

Using Ontrol KNX Driver for R-ION

KNX Architecture

ontrol

Configuration Overview

Configuration is required both in ETS software and on Sedona side. These can be done by different people at different times.

ETS Overview

R-ION exposes up to 136 objects or datapoints on the KNX bus. These are grouped into below types to achieve different functions. Each type is explained in detail in the following pages.

ETS: Boolean Command Point

Datapoint addresses 1-24

Purpose

This object type can be used to control boolean points on other KNX devices from R-ION.

Typical application

To switch a light circuit on/off from a soft button on the display.

Supported KNX Data Types

DPT1 1-bit

For use with Sedona component types BooleanWritableTrig

ETS: Boolean Receive Point

Datapoint addresses 101-124

Purpose

This object type can be used to receive boolean status from other KNX devices to R-ION.

Typical applications

Receive alarm status for local display. Receive occupancy information from a motion detector.

Supported KNX Data Types

DPT1 1-bit

For use with Sedona component types BooleanPoint

ETS: Boolean Send Point

Datapoint addresses 201-224

Purpose

This object type can be used to send boolean status to other KNX devices from the R-ION.

Typical application

To make available the current output of a logic function or a time schedule that runs on the R-ION.

Supported KNX Data Types

DPT1 1-bit

For use with Sedona component types BooleanWritable

ETS: Dimmer Point

Datapoint addresses 301-316

Purpose

This object type can be used to control dimmer circuits on other KNX devices from the R-ION.

Typical application

To control dimmer circuits or blinds on other KNX devices from soft buttons on the display.

Supported KNX Data Types

3.007 dimming control 3.008 blinds control

For use with Sedona component types

DimmerControl ShutterControl

ETS: Numeric Command Point

Datapoint addresses 401-416

Purpose

This object type can be used to control numeric points on other KNX devices from R-ION.

Typical application

To set an absolute brightness level (as percent) on a dimmer circuit from a soft button on the display.

Supported KNX Data Types

DPT5 8-bit unsigned value DPT6 8-bit signed value DPT7 2x8-bit unsigned value DPT8 2x8-bit signed value DPT9 16-bit float value DPT12 4x8-bit unsigned value DPT13 4x8 signed value DPT14 32-bit float value

For use with Sedona component types

NumericWritable

ETS: Numeric Receive Point

Datapoint addresses 501-516

Purpose

This object type can be used to receive a numeric value from other KNX devices to R-ION.

Typical applications

Receive current dim value or blinds position. Receive temperature value or setting from another device

Supported KNX Data Types

DPT5 8-bit unsigned value DPT6 8-bit signed value DPT7 2x8-bit unsigned value DPT8 2x8-bit signed value DPT9 16-bit float value DPT12 4x8-bit unsigned value DPT13 4x8 signed value DPT14 32-bit float value

For use with Sedona component types

NumericPoint IntegerPoint LongIntegerPoint

ETS: Numeric Send Point

Datapoint addresses 601-616

Purpose

This object type can be used to send a numeric value to other KNX devices from the R-ION.

Typical application

To make available the current temperature measurement or output of a logic function that runs on the R-ION.

Supported KNX Data Types

DPT5 8-bit unsigned value DPT6 8-bit signed value DPT7 2x8-bit unsigned value DPT8 2x8-bit signed value DPT9 16-bit float value DPT12 4x8-bit unsigned value DPT13 4x8 signed value DPT14 32-bit float value

For use with Sedona component types NumericWritable

Ontrol KNX Network Hierarchy

OBSERVE HIERARCHY

KnxNetwork can reside anywhere but,

- KnxDevice must go under KnxNetwork
- Client points must go under a KnxDevice

Only **RS2-K** models support KNX communication

KNX Network Properties

Programming Mode

	C KnxNetw (ontrolKnx::KnxNetwork)		
	🗆 🔘 Meta	Group [1] »	
	🗆 🔘 Status	② Disabled	
Knx Network must be enabled.	🗆 🔘 Enable	🔘 true 🔻	
·	Ping Period	300 s [30 - 65535]	
	🗆 🔘 Slow Rate	30 s [30 - 255]	
	🗆 🔘 Normal Rate	5 s [5 - 255]	
	🗆 🔘 Fast Rate	1 s [1 - 255]	
	C Response Timeout	200 ms [50 - 3000]	
	🗆 🔘 Max Retries	1 [0 - 10]	
	🗆 🔘 Max Write Time	0 s [0 - 65535]	
	🗆 🔘 Min Write Time	500 ms [0 - 65535]	
	🔲 🔘 Max Read Fails To Mark Device Down	3 [1 - 255]	
	🗆 🔘 Port Number	25 [0 - 255]	
	🗆 🔘 Bus Connection State	disconnected	
Set to 'true' and click 'save' to put i	Programming Mode	🔘 off	
R-ION into programming mode.	🕞 🔘 Trig Programming Mode	🔘 true 🔻	
Remember to set back to false	🔲 🔘 Individual Address Area Field	0 [0 - 15]	
after download is complete.	🔲 🔘 Individual Address Line Field	0 [0 - 15]	
	Individual Address Device Field	0 [0 - 255]	
This slot can also be associated	E 🔜 KnxDevi	ontrolKnx::KnxDevice [KnxDevi:15]	
with a soft button on the display.			
	🛃 Refr	est 🔒 Save	

Available points and corresponding ETS datapoint types

Configuring a BooleanPoint

ETS Side configuration:

- Enable a BooleanReceive type datapoint.
- Set its data type and group address.

Note 1: If configuration & download completed in ETS

Configuring a BooleanWritable

ETS Side configuration:

- Enable a BooleanCommand or BooleanSend type datapoint.

- Set its data type and group address.

Optional:

If it is possible to receive actual status feedback from a distinct group address:

- Enable a BooleanReceive type datapoint.
- Set its datatype and group address.

Component properties

Configuring a BooleanWritableTrig

Trig True¹

Trig False¹

Trig Toggle¹

Out

Sends out a 'true' or on command

Sends out a 'false' or off command

Sends out a command to reverse the

If read datapoint is set, this reflects

Otherwise, it shows the result of the last command sent to the associated write datapoint's group address

current status of the output.

the actual status of the load.

ETS Side configuration:

- Enable a BooleanCommand type datapoint.
- Set its data type and group address.

<u>Optional</u>:

If it is possible to receive actual status feedback from a distinct group address:

- Enable a BooleanReceive type datapoint.
- Set its datatype and group address.

Boolean		
ontrolKnx::BooleanWritab	leTrig 🔍	
Fault	false	
Status	0	
Write Data Point Type	Disabled	
Write Data Point Flags	0	
Read Data Point Type	Disabled	
Read Data Point Flags	0	
Trig True	false	Y /
Trig False	false	\checkmark
Trig Toggle	false	-
Out	null	

Component properties

Ontrol KNX Driver for R-ION

Configuring a Dimmer (part 1)

ETS Side configuration:

- enable a Dimmer type datapoint.
- set its group address (type is DPT3)

Optional:

If it is possible to receive actual percentage feedback from a distinct group address:

- enable a NumericReceive type datapoint.
- set its datatype (DPT 5) and group address.

If it is possible to receive actual on/off feedback from a distinct group address:

- enable a BooleanReceive type datapoint.
- set its datatype (DPT 1) and group address.

L L (III) Fault

DimmerC	
ontrolKnx::DimmerCont	rol 🔍
Fault	false
Status	0
Write Data Point Type	Disabled
Write Data Point Flags	0
Read Data Point Type	Disabled
Read Data Point Flags	0
Switch Data Point Type	Disabled
Switch Data Point Flags	0
Trig Up	false
Trig Down	false
Out Percent	nan
Out Switch	null
L	

Trig Up¹

Sends out one or more telegrams to switch on or dim up when set to true

Trig Down¹

Sends out one or more telegrams to switch off or dim down whens set to true

Out

If read datapoint is set, this reflects the actual percentage status of the load. Otherwise, it remains 'null'

Out Switch

If switch data point is set, this reflects the actual on/off status of the load.

> а on a ev are ated

Data point type and flags show-up here² Set the feedback datapoint here (optional)

Set the write datapoint here

Data point type and flags show-up here²

		Under 1	Otherwise, it follows the 'out' value.
\backslash	🗆 🔘 Status	0	
	🗆 🔘 Enable	🔘 true 🔻	Note 1: Trig type inputs cause a command telegram to be sent on
	Poll Frequency	Normal 💌	designed to be directly associate
	🔲 🔘 Write Data Point Id	0 [1 - 1000]	with soft buttons on a display.
	🗌 🔘 Write Data Point Type	Disabled]
	🗌 🔘 Write Data Point Flags	0 [0 - 255]	
	🕨 🔘 Read Data Point Id	0 [0 - 1000]	
	🗌 🔘 Read Data Point Type	Disabled	Set the dimmer switch feedback
-	🗌 🔘 Read Data Point Flags	0 [0 - 255]	datapoint here
	🔲 🔘 Switch Data Point Id	0 [0 - 1000]	Data point type and flags show-up
	🔲 🔘 Switch Data Point Type	Disabled	here ²
	🔲 🔘 Switch Data Point Flags	0 [0 - 255]	
	Action On Press		AN041 RevA

(
) taise

Configuring a Dimmer (part 2)

These properties determine the functionality of the trigUp & trigDown input slots when associated with soft buttons on the display. The buttons can be configured to perform in several different ways. See below examples.

	Ц 🥥	y switch bata Fornt hags	U	[0 - 200]			
ſ) Action On Press	none 🔻				
J) Action During Hold	stepUpDown 🔻		Determines number of dim		
) Action On Short Release	stepUpDown 💌		\bigcap	steps between %0 to %100.	
l) Action On Long Release	none 💌				
) Number Of Intervals	7	[1 - 7]		Determines to minimum	
) Duration Of Long Operation	300] ms [300 - 3000] 🗲		distinguish between a short-	
) Cyclical Hold Actions	enable 🔻	•	∣ press and a long-press		
) Hold Action Repeat Period	1000] ms [200 - 2000] 🥆	\mathbb{A}	Resend the ActionDuringHold command continously while the button is pressed?	

Repeat frequency when cyclicalHoldAction = true

Some examples of button configuration

Simple on/off switch

Action On Press = fullOnOff Action During Hold = none Action On Short Release = none Action On Long Release = none

Stepwise dimming:

Short-press to switch fully on/off, Press & hold to dim Action On Press = none Action During Hold = stepUpDown Action On Short Release = fullOnOff Action On Long Release = none Cyclical Hold Actions = true Stepwise dimming (low traffic – requires long dim period) Short-press to switch fully on/off, press & hold to dim Action On Press = stepUpDown Number Of Intervals = 1 Action On Hold=none Action On Short Release = fullOnOff Action On LongRelease = stop

Configuring a Numeric Point

ETS Side configuration:

- Enable a NumericReceive type datapoint.
- Set its data type and group address.

Component properties

Configuring Integer & LongInteger Points

ETS Side configuration:

- Enable a NumericSend type datapoint.
- Set its data type and group address.

Integer Support 16 bit values, -32768 to 32767

LongInteger

Support 32 bit values, -2,147,483,648 to 2,147,483,647

🗆 🔘 Meta Group [1] >> 🗆 🔘 Fault false Status 0 true -🗆 🔘 Enable Set the read Normal 🔻 Poll Frequency datapoint here [1 - 1000] Data Point Id 0 Data Point Type Disabled Data point type and flags show-up here1 Data Point Flags 0 [0 - 255]

Component properties

Note 1: If configuration & download completed in ETS

ntrol

Configuring a NumericWritable

ETS Side configuration:

- Enable a NumericCommand or NumericSend type datapoint.

- Set its data type and group address.

Optional:

If it is possible to receive actual value feedback from a distinct group address:

- Enable a NumericReceive type datapoint.
- Set its datatype and group address.

