## **Power Wiring** Voltage: 24VAC/DC; ± 15%, Class 2 For terminal block connector wiring best practices, see General Wiring Recommendations. This is a Class 2 Product. Use a Class 2 transformer only (rated at 60VA minimum at 24VAC) to power the controller(s). A separate transformer rated at 60 VA minimum must be used for each Eclypse Equipment Series controller. Choose a transformer that can supply both the needs of the controller and any other 24VAC loads such as connected sensors and actuators: add up the maximum power consumption of all 24VAC loads and multiply this sum by 1.3 to allow room for voltage and load variations. If the resulting total (75VA plus 1.3 × 24VAC loads) is higher than 100VA, use multiple transformers. Use an external fuse on the 24VAC side (secondary side) of the transformer, as shown in the figure below, to protect against power line spikes and mis-wiring. Maintain consistent polarity when connecting controllers and devices to the transformer. One terminal on the secondary side of the transformer must be connected to the building's ground. Ensure that the 24V COM terminals of all power supplies are connected to the grounded transformer secondary connection. Eclypse Equipment series controller power wiring ### **Input Wiring** Input options must be properly configured in EC-gfxProgram to ensure correct input readings. The table below shows the controller's available universal input (UIx) wiring methods. For terminal block connector wiring best practices, see General Wiring Recommendations [2]. Inputs can be connected as follows. Before connecting a sensor to the controller, refer to the installation guide of the equipment manufacturer. For a wire length less than 75' (23m), either a shielded or unshielded 18AWG wire may be used. For a wire up to 200' (61m) long, a shielded 18AWG wire is recommended. The shield of the wire should be grounded on the controller side only and the shield length should be kept as short as possible ### **Output Wiring** Output options must be properly configured in EC-gfxProgram to ensure correct output values. The table below shows the controller's available output wiring methods. For terminal block connector wiring best practices, see General Wiring Recommendations [2]. Outputs can be connected as follows. Before connecting an output device (actuator, relay, etc.) to the controller, refer to the datasheet and installation guide of the equipment manufacturer. For a wire length less than 75' (23m), either a shielded or unshielded 18AWG wire may be used. For a wire up to 200' (61m) long, a shielded 18AWG wire is recommended. The shield of the wire should be grounded on the controller side only and the shield length should be kept as short as possible ### **Communications Wiring** The <u>Eclypse User Guide</u> provides extensive information and requirements to implement a BACnet IP network. It contains information about network topology, wire length restrictions, cable type, device IP addressing, radio path planning (when the Eclypse Wi-Fi Adapter is connected to the controller), etc. It can be downloaded from our website. For optimal performance, use Distech Controls category 5e network cable or refer to the <u>Eclypse User Guide</u> for cable specifications. Controllers are uniquely identified on the network by their MAC address. This identifier is printed on a label located on the side of the controller and on its shipping box. Get a printed copy of the building's floor plan. During controller installation, peel the MAC address stickers off of the shipping box and put it on the floor plan where the controller has been installed. This MAC address is used as part of the controller's factory-default Wi-Fi access point name and its network hostname. For example, for a MAC Address of : 76:a5:04:cd:4a:d1 The factory-default name for the Wi-Fi access point is ECLYPSE-CD4AD1 The factory-default hostname is eclypse-cd4ad1.local Finding the Controller's MAC Address There are two methods to connect to the controller: wired (Ethernet connection) or wireless (with the Eclypse Wi-Fi Adapter). ### **Wired Connection** Network connections can be daisy-chained. By default, the controller's Secondary Ethernet port and Subnet-IP (Auxiliary) port are bridged with the Primary Ethernet port. When ports are bridged, the controllers connected to these ports are part of the same network, and a fail-safe relay automatically relays communication across the bridged ports in the event of power loss. You can disable the Bridge to isolate ports and create separate networks. However, this will also disable the fail-safe relays between these ports. You can configure the Bridge between ports in the controller's Web interface or in XpressNetwork Utility. For more information on configuring the controller's Network settings, refer to the Eclypse Facilities and XpressNetwork Utility User Guides. Do not connect any equipment (such as a laptop or network switch) to the Subnet-IP (Auxiliary) port, except for PoE-powered devices (like the Resense™ Move) when PoE has been manually activated in Eclypse Facilities. Doing so may result in damage to your equipment. #### Wireless Connection To enable the controller to wirelessly communicate on a Wi-Fi network, connect an Eclypse Wi-Fi adapter (sold separately) to one of the controller's USB (Host) ports. The USB cable provided with the Eclypse Wi-Fi Adapter measures approximately 4.9ft (1.5m). If you are using another USB cable, make the cable's length does not exceed 6.6ft (2m). Once the Eclypse Wi-Fi Adapter has been connected to the controller, a Wi-Fi hotspot becomes available that allows you to connect to the controller's configuration Web interface with your PC. On your PC's wireless networks, look for an access point named **ECLYPSE-XXYYZZ** where **XXYYZZ** are the last 6 hexadecimal characters of the controller's MAC address (see above). The default password for the wireless network is: **eclypse1234** ### Connecting to the Configuration Interface Use any of the following methods to connect to the configuration interface: - Using the XpressNetwork Utility [16] - Using the Hostname [16] - Using the Wireless IP Address [17] - Using the Ethernet IP Address [17] ### Using the Xpress Network Utility The Xpress*Network* Utility is a software application that runs on a PC that allows you to discover all Eclypse controllers and other devices connected to an IP network's subnetwork or Wi-Fi network and to perform a range of operations on many controllers or devices at once: you can set the Hostname and IP address, launch EC-*qfx*Program, or you can access the configuration Web interface. See the Xpress*Network* Utility User Guide for more information. The XpressNetwork Companion mobile app can be installed on your smartphone and it works with the QR code marked on the controller's faceplate which encodes the controller's MAC address and host ID. By scanning the QR code, the app records this information to which you assign a hostname. Once the QR codes for all controllers have been read in, the app's information is transferred to the XpressNetwork Utility where it is used to populate the relevant data fields. See the XpressNetwork Utility User Guide for more information. Figure 3. Typical QR Code ### Using the Hostname Devices have a factory-default hostname that you can use instead of an IP address to connect to it. The hostname can be used in a Web browser's address bar or in the EC-gfxProgram's **Connect to** screen. When installing the latest version of EC-gfxProgram and your PC does not have the Bonjour service installed, a link to install the Bonjour service is provided. The Bonjour service must be installed on your PC to allow your PC to discover controllers by their hostname. If your PC is unable to resolve the device's hostname, you must connect your PC through Ethernet or Wi-Fi so that your PC only sees the device network. For example, in this case, your PC must be disconnected from all other networks such as a corporate network or the Internet. If necessary, temporarily disconnect your PC's network cable from its Ethernet port. The factory-default hostname is **eclypse-xxxxxx.local** where **xxxxxx** is the last 6 characters of the MAC address printed on a sticker located on the device. See Communications Wiring. For example, the sticker on the side of a controller shows that its MAC address is 76:a5:04:<u>cd</u>:4a:d1. Connect to the Web interface as follows: - Open your Web browser. - 2. In the Web browser's address bar, enter https://eclypse-cd4ad1.local. - 3. Login to the device. Then set the configuration parameters in the configuration Web interface. See Connecting to the Configuration Web Interface [16]. #### Using the Wireless IP Address This procedure requires the installation of the Eclypse Wi-Fi adapter to one of the USB ports on the controller so that the controller becomes a hotspot to which you can connect (see Wireless Connection [16]). Once you are connected, you can then log in to the controller as shown below: - 1. Open your Web browser. - 2. In the Web browser's address bar, enter https://192.168.0.1 (the factory-default wireless hotspot IP address). - 3. Login to the device. Then set the configuration parameters in the configuration Web interface. See Connecting to the Configuration Web Interface [16]. ### Using the Ethernet IP Address Once you have discovered the device's primary IP address (e.g., from the DHCP server or through the discovery process in XpressNetwork Utility), you can log in as shown below: - 1. Open your Web browser. - 2. In the Web browser's address bar, enter the IP address. - 3. Login to the device. Then set the configuration parameters in the configuration Web interface. See Connecting to the Configuration Web Interface [16]. By default, the controller's Secondary Ethernet port and Subnet-IP (Auxiliary) port are bridged with the Primary Ethernet port; all ports have the same IP address unless they are configured otherwise in the controller's Web Interface. See the Eclypse Facilities User Guide for more information. ### Logging in to the Configuration Interface When connecting to an Eclypse Controller or other IP device for the first time, you will be prompted to change the password for the admin account to a strong password to protect access to the device. In Network Settings, configure the network parameters so that they are compatible with your network. See the <u>Eclypse User Guide</u> for more information about network settings and how to secure the device. It is important to create new user accounts with strong passwords to protect from unauthorized access. Remove the factory default admin account as this is a commonly known security breech (only the password for this user account needs to be compromised). ### Configuring the Controller's Inputs and Outputs Eclypse Equipment Series controllers feature software-configurable inputs and outputs, which can be configured in EC-gfxProgram. - 1. From the controller's Web Interface or XpressNetwork Utility, open EC-gfxProgram for the controller. - 2. Click Open Configuration to access the Resources Configuration window. - 3. The controller's Inputs and Outputs are listed under IOM1: IO Module 1. - 4. Configure Input and Output options as needed. Configuring input and output options in EC-gfxProgram For more information, see the EC-gfxProgram User Guide. ## Using the Controller's Operator Interface (ECY-x50 models only) Once some code has been created in EC-gfxProgram and then synchronized with the controller, various objects (points, schedules, PID loops, and so on) used in the code become visible through this operator interface. Object values can be viewed and, in many cases, modified or overridden. Configuration of this operator interface is done in EC-gfxProgram in the **LCD Screen** block when the controller is programmed. The following items can be configured: - · The title of the main screen can be set. - The **About** menu content can be configured. - · The passwords can be set for multiple users according to their role. - · The operator interface languages can be set. Other menus, such as Favorites and Weather, may be greyed-out (that is, inaccessible) on your operator interface screen when the corresponding objects have not previously been configured through EC-qfxProgram for this controller. Refer to the EC-gfxProgram User guide and the ECx-Display And ECB & ECL 50 Series Controllers User Guide for more information. ### **Subnet Wiring** Supported Allure Series and Resense Air Series communicating sensors are connected to the **SUBNET** port modular connector of the controller with a standard Category 5e Ethernet patch cable fitted with RJ-45 connectors. The <u>Eclypse User Guide</u> provides extensive information and requirements for the connection of an Allure series communicating sensor. It contains information about network topology and length, cable type, setting the Subnet ID, etc. It can be downloaded from our website. See also the Installation Guide supplied with the sensor. ## **BACnet MS/TP Communications Wiring** Ensure that you have at least a C1 Connectivity Pack to enable BACnet routing, MS/TP "Client", integration, and use of RS-485 ports. See the controller's Spec Sheet for more details. This applies to both the on-board RS-485 port and any additional modules. BACnet MS/TP and Modbus RTU communications are made by connecting directly to separate RS-485 ports. The ECY-600 Series integrates up to three RS-485 ports when equipped with one ECY-RS485 extension module allowing the controller to support more than one trunk or communication protocol at a time. The controller's license may have separate limits that reduce the availability of certain options The <u>Eclypse User Guide</u> provides extensive information and requirements to implement a BACnet MS/TP network. It contains information about network topology, network and sub network wire length restrictions, cable type, device addressing, etc. It can be downloaded from our website. For optimal performance, use Distech Controls 24 AWG (0.65 mm) stranded, twisted pair shielded cable or refer to the <u>Eclypse User Guide</u> for cable specification. The BACnet MS/TP communication wire is polarity sensitive and the only acceptable topology is to daisy-chain the cable from one controller to the next. The <u>Eclypse Facilities Guide</u> is available on the Distech Controls Documentation Portal. As shown in the figure below: - The first and last daisy-chained BACnet MS/TP devices must have their EOL resistors enabled / installed. All other devices must have their EOL resistor disabled (default factory setting). See the figure below. - The first and/or last daisy-chained BACnet MS/TP devices must have their BIAS enabled. All other devices must have their BIAS disabled (default factory setting). See the figure below. Note that the BIAS settings for BACnet MS/TP controllers that do not have a specific setting to enable / disable BIAS usually means that the BIAS is enabled when the EOL resistors are enabled. - · When the BACnet MS/TP data bus is connected to a following device, twist data bus shields together. - · Isolate all shields with electrical tape so there is no exposed metal that can touch ground or other conductors. - The shield of the data bus must be connected to the electrical system ground at only one point usually at one end of the bus as shown below. Connect no more than 50 devices to a BACnet MS/TP data bus. Use the RS-485 port to connect to a trunk of BACnet MS/TP devices. RS-485 port terminal connectors are labeled such that **NET+** is the same as **+** and **NET-** is the same as **-**. This port must be configured in the controller's Web interface prior to use. BACnet MS/TP Communications Wiring When inserting multiple wires into a terminal-block connector, ensure to properly twist wires together prior to insertion. ### Modbus RTU Communications Wiring Ensure that you have at least a C1 Connectivity Pack to enable the Modbus functionality and use of RS-485 ports. See the controller's Spec Sheet for more details. This applies to both the on-board RS-485 port and any additional modules. Modbus RTU communications are made by connecting directly to separate RS-485 ports. The ECY-600 Series integrates up to three RS-485 ports when equipped with one ECY-RS485 extension module allowing the controller to support more than one trunk or communication protocol at a time. Furthermore, Modbus TCP devices can be integrated by connecting them to the controller's IP network. The <u>Eclypse User Guide</u> provides extensive information and requirements to implement a Modbus RTU network. It contains information about network topology, network and sub network wire length restrictions, cable type, device addressing, etc. It can be downloaded from our website. For optimal performance, use Distech Controls 24 AWG (0.65 mm) stranded, twisted pair shielded cable or refer to the <u>Eclypse User Guide</u> for cable specification. The Modbus RTU communication wire is polarity sensitive and the only acceptable topology is to daisy-chain the cable from one controller to the next. The <u>Eclypse Guide</u> is available on the Distech Controls Documentation Portal. As shown in the figure below: - The first and last daisy-chained Modbus RTU devices must have their EOL resistors enabled / installed. All other devices must have their EOL resistor disabled (default factory setting). - The first and/or last daisy-chained Modbus RTU device must have their BIAS enabled. All other devices must have their BIAS disabled (default factory setting). See the figure below. Note that the BIAS settings for Modbus RTU devices that do not have a specific setting to enable / disable BIAS usually means that the BIAS is enabled when the EOL resistors are enabled. - When the Modbus RTU data bus is connected to a following device, twist data bus shields together. - · Isolate all shields with electrical tape so there is no exposed metal that can touch ground or other conductors. - The shield of the data bus must be connected to the electrical system ground at only one point usually at one end of the bus as shown below. Connect no more than 50 devices to a Modbus RTU data bus. Use the RS-485 port to connect to a trunk of Modbus RTU devices. RS-485 port terminal connectors are labeled such that NET+ is the same as + and NET- is the same as -. If inserting multiple wires in the terminals, ensure to properly twist wires together prior to inserting them into the terminal connectors. The RS-485 port must be configured in EC-gfxProgram prior to use. Modbus devices are integrated into EC-gfxProgram using the EC-gfxProgram Modbus device block. ### Modbus TCP Communications Wiring Ensure that you have at least a C1 Connectivity Pack to enable the Modbus functionality and use of RS-485 ports. See the controller's Spec Sheet for more details. This applies to both the on-board RS-485 port and any additional modules. Connect Modbus TCP devices to the same IP subnet the controller is using. This connection can be made by connecting the Modbus TCP device to an Ethernet port on the controller with a Cat5e network cable for example (see Wired Connection [14]). For more connection options, refer to the Eclypse User Guide. The RS-485 port must be configured in EC-gfxProgram prior to use. Modbus devices are integrated into EC-gfxProgram using the EC-gfxProgram Modbus device block. ### M-Bus Communications Wiring Ensure that you have at least a C1 Connectivity Pack to enable the M-Bus functionality and use of M-Bus ports. See the controller's Spec Sheet for more details. M-Bus communications are made by connecting meters directly in an M-Bus port. The controller provides an M-Bus port when connected to an ECY-MBUS extension module. The M-Bus port must be configured in EC-gfxProgram prior to use. M-Bus meters are integrated into EC-gfxProgram using the M-Bus device block. ### Maximum M-Bus Device Wiring Length The following information provides wiring limitations for M-Bus devices. The wiring length provided below was tested as a worst-case scenario with all meters being located at the end of the bus. If meters are more evenly spaced along the bus, then the maximum wiring length can possibly be increased. #### Testing Conditions: | Current per slave/meter | 1.5 mA | |----------------------------|-----------| | Max ΔV accepted on the bus | 2 V | | Cable capacity | 110 nf/km | #### HD15 port connections: Table 1. Maximum wiring lengths from the controller to the last M-Bus meter when the ECY-MBUS extension module is connected through the HD15 port | M-Bus Meters | AWG 15 | AWG 22 | |--------------|---------------------|---------------------| | | 300, 2400, 9600 Bps | 300, 2400, 9600 Bps | | 10 | 5000 m (16404 ft) | 1200 m (3937 ft) | | 20 | 2500 m (8282 ft) | 550 m (1804 ft) | | 30 | 1500 m (4921 ft) | 350 m (1148 ft) | | 40 | 1100 m (3608 ft) | 250 m (820 ft) | | 50 | 850 m (2788 ft) | 200 m (656 ft) | | 60 | 650 m (2132 ft) | 150 m (492 ft) | #### Maintenance Turn off power before any kind of servicing. However, it is not necessary to remove power when hot-swapping ECY IO module front assemblies (see Hot-swappable ECY IO Modules). ### Regular Maintenance Each controller requires minimal maintenance, but it is important to take note of the following: - · Clean the outside of the controller by polishing it with a soft dry cloth. - Using a torque limited screw driver set to 0.4 Nm (3.54 in-lb), retighten terminal connector screws annually to ensure the wires remain securely attached ### Disposal The Waste Electrical and Electronic Equipment (WEEE) Directive sets out regulations for the recycling and disposal of products. The WEEE2002/96/EG Directive applies to standalone products, for example, products that can function entirely on their own and are not a part of another system or piece of equipment. For this reason Distech Controls products are exempt from the WEEE Directive. Nevertheless, Distech Controls products are marked with the WEEE symbol $\frac{12}{3}$ indicating devices are not to be thrown away in municipal waste. Products must be disposed of at the end of their useful life according to local regulations and the WEEE Directive. ### North American Emissions Compliance Changes or modifications not expressly approved by Distech Controls could void the user's authority to operate the equipment. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - · Reorient or relocate the receiving antenna (if applicable). - · Increase the separation between the equipment and receiver. - · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. This device complies with Part 15 of the FCC rules and with Industry Canada's license exempt RSS. Operation is subject to the following two conditions: - · This device may not cause harmful interference, and - · This device must accept any interference received, including interference that may cause undesired operation of the device | Specifications subject to change without notice. | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | clypse, Distech Controls, the Distech Controls logo, EC-Net, Allure, and Allure Unitouch are trademarks of Distech Controls Inc. BACnet is a registered trademark of ASHRAE; BTL is a registered trademark of the BACnet Manufacturers Association. The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks is under license. All other trademarks are property of their respective owners. | | ©, Distech Controls Inc., 2025, All rights reserved | | Global Head Office - 4205 place de Java, Brossard, QC, Canada, J4Y 0C4EU Head Office - ZAC de Sacuny, 558 avenue Marcel Mérieux, 69530
Brignais, France |