
 

ENGINEERING NOTES

Information and specifications published here are current as of the date of publication of this document. Tridium, Inc. reserves the right to change
or modify specifications without prior notice. The latest product specifications can be found by contacting our corporate headquarters, Richmond,
Virginia. Products or features contained herein may be covered by one or more U.S. or foreign patents. © 2008 Tridium, Inc.
BFormat (Baja Format) Property Usage
In NiagaraAX, many properties that allow text entry use the Baja data type “BFormat,” which is a class 
that enables localization (foreign language support), among other things. 

Note: Localization is not addressed in this document, which describes only English language applications.

In Workbench property sheets or dialogs, such properties are conspicuous by a yellow “question”  
button, which produces a popup Format help window, with the Bajadoc description for BFormat 
(Figure 1-1).

Figure 1-1 Format property help popup in Workbench

This help popup may be useful if you are a NiagaraAX developer or someone already familiar with the 
class structures used in NiagaraAX, but may otherwise leave you confused. Also, there is no “context 
awareness”— the same help is shown for any property typed as BFormat. Obviously, there are many 
different ways you can use the “scripting” calls (inside “%” characters, with “.” dot operator) to format text 
in these properties.
 This document provides a few usage examples, but is not a reference. The main sections are:
• “Default values” on page 1-1
• “Example scenarios” on page 1-2
• “Errors: When scripts go bad” on page 1-8
• “Document change log” on page 1-8

Default values
As copied from palettes or originated from “manager” views, some components already have default 
values in certain BFormat-type properties (while others may default as empty). A few examples of those 
components with default values are listed in Table 1-1.
NiagaraAX-3.x

Engineering Note: BFormat Property Usage August 27, 2008
1



 
Example scenarios   BFormat (Baja Format) Property Usage
Why bother with it? August 27, 2008
Table 1-1 Default values for a few properties using Format data type

Note that in the property value, you can use multiples of scripted variables along with “static text,” as done 
in defaults for a device’s AlarmSourceInfo “sourceName” property (a static space character separates the 
“%parent.parent.displayName%” from “%parent.displayName%”. The subject property of the 
EmailRecipient contains static text "Niagara Alarm From " ahead of the variable.

Why bother with it?
By using BFormat variables (scripting), sometimes you can enable replication of applications where 
desired results happen with a minimal of custom edits to property values, i.e. reduced engineering time, 
and consistent output results. Or, you may have specific text formatting needs. See the next section, 
“Example scenarios”.

Example scenarios
The following three scenarios show different “non-default” edits of BFormat-type properties.
• Alarm extension scenario
• History extension scenario
• Px widget scenarios

Alarm extension scenario
In this example scenario, you have a driver network with a single “device” application replicated many 
times in multiple devices, for example, a VAV application for 60 zones using 60 identical devices, each 
with identically-named proxy points, but under a uniquely-named device component. For simplicity in 
this example, devices are named simply “VAV1”, “VAV2”, …to “VAV60”.
For several proxy points in each zone, you need to establish alarming, adding an alarm extension. You 
could manually rename these points, or type “unique values” in BFormat type properties under each 
alarm extension, as well as related properties (in some cases) under its “offNormalAlgorithm” slot. This 
would ensure that alarm records (viewed in the Alarm Console) would show unique “Source” values for 
any alarm, without having to decipher by station ord (for example) which “RoomTemp” point was in 
alarm, for example to isolate by zone.
Or (more programatically) before replicating this VAV application, you could edit several Format-type 
properties of the alarm extension from defaults, such that generated alarms will contain more useful 
source data.
An example “solution” for this application, showing part of the station’s config structure, including the 
non-default values entered for Format-type properties under one alarm extension in one of the identically 
named points, is shown in Figure 1-2.

Component Property Default Value Notes

Alarm extension for points, e.g. 
OutOfRangeExt, etc.

sourceName %parent.displayName% Suitable “as is” in many cases, for 
example where all parent points are 
uniquely named.

History extension for points, 
e.g. NumericInterval, etc.

historyName %parent.name%

Any network component’s 
AlarmSourceInfo slot.

sourceName %parent.displayName% Often both properties are left at 
default values.

Any device-level component’s 
AlarmSourceInfo slot.

sourceName %parent.parent.displayName% 
%parent.displayName%

EmailRecipient subject Niagara Alarm From 
%alarmData.sourceName%

Much additional alarm data is used in 
the “body” slot.
NiagaraAX-3.x

Engineering Note: BFormat Property Usage
 2



 
 BFormat (Baja Format) Property Usage Example scenarios
August 27, 2008 Alarm extension scenario
Figure 1-2 Example config structure / alarm extension property values using edited Format-type data

Note that the sourceName of the alarm extension has been changed to use two variables: 
“%parent.parent.parent.parent.displayName%” (plus) “%parent.displayName%”, separated by a 
space. Given the tree structure in use, now the alarm record will show 4 (parent) levels up for the first 
part of the source, that is the device (e.g. “VAV1”), then the proxy point name as the second part of the 
source, for example “RoomTemp”. So, in the Alarm Console the alarm source shows as “VAV1 RoomTemp”.

Note: Alternatively, there is also a “folder-level independent” method to retrieve the device name for any proxy 
point, instead of the “parent.parent” method. See the next example “History extension scenario”.
Now, here is the “tricky” part. All the “alarm text” type properties are relative to the alarm record 
component generated by an alarm, and not to the alarm extension responsible for generating the alarm. 
So, you cannot use the “parent.displayName” scheme in the alarm text properties, at least with any useful 
results. Alarm text properties include “toNormalText” and “toOffNormalText” in the alarm extension, 
and (if an OutOfRangeExt) in the “Offnormal Algorithm” properties “highLimitText” and “lowLimitText” 
(note if using the latter, these override any entry in the “toOffNormalText” property of the alarm 
extension parent).
But because each alarm extension’s “sourceName” will now be unique (using the technique above), you 
can reference it within “alarm text type” properties, along with any desired static text. Except here, the 
sourceName is an “alarmData” field, from the alarm record.
In the example shown in Figure 1-2, when RoomTemp in VAV1 has a high limit alarm, the alarm data 
message text will be: “VAV1 RoomTemp is too HOT!”, and when it returns to normal the alarm data 
message text will be: “VAV1 RoomTemp is OK now.”
If desired, you could further modify the OffnormalAlgorithm high and low limit text properties to 
include the numerical (alarm) limit, using another alarmData field. For example, if highLimitText is set 
to a Format value of “%alarmData.source% is above %alarmData.highLimit% degrees!”, and the 
extension’s highLimit is set to 74.5, upon a high limit alarm the message text generated will be “VAV1 
RoomTemp is above 74.5 degrees!”. This technique may be useful if routing the alarm using a 
minimum of alarm data text, say including only the timestamp and the message text.

Note: To see what alarmData fields are available for use in this manner, go to a station’s Alarm Console and view 
the complete details (Alarm Record popup) for any one alarm.
NiagaraAX-3.x

Engineering Note: BFormat Property Usage
 3



 
Example scenarios   BFormat (Baja Format) Property Usage
History extension scenario August 27, 2008
History extension scenario
Consider the same network with “replicated” device applications described previously in the “Alarm 
extension scenario”. In each VAV zone, you wish to have histories of several proxy points, all identically 
named. For example, in each zone you wish to have a numeric interval history on “RoomTemp” and 
another one on “Damper.” However, you must either rename the parent point(s) or rename the history 
extensions’ “historyName” to something unique, as duplicate history Ids are forbidden.
Or (more programatically) before replicating this VAV application, you could edit the “historyName” in 
all history extensions, similar to the “sourceName” in the previous example.
An example “solution” for this application, showing part of the station’s config structure, including the 
non-default value entered in the historyName property of two history extensions is shown in Figure 1-3.

Note: This example uses a different technique than the previous “parent.parent” method, and may be preferable 
because it is “folder-level independent”, as explained ahead.

Figure 1-3 Example config structure / history extension property values using edited Format-type data

Note that each of the two history extensions’ historyName has been changed to use two variables: 
“%parent.proxyExt.device.displayName%” (plus) “%parent.displayName%”, separated by an 
underscore. This syntax utilizes a special “getDevice() method” in the first variable, where the proxy 
point’s parent device’s name is resolved, regardless of its folder depth under the Points extension. (Note 
in this example, proxy point “RoomTemp” is in an “Inputs” point subfolder, while the “Damper” proxy 
point is in the root of the Points extension). 
This differs from the “%parent.parent.parent.parent.displayName%” value used in the previous 
example—in this particular case, that would work for “RoomTemp,” but not for “Damper”. Therefore, this 
method is more “fault tolerant” as a result of moving a proxy point, especially to change its hierarchy.
Given the tree structure of this network, now the resulting histories will appear as “VAV1_RoomTemp”, 
“VAV1_Damper”, and if replicated, “VAV2_RoomTemp”, “VAV2_Damper”, and so on.

Note: How this works: “%parent.proxyExt.device.displayName%”
The ‘parent’ steps up one level to the Lon proxy point (say, RoomTemp). The ‘proxyExt’ is the slot name 
that “walks back down” the tree to a different child component, in this case the LonProxyExt. The ‘device’ 
calls the getDevice() method, and the ‘displayName’ calls the getDisplayName() method.
Note also in this example, the assumption is that no other components in the station will also have a 
“VAV1” component with a “RoomTemp” child (that also requires a history extension). Also, an under-
score was used instead of a space in this case—although spaces in object names are permitted (history 
being one type of object), they are “escaped” in the database using a “%20” string, and this can be 
confusing in certain scenarios.
NiagaraAX-3.x

Engineering Note: BFormat Property Usage
 4



 
 BFormat (Baja Format) Property Usage Example scenarios
August 27, 2008 Px widget scenarios
Px widget scenarios
When engineering Px widget properties, especially for “BoundLabel” types with a binding to a 
component, there is an important property using BFormat type:
BoundLabel:Text (ObjectToString): Determines the content of the displayed text.

By default, when you drag a component onto a Px page (for example a BooleanWritable point), the “Make 
Widget” wizard associates a BoundLabel’s Text with (and makes a binding to) the ord of that 
component, with the default text value of: %.%
A simple edit is to add “static” text in front of this default Text value, as shown done in Figure 1-4.

Figure 1-4 Example adding static text in Text property of a BoundLabel

See the following related subtopics:
• Default BoundLabel Text results
• Editing BoundLabel Text for points
• Advanced BoundLabel Text editing
• Weather Service example

Default BoundLabel Text results
For any point (or any component with an “Out” property), default text from the binding is identical to the 
“out” value displayed in that component’s property sheet. This includes any facets, plus additional infor-
mation as follows:
• If bound to a writable point, there are 3 pieces of data in the text, namely:

<value> <status> @priorityLevel>
for example:
“On {ok} @16” (a BooleanWritable) or “20% {ok} @12” (a NumericWritable)

• If bound to a read-only point, the default Text provides 2 pieces of data in the text, that is:
<value> <status>
for example:
“Clean {ok}” (a BooleanPoint) or “72.3 °F {ok}” (a NumericPoint)

• If bound to a “non-point” component (that is there is no “Out” property), you must bind to a partic-
ular slot of that component, in order to display text other than its component “type”.
For example, if you drag a DegreeDays component onto a Px page, the default text displayed is “De-
gree Days”. However, if you change the binding’s ord to “<objectName>/clgDegDays”, the text dis-
plays its calculated cooling degree-days value (and status), for example: “5.0 {ok}”
NiagaraAX-3.x

Engineering Note: BFormat Property Usage
 5



 
Example scenarios   BFormat (Baja Format) Property Usage
Px widget scenarios August 27, 2008
Editing BoundLabel Text for points
If desired, you can edit the Text property in any BoundLabel widget to include additional static text, and/
or modify (or limit) the real-time data in the text. Table 1-2 provides a few example Formatting variables 
and results for writable points.

Table 1-2 Edit options for writable points and Text in BoundLabel

Advanced BoundLabel Text editing
The “Object to String” scripting is quite flexible when working with BoundLabel widgets, where you are 
limited only by your understanding of Baja (see online Bajadoc in NiagaraAX Help). For the non-
developer, these few simple rules may help:
1. The BoundLabel widget must actually be bound to an object (using ord)—in other words, you cannot 

simply drag a BoundLabel from the kitPx palette onto the Px page, edit the Text property, and get 
results. However, the Text value may be totally unrelated to the bound object, if needed.
For example, you can bind to any object and enter a “system type” call, for example: 
%time().toDateString% to produce text like “01-Nov-08”.

2. Relative to the bound object, you can use the “parent” technique to “walk up” the component tree 
for text for a slot (or name), for example “%parent.parent.name%” for the name of the parent two 
levels up. 
An example use of parent technique could be a BoundLabel bound to a DiscreteTotalizerExt under 
a BooleanPoint, where you wish to display the (parent) point’s name and the number of times it has 
changed state, since its last reset. This could be done using this Text entry: 
%parent.displayName% had %changeOfStateCount% COS since last reset.
Where the displayed text might look like: “ChWPump2 had 14 COS since last reset.” 

3. In addition (contrary to what was stated in previous revisions of this document), relative to the 
bound object, you can also “walk down” the tree in a parallel path, using the slot name (versus name 
or displayName).
An example of this “walk down” method (via slot name) is in the previous history extension (histo-
ryName) example, along with the “parent” technique. See “History extension scenario” on page 1-4.

Text (BFormat) value Description Example text if 
out is “On {ok} @ 
16”

Example with static text, resulting display

%out.value% Value only (with fac-
ets).

On AHU is %out.value%.

AHU is On.

%out.status% Status including prior-
ity level, if writable 
point.

{ok} @ 16 Status of AHU is %out.status%.

Status of AHU is {ok} @ 16.

%activeLevel% Number only (1-16, 
def ) for priority level, 
writable points only.

16 AHU is %out.value% at level %activeLevel%.

AHU is On at level 16.

%status.flagsToString% String value(s) for sta-
tus flags set, without 
braces. If non: “ok”.

ok AHU status is %status.flagsToString%.

AHU status is ok.
NiagaraAX-3.x

Engineering Note: BFormat Property Usage
 6



 
 BFormat (Baja Format) Property Usage Example scenarios
August 27, 2008 Weather Service example
Weather Service example
The WeatherService can provide many pieces of information including current conditions and forecasts. 
Figure 1-5 shows the property sheet for a weather report (one locale under the weather service), with 
examples.

Figure 1-5 Example Weather Report property sheet

This information may be displayed on a graphic by creating a bound label that references the weather 
service and the applicable property. For example in this case, if you wanted to display the forecast for today, 
the referenced ord would be “station:|slot:/Services/WeatherService/Charlotte/day0”.
Note you could simply expand the WeatherService in the Nav tree to find this slot, and then drag it into 
the Px page, where the “Make Widget” wizard would automatically resolve to this ord. If the format 
Text is left at the default “%.%”, then the text values in appear in the graphic as shown in the second line 
in Figure 1-6.

Figure 1-6 Default BoundLabel Text to Weather Report’s “Today”

Each of the properties of “Today” can be referenced individually in the format Text to control whether 
they appear, or to provide additional text and formatting. For example, setting the Text to the following:
High %High.value% °F / Low %Low.value% °F / Precip %PrecipChance.value%%%

will result in the graphic displaying text as shown in the second line in Figure 1-7.

Figure 1-7 Example modified BoundLabel Text to Weather Report’s “Today”

Note: In order to display a “%” symbol, you must enter two percentage symbols, since they are used as delimiters 
in the format Text fields.
NiagaraAX-3.x

Engineering Note: BFormat Property Usage
 7



 
Errors: When scripts go bad   BFormat (Baja Format) Property Usage
Weather Service example August 27, 2008
Errors: When scripts go bad
Not all attempts at customizing Format-type property values may be successful—if a syntax error causes 
the script to fail, an “ERROR” or “err:<item>” appears in the produced text.
For example:
• If you forget a “%” on BoundLabel Text entry, say:

Fan is %out.value
The text displayed is: “ERROR Fan is %out.value”

• Or, a script call to a misnamed slot might fail with a displayed error similar to:
ChwPump2 had %err:control:DiscreteTotalizerExt:changeOfStates% COS since last 
reset.

It is recommended that you test all modifications of BFormat-type properties, to make sure you get the 
intended results.

Document change log
Updates (changes/additions) to this BFormat Usage - Engineering Notes document are listed below.
• Updated: August 27, 2008

Updated examples for both the “Alarm extension scenario” and “History extension scenario” to use 
“displayName” instead of “name”, updating the figures used in each. Changed the history extension 
example to use a different syntax in the “historyName” format value, which is a “folder-level inde-
pendent” method explained in the accompanying discussion. Related to this, corrected an erroneous 
statement in the section “Advanced BoundLabel Text editing” on page 1-6. (see new item 3.)

• Updated: December 10, 2007
Applied new formatting for printed document.

• Updated: February 12, 2007
Converted to “single source” document available both as standalone PDF and as an entry in the Nia-
garaAX “docEngNotes.jar” module for Workbench online help access.

• Draft: November 1, 2006
Initial “Engineering Notes” type document, available in PDF only.
NiagaraAX-3.x

Engineering Note: BFormat Property Usage
 8


	BFormat (Baja Format) Property Usage
	Default values
	Why bother with it?

	Example scenarios
	Alarm extension scenario
	History extension scenario
	Px widget scenarios
	Default BoundLabel Text results
	Editing BoundLabel Text for points
	Advanced BoundLabel Text editing

	Weather Service example

	Errors: When scripts go bad
	Document change log




