Technical Document

Niagara Developer Guide

August 26, 2015

miac_;jara4

Niagara Developer Guide

Tridium, Inc.

3951 Westerre Parkway, Suite 350
Richmond, Virginia 23233

US.A

Confidentiality

The information contained in this document is confidential information of Tridium, Inc., a Delaware corpora-
tion (“Tridium”). Such information and the software described herein, is furnished under a license agreement
and may be used only in accordance with that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and, except as permitted under the below copyright notice, is not to be released to, or re-
produced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for
damages of any kind, including without limitation consequential damages, arising from the application of the
information contained herein. Information and specifications published here are current as of the date of this
publication and are subject to change without notice. The latest product specifications can be found by con-
tacting our corporate headquarters, Richmond, Virginia.

Trademark notice

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Con-
ditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL
Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON, Lon-
Mark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara
Framework, NiagaraAX Framework, and Sedona Framework are registered trademarks, and Workbench,
WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services men-
tioned in this publication that is known to be trademarks, registered trademarks, or service marks are the
property of their respective owners.

Copyright and patent notice

This document may be copied by parties who are authorized to distribute Tridium products in connection
with distribution of those products, subject to the contracts that authorize such distribution. It may not oth-
erwise, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form without prior written consent from Tridium, Inc.

Copyright © 2015 Tridium, Inc. All rights reserved.

The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

Niagara Developer Guide

Niagara Developer Guide Index

Framework

e Overview Provides a high level overview of the Niagara Framework and its problem space.

e Architecture Provides a broad overview of the architecture and introduces key concepts such as station, workbench,
daemon, fox, and modules.

e Directory Structure Provides an overview of the the Niagara 4 directory structure, highlighting the differences from
NiagaraAX.

e API Information Provides an overview of API stability designation and public versus implementation APIs.
e Modules Provides an introduction to modules which are the software deliverables in the Niagara Framework.
e Object Model An introduction to the Niagara type system.

e Component Model An introduction to the Niagara component model.

e Building Simples Details for building simple Types.

e Building Enums Details for building enum Types.

e Building Complexes Details for building complex struct and component Types.

e Registry The Niagara registry is used to query details about what is installed on a given system.

e Collections Details on the Niagara Collections API.

e Naming The Niagara ord naming architecture and its APIs.

e Links Discusses object links.

e Execution Discusses the runtime execution environment.
e Station Discusses station lifecycle.

e Remote Programming Describes how the component model is programmed across the network.
e Files Discusses how files are mapped into the Niagara object model.

e Localization Discusses localization in the Niagara Framework.

e Spy An overview of the Niagara diagnostics framework.

e Licensing An overview of the Niagara licensing framework.

e XML An overview of Niagara XML document model and parser APIs.

e Bog Format Details of the Bog (Baja Object Graph) XML schema and APIs used to encode and decode component
graphs.

e Distributions An overview of Niagara Distributions.
e Test How to use Niagara's test framework.
e Virtual Components An overview of using transient, on-demand (virtual) components.

User Interface

In Niagara AX there are three different types of User Interface Technology a developer can choose from...

e bajaui: Niagara's own Java based User Interface toolkit. The Workbench Applet is required to run this User
Interface in the browser.

e Hx: A light weight Serlvet based approach to creating HTML based User Interfaces.
e Mobile: An HTML5 based User Interface technology specifically designed for smart tablets and phones.

In Niagara 4 we're trying to transition away from these technologies because....

e Modern web browsers are moving away from supporting the Java plug-in.
e Three different skills sets are required to cover all bases (bajaui, Hx and Mobile).
e Three times the amount of effort is needed to cover all bases.

Niagara 4 has a new User Interface stack based upon HTMLS5...

Please note, bajaux support for Mobile will not be available in Niagara 4.0!

8/26/2015 1

Niagara Developer Guide

Workbench has an HTML5 Web Browser: you can now surf the web in Workbench. We recognize a lot of
Niagara AX developers have created their existing User Interfaces in Java. By adding a browser to Workbench, you
can transition away from Java for User Interfaces and use HTML5 instead.

e JavaScript: use JavaScript, HTML and CSS to create your Web Applications. We've provided a suite of JavaScript
libaries to make this as easy as possible. This includes BajaScript, bajaux and much more.

e Web Server: we've switched our web server to use Jetty. We've improved our Java Servlet support along the way.

e bajaui and Hx: due to the massive investment our customers have in Niagara AX User Interface technology, we still
support both bajaui and Hx in Niagara 4.

Niagara 4 Open Web Technologies

Our new User Interface technology uses HTML5. This consists of HTML, JavaScript and CSS. For information on
developing your own applications using this technology, please see the section on Building JavaScript Applications.

e Require]S: Require]S is used to write Modular JavaScript code. In Java, packages are used to organize your code. In
JavaScript, AMD (Asynchronous Module Defintion) is the mechanism for defining modules of reusable JavaScript
code. All new JavaScript code in Niagara 4 is modular and uses AMD.

e BajaScript: BajaScript is a JavaScript library that's used to access Niagara data. It's important to note that BajaScript
isn't a User Interface library. It's just for the data.

e bajaux: bajaux is used to write User Interface Widgets in JavaScript. Code once and use everywhere. A bajaux
Widget will run in both Hx and Workbench. These tutorials cover a lot of ground and utilize BajaScript, lexicons,
dashboards and dialogs to create HTML5 web applications.

e webkEditors: a library of widgets, editors and frameworks built using bajaux.
e lexicon: translate your HTML5 Widgets into different languages.

e dialogs: dialog boxes to your HTML5 Widgets.
Niagara AX - bajaui

e Gx Provides an overview of gx graphic toolkit.

e Bajaui Provides an overview of the widget component toolkit.
e Workbench Overview of the workbench shell.

e Web Overview of web APIs.

e Hx Overview of Hx APIs.

e DPx Overview of Px technology.

Niagara AX - Hx

e OQOverview Overview of Hx Architecture
e HxView Details of HxView

e HxOp Details of HxOp

e HxProfile Details of HxProfile

e Events Detail of Events

e Dialogs Details of Dialogs
e Theming Details of Theming

Niagara Theme Modules

e Creating Niagara 4 Themes Details on creating Niagara 4 theme modules.

Web Server

Niagara's web server can be extended in 3 different ways. In Niagara AX, you could extend via Servlet Views and Web
Servlet Components. In Niagara 4, you can also extend via standard Java Servlets.

e Niagara Web Modules: create Java Servlets in Niagara Modules.
e Servlet Views: create a view that is also a Servlet.

8/26/2015 2

http://eclipse.org/jetty/
http://requirejs.org/
http://requirejs.org/docs/whyamd.html
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/jsdoc/bajaScript-ux/index.html
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/jsdoc/bajaux-ux/index.html
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/jsdoc/webEditors-ux/index.html
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/jsdoc/js-ux/module-lex.html
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/jsdoc/js-ux/module-dialogs.html

Niagara Developer Guide

Web Servlet Components: create a component that's also a Servlet.
In Niagara AX 3.7, we added support for Apache Velocity to Niagara. Velocity is a powerful Server Side Templating tool.

e Apache Velocity: create Server Side Templates for HTML.
e DPx Velocity: use the Velocity engine to dynamically create Px XML.

Horizontal Applications

Control Overview of the control and automation module.

History Overview to the historical database module.

Alarm Overview to the alarming module.
Schedule Overview of the scheduling module.
e Report Overview of the reporting module.

BaL

e BQL Overview of the Baja Query Language.
e BQL Expressions Details on BQL expressions.
e BQL Examples Provides BQL examples.

Drivers

e Driver Framework Overview of the driver framework.

e DointDevicelet For reading and writing proxy points.

e HistoryDevicelet For importing and exporting histories.

e AlarmDevicelet For routing incoming and outgoing alarms.

e ScheduleDevicelet Used to perform master/slave scheduling.

e Basic Driver APIs for the basic driver framework

e BACnet APIs for the BACnet driver

e Lonworks APIs for the Lonworks driver

e Lon Markup Language Specification for the lonml XML format

Development Tools

e Build Documentation on using the build tool to compile and package software modules.

e Building JavaScript Applications Documentation on creating new Niagara 4 web modules and developing views
with HTML5 and Javascript.

e Deploying Help How to build and package help documentation with Niagara modules.

e Slot-o-matic 2000 Documentation for the slot-o-matic tool used to aid in the generation of boiler plate code for slot
definitions.

Architecture Diagrams

e Software Stack Provides an illustration of the major software subsystems in Niagara AX.

e (lass Diagram Illustration of the class hierarchy.

e Communication Illustrates Niagara's software processes and their protocols.

e Remote Programming Provides an overview of programming with remote components over fox.
e Driver Hierarchy Illustration of driver hierarchy.

e DProxyExt Illustration of proxy point design.

e Driver Learn Illustration of AbstractManager learn with discovery job.

Series Transforms

8/26/2015 3

http://velocity.apache.org/

Niagara Developer Guide

e Working with Series SchemaWorking with Graph Node Schema.

e Creating a Graph Component Creating new graph components for inclusion in the transform graph.
o Extending the Graph Node Extending the Graph Node.
o Creating a Series Transform Table Creating a Series Transform Table.

Create the Series Cursor Create the Series Cursor.

o

o Creating a Rounded Popup Editor Creating a Rounded Popup Editor.
e Creating Aggregate Functions Extending functions for the Aggregate and Rollup graph nodes.

Security

e Security A general overview of the security model in the Niagara Framework.
e Security Manager Working with the Security Manager.
e Authentication Discusses the authentication model in the Niagara Framework.

8/26/2015

Niagara Developer Guide

Niagara Overview

Mile High View
Niagara: a Java software framework and infrastructure with a focus on three major problems:

e Integrating heterogeneous systems, protocols, and fieldbuses;
e Empowering non-programmers to build applications using graphical programming tools;
e Targeted for highly distributed, embedded systems;

Problem Space

Java

The framework uses the Java VM as a common runtime environment across various operating systems and hardware
platforms. The core framework scales from small embedded controllers to high end servers. The framework runtime is
targeted for Java 8 SE compact3 profile compliant VMs. The user interface toolkit and graphical programming tools are
targetted for Java 8 SE VMs.

Integrating Heteregenous Systems

Niagara is designed from the ground up to assume that there will never be any one "standard" network protocol,
distributed architecture, or fieldbus. Niagara's design center is to integrate cleanly with all networks and protocols. The
Niagara Framework standardizes what's inside the box, not what the box talks to.

Programming for Non-programmers

Most features in the Niagara Framework are designed for dual use. These features are designed around a set of Java APIs
to be accessed by developers writing Java code. At the same, most features are also designed to be used through high level
graphical programming and configuration tools. This vastly increases the scope of users capable of building applications
on the Niagara platform.

Embedded Systems

Niagara is targeted for embedded systems capable of running a Java VM. This excludes low devices without 32-bit
processors or several megs of RAM. But even embedded systems with the horsepower of low end workstations have
special needs. They are always headless and require remote administration. Embedded systems also tend to use solid state
storage with limited write cycles and much smaller volume capacities than hard drives.

Distributed Systems

The framework is designed to provide scalability to highly distributed systems composed of 10,000s of nodes running the
Niagara Framework software. Systems of this size span a wide range of network topologies and usually communicate over
unreliable Internet connections. Niagara is designed to provide an infrastructure for managing systems of this scale.

Component Software

Niagara tackles these challenges by using an architecture centered around the concept of "Component Oriented
Development". Components are pieces of self-describing software that can be assembled like building blocks to create
new applications. A component centric architecture solves many problems in Niagara:

e Components provide a model used to normalize the data and features of heterogeneous protocols and networks so
that they can be integrated seamlessly.

e Applications can be assembled with components using graphical tools. This allows new applications to be built
without requiring a Java developer.

e Components provide unsurpassed visibility into applications. Since components are self-describing, it is very easy

8/26/2015 5

Niagara Developer Guide

for tools to introspect how an application is assembled, configured, and what is occurring at any point in time. This
provides immense value in debugging and maintaining Niagara applications.

e Components enable software reuse.

8/26/2015 6

Niagara Developer Guide

Architecture

Overview
This chapter introduces key concepts and terminology used in the Niagara architecture.
Programs

There are typically four different programs (or processes) associated with a Niagara system. These programs and their
network communication are illustrated via the Communications Diagram:

e Station: is the Niagara runtime - a Java VM which runs a Niagara component application.
e Workbench: is the Niagara tool - a Java VM which hosts Niagara plugin components.

e Daemon: is a native daemon process. The daemon is used to boot stations and to manage platform configuration
such as IP settings.

e Web Browser: is standard web browser such as IE or FireFox that hosts one of Niagara's web user interfaces.
Protocols

There are typically three network protocols that are used to integrate the four programs described above:

e Fox: is the proprietary TCP/IP protocol used for station-to-station and workbench-to-station communication.
e HTTP: is the standard protcol used by web browsers to access web pages from a station.
e Niagarad: is the proprietary protocol used for workbench-to-daemon communication.

Platforms

Niagara is hosted on a wide range of platforms from small embedded controllers to high end servers:

e Jace: the term Jace (Java Application Control Engine) is used to describe a variety of headless, embedded platforms.
Typically a Jace runs on a Flash file system and provides battery backup. Jaces usually host a station and a daemon
process, but not workbench. Jaces typically run QNX or embedded Windows XP as their operating system.

e Supervisor: the term Supervisor is applied to a station running on a workstation or server class machine.
Supervisors are typically stations that provide support services to other stations within a system such as history or
alarm concentration. Supervisors by definition run a station, and may potentially run the daemon or workbench.

e Client: most often clients running a desktop OS such as Windows or Linux access Niagara using the workbench or
a web browser.

Stations

The Niagara architecture is designed around the concept of component oriented programming. Components are self
contained units of code written in Java and packaged up for deployment as modules. Components are then wired
together to define an application and executed using the station runtime.

A Niagara application designed to be run as a station is stored in an XML file called config.bog. The bog file contains a
tree of components, their property configuration, and how they are wired together using links. Station databases can be
created using a variety of mechanisms:

e Created on the fly and in the field using workbench graphical programming tools.
e Created offline using workbench graphical programming tools.

e Predefined and installed at manufacturing time.

e Programmatically generated in the field, potentially from a learn operation.

Stations which restrict their programmability to accomplish a dedicated task are often called appliances.

Often the term Supevisor or Jace will be used interchangeably with station. Technically the term station describes the
component runtime environment common all to all platforms, and Supervisor and Jace describe the hosting platform.

8/26/2015 7

Niagara Developer Guide

Daemon

The Niagara daemon is the one piece of Niagara written in native code, not Java. The daemon provides functionality used
to commission and bootstrap a Niagara platform:

e Manages installing and backing up station databases;

e Manages launching and monitoring stations;

e Manages configuration of TCP/IP settings;

e Manages installation and upgrades of the operating system (QNX only);
e Manages installation and upgrades of the Java virtual machine;

e Manages installation and upgrades of the Niagara software;

e Manages installation of lexicons for localization;

e Manages installation of licenses;

On Windows platforms, the daemon is run in the background as a Window's service. On QNX it is run as a daemon
process on startup.

The most common way to access daemon functionality is through the workbench. A connection to the daemon is
established via the "Open Platform" command which opens a PlatformSession to the remote machine. A suite of views on
the PlatformSession provides tools for accomplishing the tasks listed above.

Another mechanism used to access daemon functionality is via the plat.exe command line utility. This utility provides
much of the functionality of the workbench tools, but via a command line program suitable for scripting. Run plat.exe in
a console for more information.

Workbench

Niagara includes a powerful tool framework called the workbench. The workbench is built using the bajaui widget
framework which is itself built using the standard Niagara component model.

The workbench architecture is designed to provide a common shell used to host plugins written by multiple vendors. The
most common type of plugin is a view which is a viewer or editor for working with a specific type of object such as a
component or file. Other plugins include sidebars and tools.

Workbench itself may be morphed into new applications using the BWbProfi le API. Profiles allow developers to reuse
the workbench infrastructure to create custom applications by adding or removing menu items, toolbar buttons,
sidebars, and views.

Web Ul

An important feature of Niagara is the ability to provide a user interface via a standard web browser such as IE or
FireFox. Niagara provides both server side and client side technologies to build web Uls.

On the server side, the WebService component provides HTTP and HTTPS support in a station runtime. The
WebService provides a standard servlet engine. Servlets are deployed as components subclassed from BWebServlet.
Additional classes and APIs are built upon this foundation to provide higher level abstractions such as BServletView.

There are two client side technologies provided by Niagara. The first is web workbench which allows the standard
workbench software to be run inside a web browser using the Java Plugin. The web workbench uses a small applet called
wbapplet to download modules as needed to the client machine and to host the workbench shell. These modules are
cached locally on the browser's hard drive.

In addition to the web workbench, a suite of technology called hx is available. The hx framework is a set of server side

servlets and a client side JavaScript library. Hx allows a real-time user interface to be built without use of the Java Plugin.
It requires only web standards: HTML, CSS, and JavaScript.

Fox

The Niagara Framework includes a proprietary protocol called Fox which is used for all network communication between

8/26/2015 8

module://docdeveloper/doc/workbench-wb/javax/baja/workbench/BWbProfile.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/BWebService.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/BWebServlet.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/BServletView.bajadoc

Niagara Developer Guide

stations as well as between Workbench and stations. Fox is a multiplexed peer to peer protocol which sits on top of a
TCP connection. The default port for Fox connections is 1911. Fox features include:

e Layered over a single TCP socket connection

e Digest authentication (username/passwords are encrypted)
e Deer to peer

® Request / response

e Asynchronous eventing

e Streaming

e Ability to support multiple applications over a single socket via channel multiplexing
e Text based framing and messaging for easy debugging

e Unified message payload syntax

e High performance

e Java implementation of the protocol stack

API Stack

Niagara provides a broad suite of Java APIs used to customize and extend the station and workbench. The software stack
diagram illustrates the various software layers of the architecture:

e Baja: The foundation of the architecture is defined via the baja module APIs. These APIs define the basics such as
modules, component model, naming, navigation, and security.

e Horizontal: Niagara includes an extensive library of prebuilt components applicable to various M2M domains. The
modules provide standard components and APIs, including: control, alarming, historical data collection,
scheduling, and BQL.

e Drivers: Niagara is designed from the ground up to support multiple heterogeneous protocols. Modules designed to
model and synchronize data with external devices or systems are called drivers and are typically built with the
driver framework. Drivers integrate both fieldbus protocols like BACnet and Lonworks as well as enterprise
systems like relational databases and web services.

e Human Interfaces: An extensive software stack is provided for user interfaces. The gx framework provides a
standard model and APIs for low level graphics. Built upon gx is the bajaui module which provides a professional
toolkit of standard widgets. Built upon bajaui is the workbench framework which provides the standard APIs for
writing plugin tools. The px framework and tools are used to enable non-programmers and developers alike to
create new user interfaces via XML.

8/26/2015 9

module://docdeveloper/doc/baja-rt/module-index.bajadoc

Niagara Developer Guide

Niagara 4 Directory Structure Change

Overview

In order to improve the security of a Niagara installation and adopt standard application installation patterns, the
directory structure for Niagara 4 was redesigned. The new design makes it easier for system administrators to manage
security of the core application as well as the security of “user” data.

Who is Impacted
Anyone who manages a Niagara installation and is familiar with the Niagara AX directory structure.

What Changed

With a Niagara AX installation, configuration data and runtime data were intermixed. This required that users would
need full access permissions to a Niagara AX installation and provided little to no flexibility for administrators to regulate
access. In Niagara 4, an installation is composed of two pieces: the runtime piece and the user piece.

The runtime piece is where the core Niagara components are installed. In a typical Windows environment, this may be
C:\ Program Fi | es\ Ni agara 4\ or in a typical Linux environment this may be / opt / ni agar a4. The runtime
piece (except for upgrades, etc) can be read only since no configuration files are present.

The “user” piece is where the all the configurable data resides. This includes stations, system.properties, templates, etc.
There are actually two types of users. The first type of user is a person (operator, administrator, etc) who logs into the
system with credentials. In Windows 7, this type of user would have a directory C: \ User s\

<user nanme>\ Ni agar a4. 0\ <br andl d>\ . A Linux user would have a directory

/ home/ <user nanme>/ Ni agar a4. 0/ <br andl d>. The second type of user is the system user. This is the user that
runs the Niagara Daemon. Depending on the installation, this may also be a conventional user directory or a a special
directory for the system account.

From within Java, these directories can be accessed by querying Sys. get Ni agar aUser Honme() and
Sys. get Ni agar aHome() .

The impact of this will mostly be felt when manipulating stations. When a new station is created in Workbench, it gets
created in the Niagara User Home directory. In order to start it from Niagara Daemon, it must be installed just like you
would install to a remote Niagara Daemon. Not only does this provide the security benefits that allow restricting direct
access to running stations, it also allows for you to test run them yourself (with the console). Of course you have to watch
out for conflicting ports.

Niagara Path File Ord Shortcut API

Niagara Home ! Sys.getNiagaraHome()

Niagara User Home ~ Sys.getNiagaraUserHome()
Niagara Shared User Home N/A Sys.getNiagaraSharedUserHome()
Station Home A Sys.getStationHome()

Protected Station Home = "7 Sys.getProtectedStationHome()

New Locations of Files
Niagara Home

\bin

\ cl eanDi st

\ conversion

\defaults

| - bacnet Obj ect Types. xm

| - col or Codi ng. properties

| - | onStandar dConversi on. xm

| - ni agar aAxBacnet Qbj ect Types. xm
| - nre.properties

8/26/2015 10

Niagara Developer Guide

- system properties
- uni t Conver si on. xni
- unitDifferential Conversi on. xn
- units.xm
- wor kbench
| - facetKeys. properties
| - newConponents. bog
| - newW dget s. bog

| - newfiles
etc
- gradle
| - <gradle build scripts and pl ugi ns>
- brand. properties
- extensions. properties
jre
| - <Java8 VMm>
\lib

| - licenseAgreenent.txt
| - readmneLi censes. t xt

\ nodul es

| - <N agara Modul es>
\'security

| - certificates
| - l'icenses

| - policy

\sw

Niagara User Home

\etc

\'| oggi ng

| - 1 ogging. properties
\registry

\'security

|- . kr

| - cacerts.jceks

| - exenptions.tes

| - keystore.jceks
\'shared - shared user home
\'stations

Note: Due to application differences, there are some minor differences between the complete list of files in the logged in
user’s Niagara User Home and the Niagara Daemon’s Niagara User Home. For instance, daemon.properties only exists in
the Niagara Daemon’s Niagara User Home. And navTree.xml only exists in the logged in user’s Niagara User Home.

Niagara Shared User Home

With the introduction of the Security Manager, we now have tighter controls on which applications can access which
parts of the file system. In particular, access to the Niagara User Home has been restricted to a few core modules.

In order to allow non-Tridium applications to be able to read and write files, we have created a new directory named
“shared” under the Niagara User Home directory. All applications (including non-Tridium modules as well as program
objects) have read, write and delete access to this directory.

Note that this directory is different from the “shared” directory under station home - it provides a space outside station
home, so that applications may create and manage files not directly related to a particular station.

Protected Station Home

We now have tighter controls on which applications have access to which parts of the file system. The
st ati ons/ <st ati onNane>/ shar ed directory is a publicly available folder under that station to which any module

8/26/2015 1

Niagara Developer Guide

can read to and write from (this is the new stationHome directory). All other directories under the station directory are
protected by the security manager.

Notes

When creating a new station via the New Station Wizard, the new station get created under the logged in user’s
niagaraUserHome (C: \ User s\ <user nane>\ Ni agar a4. O\ <br andl d>). To start this station via the Platform

Daemon (niagarad), use the Station Copier to copy this station from your niagaraUserHome to the daemon’s
niagaraUserHome.

By default, the platform daemon (niagarad)’s niagara_user_home is C: \ Pr ogr anDat a\ Ni agar aN. N\ <br and| d>
where N. Nis the Niagara minor version number and br andl d is the br and. i d property in br and. pr operti es.
Example: C: \ Pr ogr anDat a\ Ni agar a4. O\ t ri di um Each user has an etc directory for providing overrides to user
configurable files. For Niagara 4.0, these contents of these files replace the contents of those in <ni agar a_hone>/ et c.
In the future this will allow the files in the <ni agar a_user _hone>/ et ¢ to be merged with those in

<ni agar a_hone>/ et ¢ when doing upgrades so that the files can be updated while maintaining user overrides.

8/26/2015 12

Niagara Developer Guide

APl Information

Overview

There are a huge number of APIs available which are documented to varying degrees. In working with a specific API
there are a couple key points to understand:

e Stability: a designation for the maturity of the API and its likelihood for incompatible changes;

e Baja vs Tridium: public APIs are published under j ava. baj a packages, and implementation specific code is
published under com t ri di um

Stability

Public APIs are classified into three categories:

e Stable: this designation is for mature APIs which have been thoroughly evaluated and locked down. Every attempt
is made to keep stable APIs source compatible between releases (a recompile may be necessary). Only critical bug
fixes or design flaws are just cause to break compatibility, and even then only between major revisions (such 3.0 to
3.1). This does not mean that stable APIs are frozen, they will continue to be enhanced with new classes and new
methods. But no existing classes or methods will be removed.

e Evaluation: this designation is for a functionally complete API published for public use. Evaluation APIs are mature
enough to use for production development. However, they have not received enough utilization and feedback to
justify locking them down. Evaluation APIs will likely undergo minor modification between major revisions (such
3.0 to 3.1). These changes will likely break both binary and source compatibility. However, any changes should be
easily incorporated into production code with reasonable refactoring of the source code (such as a method being
renamed).

e Development: this designation is for code actively under development. It is published for customers who need the
latest development build of the framework. Non-compatible changes should be expected, with the potential for
large scale redesign.

What is Baja?

Baja is a term coined from Building Automation Java Architecture. The core framework built by Tridium is designed to
be published as an open standard. This standard is being developed through Sun's Java Community Process as JSR 60.
This JSR is still an ongoing effort, but it is important to understand the distinction between Baja and Niagara.

Specification versus Implementation

Fundamentally Baja is an open specification and the Niagara Framework is an implementation of that specification. As a
specification, Baja is not a set of software, but rather purely a set of documentation. The Baja specification will include:

e Standards for how Baja software modules are packaged;
e The component model and its APIs;

e Historical database components and APIs;

e Alarming components and APIs;

e Control logic components and APIs;

e Scheduling components and APIs;

e BACnet driver components and APIs;

e Lonworks driver components and APIs;

Over time many more specifications for features will be added to Baja. But what is important to remember is that Baja is
only a specification. Niagara is an implementation of that specification. Furthermore you will find a vast number of
features in Niagara, that are not included under the Baja umbrella. In this respect Niagara provides a superset of the Baja
features.

8/26/2015 13

Niagara Developer Guide

Javax.bajaversuscom.tridium

Many features found in Niagara are exposed through a set of Java APIs. In the Java world APIs are grouped together into
packages, which are scoped using DNS domain names. Software developed through the Java Community Process is
usually scoped by packages starting with j ava or j avax. The APIs developed for Baja are all grouped under

j avax. baj a. These are APIs that will be part of the open Baja specification and maybe implemented by vendors other
than Tridium. Using these APIs guarantees a measure of vendor neutrality and backward compatibility.

Software developed by Tridium which is proprietary and outside of the Baja specification is grouped under the

com tridi umpackages. The com tri di umpackages contain code specific to how Niagara implements the Baja APIs.
The com tri di umcode may or may not be documented. Most often these packages have their components and slots
documented (doc=bajaonly), but not their low level fields and methods. In general com t r i di umAPIs should never be
used by developers, and no compatibility is guaranteed.

Note: Tridium has developed some APIs under j avax. baj a even though they are not currently part of the Baja

specification. These are APIs that Tridium feels may eventually be published through Baja, but are currently in a
development stage.

8/26/2015 14

Niagara Developer Guide

Modules

Overview

The first step in understanding the Niagara architecture is to grasp the concept of modules. Modules are the unit of
deployment and versioning in the Niagara architecture. A module is a set of related module files having the same
module name/

A module file:

e Isa]JAR file compliant with PKZIP compression;

e Contains a XML manifest in meta-inf/module.xml;

e Isindependently versioned and deployable;

e States its dependencies on other module files and their versions;
e Has contents for a single runtime profile;

Additionally, a module file has a module part name that is used by other module files to declare dependencies against it.
The module part name is usually a concatenation of the module name and runtime profile (e.g. control-rt), but in a few
cases is set explicitly in the module file's manifest.

Runtime Profile

A runtime profile is used in the following ways:

e Describes the contents of a module file;

e Describes the capabilities of a Niagara Runtime Environment in a way that the bootstrap can filter out module files
that can't be or aren't configured to be used (e.g. headless station, full Java UI with doc, station with applet support,
etc.);

e Allows installer tools to correctly decide which module files should be installed to a particular Niagara system;

Runtime profiles describe what a module file's contents are used for, and if the contents include Java classes, which Java
Runtime profiles can load them. The table below uses the module files that comprise the control module as an example:

Built
Runti Example ith
untime wi
Modul Not
Profile . . JRE ores
Name .
Version
Java 8
rt (r:? ntrol - CompactData model and communication: Fox, Box and Web Servlets
3
Java 8
control - BajaUX,HTML5,CSS,JavaScript code providing web-based
ux Ux Compact . .
3 user interaction
Java code supporting old Workbench-based user interaction
- views, field editors, etc. These JARs inject AWT
dependencies at runtime if AWT is supported on the
wb \(,:\Bm "ol - Java 8 SE platform. They are a special case where a single jar file

contains code that is compiled against Java SE but executes
in a compact3 environment. Special care must be taken by

8/26/2015 15

Niagara Developer Guide

developers to avoid using classes that may not be present.

Anything that has a direct dependence upon Java SE code -

control -
se ava 8 SE
se J database technologies, AWT, Swing, etc.
B Documentation. Includes no class files or other runnable
doc gggt rol- N/A
content.
Versions

Versions are specified as a series of whole numbers separated by periods, for example "1.0.3042". Two versions can be
compared resulting in equality, less than, or greater than. This comparision is made by comparing the version numbers
from left to right. If two versions are equal, except one contains more numbers then it is considered greater than the
shorter version. For example:

1.0
1.8

[eleoloNe]
N~V YV

2.
2. .
2.0.45 > 2.0.43
1.0.24.2 > 1.0.24

Every module declares a "vendor" name and "vendorVersion". The vendor name is a case insensitive identifier for the
company who developed the module and the vendorVersion identifies the vendor's specific version of that module.

Tridium's vendorVersions are formatted as "major.minor.build[.patch]:

e Major and minor declare a feature release such as 3.0.

e The third number specifies a build number. A build number starts at zero for each feature release and increments
each time all the softwares modules are built.

e Additional numbers may be specified for code changes made off a branch of a specific build. These are usually
patch builds for minor changes and bug fixes.

So the vendorVersion "3.0.22" represents a module of build 22 in Niagara release 3.0. The vendorVersion "3.0.45.2" is the
second patch of build 45 in release 3.0.

Manifest

All module JAR files must include a manifest file in "meta-inf/module.xml". The best way to examine the contents of this
file is to take an example:

<?xm version="1.0" encodi ng="UTF-8""?>

<nodul e
nane = "control"
runtimeProfile = "rt"
vendor = "Tridi unt
vendor Version = "3.0. 20"
description = "N agara Control Mbodul e”
preferredSynbol = "c"
>

<nodul ePart s>
<nmodul ePart nane="control -wb" runtineProfil e="wh"/>
<nmodul ePart nanme="control -doc" runtineProfile="doc"/>
</ nmodul ePart s>

<dependenci es>
<dependency nane="baj a" vendor="Tridi un vendor Versi on="3.0"/>
<dependency nanme="bqgl -rt" vendor="Tri di unt’ vendor Versi on="3.0"/>
<dependency nane="gx" vendor="Tridi un vendor Version="3.0"/>

</ dependenci es>

<dirs>

8/26/2015 16

Niagara Developer Guide

<di r nane="javax/bajal/control"/>

<di r nane="j avax/ baj a/ control /enunt/ >

<dir nane="javax/ bajal/control/ext"/>

<di r nane="javax/bajal/control/trigger"/>

<di r nane="javax/bajal/control/util"/>
</dirs>

<def s>
<def nane="control.foo" val ue="sonething"/>
</ def s>

<types>
<type name="FooBar" cl ass="j avax. baj a.control.BFooBar"/>
</types>

<| exi cons brand="*">

<l exi con nodul e="baj aui " resource="fr/bajaui _fr.|exicon" | anguage="fr"/>
</ | exi cons>

</ nodul e>

Looking at the root nbdul e element the following attributes are required:

e name: The globally unique name of the module that the file comprises. Developers should use a unique prefix for
their modules to avoid name collisions. Module names must be one to 25 ASCII characters in length.

e vendor: The company name of the module's owner.

e vendorVersion: Vendor specific version as discussed above.
e description: A short summary of the module's purpose.

e preferredSymbol: This is used during XML serialization.

e runtimeProfile: Describes the contents of the module file as described in the runtime profile section above. There
may be only one module file having a particular combination of module name, runtime profile and version.

Additionally, the root nodul e element may have an optional modulePartName attribute which provides the module

part name for the file. If omitted, the module part name will be a concatenation of the module name and the runtime
profile, for example "control-rt".

If the module is composed of more than one module file, then the manifest for the file with the lowest runtimeProfile (rt
being lowest, doc being highest) must identify the other module files by including a modul ePar t s element. That
element contains one or more modulePart sub-elements, each of which has a mandatory runtimeProfile attribute and a
mandatory name attribute which specifies the module part name (not the module name or file name!) for a sibling
module file.

All modules must include a di r s element, which contains a di r subelement for each of the module's content
directories. Each di r has a name attribute which contains a system-home relative file path for a directory in the module.

All module files include zero or one dependenci es element. This element contains zero or more dependency
elements which enumerate the module's dependencies. Dependencies must be resolved by the framework before the
module can be successfully used. Each dependency has one required attribute. The name attribute specifies the module
part name (not the file name or module name!) for the dependent module file. The vendorVersion attribute specifies the
lowest vendorVersion of the dependent module file required. It is assumed that higher versions of a module are backward
compatible, thus any version greater than the one specified in a dependency is considered usable. The vendor attribute
may be specified without the vendorVersion attribute, but not vice versa. Module files having the doc runtimeProfile

may have no dependencies, nor can other module files specify dependencies on them. Additionally, dependencies toward
other module files are limited as described in the table below:

Target Module File's Runtime Profile
rt ux se wb doc
rt Yes No No No No

ux Yes Yes No No No

8/26/2015 17

Niagara Developer Guide

Declaring Module File's Runtime Profile wb Yes Yes Yes No No
se Yes Yes Yes Yes No
doc No No No No No

Modules can declare zero or more def elements which store String name/value pairs. The defs from all modules are
collapsed into a global def database by the registry.

Modules which contain concrete Niagara BObj ect s also include a t ypes element. This element includes zero or more
t ype elements. Each t ype element defines a mapping between a Baja type name and a Java class name. This definition is
specified in the two required attributes type and class.

Modules can declare zero or one | exi cons element, which contains zero or more | €xi con elements. The lexicon has
an optional br and attribute which filters lexicon file usage based on brand. The value of this attribute may contain "*"
(string) or "?" (single character) wildcards. Each lexicon will associate a resource file containing lexicon properties with a
specific module. Typically modules containing lexicons will not contain other elements, but it is possible to include
lexicon files in any module. Lexicon information is loaded into a global lexicon database by the registry. This data is used
by the lexicon system to apply locale-specific elements (text, icons, etc.) as needed.

8/26/2015 18

Niagara Developer Guide

Object Model

Niagara Types

The heart of Niagara is its type system layered above Java type system. Niagara Types are monikers to a Java class in a
specific module. The interface | avax. baj a. sys. Type is used to represent Types in the Niagara Framework. Every
Type is globally identified by its module name and its type name. As previously discussed, a module name globally

identifies a Niagara software module. The type name is a simple String name which is mapped to a Java class name by the
"module.xml" manifest file. Type's are commonly identified using a format of:

{nmodul e nane}:{type nane}
Exanpl es:

baj a: AbsTi ne
baj aui : Text Fi el d

Note: to avoid confusion with the various uses of the word type, we will use capitalization when talking about a Niagara
Type.

BObject

All Java classes which implement a Niagara Type are subclassed from BObj ect . It is useful to compare Type and
Bbj ect to their low level Java counter parts:

Java Niagara
j ava. | ang. Obj ect j avax. baj a. sys. BObj ect
j ava. | ang. d ass j avax. baj a. sys. Type
j ava. | ang. refl ect. Menber |j avax. baj a. sys. Sl ot (discussed later)

Type and Sl ot capture the concepts of meta-data, while BObj ect provides the base class of Niagara object instances
themselves.

Binterface

Java interfaces may be mapped into the Niagara type system by extending Bl nt er f ace. You can query whether a Type
maps to a class or an interface using the method i sl nterface().

Classes which implement Bl nt er f ace must also extent BObj ect . All Bl nt er f aces class names should be prefixed
with "BI".

BObject Semantics

Subclassing from BObject provides some common semantics that all instances of Niagara Types share:

They all support a get Type() method.

Types installed on a system can be extensively queried using the registry.
All BObj ect s have an icon accessed via get | con().

All BObj ect s have a set of agents accessed via get Agent s() . Most agents are user agents which provide some
visualization or configuration mechanism for the BCbj ect .

Building BObject
By subclassing BObj ect you make an ordinary Java class into a Nigara Type. You must obey the following rules when

8/26/2015 19

module://docdeveloper/doc/baja-rt/javax/baja/sys/Type.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BObject.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Type.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BObject.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BInterface.bajadoc

Niagara Developer Guide
creating a Type:
e Types must declare a mapping between their type name and their qualified Java class name in "module.xml". The

Java class name must always be prefixed with 'B', but the type name doesn't include this leading 'B'. For example:

<type name="FooBar" cl ass="javax. baj a.control.BFooBar"/>

e All Types must override the get Type() method to return a statically cached Type instance created by the
Sys. | oadType() method:

public Type getType() { return TYPE;, }
public static final Type TYPE = Sys.| oadType(BFooBar. cl ass);

8/26/2015 20

Niagara Developer Guide

Component Model

Introduction

Built upon Niagara's object model is the component model. Components are a special class of BObj ect s used to
assemble applications using graphical programming tools.

Slots

Niagara components are defined as a collection of Slots. There are three types of slots:

e javax.baja.sys.Property: Properties represent a storage location of another Niagara object.

e javax.baja.sys.Action: An action is a slot that specifies behavior which may be invoked either through a user
command or by an event.

e javax.baja.sys.Topic: Topics represent the subject of an event. Topics contain neither a storage location, nor a
behavior. Rather a topic serves as a place holder for a event source.

The Java interfaces used to model slots in the Niagara framework are:

javax. baj a. sys. Sl ot
L- javax. baj a.sys. Property
L-jww
LJMJMLTODI_C

Every slot is identified by a String name which is unique within its Type. Slot names must contain ASCII letters or
numbers. Other characters may be escaped using "$xx" or "$uxxxx". Refer to Sl ot Pat h for the formal grammar of slot
names and utilities for escaping and unescaping.

Slots also contain a 32-bit mask of flags which provide additional meta-data about the slot. These flag constants are
defined in the] avax. baj a. sys. Fl ags class. Additional meta-data which is not predefined by a flag constant may be
specified using BFacet s which support arbitrary name/value pairs

Slots are either frozen or dynamic. A frozen slot is defined at compile time within a Type's Java class. Frozen slots are
consistent across all instances of a specified Type. Dynamic slots may be added, removed, renamed, and reordered during
runtime. The power of the Niagara Framework is in providing a consistent model for both compile time slots and
runtime slots. Frozen and dynamic slots are discussed in detail in Building Complexes.

BValue

All values of Property slots are instances of | avax. baj a. sys. BVal ue. The BVal ue class hierarchy is:

javax. baj a. sys. BObj ect
L- javax. baj a. sys. Bval ue
L-MMM
L-MMM
L-MM
L-jwumﬁm

BSi npl es are atomic Types in the Niagara Framework, they never contain any slots themselves. The BConpl ex class is
used to built Types which are composed of slots. Every BConpl ex can be recursively broken down into its primitive
BSi npl es.

8/26/2015 21

module://docdeveloper/doc/baja-rt/javax/baja/sys/Slot.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Property.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Action.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Topic.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Slot.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Property.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Action.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Topic.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/naming/SlotPath.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Flags.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BFacets.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BValue.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BObject.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BValue.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BSimple.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BComplex.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BStruct.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BComponent.bajadoc

Niagara Developer Guide

Building BValues

To define new BValues types refer to the following for rules and design patterns:

e Building Simples Details for building BSi npl e Types;
e Building Enums Details for building BEnumTypes;
e Building Complexes Details for building BConpl ex and BConponent Types;

8/26/2015

22

Niagara Developer Guide

Building Simples
Overview

BSi npl e is the base class for all atomic data types in Niagara. As an atomic data type, BSi npl es store a simple piece of
data which cannot be decomposed. All simples are immutable, that is once an instance is created it may never change its
state. Concrete subclasses of BSi npl es must meet the following requirements:

e Meet the common rules applicable to all BObj ect s;

e Must declare a public static final field named DEFAULT which contains a reference to the default instance
for the BSi npl e;

e All BSi npl es must be immutable! Under no circumstances should there be any way for an instance of BSi npl e
to have its state changed after construction;

e Every concrete subclass of BSi npl e must be declared final;
e Every BSi npl e must implement the equal s() method to compare the equality of its atomic data;
e Every BSi npl e must implement binary serialization:

public abstract void encode(Dat aCut put out);
public abstract BObject decode(Datal nput in);

e Every BSi npl e must implement text serialization:

public abstract String encodeToString();
public abstract BObject decodeFronString(String s);

e Convention is to make constructors private and provide one or more factory methods called make.

Example

The following source provides a example:

/*

* Copyright 2000 Tridium Inc. Al Rights Reserved.
*/

package javax. baj a. sys;

import java.io.*;
/**

* The Blnteger is the wapper class for Java prinmtive
* int objects.
*/
public final class BInteger
ext ends BNumber

{
public static Blnteger nmake(int val ue)

if (value == 0) return DEFAULT;
return new Bl nt eger(val ue);

}

private Blnteger(int val ue)

8/26/2015 23

module://docdeveloper/doc/baja-rt/javax/baja/sys/BSimple.bajadoc

Niagara Developer Guide

this.value = val ue;

}

public int getlnt()

{ return val ue;

}

public float getFloat()
{ return (float)val ue;
}

public int hashCode()
; return val ue;

publ i c bool ean equal s(Obj ect obj)

if (obj instanceof BInteger)
return ((Blnteger)obj).value == val ue;
return fal se;

}
public String toString(Context context)
{
return String.val ued (val ue);
}

public void encode(DataCut put out)
t hrows | CExcepti on
{

}

publ i c BObj ect decode(Datal nput in)
t hrows | CException
{

}

public String encodeToString()
t hrows | CException
{

}

public BObj ect decodeFronString(String s)
t hrows | CException

out.witelnt(val ue);

return new Blnteger(in.readlnt());

return String.val ue (val ue);

{
try
{
return new Bl nteger(Integer.parselnt(s));
}
cat ch(Exception e)
throw new | OException("lnvalid integer: " + s);
}
}

public static final BlInteger DEFAULT = new BInteger(0);

public Type getType() { return TYPE;, }

8/26/2015

Niagara Developer Guide

public static final

private int val ue;

}

8/26/2015

Type TYPE = Sys. | oadType(BI nteger.cl ass);

25

Niagara Developer Guide

Building Enums

Overview

The BEnumbase class is used to define enumerated types. An enum is composed of a fixed set of int/String pairs called its
range. The int identifiers are called ordinals and the String identifiers are called tags. Enum ranges are managed by the
BEnunRange class.

There are three subclasses of BEnum BBool ean is a special case which models a bool ean primitive. The

BDynam cEnumclass is used to manage weakly typed enums which may store any ordinal and range. Strongly typed
enums may be defined at compile time by subclassing BFr ozenEnum The Niagara Framework builds a

BFr ozenEnuni s range using the following set of introspection rules:

e Meet the common rules applicable to all BObj ect s;

e Meet the common rules applicable to all BSi npl es (although BFr 0zenEnumis not required to declare a
DEFAULT field);

e Defineasetof public static final fields which reference instances of the BFr ozenEnum s range. Each of
these BFr ozenEnummust declare a unique ordinal value. By convention ordinals should start at zero and
increment by one. Each of these BFr ozenEnummust have a type exactly equal to the declaring class.

e There can be no way to create other instances of the BFr 0zenEnumoutside of the fields declaring its range. This
means no other instances declared in static fields, returned by a static method, or instantable through non-private
constructors.

e There must be at least one BFr ozenEnumdeclared in the range.

e The default value of a BFr ozenEnumis the first instance, by convention with an ordinal value of zero.

e By conventionapublic static final int fieldis defined for each BFr ozenEnumin the range to provide
access to the ordinal value.

Example

The following source provides a complete example of the implementation for BOri ent at i on:

/*

* Copyright 2000 Tridium Inc. Al Rights Reserved.
*/

package javax. baj a. ui.enum

i nport javax. baj a.sys.*;

/**
* BOrientation defines a widget's orientation as
* either horizontal or vertical.
*/
public final class BOientation
ext ends BFrozenEnum

{

public static final int HORI ZONTAL = O;
public static final int VERTICAL = 1,

(¢]

public static final BOrientation horizontal = new BOrientati on(HORI ZONTAL) ;
public static final BOrientation vertical = new BOrientation(VERTI CAL);

public Type getType() { return TYPE;, }
public static final Type TYPE = Sys.|oadType(BOrientation.class);

public static BOientation make(int ordinal)

8/26/2015 26

module://docdeveloper/doc/baja-rt/javax/baja/sys/BEnum.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BEnumRange.bajadoc

Niagara Developer Guide

return (BOrientation)horizontal.getRange(). get(ordinal);

public static BOrientation nake(String tag)
{

}

private BOientation(int ordinal) { super(ordinal); }

return (BOrientation)horizontal.getRange().get(tag);

8/26/2015

27

Niagara Developer Guide

Building Complexes

BStructs vs BComponents

BConpl ex is the base class for both BSt r uct and BConponent . Classes never subclass BConpl ex directly (it doesn't
support any public or protected constructors). Rather developers subclass from BSt r uct or BConponent depending on
their needs. In general structs are used as complex data types. BSt r uct s can be built only using frozen properties.
BConponent s support much more flexibility and are built using frozen and dynamic slots of all types:

BSt r uct |BConponent

Frozen Property |X

Frozen Action

Frozen Topic

Dynamic Property

Dynamic Action

MR

Dynamic Topic

As you will learn, BConrponent s are also the basis for many other features such as BOr ds, links, and the event model.
You may wonder why you would use a BSt r uct ? There are two main reasons. The first is that because of its limited
feature set, it is more memory efficient. The other reason is that properties containing BConponent s cannot be linked,
but BSt r uct s can be (see Links).

Building BComplexes
All concrete subclasses of BConpl ex must meet the following requirements:

e Meet the common rules applicable to all BObj ect s;
e Must declare a public constructor which takes no arguments;
e Declare frozen slots using the introspection patterns defined below.

Introspection Patterns

We have discussed how frozen slots are defined at compile time. Let's take a look at the frameworks knows when frozen
slots have been declared. Every slot is composed of two or three Java members. A member is the technical term for a Java
field, method, or constructor. At runtime the framework uses Java reflection to examine the members of each class,
looking for patterns to self-discover slots. These patterns are based on the patterns used by JavaBeans, with significant
extensions. Remember introspection is used only to define frozen slots, dynamic slots are not specified in the classfile
itself. There is a different pattern for each slot type.

These introspection patterns require a fair amount of boiler plate code. Although it is not too painful to write this code
by hand, you may use Slot-o-matic to generate the boiler plate code for you.

Frozen Properties

Rules

Every frozen property must follow these rules:

e Declareapublic static final Property field where the field name is the property name.

e The property field must be allocated a Property instance using the BConpl ex. newPr opert y() method. This
method takes a set of flags for the property, and a default value.

8/26/2015 28

module://docdeveloper/doc/baja-rt/javax/baja/sys/BComplex.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BStruct.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BComponent.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BComplex.bajadoc

Niagara Developer Guide

Declare a public getter method with JavaBean conventions: type get CapitalizedName().
Declare a public setter method with JavaBean conventions: voi d set CapitalizedName(type v).
The getter must call BObj ect . get (Property) . The method must not perform any addition behavior.

The setter must call BObj ect . set (Property, BObj ect). The method must not perform any additional

behavior.

The only types which may be used in a property are: subclasses of BVal ue, bool ean, int, |ong, float,
doubl e, and St ri ng. The six non-BVal ue types have special accessors which should be used in the getter and
setter implementations.

Semantics

The introspection rules map Property meta-data as follows:

Name: The Property name is the same as the field name.

Type: The Property type is the one declared in the getter and setter methods.

Flags: The Property flags are the ones passed to newPr operty().

Default Value: The Property's default value is the instance passed to newPr operty().

Example

The following illustrates an example for different property types:

/'l bool ean property: fooBar

public static final Property fooBar = newProperty(0, true);
public bool ean get FooBar() { return getBool ean(fooBar); }
public void set FooBar (bool ean v) { setBool ean(fooBar, v); }

/1l int property: coo

public static final Property cool = newProperty(0, 100);
public int getCool () { return getlnt(cool); }

public void setCool (int v) { setlnt(cool, v); }

/'l doubl e property: anal og

public static final Property anal og = newProperty(0, 75.0);
public doubl e get Anal og() { return getDoubl e(anal og); }
public void set Anal og(doubl e v) { setDoubl e(anal og, v); }

/1 float property: description

public static final Property description = newProperty(0, "describe ne");
public String getDescription() { return getString(description); }

public void setDescription(String x) { setString(description, v); }

/1 BObject property: tinestanp

public static final Property tinestanp = newProperty(0, BAbsTi me. DEFAULT) ;
public BAbsTine getTi mestanp() { return (BAbsTi ne)get(tinmestanp); }

public void setTinestanp(BAbsTinme v) { set(tinmestanp, Vv);

Frozen Actions

Rules

Every frozen action must follow these rules:

Declareapublic static final Action field where the field name is the action name.

The action must be allocated an Action instance using the BConponent . newAct i on() method. This method
takes a set of flags for the action and an optional default argument.

Declare a public invocation method with the action name. This method must return voi d or a BObj ect type. This
method must take zero or one parameters. If it takes a parameter, it should be a BObj ect type.

8/26/2015 29

Niagara Developer Guide

e Declare a public implementation method, which is named doCapitalizedName. This method must have the same
return type as the invocation method. This method must have the same parameter list as the invocation method.

e The implementation of the invocation method must call BConponent . i nvoke() . No other behavior is permitted
in the method.

Semantics

The introspection rules map Action meta-data as follows:

e Name: The Action name is the same as the field name.

e Return Type: The Action return type is the one declared in the invocation method.

e Parameter Type: The Action parameter type is the one declared in the invocation method.
e Flags: The Action flags are the ones passed to newAct i on() .

Example

The following illustrates two examples. The first action contains neither a return value nor an argument value. The
second declares both a return and argument value:

/'l action: makeMyDay

public static final Action nmakeMyDay = newActi on(0);

public void makeMyDay() { invoke(nakeMyDay, null, null); }

public void doMakeMyDay() { Systemout.println("Mke ny day!"); }

/1 action: increment
public static final Action increment = newAction(0, new Blnteger(1));
public Bl nteger increnent(Blnteger v)
{ return (Blnteger)invoke(increnent, v, null); }
publ i c Bl nteger dolncrenent (Bl nteger i)
{ return new Blnteger(i.getlnt()+1); }

Frozen Topics

Rules
Every frozen topic must follow these rules:

e Declareapublic static final Topi c field where the field name is the topic name.
e Declare a fire method of the signature: voi d fi reCapitalizedName(EventType) .

e The implementation of the fire method is to call BConmponent . fire() . No other behavior is permitted in the
method.

Semantics

The introspection rules map Topic meta-data as follows:

e Name: The Topic name is the same as the field name.
e Event Type: The Topic event type is the one declared in the fire method.
e Flags: The Topic flags are the ones passed to newTopi c() .

Example

The following code example illustrates declaring a frozen topic:

/'l topic: exploded
public static final Topic expl oded = newTlopic(0);
public void fireExpl oded(BString event) { fire(exploded, event, null); }

8/26/2015 30

Niagara Developer Guide

Dynamic Slots

Dynamic slots are not declared as members in the classfile, but rather are managed at runtime using a set of methods on

BConponent . These methods allow you to add, remove, rename, and reorder dynamic slots. A small sample of these
methods follows:

Property add(String nane, BVal ue val ue,
voi d renmove(Property property);

voi d renane(Property property, String newNane);
voi d reorder (Property[] properties);

int flags);

Note: You will notice that methods dealing with dynamic slots take a Property, not a Slot. This is because all dynamic

slots including dynamic Actions and Topics are also Properties. Dynamic Actions and Topics are implemented by
subclassing BAct i on and BTopi € respectively.

8/26/2015 31

Niagara Developer Guide

Registry

Overview

The registry is a term for a small database built by the Niagara runtime whenever it detects that a module has been
added, changed, or removed. During the registry build process all the types in all the modules are scanned. Their
classfiles are parsed to build an index for the class hierarchy of all the Niagara types available in the installation.

Some of the functions the registry provides:

e query modules installed without opening each jar file

e query class hiearhcy without loading actual Java classes
e query agents registered on a given Type

e map file extensions to their Bl Fi | e Types

e map ord schemes to their BOr dScherme Types

e defs provide a global map of name/value pairs

e query lexicons registered on a given module

API

The Reqi st ry database may be accessed via Sys. get Regi st ry() . Since the primary use of the registry is to
interrogate the system about modules and types without loading them into memory, the registry API uses light weight
wrappers:

Registry Wrapper||Real McCoy

[Modul el nf o |[BMbdul e |
[Typelnfo |[Type

Agents

An agent is a special BObject type that provides services for other BObject types. Agents are registered on their target
types via the module manifest and queried via the Registry interface. Agents are used extensively in the framework for
late binding - such as defining views, popup menus, or exporters for specified target types. Typically agent queries are
combined with a type filter. For example, to find all the BExporters registered on a given file:

AgentFilter filter = AgentFilter.is(BExporter. TYPE)
Agent Li st exporters = file.getAgents(null).filter(filter);

A couple of examples of how an agent type is registered on a target type in the module manifest (module-include.xml):

<type nanme="Val ueBi ndi ng" cl ass="j avax. baj a. ui . Bval ueBi ndi ng" >
<agent ><on type="baj aui : Wdget "/ ></ agent >
<agent ><on type="baj a: Val ue"/ ></ agent >

</type>

<type name="PropertySheet"
class="comtridi um wor kbench. propsheet . BPropertySheet ">
<agent requiredPerm ssions="r"><on type="baja: Conponent "/ ></ agent >
</type>

Agents can be registered on a target only for a specific application using the app attribute within the agent tag. The
application name can be queried at runtime via the Agent | nf 0. get AppNane() method. Agent application names are

8/26/2015 32

module://docdeveloper/doc/baja-rt/javax/baja/registry/Registry.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/registry/ModuleInfo.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BModule.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/registry/TypeInfo.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Type.bajadoc

Niagara Developer Guide

used in conjunction with the get AppNane() method of BWbPr of i | € and BHxPr of i | €. An example application
specific agent:

<type name="Appl i anceUser Manager"
cl ass="appl i ance. ui . BAppl i anceUser Manager " >
<agent app="denmoAppliance">
<on type="baj a: User Servi ce"/ >
</ agent >
</type>

Defs

Module's can declare zero or more defs in their module manifest. Defs are simple String name/value pairs that are
collapsed into a single global map by the registry. A good use of defs is to map a device id to a typespec, bog file, or some
other metadata file. Then the registry may be used to map devices to Niagara information at learn time.

Since the defs of all modules are collapsed into a single map, it is important to avoid name collisions. Convention is to
prefix your defs using module name plus a dot, for example "lonworks."

When using Niagara's standard build tools, defs are defined in your "module-include.xml":

<def s>
<def nane="test.a" val ue="al pha"/>
<def nane="test.b" val ue="beta"/>
</ def s>

Use the registry API to query for defs:

String val = Sys.getRegistry().getDef("test.a");

Spy

A good way to learn about the registry is to navigate its spy pages.

8/26/2015 33

module://docdeveloper/doc/workbench-wb/javax/baja/workbench/BWbProfile.bajadoc
module://docdeveloper/doc/hx-wb/javax/baja/hx/BHxProfile.bajadoc
local:|spy:/sysManagers/registryManager

Niagara Developer Guide

Collections

Overview of Changes from Niagaara AX

There are several inadequacies in the Baja Collections API - javax.baja.collection and javax.baja.sys.Cursor. The current
API suffers from a number of problems that hinder performance and encourage inefficient implementations for cases
where data sets are large. The API changes aim to help developers be more productive with the collection API, and to
pave the way for better implementation when underlying data sets are large.

Impacts

Any module that makes use of the] avax. baj a. col | ecti on classes or j avax. baj a. sys. Cur sor is impacted by
these changes. Depending on what methods and classes of the API the code uses you may need to refactor your code.
Any implementations of Bl Col | ecti on, Bl | Li st, and Bl Tabl e will be impacted by these changes. In the unlikely
event that you implemented the j avax. baj a. bgl . Bl Rel ati onal interface in your code, you will also be impacted.

Changes
Remaved BlCollection

One of the biggest issues with Niagara AX’s Collections API is the Bl Col | ect i on interface. Bl Col | ect i on requires
every implementation to model itself as a collection, a list, and a table. This puts a heavy burden on developers
implementing a collection, and in many cases it does not make sense to model a list as a table, and vice-versa. So this
interface has been removed entirely.

Code Impacts

The interface only had methods for converting the underlying collection to a list or table. Every implementation of
Bl Col | ecti on in the framework now implements Bl Tabl e. If you were casting objects to Bl Col | ect i on you
should be able to safely cast them to Bl Tabl e now. Almost invariably this as due to ord resolution of a bql query:

Niagara AX
Bl Col | ection result = (Bl Coll ection)BOd. make("bqgl: sel ect
di spl ayNane") . get (base) ;
Bl Tabl e table = result.toTabl e();
Niagara 4
Bl Tabl e table = (BI Tabl €) BOrd. nake("bql : sel ect di spl ayNane"). get (base);

Any public methods that took a Bl Col | ect i on will need to be refactored to expect a Bl Tabl e.

Removed BIList

This change is probably the most significant in terms of fundamental philosophy change. As part of the design philosophy
for collections in Niagara 4, we wanted to discourage random-access methods. In fact, they have essentially been
removed from the collection API in favour of cursor-based access. Dn’t worry, you can still work with a table in a
random-access way (details below). The ‘BIList’ interface essentially required random-access support for every collection.
Further, an analysis of the entire framework showed that there were zero concrete implementations of

Bl Li st /Bl Col | ecti on in the public API that did not also implement Bl Tabl e. This indicates that the BITable API
is more useful to the framework as a whole.

Code Impacts

Similar to Bl Col | ect i on above, you should be able to cast any reference to a Bl Li St to a Bl Tabl e now. If by chance
you had a public method that expected a BLi St , you will need to refactor that API to take a Bl Tabl e.

Refactored BiTable

The BlTable interface has been greatly simplified and all random-access methods have been removed.

8/26/2015 34

module://docdeveloper/doc/baja-rt/javax/baja/collection/package-index.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Cursor.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/collection/BITable.bajadoc

Niagara Developer Guide

You can iterate the rows in the table by obtaining a TableCursor. The Tabl eCur sor gives you access to the table that
contains the row, the Row object itself (see below), and a convenience method to obtain a cell value for the current row.

Each row in a table is modelled as a Row object. The row object gives you direct access to the underlying BIObject backing
the row, as well as column cell values, flags, and facets.

Code Impacts

The biggest impact will occur if your code was iterating a Bl Tabl e using the random-access methods of the old APIL You
have a few options.

First, change your code to iterate the table using a cursor. This is the best option.

/1 Iterate a Bl Tabl e using a Tabl eCursor

/1

Bl Tabl e table = (Bl Tabl e) bgl Ord. resol ve().get();
Colum[] colums = table.getColums().list();
try(Tabl eCursor<BI Obj ect > cursor = table.cursor())

/1 Just for printing purposes, not for random access.
int row = 0;
whi l e (cursor.next())

{
Systemout.print(row + ": ");
for (Colum col : colums)
System out. print(cursor.cell(col) + ", ");
}
Systemout. println();
++r ow,
}

}

If you must access the table using random-access indexing, you can convert it to a BIRandomAccessTable using the
j avax. baj a. col | ecti on. Tabl es utility class.

Bl Tabl e tabl e = (BI Tabl e) ordThat Resol vesToTabl e. resol ve().get();
Bl RandomAccessTabl e rat = Tabl es. sl urp(table);

Systemout.printin(String.format("This table has % rows", rat.size()));
for (int i=0; i<rat.size(); ++i)

{
Row row = rat.get (i);
/1l Do sonmething with each row. ..

}

Refactored Cursor Interface
There are a few major changes to the j avax. baj a. sys. Cur sor interface.

1. javax.baja.sys.Cursor now implements j ava. | ang. Aut oCl oseabl e. This means you should be a good citizen of
every cursor you work with. Failing to close a cursor may result in a resource leak and degraded system
performance. The try-with-resources statement introduced in Java 7 can help manage opening and closing cursors.

2. Cur sor is now generic: publ i ¢ interface Cursor<E> extends AutoCd oseable

3. This means it can iterate over any type; not just Niagara types.

4. Since it can iterate any type, we removed the nextComponent() method from the interface and moved it into
Sl ot Cur sor . This seems to be its primary use case anyway.

5. A new javax.baja.sys.JterableCursor interface has been added that extends Cursor and implements Java’s | t er abl e
interface. This enables a Cur sor to be used in a for each statement as well as accessing the Cur sor as an
Iterator,Spliterator or Stream

6. javax.baja.sys.SlotCursor also implements the | t er abl e interface so it can be used to iterate over a collection of
Slots (not BValue).

8/26/2015 35

module://docdeveloper/doc/baja-rt/javax/baja/collection/TableCursor.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/collection/Row.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BIObject.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/collection/BIRandomAccessTable.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Cursor.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/IterableCursor.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/SlotCursor.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Slot.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BValue.bajadoc

Niagara Developer Guide

If you need to implement your own Cur sor, use the utility class javax.baja.collection.AbstractCursor, which stubs out all
methods in the interface and handles close semantics for you. You only need to provide an implementation of
advanceCur sor () and doCet ().

Here are some example of the new S| ot Cur sor design that use Java 8's Stream API...

/'l Renmove all dynamic Properties froma point...
poi nt. get Properties()
.stream()
.filter(Slot::isDynanic)
.forEach(point::remove);

/1 Print out the path string of all folders under a point...
poi nt. get Properties()
.stream()
. map(point::get)
filter(v -> v.getType().is(BFol der. TYPE))
.forEach(v -> Systemout. println(v.asConponent().toPathString()));

BlRelational Interface Breaking Changes

In the unlikely event that you implemented the javax.baja.bgl.BIRelational interface in your code, you will need to add a
Context argument to its single method. The updated interface class is shown below:

public interface Bl Rel ati onal <T extends Bl Ohj ect >

{
/-k*
* Get the relation with the specified identifier.
*
* @aramid A string identifier for the relation. The fornmat
* of the string is inplenmentation specific.
*
* @aram cx The Context associated with this request.
* This paranmeter was added starting in N agara 4.0.
*
* @eturn Returns the relation identified by id or null if the relation
* cannot be found.
*/

Bl Tabl e<T> getRel ation(String id, Context cx);

Type TYPE = Sys. | oadType(Bl Rel ati onal . cl ass);

8/26/2015 36

module://docdeveloper/doc/baja-rt/javax/baja/sys/AbstractCursor.bajadoc
module://docdeveloper/doc/bql-rt/javax/baja/bql/BIRelational.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Context.bajadoc

Niagara Developer Guide

Naming

Overview

Niagara provides a uniform naming system to identify any resource which may be represented using an instance of
BChbj ect . These names are called ords for Object Resolution Descriptor. You can think of a ords as URIs on steriods.

An ord is a list of one or more queries separated by the "|" pipe symbol. Each query is an ASCII string formatted as "
<scheme>:<body>". The scheme name is a globally unique identifier which instructs Niagara how to find a piece of code
to lookup an object from the body string. The body string is opaque and is formatted differently depending on the
scheme. The only rule is that it can't contain a pipe symbol.

Queries can be piped together to let each scheme focus on how to lookup a specific type of object. In general absolute
ords are of the format: host | session | space. Some examples:

i p: sonehost | fox:|file:/dir/somefile.txt
i p: sonehost | fox: 1912| stati on: | sl ot:/ G aphi cs/ Hone
| ocal : | nodul e: //icons/x16/ cut. png

In the examples above note that the "ip" scheme is used to identify a host machine using an IP address. The "fox" scheme
specifies a session to that machine usually on a specific IP port number. In the first example we identify an instance of a

file within somehost's file system. In the second example we identify a specific component in the station database.

The third example illustrates a special case. The scheme "local” which always resolves to BLocal Host . | NSTANCE is
both a host scheme and a session scheme. It represents objects found within the local VM.

APIs

The core naming APIs are defined in the | avax. baj a. nam ng package. Ords are represented using the BOr d class.

Ords may be resolved using the BOr d. r esol ve() or BOrd. get () methods. The r esol ve method returns an
intermediate Or dTar get that provides contextual information about how the ord was resolved. The get method is a
convenience for resol ve() . get ().

Ords may be absolute or relative. When resolving a relative ord you must pass in a base object. If no base object is
specified then BLocal Host . | NSTANCE is assumed. Some simple examples of resolving an ord:

BiIFile f1
BIFile f2

(BIFil e)BOrd. make(" modul e: //icons/ x16/ cut.png").get();
(BIFile)BOd. make("file:sonmefile.txt").get(baseDir);

Parsing

Ords may be parsed into their constituent queries using the method BOr d. par se() which returns O dQuery[].In
many cases you migth cast a OrdQuery into a concrete class. For example:

/1 dump the nanes in the file path

BOd ord = BOrd. nake("file:/alblc.txt");

OrdQuery[] queries = ord. parse();

Fil ePath path = (FilePath)queries[0];

for(int i=0; i<path.depth(); ++i)
Systemout.println("path[" + i + "] =" + path.naneAt(i));

Common Schemes

8/26/2015 37

module://docdeveloper/doc/baja-rt/javax/baja/naming/package-index.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/naming/BOrd.bajadoc

Niagara Developer Guide

The following is an informal introduction some common ord schemes used in Niagara.
ip:
The "ip" scheme is used to identify a Bl pHost instance. Ords starting with "ip" are always absolute and ignore any base

which may be specified. The body of a "ip" query is a DNS hostname or an IP address of the format "dd.dd.dd.dd".

fox:

The "fox" scheme is used to establish a Fox session. Fox is the primary protocol used by Niagara for IP communication. A
"fox" query is formatted as "fox:" or "fox:<port>". If port is unspecified then the default 1911 port is assumed.

file:

The "file" scheme is used to identify files on the file system. All file ords resolve to instances of
javax. baja.file. Bl Fil e.File queries always parse into a Fi | ePat h File ords come in the following flavors:

e Authority Absolute: "//hostname/dir1/dir2"
e Local Absolute: "/dirl/dir2"

e Sys Absolute: "llib/system.properties”

e User Absolute: "Aconfig.bog"

e Relative: "myfile.txt"

e Relative with Backup: "../myfile.txt"

Sys absolute paths indicate files rooted under the Niagara installation directory identified via Sys. get Baj aHome() .
User absolute paths are rooted under the user home directory identified via Sys. get User Home() . In the case of
station VMs, user home is the directory of the station database.

module:

The "module" scheme is used to access Bl Fi | es inside the module jar files. The module scheme uses the "file:" scheme's
formating where the authority name is the module name. Module queries can be relative also. If the query is local
absolute then it is assumed to be relative to the current module. Module queries always parse into a Fi | ePat h

nmodul e: / /i cons/ x16/file. png
nmodul e: // baj a/ j avax/ baj a/ sys/ BObj ect . baj adoc
nodul e: / doc/ i ndex. htm

station:

The "station" scheme is used to resolve the BConmponent Space of a station database.

slot:

The "slot" scheme is used to resolve a BVal ue within a BConpl ex by walking down a path of slot names. Slot queries
always parse into a S| ot Pat h.

h:

The "h" scheme is used to resolve a BConponent by its handle. Handles are unique String identifiers for BConponent s

within a BConponent Space. Handles provide a way to persistently identify a component independent of any renames
which modify a component's slot path.

service:
The "service" scheme is used to resolve a BConponent by its service type. The body of the query should be a type spec.
spy:

8/26/2015 38

module://docdeveloper/doc/baja-rt/javax/baja/file/BIFile.bajadoc

Niagara Developer Guide

The "spy” scheme is used to navigate spy pages. The [avax. baj a. spy APIs provide a framework for making
diagnostics information easily available.

hql:

The "bql" scheme is used to encapsulate a BOL query.

8/26/2015

39

module://docdeveloper/doc/baja-rt/javax/baja/spy/package-index.bajadoc

Niagara Developer Guide

Links

Overview

Links are the basic mechanism of execution flow in the Niagara Framework. Links allow components to be wired
together graphically by propogating an event on a one slot to another slot. An event occurs:

e When property slot of a BConponent is modified.

e When an action slot is invoked.

e When a topic slot is fired.

Links

A link is used to establish an event relationship between two slots. There are two sides to the relationship:

e Source: The source of the link is the BConmponent generating the event either because one its properties is

modified or one its topics is fired. The source of a link is always passive in that is has no effect on the component
itself.

e Target: The target is the active side of the link. The target BConmponent responds to an event from the source.

A link is established using a property slot on the target BConponent which is an instance of BLi nk . The BLi nk struct
stores:

e Source Ord: identifier for the source BConponent ;
e Source Slot: name of the source component's slot;
e Target Slot: name of the target component's slot to act upon;

Note: The target ord is not stored explictly in a BLi nk because it is implicitly derived by being a direct child of the target
component.

The following table diagrams how slots may be linked together:

Source | Target [Semantics

Property|Property|When source property changes, set the target property

Property|Action |When source property changes, invoke the action

Action |Action |[When source action is invoked, invoke target action (action chaining)

Action |Topic |When source action fires, fire target topic

Topic |Action |When source topic fires, invoke the action

Topic |Topic |When source topic fires, fire target topic (topic chaining)

Link Check

Every component has a set of predefined rules which allow links to be established. These rules are embodied in the
Li nkCheck class. Subclasses may override the BConponent . doLi nkCheck() method to provide additional link
checking.

Direct and Indirect Links

Links are constructed as either direct or indirect. A direct link is constructed with a direct Java reference to its source
BConponent, source slot, and target slot. A direct link may be created at anytime. Neither the source nor target
components are required to be mounted or running. These links must be explicitly removed by the developer. Direct

8/26/2015 40

module://docdeveloper/doc/baja-rt/javax/baja/sys/BComponent.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BLink.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/LinkCheck.bajadoc

Niagara Developer Guide
links are never persisted. Examples of creating direct links:
target.linkTo("linkA", source, source.slot, target.slot);
...Or...

BLink |ink = new BLi nk(source, source.slot, target.slot);
target.add("linkA", l|ink);
l'ink.activate();

An indirect link is created through indirect names. A BOrd specifies the source component and Strings are used for the
source and target slot names. Since an indirect link requires resolution of a BOrd to get its source component, the source
is required to be mounted when the link is activated. Indirect links are automatically removed if their source component
is unmounted while the link is activated. Examples of creating an indirect link:

BLi nk |ink = new BLi nk(BOrd. nake("h: 77"), "sourceSlot", "targetSlot");
target.add("linkA", l|ink);

Note: Links are rarely created programmatically, but rather are configured using the graphical programming tools. The
major exception to this rule is building GUIs in code. In this case it is best to establish direct links in your constructor.

Activation

Links exist in either an activated or deactivated state. When a link is activated it is actively propagating events from the
source slot to the target slot. Activated links also maintain a Knob on the source component. Knobs are basically a mirror
image of a link stored on the source component to indicate the source is actively propagating events over one or more
links. When a link is deactivated event propagation ceases and the Knob is removed from the source component.

Activation:

1. Links are activated when the BLi nk. acti vat €() method is called. If the link is indirect, then the source ord
must be resolvable otherwise an Unr esol vedExcept i on is thrown.

2. If creating a direct link using the BConponent . | i nkTo() method the link is automatically activated.

3. Enabled links are activated during BConponent start. This is how most indirect links are activated (at station boot
time).
4. Anytime a BLi nk value is added as a dynamic property on a running BConponent it is activated.

Deactivation:

1. Links are deactivated when the BLi nk. deact i vat e() method is called.

2. Anytime a property with a BLi nk value is removed from BConponent it is deactivated and the target property is
set back to its default value.

3. Anytime the source component of a active indirect link is unmounted, the link is deactivated and removed from the
target component.

8/26/2015 41

module://docdeveloper/doc/baja-rt/javax/baja/sys/Knob.bajadoc

Niagara Developer Guide

Execution

Overview

It is important to understand how BConponent s are executed so that your components play nicely in the Niagara
Framework. The Niagara execution model is based upon:

e Running State: Every component may be started or stopped.
e Links: Links allow events to propagate between components.
e Timers: Timers are established using the Cl ock class.

e Async Actions: Async actions are an important feature which prevent tight feedback loops.

Running State

Every BConponent maintains a running state which may be checked via the BConponent . i sRunni ng() method. A
component may be put into the running state via the BConponent . st art () method and taken out of the running
state via the BConponent . st op() method.

By default whenever a BConponent is started, all of its descendent components are also started recursively. This
behavior may be suppressed using the Fl ags. NO_RUN flag on a property. During startup, any properties encountered
with the noRun flag set will not be recursed.

Every BConponent may add its component specific startup and shutdown behavior by overriding the st art ed() and
st opped() methods. These methods should be kept short; any lengthy tasks should be spawned off on another thread.

Note: Developers will rarely call st art () and st op() themselves. Rather these methods are automatically called
during station bootup and shutdown. See Station Bootstrap.

Links

The primary mechanism for execution flow is via the link mechanism. Links provide a powerful tool for configuring
execution flow at deployment time using Niagara's graphical programming tools. Developers should design their
components so that hooks are exposed via property, action, and topic slots.

One of the requirements for link propagation is normalized types. Therefore Niagara establishes some standard types
which should be used to provide normalized data. Any control point data should use one of the standard types found in

the avax. baj a. st at us package.

Timers

Niagara provides a standard timer framework which should be used by components to setup periodic and one-shot
timers. Timers are created using the schedul e() and schedul ePer i odi cal | y() methods on O ock. Timer
callbacks are an action slot. The BConponent must be mounted and running in order to create a timer.

There are four types of timers created with four different methods on Clock. Two are one-shot timers and two are
periodic timers. The difference between the two one-shots and periodic timers is based on how the timers drift. Refer to
the Clock bajadoc for more information.

AsyncActions
The Niagara execution model is event based. What this means is that events are chained through link propagation. This
model allows the possibility of feedback loops when a event will loop forever in a cyclical link chain. To prevent feedback

loops, component which might be configured with cyclical links should use async actions. An async action is an action
slot with the Fl ags. ASYNC flag set.

Normal actions are invoked immediately either through a direct invocation or a link propagation. This invocation occurs

8/26/2015 42

module://docdeveloper/doc/baja-rt/javax/baja/status/package-index.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Clock.bajadoc

Niagara Developer Guide

on the callers thread synchronously. On the other hand, async actions are designed to run asynchronously on another
thread and immediately return control to the callers thread. Typically async actions will coalesce multiple pending
invocations.

By default async actions are scheduled by the built in engine manager. The engine manager automatically coalesces
action invocations, and schedules them to be run in the near future (100s of ms). Thus between actual execution times if
the action is invoked one or one hundred times, it is only executed once every execution cycle. This makes it a very
efficient way to handle event blasts such as dozens of property changes at one time. However all timer callbacks and async
actions in the VM share the same engine manager thread, so developers should be cautious not to consume this thread
except for short periods.

Niagara also provides a hook so that async actions may be scheduled by subclasses by overriding the post () method.
Using this method subclasses may schedule the action using their own queues and threads. A standard library for
managing invocations, queues, and threads is provided by the following utility classes:

e | nvocation

° eue
e Coal esceQueue

o Wrker

e Thr eadPool Wr ker
e BWirker

e BThr eadPool Wr ker

System Clock Changes

Some control algorithms are based on absolute time, for example a routine that runs every minute at the top of the
mintue. These algorithms should ensure that they operate correctly even after system clock changes using the callback
BConponent . cl ockChanged(BRel Ti ne shift).

8/26/2015 43

module://docdeveloper/doc/baja-rt/javax/baja/util/Invocation.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/Queue.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/CoalesceQueue.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/Worker.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/ThreadPoolWorker.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/BWorker.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/BThreadPoolWorker.bajadoc

Niagara Developer Guide

Station

Overview

A station is the main unit of server processing in the Niagara architecture:

e A station database is defined by a single .bog file"fi | e: ! st ati ons/{nanme}/ confi g. bog";
e Stations are booted from their conf i g. bog file into a single VM/process on the host machine;

e There is usually a one to one correspondance between stations and host machines (Supervisors or Jaces). However

it is possible to run two stations on the same machine if they are configured to use different IP ports;

Bootstrap

The following defines the station boot process:

1.

2.

. Component Start: After service initialization the entire component tree under " | ocal : | station: "

Load: The first phase of bootstrap is to deserialize the conf i g. bog database into memory as a BSt at i on and
mount it into the ord namespace as " | ocal : | station:".

Service Registration: Once the bog file has been loaded into memory and mounted, the framework registers all
services. Services are defined by implementing the Bl Ser vi ce. After this step is complete each service from the
bog file may be resolved using the Sys. get Servi ce() and Sys. get Servi ces() methods.

. Service Initialization: Once all services are registered by the framework, each service is initialized via the

Servi ce. serviceStarted() callback. This gives services a chance to initialize themselves after other services
have been registered, but before general components get started.

is started
using BConponent . st art (). This call in turn results in the st art ed() and descendent sStarted()

callbacks. Once this phase is complete the entire station database is in the running state and all active links
continue propagation until the station is shutdown.
Station Started: After all the components under the BStation have been started, each component receives the

stationStarted() callback. As a general rule, external communications should wait until this stage so that all
components get a chance to initialize themselves.

Steady State: Some control algorithms take a few seconds before the station should start sending control
commands to external devices. To handle this case there is a built-in timer during station bootstrap that waits a
few seconds, then invokes the BConponent . at St eady St at e() callback. The steady state timer may be

configured using the "nre.steadystate" system property. Use Sys. at St eady St at e() to check if a station VM
has completed its steady state wait period.

8/26/2015

44

module://docdeveloper/doc/baja-rt/javax/baja/sys/BStation.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BIService.bajadoc

Niagara Developer Guide

Remote Programming

Overview

Remote programming is one of the most powerful features of Niagara. It is also the number one cause of confusion and
performance problems. The term remote programming broadly applies to using the component model across a network
connection. Some topics like subscription are critical concepts for many subsystems. But most often remote
programming applies to programming with components in the workbench across a fox connection to a station
(illustration).

The component model provides a number features for network programming:

e Lazy loading of a component tree across the network;

e Automatic synchronization of database tree structure over network;

e Ability to subscribe to real-time property changes and topic events;

e Ability to invoke an action over the network like an RPC;

e Support for timed subscriptions called leasing;

e Automatic support for propagating components changes over network;
e Ability to batch most network calls;

Fundamentals

The component model has the ability to make remote programming virtually transparent. In this diagram, the
component "/a/b" is accessed in the workbench VM, but actually lives and is executing in the station VM. The instance of
the component in the workbench is called the proxy and the instance in the station is called the master.

The first thing to note in Niagara is that both the proxy and master are instances of the same class. This is unlike
technologies such as RMI where the proxy is accessed using a special interface. Also unlike RMI and its brethren, nothing
special is required to make a component remote accessible. All Niagara components are automatically remotable by
virtue of subclassing BComponent.

From an API perspective there is no difference between programming against a proxy or a master component. Both are
instances of the same class with the same methods. However, sometimes it is important to make a distinction. The most
common way to achieve this is via the BConponent . i sRunni ng() method. A master component will return true and
a proxy false. Although i SRunni ng() is usually suitable for most circumstances, technically it covers other semantics
such as working offline. The specific call for checking proxy status is via

8/26/2015 45

Niagara Developer Guide

BConponent . get Corponent Space() . i sProxyConponent Space().

Note that proxy components receive all the standard change callbacks like changed() or added() . Typically
developers should short circuit these callbacks if the component is not running since executing callback code within a
proxy can produce unintended side effects.

Proxy Features

The framework provides a host of features which lets you program against a proxy component transparently:

e The proxy can maintain the state of the master by synchronizing all properties in real-time;
e Actions on the proxy act like RPCs;
e Any changes to the proxy are automatically propagated to the master;

The framework provides the ability to keep a proxy's properties completely synchronized in real-time to the master using
subscription. While subscribed all property changes are immediately reflected in the proxy. This enables easy
development of user interfaces that reflect the current state of a component. Note that only properties support this
feature - other fields of your class will not be synchronized, and likely will be invalid if they are populated via station
execution. Subscription is covered in more detail later.

Another feature of Niagara is that all actions automatically act like RPCs (Remote Procedure Calls). When you invoke an
action on a proxy, it automatically marshals the argument across the network, invokes the action on the master, and then
marshals the result back to the proxy VM. Note that all other methods are invoked locally.

Perhaps the most powerful feature of proxies is the ability to transparently and automatically propagate proxy side
changes to the master. For example when you set a property on a proxy, it actually marshals the change over the network
and makes the set on the master (which in turn synchronizes to the proxy once complete). This functionality works for
all component changes: sets, adds, removes, renames, reorders, flag sets, and facet sets. Note that if making many
changes it is more economical to batch the changes using a Transaction; this is discussed later.

Proxy States

A proxy component exists in three distinct states:

e Unloaded: in this state the proxy has not even been loaded across the network.

e Loaded: in this state the proxy is loaded across the network and is known to the proxy VM,; it may or may not be
out-of-date with the master.

e Subscribed: in this state the proxy is actively synchronized with the master.

When a session is first opened to a station, none of the components in the station are known in the workbench. Rather
components are lazily loaded into the workbench only when needed. Components which haven't been loaded yet are
called unloaded.

Components become loaded via the BConpl ex. | oadS| ot s() method. Components must always be loaded according
to their tree structure, thus once loaded it is guaranteed that all a component's ancestors are also loaded. Rarely does a
developer use the | oadS| ot s() method. Rather components are loaded as the user expands the navigation tree or a
component is resolved by ord.

A loaded component means that a proxy instance representing the master component has been created in the
workbench. The proxy instance is of the same class as the master, and occupies a slot in the tree structure identical to the
master (remember all ancestors must also be loaded). The proxy has the same identity as the master. That means calling
methods such as get Name() , get Handl e()) , and get Sl ot Pat h() return the same result. However, note that the
absolute ords of a proxy and master will be different since the proxy's ord includes how it was accessed over the network

(see diagram).

Once a proxy component has been loaded, it remains cached in the loaded state until the session is closed. Loaded
proxies maintain their structure and identity automatically through the use of NavEvents. NavEvents are always routed
across the network to maintain the proxy tree structure independent of the more fine grained component eventing. For
example if a loaded component is renamed, it always reflects the new name independent of subscription state. Or if
removed it is automatically removed from the cache.

Loaded components provide a cache of structure and identity, but they do not guarantee access to the current state of the

8/26/2015 46

Niagara Developer Guide

master via its properties. The subscribed state is used to synchronize a proxy with it's master. Subscription is achieved
using a variety of mechanisms discussed next. Once subscribed a component is guaranteed to have all its property values
synchronized and kept up-to-date with the master. Subscription is an expensive state compared to just being loaded,
therefore it is imporant to unsubscribe when finished working with a proxy.

Subscription

Subscription is a concept used throughout the framework. Components commonly model entities external to the VM.
For example, proxy components model a master component in the station VM. Likewise, components in a station often
model an external system or device. Keeping components synchronized with their external representations is usually
computationally expensive. Therefore all components are built with a mechanism to be notified when they really need to
be synchronized. This mechanism is called subscription.

Subscription is a boolean state. A component can check it's current state via the BConponent . i sSubscri bed()
method. The subscri bed() callback is invoked when entering the subscribed state, and unsubscri bed() when
exiting the subscribed state. The subscribed state means that something is currently interested in the component.
Subscribed usually means the component should attempt to keep itself synchronized through polling or eventing. The
unsubscribed state may be used to disable synchronization to save CPU, memory, or bandwidth resources.

Subscriptions often chain across multiple tiers. For example when you subscribe to a component in the workbench, that
subscribes to the master in a station. Suppose the station component is a proxy point for a piece of data running in a Jace.
That causes a subscription over the station-to-station connection resulting in the Jace's component to be subscribed. If
the Jace component models an external device, that might initiate a polling operation. Keep in mind that n-tier
subscribes might introduce delays. The stale status bit is often used with subscription to indicate that a value hasn't yet
been updated from an external device.

A component is moved into the subscribed state if any of the following are true:

e If the component is running and any slot in the component is used as the source of an active link: i SRunni ng()
&& get Knobs().length > 0.

e There are one or more active Subscri bers.

e The component is permanently subscribed via the set Per manent | ySubscri bed() method. A typical example
is a control point with an extension that returns true for r equi r esPoi nt Subscri ption().

Collectively these three cases are used by the framework to indicate interest in a component. The framework does not
make a distinction between how a component is subscribed, rather all three cases boil down to a simple boolean
condition: subscribed or unsubscribed.

The Subscri ber API is the standard mechanism to register for component events. You can think of Subscriber as the
BComponent listener API. Subscriber maintains a list of all the components it is subscribed to, which makes cleanup easy
via the unsubscri beAl | () method. Subscribers receive the event () callback for any component event in their
subscription list. Note that workbench developers typically use BWhConponent Vi ew which wraps the Subscriber API
and provides automatic cleanup.

Leasing

A common need is to ensure that a component is synchronized, but only as a snapshot for immediate use. The
framework provides a feature called leasing to handle this problem. A lease is a temporary subscription, typically for one
minute. After one minute, the component automatically falls back to the unsubscribed state. However, if the component
is leased again before the minute expires, then the lease time is reset.

Leasing is accomplished via the BConponent . | ease() method.

Batch Calls

Although the framework provides a nice abstraction for remote programming, you must be cognizant that network calls
are occuring under the covers and that network calls are extremely expensive operations. The number one cause of
performance problems is too many round robin network calls. The golden rule for remote programming is that one large
batch network call is almost always better performing than multiple small network calls. Niagara provides APIs to batch
many common operations.

8/26/2015 47

module://docdeveloper/doc/baja-rt/javax/baja/sys/Subscriber.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Subscriber.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BComponentEvent.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/view/BWbComponentView.bajadoc

Niagara Developer Guide

Batch Resolve

The first opportunity to batch network calls is when resolving more than one ord to a component. Resolving a
component deep down in the tree for the first time requires loading the component and all it's ancestors across the
network. And if the ord is a handle ord, a network call is needed to translate the handle into a slot path. The most
efficient way to batch resolve is the via the Bat chResol ve APL

Batch Subscribe

Subscription is another key area to perform batch network calls. There are three mechanisms for batch subscribe:

1. The first mechanism is to subscribe using a depth. The common case for subscription is when working with a
subsection of the component tree. Depth based subscribe allows a component and a number of descendent levels
to be subscribed via one operation. For example if working with the children and grandchildren of a component,
then subscribe with a depth of 2.

2. On rare occasions you may need to subscribe to a set of components scattered across the database. For this case
there is a subscribe method that accepts an array of BComponents. Both the Subscriber and BWbComponentView
classes provide methods that accept a depth or an array.

3. The third mechanism for batch subscribe is do a batch lease. Batch leasing is accomplished via the static
BConponent . | ease() method.

Transactions

By default, when making changes to a proxy component, each change is immediately marshaled over the network to the
master. However, if making many changes, then it is more efficient to batch these changes using Tr ansact i on. Note

most Transactions are used to batch a network call, but do not provide atomic commit capability like a RDBMS
transaction.

Transactions are passed as the Context to the various change methods like set () or add() . Instead of committing the
change, the change is buffered up in the Transaction. Note that Transaction implements Cont ext and is a
SyncBuf f er . Refer to Transact i on' s class header documentation for code examples.

Debugging

The following provides some tips for debugging remote components:

The spy pages provide a wealth of information about both proxy and master components including their subscribe state.
A component spy's page also contains information about why a component is subscribed including the knobs and
registered Subscribers. Note that right clicking a proxy component in the workbench causes a local lease, so it does
introduce a Heisenberg effect; one work around is to bookmark the spy page to avoid right clicks.

The outstanding leases of a VM can be accessed via the LeaseManager spy page.

The most common performance problem is not batching up network calls. The mechanism for diagnosis is to turn on fox

tracing. Specially the "fox.broker" log will illustrate network calls for loads, subscribes (sub), unsubscribes (unsub), and
proxy side changes (syncToMaster). The simplest way to turn on this tracing is Log Setup spy page.

8/26/2015 48

module://docdeveloper/doc/baja-rt/javax/baja/naming/BatchResolve.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sync/Transaction.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/Context.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sync/SyncBuffer.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sync/Transaction.bajadoc
local:|spy:/sysManagers/leaseManager
local:|spy:/logSetup

Niagara Developer Guide

Files

Overview

The Niagara Framework is built upon the fundamental principle that everything of interest is modeled as a BCbj ect .
Files are one of the most basic entities which are mapped into the object model.

The Niagara file model is a comprehensive architecture for mapping all files into a consistent set of APIs:

e Files on the local file system (j ava. i 0. Fi | e);
e Files stored within modules and zip files;

e Files over the network using Fox;

e Files over the network using HTTP;

e Files over the network using FTP;

e Files in memory;

e Files which are autogenerated;

API

The javax. baj a. fil e package provides the core APIs used for file acess. There are three core concepts in the file
model:

1. BILFi | e: represents a file. In general file extensions are mapped to specific Types of Bl Fi | e using the registry.
Effectively the Niagara Type wraps the MIME type. For example common file types include fi | e: Text Fi | e,
file:XmFile,file:lmgeFile,file:WrdFile.The "file" module contains mappings for common file
extensions.

2. BLFil eSt or e: models a Bl Fi | e backing store. For example a fi | e: Text Fi | e might exist on the file system,
in a zip file, or over a network. Each of these file storage mechanism reads and writes the file differently. There a
Bl Fi | eSt or e for every Bl Fi | e which may be accessed via the Bl Fi | e. get St or e() method. Common store
types include baj a: Local Fi | eSt or e, baj a: Menor yFi | eSt or e, and baj a: Zi pFi | eEntry.

3. BFi | eSpace: represents a set of files with a common storage model. BFi | eSpaces are responsible for resolving
Fi | ePat hs into Bl Fi | es. The prototypical file space is the singleton for local file system BFi | eSyst em The
ord "local:|file:" always maps to BFi | eSyst em | NSTANCE.

Mapping File Extensions

You can create custom file types for specific file extensions by following these rules:

e Create an implementation of Bl Fi | e. Utilize one of the existing base classes such as baj a: Dat aFi | e. If you
wish to utilize agents such as file text editors then you must extent f i | e: Text Fi | e or at least implement
file:lTextFile.

e Make sure you override get M meType() to return the MIME type for the file's contents:
public String getM neType() { return "text/htm"; }
e Provide a custom icon if you wish by overriding the get | con() method:

public Blcon getlcon() { return icon; }
private static final Blcon icon = Blcon.std("files/htm .png");

e Map one of more file extensions to your type using in "module-include.xml":

8/26/2015 49

module://docdeveloper/doc/baja-rt/javax/baja/file/package-index.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/file/BIFile.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/file/BIFileStore.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/file/BFileSpace.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/file/BFileSystem.bajadoc

Niagara Developer Guide

<type name="Htm File" class="javax.baja.file.types.text.BH mFile">
<file>
<ext nane="htm "/>
<ext name="htni/>
</file>
</type>

8/26/2015

50

Niagara Developer Guide

Localization

Overview

All aspects of the Niagara framework are designed for localization. The basic philosophy for localization is that one
language may supported in-place or multiple languages may be supported via indirection. The foundation of localization
is based on the Context and Lexicon APIs.

Context

Any framework API which is designed to return a string for human display, takes a Context parameter. Context provides
information to an API about the context of the call including the desired locale. Many APIs implement Context directly
including OrdTarget, ExportOp, and WebOp. For example if you are processing a web HT TP request, you can pass the
WebOp instance as your Context and the framework will automatically localize display strings based on the user who is
logged in for that HT'TP session.

Note that Workbench code always uses the default locale of the VM, so it is typical to just use nul | for Context.
However code designed to run in a station VM should always pass through Context.

Lexicon

Lexicons are Java properties files which store localized key/value pairs. They are either deployed within modules or
located in a directory called "file:!lexicon/". A module may contain multiple lexicon files, each of which is associated with
a language. The "file:!lexicon/" directory may contain zero or more /ang subdirectories, which are used to store the
lexicon files for specific languages, where lang is the locale code. Within the directory there is a file per module named
"moduleName.lexicon". Every module with a lexicon should also provide a fallback lexicon bundled in the root directory
of module's jar file: "module://moduleName/moduleName.lexicon" (note in the source tree it is just "module.lexicon").

Access to lexicons is provided via the Lexicon API.

BFormat

Many Niagara APIs make use of the BFormat class to store a formatted display string. BFormat provides the ability to
insert special function calls into the display string using the percent sign. One of these calls maps a string defined in a
lexicon via the syntax "%lexicon(module:key)%. Whenever a display string is stored as a BFormat, you may store one
locale in-place or you may use the %lexicon()% call to indirectly reference a lexicon string.

Slots

One of the first steps in localization, is to provide locale specific slot names. Every slot has a programmatic name and a
context sensitive display name. The process for deriving the display name for a slot:

1. BComplex.getDisplayName(Slot, Context): The first step is to call this API. You may override this method to
provide your own implementation for localization.

2. NameMap: The framework looks for a slot called "displayNames" that stores a BNameMap. If a NameMap is found
and it contains an entry for the slot, that is used for the display name. Note the NameMap value is evaluated as a
BFormat, so it may contain a lexicon call. NameMaps are useful ways to localize specific slots, localize instances, or
to localize dynamic slots.

3. Lexicon: Next the framework attempts to find the display name for a slot using the lexicon. The lexicon module is
based on the slot's declaring type and the key is the slot name itself.

4. Slot Default: If we still haven't found a display name, then we use a fallback mechanism. If the slot is frozen, the
display name is the result of Text Uti | . t oFri endl y(nane) . If the slot is dynamic the display name is the
result of Sl ot Pat h. unescape(nane).

Facets

8/26/2015 51

module://docdeveloper/doc/baja-rt/javax/baja/sys/Context.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/naming/OrdTarget.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/file/ExportOp.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/WebOp.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/Lexicon.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/BFormat.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/BNameMap.bajadoc

Niagara Developer Guide

Sometimes facets are used to store display string. In these cases, the string is interpreted as a BFormat so that a
%lexicon()% call may be configured. This design pattern is used for:

e Boolean trueText
e Boolean falseText

FrozenEnums

Compile time enums subclass from BFrozenEnum. Similar to slot names and display names, enums have a programmatic
tag and a display tag. Localization of display tags uses the following process:

1. Lexicon: The framework first attempts to map the display tag to a lexicon. The module is the declaring type of the
FrozenEnum and the key is the programmatic tag.

2. Default: If a display tag isn't found in the lexicon, then the fallback is the result of
TextUtil.toFriendl y(tag).

DynamicEnums

Localization of BDynamicEnums is done via the BEnumRange API. An EnumRange may be associated with a
DynamicEnum directly via DynamicEnum.make() or indirectly via Context facets. An EnumRange may be composed of a

FrozenEnum's range and/or dynamic ordinal/tag pairs. Any portion of the frozen range uses the same localization
process as FrozenEnun. The dynamic portion of the range uses the following process:

1. Lexicon: If BEnumRange.getOptions() contains a "lexicon" value, then we attempt to map the display tag to a
lexicon where the module is the value of the "lexicon" option and the key is the programmatic tag.

2. Default: If a display tag is not found using the lexicon, and the ordinal does map to a programmatic tag, then the
result of Sl ot Pat h. unescape(t ag) is returned.

3. Ordinal: The display tag for an ordinal that isn't included in the range is the ordinal itself as a decimal integer.

User Interface

When building a user interface via the bajaui APIs, all display text should be localizable via lexicons. In the case of simple
BLabels, just using the Lexicon API is the best strategy.

The Command and ToggleCommand APIs also provide built-in support for fetching their label, icon, accelerator, and
description from a lexicon. Take the following code example:

class Dolt extends Conmand

Dol t (BW dget owner) { super(owner, lex, "do.it"); }

static final Lexicon |ex = Lexicon.nake(M/Conmand. cl ass);
}

In the example above Dolt would automatically have it's display configured from the declaring module's lexicon:

do.!t.labeI:Eb It

do.it.icon=nodul e://icons/x16/build. png
do.it.accelerator=Crl+D

do.it.description=Do it, whatever it is.

Locale Selection

Every time a Niagara VM is started it attempts to select a default locale using the host operating system. The OS default
may be overridden via the command line flag "-locale:lang", where lang is the locale code. The locale code can be any

string that maps to a lexicon directory, but typically it is a ISO 639 locale code such as "fr". The default locale of the VM
may be accessed via the Sys. get Language() APL

When the workbench is launched as a desktop application it follows the rules above to select it's locale. Once selected the

8/26/2015 52

module://docdeveloper/doc/baja-rt/javax/baja/sys/BFrozenEnum.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BDynamicEnum.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BEnumRange.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/Command.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/ToggleCommand.bajadoc

Niagara Developer Guide

entire workbench uses that locale independent of user accounts used to log into stations.

The locale for web browser access to a station follows the rules:

1. User.language: If the language property of user is a non-empty string, then it defines the locale to use.

2. Accept Language: Next the framework tries to select a locale based on the "Accept-Language" passed in the
browser's HTTP request. Typically this is configured in the browser's options.

3. Default: If all else fails, then the default locale of the station's VM is used

Time Formatting

The default time format is defined by the lexicon key baja:timeFormat. But it may be selectively overridden by users. To
change the time format in the Workbench use General Options under Tools | Options. Use the User.facets property to
change it for browser users.

Niagara' time format uses a simple pattern language:

Pattern Description
YY Two digit year
YYYY Four digit year
M One digit month
MM Two digit month
MMM Abbreviated month name
D One digit day of month
DD Two digit day of month
h One digit 12 hour
hh Two digit 12 hour
H One digit 24 hour
HH Two digit 24 hour
mm Two digit minutes
ss Seconds (and milliseconds if applicable)
a AM/PM marker
Z Timezone
anything else||Character literal

In addition to the time format configured by the user, developers may customize the resolution via the following facets:

BFacet s. SHOW TI MVE

BFacet s. SHOW DATE

BFacet s. SHOW SECONDS
BFacet s. SHON M LLI SECONDS
BFacet s. SHOWN Tl ME_ZONE

To programmatically format a time using this infrastructure use the BAbsTime or BTime APIs.

Unit Conversion

8/26/2015

53

module://docdeveloper/doc/baja-rt/javax/baja/sys/BAbsTime.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BTime.bajadoc

Niagara Developer Guide

By default the framework displays all numeric values using their configured units (via Context facets). Users may override
this behavior to have all values converted to the US/English system or SI/Metric systems. To enable this feature in
Workbench use General Options under Tools | Options. Use the User.facets property to enable it for browser users.

The list of units known to the system and how to convert is configured via the file:!lib/units.xml XML file. The mapping
of those units between English and Metric is done in the file:!lib/unitConversion.xml XML file.

To programmatically format and auto-convert numerics use the BEloat or BDouble APIs.

Note this unit conversion is independent of the conversion which may be performed by ProxyExts when mapping a point
into a driver.

8/26/2015 54

module://docdeveloper/doc/baja-rt/javax/baja/sys/BFloat.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BDouble.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/point/BProxyExt.bajadoc

Niagara Developer Guide

Spy

Overview

The Niagara Framework is built upon a principle of high visibility. By modeling everything as a BObj ect s most data and
functionality is automatically made visible using the tools built into the workbench. However it is infeasible to model all
data using the component model. The spy framework provides a diagnostics window into the system internals for
debugging which goes beyond the component model.

Spy pages are accessed via the spy:/ ord.

See javax.baja.spy package for more details.

8/26/2015 55

local:|spy:/
module://docdeveloper/doc/baja-rt/javax/baja/spy/package-index.bajadoc

Niagara Developer Guide

Licensing

Overview

The Niagara licensing model is based upon the following elements:

Hostld A short String id which uniquely identifies a physical box which runs Niagara. This could a Windows

workstation, Jace-NP, or any Jace-XXX embedded platform. You can always check your hostld using the command

"nre -version".

Certificate: A file ending in "certificate" which matches a vendor id to a public key. Certificates are granted by
Tridium, and digitally signed to prevent tampering. Certificates are stored in the "{home}\certificates" directory.

License File: A file ending in "license” which enables a set of vendor specific features. A licenses file is only valid for

a machine which matches its hostld. Licenses are digitally signed by a specific vendor to prevent tampering.
License files are stored in the "{home}\licenses" directory.

Feature: A feature is a unique item in the license database keyed by a vendor id and feature name. For example
"Tridium:jade" is required to run the Jade tool.

API: The] avax. baj a. | i cense package provides a simple API to perform checks against the license database.

License File

A license file is an XML file with a "license" extension. License files are placed in "{home}\licenses". The filename itself
can be whatever you like, but convention is to name the file based on the file's vendor id. The following is an example
license file:

<license
version="1.0"
vendor =" Acne"
gener at ed="2002- 06- 01"
expi ration="never"
host | d="W n- 0000- 1111- 2222-3333" >
<f eat ure nanme="al pha"/>
<feature name="beta" expiration="2003-01-15"/>
<f eat ure nane="ganma" count="10"/>
<si gnat ur e>MC0 CFACWUv UWA+mNXM ogNb6PVURNneer AhUAgZnTYb6kBCsvsniC2by 1t Ue/ 5k/ 4=
</ si gnat ure>
</license>

Validation

During bootstrap, the Niagara Framework loads its license database based on the files found in the "{home}\licenses"
directory. Each license file is validated using the following steps:

1.

The host | d attribute matches the license file to a specific machine. If this license file is placed onto a machine
with a different hostld, then the license is automatically invalidated.

The expi r ati on attribute in the root element specifies the master expiration. Expiration must be a format of
"YYYY-MM-DD". If the current time is past the expiration, the license file is invalidated. The string "never" may be
used to indicate no expiration.

The gener at ed attribute in the root element specifies the license file generation date as "YYYY-MM-DD". If the
current time is before the generated date, the license file is invalidated.

The vendor attribute is used to inform the framework who has digitally signed this license file. In order to use a
license file, there must be a corresponding certificate file for that vendor in the "{home}\certificates" directory.
The si gnat ur e element contains the digital signature of the license file. The digital signature is created by the

vendor using the vendor's private key. The signature is verified against the vendor's public key as found in the
vendor's certificate. If the digital signature indicates tampering, the license file is invalid.

8/26/2015 56

module://docdeveloper/doc/baja-rt/javax/baja/license/package-index.bajadoc

Niagara Developer Guide

Features
A license database is a list of features merged from the machine's license files that are validated using the procedure
discussed above. Each feature is defined using a single XML element called f eat ur e. Features are identified by the

vendor id which is signed into the license file and a feature name defined by the nane attribute.

The expi r at i on attribute may be specified in the feature element to declare a feature level expiration. Expiration is a
string in the format of "never” or "YYYY-MM-DD". If expiration is not specified then never is assumed.

Each feature may declare zero or more name/value properties as additional XML attributes. In the example license above
the "gamma" feature has one property called "count” with a value of "10".

Predefined Features

The following is a list of predefined features used by the Niagara Framework. All of these features require a vendor id of
"Tridium":

e workbench: Required to run the workbench tool.
e station: Required to run a station database.

APl Usage

The following are some snippets of Java code used to access the license database:
/1 verify that the "Acne: Cool Feature" is licensed on this machine

try

Sys. get Li censeManager (). checkFeat ure("Acne", "Cool Feature");
Systemout.println("licensed!");

cat ch(Li censeException e)

Systemout.println("not |icensed!'");

}

/'l get some feature properties

Feature f = Sys. getLi censeManager (). get Feature("Acne", "gama");
f.check();

String count = f.get("count");

Checking Licenses

You may use the following mechanisms to check your license database:

1. Use the console command "nre -licenses".
2. Use the spy page.

8/26/2015 57

local:|spy:/sysManagers/licenseManager

Niagara Developer Guide

XML

Overview

The javax.baja.xml package defines the core XML API used in the Niagara architecture. The two cornerstones of this APIs
are:

1. XElem: Provides a standard representation of an XML element tree to be used in memory. It is similar to the W3's
DOM, but much lighter weight.

2. XParser: XParser is a light weight XML parser. It may be used in two modes: to read an entire XML document into
memory or as a pull-parser.

The Baja XML APIs are designed to be small, fast, and easy to use. To achieve this simplicity many advanced features of
XML are not supported by the j avax. baj a. xm APIs:

e Only UTF-8 and UTF-16 encodings are supported. Unicode characters in attributes and text sections are escaped
using the standard entity syntax '&#dd;' or '&#xhh;'.

e All element, attribute, and character data productions are supported.
e CDATA sections are supported.
e Namespaces are supported at both the element and attribute level.

e Doctype declarations, DTDs, entity declarations are all ignored by the XML parser. XML used in Niagara is always
validated at the application level for completeness and efficiency.

e DProcessing instructions are ignored by the XML parser.
e No access to comments is provided by the XML parser.
e Character data consisting only of whitespace is always ignored.

Example XML

For the code examples provided we will use this file "test.xml":

<root xm ns="ns-stuff" xm ns:u="ns-user">
<u:user nane="biff" age="29">
<u: description>Bi ff rocks</u:description>
<u:skills sing="true" dance="fal se"/>
</ u: user>
<user nanme="elvis" alive="mybe" xm ns="">
<skills sing="true" dance="true"/>
</ user >
<attr1="1" u:attr2="2"/>
</root >

Working with XElem

The XElem class is used to model an XML element tree. An element is defined by:

e Namespace: Elements which are in a namespace will return a non-null value for ns() . You may also use the
prefix() anduri () methods to access the namespace prefix and URL The "xmlns" attribute defines the default
namespace which will apply to all child elements without an explicit prefix. The "xmlns:{prefix}" attribute defines
an namespace used by child elements with the specified prefix.

e Name: The nane() method returns the local name of the element without the prefix. You may also use gnarme()
to get the qualified name with the prefix.

e Attributes: Every element has zero or more attributes declared within the element start tag. There are an
abundance of convenience methods used to access these attributes. Attributes without an explicit prefix are
assumed to be in no namespace, not the default namespace.

8/26/2015 58

module://docdeveloper/doc/nre-rt/javax/baja/xml/package-index.bajadoc
module://docdeveloper/doc/nre-rt/javax/baja/xml/XElem.bajadoc
module://docdeveloper/doc/nre-rt/javax/baja/xml/XParser.bajadoc
module://docdeveloper/doc/nre-rt/javax/baja/xml/XElem.bajadoc

Niagara Developer Guide
Content: Every element has zero of more content children. Each content child is either an XText or XElem
instance. Character data (including CDATA) is represented using XText.
The following code illustrates many of the commonly used methods on XElem:
/1 parse the test file
XEl em root = XParser.nake(new File("test.xm")).parse();

/1l dunmp xm tree to standard out
root . dunp();

/1 dunp root identity
System out. println("root.nane " + root.nane());
System out.println("root.ns " + root.ns());

/1 get elements
Systemout. println("el ens() " + root.elens().length);
System out. println("el ens(user) " + root.elens("user").length);

/1 biff

XElem biff = root.elen(0);

System out. println("biff.nane =" + biff.nane());
System out. println("biff.ns =" + biff.ns());

Systemout.println("biff.age " + biff.get("age"));
/1 elvin

XElemelvis = root.elen(l);
XElemskills = elvis.elen("skil
System out. println("el vis.nanme
Systemout.println("elvis.ns
Systemout.println("skills.sing

2l+ el vis. name()):
"+ elvis.ns());
" + skills.getb("sing"));

i v

Output from code above:

r oot . nane = root
root.ns = ns-stuff
el ens() =3

el enms(user) = 2

bi ff. nane = user

bi ff.ns = ns-user
bi ff.age = 29

el vis. nane = user
elvis.ns = nul |
skills.sing = true

Working with XParser

The XParser class is used to parse XML input streams into XElems. The easiest way to do this is to parse the entire
document into memory using the par se() method:

/'l parse and cl ose input stream
XEl em root = XParser. nmake(in).parse();

The above code follows the W3 DOM model of parsing a document entirely into memory. In most cases this is usually
acceptable. However it can create efficiency problems when parsing large documents, especially when mapping the
XElems into other data structures. To support more efficient parsing of XML streams, XParser may also be used to read
elements off the input stream one at a time. This is similar to the SAX API, except you pull events instead of having them
pushed to you. A pull model is much easier to work with.

To work with the pull XParser APIs you will use the next () method to iterate through the content instances. This

8/26/2015 59

module://docdeveloper/doc/nre-rt/javax/baja/xml/XParser.bajadoc

Niagara Developer Guide

effectively tokenizes the stream into XElem and XText chunks. Each call to next () advances to the next token and
returns an int constant: ELEM _START, ELEM _END, TEXT, or EOF. You may also check the type of the current token
using t ype() . You may access the current token using el en{) ortext ().

XParser maintains a stack of XElems for you from the root element down to the current element. You may check the
depth of the stack using the dept h() method. You can also get the current element at any position in the stack using
el em(int depth).

It is very important to understand the XElem at given depth is only valid until the parser returns ELEM_END for that
depth. After that the element will be reused. The XText instance is only valid until the next call to next () . You can
make a safe copy of the current token using copy() .

The following code illustrates using XParser in pull mode:

XParser p = XParser.make(new File("test.xm"));

p.next(); // /root start

Systemout.println("root.start: " + p.elem().name() + " " + p.depth());
p.next(); // root/user(biff) start

Systemout.println("biff.start: " + p.elem().nane() + " " + p.depth());
p.next(); // root/user/description start
Systemout.println("desc.start: " + p.elem().nanme() + " " + p.depth());
p.next(); // root/user/description text

Systemout.println("desc.text: " + p.text() + " " + p.depth());
p.next(); // root/user/description end

System out. printl n("desc. end: "+ p.elem).nane() + " " + p.depth());

p.skip(); // skip root/user/skills
p.next(); // root/user(biff) end

Systemout.printin("biff.end: " + p.elem).nane() + " " + p.depth());
p.next(); // root/user(elvis) start
Systemout.println("elvis.start: " + p.elen().nane() + " " + p.depth());

Output from code above:

root.start: r oot 1
biff.start: user 2
desc.start: description 3
desc. text: Biff rocks 3
desc. end: description 3
bi ff. end: user 2

2

elvis.start: user

8/26/2015 60

Niagara Developer Guide

Bog Files

Overview

Niagara provides a standard XML format to store a tree of BValues. This XML format is called "bog" for Baja Object
Graph. The bog format is designed for the following criteria:

e Easy to serialize a graph to an output stream using one pass;
e Easy to deserialize a graph from an input stream using one pass;

Compact XML, using single letter element and attribute names;

Ability to compress using zip;

Bog files are typically given a ".bog" extention. Although the ".palette” extension can be used to distinguish a bog designed
for use as palette; other than extension bog and palette files are identical.

Bog files can be flat XML files or stored inside zip files. If zipped, then the zip file contains a single entry called "file.xml"
with the XML document. You use workbench to copy any BComponent to a directory on your file system to easily
generate a bog.

API

In general the best way to read and write bog files is via the standard APIs. The BogEncoder class is used to write
BValues to an output stream using bog format. Note that BogEncoder subclasses XW i t er for generating an XML
document. You can use the XW i t er . set Zi pped() method to compress the bog file to to a zip file with one entry
called "file.xml". In general you should use the encodeDocunent () method to generate a complete bog document.
However you can also use BogEncoder to stream multiple BValues to an XML document using encode() .

The BogDecoder class is used to decode a bog document back into BValue instances. Note that BogDecoder
subclasses XPar ser for parsing XML. When decoding a bog file, XPar ser will automatically detect if the file is zipped
or not. General usage is to use decodeDocurnent () in conjunction with BogEncoder . encodeDocunent () for
decoding the entire XML document as a BValue. However BogDecoder can also be used to decode BValues mixed with
other XML data using BogDecoder . decode() and the standard XPar ser APIs.

BogEncoder . mar shal () and BogDecoder . unmar shal () are convenience methods to encode and decode a
BValue to and from a String.

Syntax

The bog format conforms to a very simple syntax. The root of a bog document must always be "bajaObjectGraph". Under
the root there are only three element types, which map to the three slot types:

Element Description
p Contains information about a property slot
a Contains information about a frozen action slot
t Contains information about a frozen topic slot

All other information is encoded into XML attributes:

Attribute Description

n This required attribute stores the slot name.

Defines a module symbol using the format "symbol=name". Once defined, the

8/26/2015 61

module://baja/doc/javax/baja/io/BogEncoder.bajadoc
module://docdeveloper/doc/nre-rt/javax/baja/xml/XWriter.bajadoc
module://baja/doc/javax/baja/io/BogDecoder.bajadoc
module://docdeveloper/doc/nre-rt/javax/baja/xml/XParser.bajadoc

Niagara Developer Guide

|| symbol is used in subsequent t attributes.

Specifies the type of a property using the format "symbol:typename", where
t symbol must map to a module declaration earlier in the document. If
unspecified, then the type of the property's default value is used.

f Specifies slot flags using the format defined by FI ags. encodeToSt ri ng()

h This attribute specifies the handle of BComponents

X Specifies the slot facets using format defined by BFacet s. encodeToSt ri ng()

\% Stores the string encoding of BSimples.

In practice the XML will be a series of nested p elements which map to the structure of the BComplex tree. The leaves of
tree will be the BSimples stored in the v attribute.

Example

A short example of a kitControl:SineWave linked to a kitControl:Add component. The Add component has a dynamic
slot called description where value is "hello", operator flag is set, and facets are defined with multiLine=true.

<?xm version="1.0" encodi ng="UTF-8""?>
<baj albj ect Graph version="1.0">
<p m="b=baja" t="b:UnrestrictedFol der">
<p n="Si neWave" h="1" m="kitControl =kitControl"™ t="kitControl:Si neWave">

</ p>
<p n="anplitude" v="35"/>

</ p>

<p n="Add" h="3" t="kitControl:Add">
</ p>

<p n="Link" t="b:Link">
<p n="sourceOrd" v="h:1"/>
<p n="sourceS| ot Name" v="out"/>
<p n="target Sl ot Nane" v="inA"/>
</ p>
<p n="description" f="0
</ p>
</ p>
</ baj ahj ect G aph>

x="mul tiLine=b:true” t="b:String" v="hello"/>

8/26/2015 62

Niagara Developer Guide

Distributions

Overview

A distribution is a platform-specific archive of deployable software. The distribution file:

e Isa]JAR file compliant with PKZIP compression;

e Contains an XML manifest in meta-inf/dist.xml;

e Contains files to be deployed;

e May contains files to assist with deployment;

e States its dependencies on any parts such as hardware, operating system, Niagara or third-party software

JAR Entry Paths

The JAR entry paths mirror their intended filesystem paths directly. Paths are mapped either to the target host's root
directory or the {baja home} directory, according to the manifest. Unless specified otherwise by the manifest or end-user
request, and except for the dist.xml manifest itself, each file will be copied to the target host (i.e., there is no facility
provided for the user or an installation program to choose which specific pieces to install).

Manifest

The distribution manifest is found in the meta-inf/dist.xml JAR entry. It

e provides some high-level descriptive information about the distribution,

e specifies the distribution's external dependencies and exclusions,

e provides a summary description of its contents to assist installer software in dependency analysis,
e identifies contents that should never be copied to the host,

e identifies resources that can assist with installation,

e identifies modifications that need to be made to the host's platform.bog file, and

e specifies under which conditions existing files are to be replaced.

An example distribution file manifest is provided as a reference for most of the remaining specification:

<di st nane="qgnx-j ace-york"
version="2.1.6"
descri ption=""
bui | dDat e="Thu Jan 18 10:58: 39 Eastern Standard Tine 2007"
bui | dHost =" BRUTUS"
reboot ="true"
noRunni ngApp="t r ue"
absol ut eEl emrent Pat hs="true"
oslnstal |l ="true"

<dependenci es>
<part name="york" desc="York System Board" />
</ dependenci es>

<excl usi ons>
<os nanme="qgnx-j ace-york" version="2.2" />
</ excl usi onss>

<provi des>

<os nanme="qgnx-j ace-york" version="2.1.6" />
</ provi des>
<fil eHandl i ng>

8/26/2015 63

Niagara Developer Guide

<fil e nane="dev/shmenf york.inmage" replace="oscrc"/>
</fil eHandling>
</ di st>

The root dist element has the following attributes:

e name [required]: Name of the distribution.

e version [required]: Version of the distribution, dot delimited. If version is nonzero, then it and the name must
uniquely identify the file's contents - they must not be reused with different contents.

e vendor [optional]: Vendor name for the provider of the distribution.
e description [optional]: Brief description of the what the distribution provides.

e buildDate [optional]: Timestamp for when the distribution was created. May be generated by a build tool, useful in
tracking development builds.

e buildHost [optional]: Host on which the distribution was created. May be generated by a build tool, useful in
tracking development builds.

e reboot [optional]: true or false, defaults to true. If true, the host to which this distribution is installed must be
rebooted after installation is complete.

e noRunningApp [optional]: true or false, defaults to true. If true, then the distribution may not be installed while
any Niagara stations or Sedona applications are running.

e absoluteElementPaths [optional]: true or false, defaults to false. If true, then the JAR entry path maps directly to
the host's root directory, otherwise the entry path maps to {baja_home}.

e oslnstall [optional]: true or false, defaults to false. Meaningless for Win32 platforms. If true, then the distribution
contains an operating system image that must be installed after the files are downloaded and before the host is
rebooted.

e hostld [optional]: If present, represents the hostid of the system for which the distribution (probably a backup) was
created.

platform Element [optional]
Sub-elements are XML in bog file format and will be merged by name into the host's existing platform.bog file, or will be

used to initialize a new platform.bog file. This allows a distribution to provide new platform services without clobbering
or re-initializing any existing platform services.

dependencies Element [optional]

describes the parts which must be present on a target host before the distribution can be installed. Each part is identified
by a sub-element:

arch element [optional]

Describes a chipset dependency. Required name attribute specifies the chipset architecture name.
model element [optional]

Describes a model dependency. Required name attribute specifies the model name.

os element [optional]

Describes an operating system dependency. Attributes:

e name [required]: operating system name
e vendor [optional]: operating system vendor
e version [required]: operating system version, dot delimited.

rel [optional]: describes how the version is evaluated. Possible values are "minimum" (default), "maximum", and
n "
exact .

nre element [optional]

8/26/2015 64

Niagara Developer Guide

Describes a dependency on a Niagara runtime version. Attributes:

e name [required]: NRE name
e vendor [optional]: NRE vendor
e version [required]: NRE version, dot delimited.

e rel [optional]: describes how the version is evaluated. Possible values are "minimum" (default), "maximum", and
n "
exact'.

brand element [optional]

Describes a dependency on a brand. Required attribute name uniquely identifies the brand that must be specified in a
target host's license for the dependency to be met.

module element [optional]

Describes a module dependency. Attributes are the same as those for the dependency element in the module.xml
manifest (see modules.html), and the optional rel option is supported.

part element [optional]
Describes a dependency on any other kind of part, such as a piece of hardware. Required attribute name is a unique name

for the part, and required attribute description provides a brief description. Optional version attribute, if present,
specifies a version requirement for the part, and the optional rel attributed specifies how the version is evaluated.

exclusions Element [optional]

Describes the parts which must not be present on a target host if the distribution is to be installed. The sub-elements
allowed are the same as those used in the dependencies section.

provides Element [optional]

If present, describes exactly one part that is to be installed by this distribition, whose part name matches the distribution
name (i.e. if the part is named qnx-jace-james, the dist file must be named qnx-jace-james.dist).

If the distribution file doesn't contain a single discrete named, versioned part (for example a system backup) then it must
omit the provides element. Also, if for any other reason the distribution should not be installed automatically by an client
to satisfy dependencies expressed in other files, it must omit the provides element.

The part is described by a sub-element:

os element [optional]

Describes an operating system element. Attributes:

e name [required]: operating system name
e vendor [optional]: operating system vendor
e version [required]: operating system version, dot delimited.

vm element [optional]
Describes an installable java virtual machine. Attributes:

e name [required]: virtual machine name
e vendor [optional]: VM vendor
e version [required]: VM version, dot delimited.

nre element [optional]
Describes an installable Niagara runtime engine (NRE). Attributes:

e name [required]: NRE product name
e vendor [optional]: NRE vendor

8/26/2015 65

Niagara Developer Guide

e version [required]: NRE version, dot delimited.

resources Element [optional]:

If present, specifies elements whose files are used to support the distribution's installation, and are not to be copied to the
host. Each sub-element has a content attribute that identifies the entry path. At this time, it may contain the following
sub-element:

installable element [optional]

Describes an installable file that the installing client should import into its software registry (Workbench's software
registry is maintained using its {baja_home}/sw directory). Using installable resources makes the distribution much
bigger, but is useful for creating single files that have all of the necessary contents to meet their own software
dependencies. Attributes:

e source [required]: element path containing the installable file

e type [required]: can be "module"” or "dist"

e name [required]: name specified by the installable's manifest

e vendor [required]: vendor name specified by the installable's manifest

e vendorVersion [required]: version specified by the installable's manifest

fileHandling Element [optional]

Specifies the rules by which files are replaced, and identifies directories and files which must be removed before
installation begins. The optional replace attribute specifies the rules for replacing existing files - its values can be "always'
if the file is always to be replaced, "never" if it is never to be replaced, and "crc" if the file is to be replaced only if the CRC
checksums for the distribution and current versions of the file are not the same. By default, no files or directories are to
be removed by the installer prior to installation, and the "crc" replacement rule is used. The fileHandling element may
contain the following sub-elements:

i

remove element

Specifies a file or directory to be removed prior to installation. Its required name attribute specifies the path (according
to absoluteElementPaths element) to the file/directory. If name specifies a directory, exceptions may be specified using
the keep sub-element.

keep element [optional]

Specifies a file or directory that should not be removed as the result of a remove element. Its required name attribute
specifies the path.

file element [optional]

Specifies a file replacement rule that differs from the default in the fileHandling element or any dir element that might
apply to the file's path. Its required name attribute specifies the file path, and the required replace attribute specifies the
rules for replacing the existing file - its values can be "always" if the file is always to be replaced, "never" if it is never to be
replaced, "crc" if the file is to be replaced only if the CRC checksums for the distribution and current versions of the file
are not the same, "oscrc” if the file's CRC checksum is to be checked against a CRC value returned by the niagarad for the
OS image, "nocopy" if the file is never to be copied to the host, or "hostid" if the file is to be copied only if the host's
hostid matches the value of the dist element's hostid attribute.

dir element [optional]

Specifies a file replacement rule for a given directory path that differs from the default in the fileHandling element or in
dir elements for parent paths. Its required name attribute specifies the directory's path. Its optional replace attribute can

be "always", "never", "crc", "nocopy" or "hostid". Its optional clean attribute, if present and equal to "true", indicates that
any file or subdirectory that isn't part of the distribution should be deleted by the installer.

8/26/2015 66

Niagara Developer Guide

Niagara AX Automated Testing with TestNg

Overview

Prior to Niagara AX 3.8, the Niagara Framework contained its own testing framework, and test methods contained in a
BTest subclass were required to follow a specific naming convention. These testing capabilities were closely modeled
after JUnit, which is a well-known tool for unit testing of Java code. However, it has several shortcomings that make it
unattractive for Niagara testing. TestNG is a similar but more capable testing tool also widely used in the Java
community, and it was selected as the tool we will use to generate and execute automated tests. The syntax for creating

basic unit tests is very similar to JUnit 4. Additional functionality includes:

e Flexible annotation-based test configuration (setup/teardown)
e Automatic reporting of test results

e Dependencies and sequencing
e Data-driven testing and parameterized test methods

Parallel testing

Starting with 3.8, the Niagara build.exe tool supports co-located test code (that is, source code and test code are contained
in the same module development folder) and the Niagara test module will support writing TestNG test methods. The
syntax requires the use of annotations, so test classes must be compiled with at least Java 5. Review the TestNG

Documentation for additional information not covered here.

Basic Test Case

Test Package, Class, and Methods

Establish a srcTest folder in the module, and create the test packages and test source code there. Here is an example of a
module with a test class:

rf_ﬁ Frojeck Explorer &3 EE Cutline 'Eg Twpe Hierarchy = q,::{,s =

= ID‘J- rvyFodule
=8 src
=8 com.acme.myModule
m BFunchionType, java
m BSamplefath.java
= srcTest
=3 com.acme.myModule . best
EI BFunctionTypeTest.java
B IRE System Library [r35_jre7]
IE baja.jar - NIAGARA_HOME\modules - Diiniagaratr 3dtrelmodules\baja. jar
Eﬁ kest.jar - MIAGARA_HOME \modules - Diniagaralr38hrelimodulesikest, jar
£ build. il
@ rodule. lexicon
d module. palette
module-inchade , xmi

- E

=l

Each test class should extend com.tridium.testng.BTestNg, and will include standard Baja code to declare the Type.
TestNg will treat each test method as a single test case. A test method is defined with the @Test attribute:

package com acmne. nyModul e. t est;
i mport javax. baj a. sys. Sys;

i mport javax. baj a. sys. Type;

i mport org.testng. Assert;

8/26/2015 67

http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html

Niagara Developer Guide

i mport org.testng.annotations. Test;
i mport com acne. nyMobdul e. BFuncti onType;
import comtridiumtestng. BTest Ng;

public class BFunctionTypeTest extends BTest Ng
{
public Type getType() { return TYPE, }
public static final Type TYPE = Sys.|oadType(BFunctionTypeTest. cl ass);

@est
public void addTest ()

{ Assert.assertEqual s(BFuncti onType. add,
BFuncti onType. nake(BFuncti onType. ADD)); }
}

There are several assert*() methods available in to test equality, null, true/false, etc. See the TestNg TestNg Javadocs for
the complete list. The pass() and fail() methods for BTestNg have been integrated with TestNg, so the existing BTest
verify*() methods can be used as well. Note that any test method that begins with test will be considered a standard
Niagara test case and will run when tests are executed with the -btest option:

@est
public void testAdd() { verify(BFunctionType.add ==

BFuncti onType. make(BFuncti onType. ADD)) ; }

build.xml

Include a dependency on the test module and set the dependency, package, and resource attributes appropriately, so the
resulting build will create a separate <moduleName>Test.jar module:

<dependency nane="test" vendor="Tridi um' vendor Version="3.8" test="true"/>
<package nanme="com acne. nyModul e.test" edition="j2se-5.0" test="true" />

Remember to include the edition= "j2se-5.0" attribute for any test packages.

module-include.xml

Types for test classes must be declared, but there is nothing unique about these entries:

<type name="FunctionTypeTest"
cl ass="com acne. nyModul e. t est. BFuncti onTypeTest"/ >

Compile and execute

Execute the build process with the -t option to generate the test module jar file:

bui |l d <nodul ePat h> -t

Execute the test command to run the defined tests under TestNg. The target for the tests is similar to existing Niagara
tests: all, <module>, <module>:<type>. Single-method execution is not currently supported. The output will look
something like this:

D: \ ni agar a\ r 38\ dev>t est nmyModul e
[Test NG Runni ng:
Conmmand |ine suite

myModul eTest _Functi onTypeTest
Total tests run: 5, Failures: 0, Skips: O

Total Test Sunmary
Total tests run: 5, Failures: 0, Skips: O

8/26/2015 68

http://testng.org/javadocs/org/testng/Assert.html

Niagara Developer Guide
Output verbosity can be set using the option v:<n>, where n is an integer from 1 to 10. The higher the number, the more
TestNG prints out.

Any existing Niagara tests (now contained in testTest.jar) can be executed with the -btest option.

Additional TestNg Capabilities
Test Setup/Teardown

One big advantage of TestNg over JUnit is the flexible test configuration. These configurations are also accomplished with
annotations. Setup and teardown methods can be established to run once per method, per class, per test group, or per
test suite. The example below shows how to initialize and destroy a test station once for all test methods in a class, calling
methods from BTest.

private TestStationHandl er handl er;
private BStation station;

@ef or e ass(al waysRun=true)
public void setup()
t hrows Exception

{
handl er = BTest.createTest Station();
handl er.startStation();
station = handler.getStation();

}

@After Gl ass(al waysRun=true)

public void cl eanup()
throws Exception

{
handl er. st opStation();
handl er.rel easeStation();
handl er = null;

}

Groups, Dependencies and Sequencing

A set of tests may be grouped together with the groups annotation attribute. Groups naming is currently up to the
developer. One use of groups it to identify a collection of tests to execute in a Continuous Integration (CI) environment
(CI is not provided by Niagara, please go to this link for more information).

An example of the group attribute is below:

@est (groups={"ci"})
public void ngTest Si npl e()
{ Assert.assertEqual s(Lexi con. make("test").getText("fee.text"), "Fee"); }

You may declare dependencies between test methods and groups using dependsOn* annotation attributes. For example,
if you have a group of test that should run after other sets, just attach the dependsOnGroups attribute for each method in
the group.

If you want to explicitly define a sequence of test method execution, use the priority annotation attribute. The value is a
positive integer, and lower priorities will be scheduled first. See the TestNg documentation for additonal information.

Important: If you implement groups and also use BeforeClass/AfterClass methods, be sure to attach the
(alwaysRun=true) attribute to the BeforeClass/AfterClass annotations.

Parameterized Tests

A set of similar test cases can be parameterized with a data source class that generates input to the test class. Again, the
relationship is achieved with parameterized annotations. First you declare a data provider that creates an object array
containing test method arguments for each instance of the test execution. In the example below, the test class takes two
arguments, and each entry in the data provider array contains instances of those two argument types.

8/26/2015 69

http://en.wikipedia.org/wiki/Continuous_integration

Niagara Developer Guide

@at aProvi der (name="operation")
public Cbject[][] createCol umbData()

{
return new Object[][] {
{ new I nteger(BFunctionType. ADD), BFuncti onType. add },
{ new I nteger (BFunctionType. SUBTRACT), BFunctionType. subtract },
{ new I nteger (BFunctionType. MULTI PLY), BFunctionType.multiply },
{ new I nteger (BFunctionType. DIl VI DE), BFuncti onType. di vi de }
i
}
@est (dat aProvi der = "operation")
public void testOperation(lnteger i, BFunctionType ft)

{ Assert.assertEqual s(ft, BFunctionType.nake(i.intValue())); }
Note that the data provider argument types must be a Java Object (they cannot be primitives like boolean or int).

Exception Testing

If your code can generate exceptions and you want to test these execution paths, you can tell a test method to expect
particular exception types by using the expectedExceptions attribute with a list of exception classes. In the following
test, an occurance of a NullPointerException will successfully pass the test. Any other exception type will fail the test.

@est (expect edExcepti ons={j ava. | ang. Nul | Poi nt er Excepti on. cl ass})
public void ngTest Exception()
throws Exception
{
a = BExport Sour cel nfo. make(BOrd. nake("station:|slot:/a"),
BOrd. nake("station:|slot:/b"), new BGidToText());
BExport Sour cel nf o. nake("foo: bar");
a. decodeFronttring("foo: bar");

}

Reporting

TestNg will generate XML and HTML reports each time it runs. By default, creates these in a
(baja.home)/reports/testng folder. The HTML report index.html contains detailed information about the test results. A
junitreports folder contains XML reports that follow the same format created by Ant/JUnit. There is also a static XML
report and an email-able static HTML report. The report location can be changed using the command line option -
output:<path>.

/D fniagara/r 38/relfreports/testng/index html#

Bl GMail.url I'-Iia-; Central R Tridium Bamboo b:':ru-:it-le B Tridum Hg

Test results

1 suite

All suites H (com. acme nyModule test .BFunctionTypeTest

myModuleTest_FunctionTypeTest | |asmrest

testlperation (1, Subtract)

Info
© [unset file nare] teatOperation (0, Add)
w 1test
© 0 groups
« Times teatOperation (3, Divide)
« Reporter output
o Ignored methods
w Chronological view

Results

© 5 methods, 5 passed

« Passed methods (hide)
addTest
testOperation1, Subtract)
testOperation(0, Ldd)
testOperation(2, Iultiply)
testOperation(3, Divide)

testlperation (2, Multiply)

8/26/2015 70

Niagara Developer Guide

Eclipse Integration

There is an Eclipse plugin available for TestNg. If you are familiar with JUnit, test execution and reporting with TestNG
plugin is very similar. Generally, it is not practical to execute Niagara framework test other than simple unit tests directly
with the Eclipse plugin. The reason is that the Niagara class loading behavior and NRE initialization is not compatible
with the stand-alone TestNG container.

Additional Test Execution Options

The Niagara test executable supports several options for tailoring the execution of tests to you needs. The usage and
options are outlined below:

usage:

test <target> [test NGOpti ons]
target:

al |

<modul e>

<modul e>: <t ype>
<modul e>: <t ype>. <met hod>

t est NGOpt i ons:
- bt est Run tests based on BTest (not BTestNg)
-v:<n> Set Test NG out put verbosity level (1 - 10)
-groups: <a, b, c> Conme- separated |ist of Test NG group names to
t est

- excl udegroups: <a, b,c> Comua-separated |ist of Test NG group nanes to
skip
- out put : <pat h> Set the location for Test NG out put

Unit tests developed with the Niagara Test framework from 3.7 and earlier are still supported with the -btest option.
TestNg groups can be included or excluded from tests.

8/26/2015 71

Niagara Developer Guide

Virtual Components

Overview

Refer to the Virtual API (available only in Niagara 3.2 and beyond).

The virtual components feature was originally driven by a common use case of most drivers in Niagara AX. However, since the
original brainstorming for "phantom" components (later termed "virtual" components), it has since grown to cover a broader
range of possible applications. This document (intended for developers) will focus its examples on driver applications, but the
idea of transient, on-demand components can obviously reach to many other applications.

As mentioned, the term virtual components refers to transient, on-demand components in a station database that only exist
when needed. Virtual components are created dynamically only when they are first required by the station (ie. enter a
subscribed state), and then when they are no longer needed (ie. enter an unsubscribed state), they are automatically cleaned up
from the station database (subject to virtual cache life constraints). This lifecycle for virtual components provides for
efficiency. The key concepts that drive virtual components are their virtual Ords (Object Resolution Descriptors) and their
existence within a virtual component space. The Ords for virtual components follow the SlotPath design (refer to VirtualPath)
and must uniquely define virtual components (and provide enough information to create the virtual component at runtime).
These unique, on-demand virtual components live within a Virtual Component Space, which is different from the normal
component space which manages components that are persisted in the station. The link between the normal component space
and the virtual component space is through the Virtual Gateway. There is a one-to-one relationship between a virtual gateway
and its corresponding virtual component space, so it is possible to have multiple virtual gateways and virtual component
spaces in the same running station. These concepts will be described in more detail in the class descriptions that follow.

From a drivers perspective, virtual components means that driver data can be addressed without premapping. Prior to this new
feature, the old Niagara AX model used by drivers boiled down to a collection of BComponents used to normalize driver data.
For example, most drivers contain a device network, devices, and proxy points (control points with proxy extensions). Proxy
points are useful for modeling the smallest pieces of driver data ("point" information) and normalizing them for use in the
Niagara AX environment. This model works well for linking proxy points to control logic for monitor and control. The
problem with this model is that every piece of driver data that a user may want to visualize/configure in Niagara AX requires
the overhead of a persistent component (i.e. proxy point) existing somewhere in the station's component space. The overhead
of having persistent, premapped components limits the capacity of points that a station can monitor. This limitation especially
becomes a problem on small embedded platforms (such as a JACE) where memory is limited.

There are two common driver use cases we identified where a user might want to have access to driver data, while not wanting
the extra overhead of using persistent components. The first is that a user wants to build a Px view to look at device point data
(simply for monitoring purposes). In this case, simply a polled value is sufficient to present the data to the user in the view only
when it is needed (the view is open). The second use case is for configuration/commissioning a device in which the user wants
to see a snapshot (i.e. property sheet) of the values within the device, and allow the user to monitor/modify these device values
for one time configuration purposes. In both of these cases, building persistent components to model the driver data is not
necessary and simply costs the user extra overhead. Instead, a transient display of the driver data is useful only when the user
enters the view, but at all other times, the values are not needed and do not need to be consuming memory (i.e. not needed for
linking to any other logic). Thus virtual components is a solution to both of these use cases.

In general, linking in the virtual component space is not supported, as virtual components are not persisted (thus any
user created links would be lost).

The Virtual API

The javax.baja.virtual package contains the base classes for supporting virtuals. The following gives a brief description of each
class in this package:

BVirtualComponent

A BVi rtual Conponent is a BComponent, however it extends the functionality to support living in a virtual component
space by keeping track of its last active ticks. The last active ticks are the clock ticks when the virtual component was last
needed (ie. the moment the virtual component switches from a subscribed state back to an unsubscribed state, the last active
ticks are updated to indicate the ticks when the virtual component was last in use*). The last active ticks for each virtual
component in the virtual component space are consistently monitored by the space's Vi r t ual CacheCal | backs instance,
which uses this information to determine when the virtual component is subject to auto-removal (clearing from the cache).
Virtual Components can also be spared from auto removal if the instance is the root component of the virtual component
space, or if the auto-removal behavior is specifically disabled for the virtual component (by subclassing and overridding the
per f or mAut oRenpval () callback). By default, virtual components also override the normal BConponent behavior to

8/26/2015 72

module://docdeveloper/doc/baja-rt/javax/baja/virtual/package-index.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/naming/BOrd.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/naming/SlotPath.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/VirtualPath.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/BVirtualComponentSpace.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/BVirtualGateway.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/package-index.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/BVirtualComponent.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BComponent.bajadoc

Niagara Developer Guide

specify their virtual nav Ord, enforce a few parent/child restrictions**, and provide a convenient way to retrieve the parent
BVi rt ual Gat eway instance, which is important because the gateway is the link between the normal component space and
the virtual component space.

The BVi r t ual Conponent class is the key structure to use for modeling objects in your virtual space. You can use

BVi rt ual Conponent (or a subclass of it) to model your data (or data groupings), and since BVi r t ual Conponent is itself
a BConponent, it supports all of the normal component life-cycle features. Just remember BComponent instances (those that
aren't BVirtualComponents or BVectors) should not be used in the virtual component space, so keep this in mind when
determining what types of frozen/dynamic slots your BVirtualComponents need to model the data.

* NOTE - The last active ticks for a virtual component are also modified by a "touch" feature of the navigation tree in
Workbench. Basically, for any virtual component's nav tree node currently in view in Workbench, there is a periodic message
sent that "touches" the virtual component, in order to keep it active and prevent it from being auto cleaned. This is useful
because a virtual component simply viewed in the nav tree is not guaranteed to be in a subscribed state.

** NOTE - The general rule that should be followed is that the virtual component space should not contain BConponent
instances that are not BVi r t ual Conponent s. So there are a few child/parent checks in place that attempt to enforce this
rule. Of course, BVi r t ual Conponent instances living within a virtual component space can contain other
non-BConmponent children, such as BSi npl es, BSt r uct s, and there is even an exception made for BVect or s. The reason
you should keep non-virtual BConrponent children out of the virtual component space is because it can break the virtual
cache cleanup mechanism (discussed below for the Vi rt ual CacheCal | backs class).

BVirtualComponentSpace

The BVi r t ual Conponent Space is an extension of BComponentSpace which contains a mapping of

BVi rt ual Conponent s (organized as a tree). The virtual component space is created at runtime when a

BVi rt ual Gat eway instance is started in the station's component space. There is a one-to-one relationship between the
virtual gateway and its virtual component space. The virtual component space has a few supporting Callbacks classes. In
addition to those provided by BConponent Space (LoadCal | backs, Subscri beCal | backs, and Tr apCal | backs),
BVi r t ual Conponent Space kicks off an instance of Vi rt ual CacheCal | backs (described below). It is important to
remember that the scope of the virtual component space is limited to its tree of virtual components, but it also has a reference
to its BVi r t ual Gat eway instance which provides the link to the normal component space.

BVirtualGateway

BVi r t ual Gat eway is an abstract subclass of BConponent designed to reside in the station component space and act as a
"gateway" to its corresponding virtual component space. As mentioned previously, there is a one-to-one relationship between
the virtual gateway and its virtual component space. For the virtual gateway, this means that the nav children displayed under
the gateway in the nav tree will be the nav children for the root component of the virtual space. Just to clarify the point, the
virtual gateway functions as the link between the normal (station) component space and its virtual space. Thus it overrides all
of the nav methods to route to the virtual space's tree (of virtual components). In practice, you should always avoid adding
frozen/dynamic slots as children of the virtual gateway directly, as the nav overrides will route users to the virtual space by
default, thus making it difficult and confusing to view/change slots that are direct children on the virtual gateway itself.

The other important function of the virtual gateway is to provide the hooks for subclasses to load/create virtual components at
runtime. This includes a few callback methods that the framework makes to the virtual gateway to tell it to load an individual
virtual slot or load all of the virtual slots for a given virtual component. Two important factors to consider when subclassing
BVi r t ual Gat eway and its methods are:

e By contract, whenever slots are added to virtual components, they should always be assigned a slot name that is the
escaped virtual path name (ie. use Sl ot Pat h. escape(vi rt ual Pat hNane)). This is very important as virtual path
names can be unescaped, but the contract is that their corresponding slot path name is simply the escaped version of the
virtual path name. In order for virtual lookup to work correctly, this rule must be followed.

e Due to the possibility of a partial loaded state supported by virtuals, when you subclass BVi r t ual Gat eway (and even
BVi rt ual Conponent) and implement its methods, you should always be keenly aware of the present subscription
state of the virtual components. For example, the BVi rt ual Gat eway load methods could be called and cause a new
slot to be created for a parent virtual component while that parent is already in a subscribed state. So this could affect
how the new virtual slot should be handled (ie. it may need to be added to a poll scheduler for updates). Subclasses
should always be aware of this potential state and perform the proper checks to handle this case.

BVirtualScheme
BVi rt ual Schene extends BS| ot Schemne and defines the "virtual" ord scheme ID. It works in close conjunction with

Vi r t ual Pat h for resolving virtual Ords (see below for further details).

8/26/2015 73

module://docdeveloper/doc/baja-rt/javax/baja/virtual/BVirtualComponentSpace.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/space/BComponentSpace.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/BVirtualGateway.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/BVirtualScheme.bajadoc

Niagara Developer Guide

VirtualCacheCallbacks

This class is instantiated by BVi r t ual Conponent Space with a purpose to manage the virtual cache (ie. to determine when
its appropriate to auto cleanup virtuals that are no longer in use). The default implementation of Vi r t ual CacheCal | backs
has a shared thread pool (used by multiple virtual component space instances) designed to monitor the virtual components in
each registered virtual space, and check the min/max virtual cache life for any unused virtual components. The idea is that
virtual components, when no longer needed, will remain in the cache for a certain cache life before they get automatically
removed. The following static variables allow for tuning the performance of the virtual cache management (all default values
can be tweaked by making the appropriate settings in the system.properties file):

public static final BRel Ti me MAX CACHE_LI| FE - Specifies the default virtual cache life maximum (default 45
seconds). When a virtual component expires, it will remain in memory for a maximum of this amount of time before it will be
automatically cleaned up from the cache (assuming the virtual component is not re-activated in the meantime).

public static final BRel Ti mne M N_CACHE_LI FE - Specifies the default virtual cache life minimum (default 25
seconds). When a virtual component expires, it will remain in memory for a minimum of this amount of time before it will be
subject to automatic clean up from the cache (assuming the virtual component is not re-activated in the meantime). This
minimum cache life is only a factor when the virtual threshold limit has been exceeded (meaning that virtuals need to be
cleaned up faster than normal). If the virtual threshold limit has not been exceeded, the maximum virtual cache life will be
used (normal operation).

public static final int VI RTUAL_THRESHOLD - Specifies a global virtual threshold limit (default 1000), above
which virtuals will start being auto cleaned from the cache quicker as space is needed (ie. the M N_CACHE_LI| FE will be used

in the cache life determination when the number of virtuals in the station exceeds this threshold limit, otherwise the
MAX_CACHE_LI FE will be used when the number of virtuals doesn't exceed this limit).

public static final |ong VI RTUAL_THRESHOLD SCAN_RATE - Specifies the default time (in milliseconds) in
which to perform a full scan of the station for virtuals, used for threshold level checking. The default is 1000, which means that
every second, a full scan will occur. A value of zero disables the virtual threshold checking feature entirely.

public static final int THREAD POOL_SI ZE - Specifies the maximum number of worker threads in the thread
pool shared by Vi r t ual CacheCal | backs instances. There is a Vi r t ual CacheCal | backs instance per virtual
component space, however, the default implementation shares a common worker thread pool. Therefore, this setting
determines the maximum number of virtual cleanup worker threads (10 default).

public static final int SPACES_PER THREAD - Specifies the ideal number of virtual component spaces managed
per worker thread in thread pool (this limit can be exceeded if all threads in the pool are already at capacity). The default is 5
virtual spaces (optimum) per thread.

VirtualPath

Vi rt ual Pat h extends Sl ot Pat h and allows for resolving BVi r t ual Conponent s (and their child slots) using unescaped
slot names in the path (note that this is different from Sl ot Pat h which enforces the rule that only escaped slot names can be
contained in the path). The '/, '|','$', and "' characters are reserved and not allowed in a virtual path entry. Also, the "../" is
reserved for backups.

The most common use case of Vi r t ual Pat h follows the following format:

host: | session: | space: | Ord to virtual gateway: |virtual:virtual path

For example (disregard the line wrap):

| ocal : |fox:|station:|slot:/Config/Drivers/YourNetwork/YourDevi ce/ Your Vi rtual Gat eway
| virtual:/Virtual Conponent A/Virtual Conponent B/ Qutput Val ue

This example shows how the virtual gateway is always the link point between the normal component space and the virtual
space. The "|virtual:" in the example above indicates the jump to the virtual component space. When resolving such an Ord,
once it starts parsing the virtual path, it will start from the left and work to the right (the "/" acts as the separator between
virtual slots). So this means it will first check for the existence of a slot named "Virtual$20Component$20A" under the root
component of the virtual space and return it if it exists (remember that by contract, virtual path names should be escaped to
form the slot name). If it doesn't already exist, the virtual gateway will be given the opportunity to create a virtual object to
represent it given the virtual path name and parent (subclasses will normally put enough information in the virtual path to
know how to create the object). This process continues from left to right until the virtual path has resolved the last in the list.

8/26/2015 74

module://docdeveloper/doc/baja-rt/javax/baja/virtual/VirtualCacheCallbacks.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/virtual/VirtualPath.bajadoc

Niagara Developer Guide

The example above would be represented in the nav tree like this:

Config

| __ Drivers
I
I
| _

___Your Net wor k

| YourDevice

I
| YourVirtual Gat enay

| (entrance to virtual space)
| virtual space root conponent (hidden)
| Virtual Conponent A

I
| _ Virtual Conponent B

I
| __ Qutput Value

It is also worth noting that due to the virtual/slot path name contract, the following Ord is functionally equivalent to the
example above (disregard the line wrap):

| ocal :|fox:|station:|slot:/Config/Drivers/YourNetwork/ YourDevi ce/ Your Vi rtual Gat eway

| virtual :|slot:/Virtual $20Conponent $20A/ Vi r t ual $20Conponent $20B/ Qut put $20Val ue

Virtual Component Lifecycle

The following diagram attempts to show the common lifecycle of a virtual component.

8/26/2015 75

Niagara Developer Guide

User expands BVirtual Gateway OR A Virtual Ord 12 opened (e, due to a Virtual Crd binding i
i the Mav tree. . an opened Px view), leading to the Virtual Crd resolution. .
— S5 Metwork, EI
- [Device
+ &\ Alarm Source Infa @I |,-"Hettn:urk,-"DEUiceNirtualGateuaylvirtual:,-"virtuallinnq:ul |

+ Paints
+% WirtualGateway

If not fully loaded already, calls
BVirtual Gateway load Virtualslots ()
to discover BVirtualComponent

children Calls BVirtual Gateway loadVirtual31ot()

ok || cancel |

— S5 Metwork,

- [& Device BVirtual Comp onent
+ &L alarm Source Info doesn’t exst
8 % Paints EVirtualComp onent

YirbualGateway already exsts
+ (3, virtualCompl

+ (G virtualComp2 Calls BVirtual Gateway. addVirtual S1ot)
+ {7 wirtualComp3

to create the BVirtualComponent
+ (3, virtualComp4

+ (3, virtualCompS
If BVirtual Component opened
i1 a view (1e. subscribed)

C subscribed BVirtual Component

hscrih i
If BVirtualComponent unsuhscribel) VirtualCacheCallbacks

Fe wisible i Nav it monttors all BVirtual
DRy VISIDIE i Nav ee Components checlang for

expiration (mactrve for
Qnsuhscrihed BVirtualComp unenD cjﬁhﬁ]ife]l(

BVirtual Comyponents wisihle in
the Nav tree recetve touch() to
stay active

BVirtualComp onent expires

Removed BVirtual Component

8/26/2015 76

Niagara Developer Guide

Building JavaScript Applications for Niagara

Contents

e Introduction

Frameworks and Libraries

Setting Up Your Environment
o Node.js
© npm
o Grunt
Build and Development Tools
o Open Source Niagara Development Utilities
®m grunt-init-niagara
® grunt-niagara
® niagara-station
® piagara-test-server
o Building and Compacting your JavaScript
o Developing in real time with nbdul edev mode
e First Steps
o Creating a new module
= package json
m Gruntfile.js
o Watching
o A note on Continuous Integration
e Building your JavaScript into a Niagara module
o Compacting using the Gradle Require]S Plugin
o Implementing BlJavaScript
= What JavaScript file defines my editor?
» What Types can I edit with my editor?
o Switching your Station into Web Development mode
e Moving Forward

Introduction

In Niagara 4, the user interface is moving in a new direction with a heavy focus on HTML5 applications and open web
technologies. Tridium provides a number of frameworks and utilities, intended to give developers the power to create
their own web apps, from tiny field editors to powerful, full-featured full-screen views.

Developing in HTML5 and JavaScript is a different process from the familiar Java-based process for developing in the

Niagara Framework. However, using the tools and techniques described in this document, you can create a JavaScript
codebase that is robust, error-checked, and well-tested.

Frameworks and Libraries

Before beginning HTML5 development in the Niagara Framework, you’ll want to take a few moments to familiarize
yourself with a few of the different libraries and frameworks available to you. These frameworks include BajaScript,
bajaux, and other open web technologies.

8/26/2015 77

file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/js/compactingUsingTheGradleRequireJSPlugin
module://docdeveloper/doc/jsdoc/bajaScript-ux/index.html
module://docdeveloper/doc/jsdoc/bajaux-ux/index.html
module://docdeveloper/doc/index.html#openWeb

Niagara Developer Guide

Setting Up Your Environment

In order to most effectively develop Niagara web applications, you'll need to install a few external utilities for building,
code analysis, and testing.

The toolchain described in this document is the one used by Tridium to develop all of its HTML5 web applications for
Niagara 4. The tools described are free and open-source. The toolchain is separate from the Niagara Framework itself, so
if you find that it does not suit your purposes, you are free to use a different set of development tools, or create your own.

To use the standard Tridium toolchain, you'll need to install the following utilities:

Node.js

Node.js allows you to run JavaScript applications from the command line, without using a web browser. Tridium’s open-
source tools for developing Niagara web applications are all based upon Node.js.

npm

npmis a utility used to download and install Node.js modules. It is automatically installed alongside Node.js.

Grunt

Grunt is a task runner for JavaScript. You will use it to find errors, run tests, and analyze your code. Install it like this:

npminstall -g grunt-cli

After that, you'll be able to run Grunt tasks for a web module by cd-ing into its directory and typing gr unt .

Git

Git is used to clone entire repositories of source code to your machine. This is mostly used internally by npm but you
might also need to clone some repositories manually.

Build and Development Tools

Open Source Niagara Development Utilities

In order to properly build and test JavaScript modules, there is some setup involved. npmlibraries need to be downloaded
and installed, configuration files need to be written, and code needs to be moved into the proper directories.

We have created a number of utilities to make this process as easy as possible. These are open-source Node.js modules,

created and released by Tridium. They will facilitate a fully automated, test-driven approach to creating functional,
reliable, well-tested Niagara web modules.

grunt-init-niagara

grunt-init isa tool that streamlines the creation of a new JavaScript project. The process is similar to Wizards you
might use in Workbench: it asks you a number of setup questions and generates a brand-new web module for you to

8/26/2015 78

https://nodejs.org/
http://gruntjs.com/
https://git-scm.com/
https://github.com/tridium

Niagara Developer Guide

begin development.

grunt -init-niagarais Tridium’s own gr unt - i ni t template which is Niagara-specific; it generates you a brand-
new Niagara web module that can be built and run using standard Niagara tools. The module will be pre-configured with
source code and test directories, configuration files, and everything necessary to start developing.

All of the modules described in the rest of this section will be automatically included in your new module with no further
configuration necessary. Simply type npm i nst al | to download everything, then begin development.

While it’s entirely possible to create a new web module without using gr unt - i ni t - ni agar a, we highly recommend
that you use it for your first web module to learn about the recommended project structure and configuration.

grunt-niagara

This is less of a development tool and more of a collection of smart defaults. Including gr unt - ni agar a in your project
will include JSHint, Karma, Plato, and other development utilities, with configuration files pre-configured with settings
Tridium has found to be optimal when developing web modules. The settings can be added to or changed in your own
configuration files.

When creating a new module using gr unt - i ni t - ni agar a, youwll automatically have gr unt - ni agar a installed and
configured.

niagara-station
This is a library that allows you to start and stop Niagara 4 stations using Node.js. It is most commonly used during the
test process to start a station with BajaScript installed, so that the web module’s unit tests can use a live BajaScript

session to verify real-world behavior.

It also has some basic port configuration abilities. For example, if you are running tests on a machine that has port 80
already in use, ni agar a- st at i on can reconfigure the station to run HTTP on port 8080 instead.

When using gr unt - i ni t - ni agar a, your web module will automatically receive a test station and a default ni agar a-
st at i on configuration.

niagara-test-server

This module simply includes some utilities for logging into a running test station using JavaScript and triggering the
browser to run tests. Again, it’s automatically included by gr unt - i ni t - ni agar a.

JSHint

Since JavaScript is an interpreted, not compiled, language, there is no compilation step to catch syntax errors before the
code is run in the browser. This makes a static analysis tool like [SHint a necessity. It will find syntax errors (and some
semantic errors as well) in your JavaScript code before it is run.

JSHint runs as a Grunt task as part of the standard development process.

Jasmine

Jasmine is Tridium’s unit testing framework of choice. All of our JavaScript libraries, like BajaScript and bajaux, are fully
unit tested using Jasmine.

The Jasmine framework will be automatically configured when using gr unt - ni agar a. It is possible to use other testing
frameworks, but you will need to configure these manually.

8/26/2015 79

http://jshint.com/
http://karma-runner.github.io/
https://github.com/es-analysis/plato
http://jshint.com/
http://jasmine.github.io/

Niagara Developer Guide

Karma

Karma actually runs your tests and generates the results. By default, it will start up an instance of Phantom]S - a headless
browser - and run your full test suite. You can also connect any other browser to it, such as Chrome, Firefox, IE, or an
iPhone, and run your tests in all of those browsers as well.

Building and Compacting your JavaScript

When building your web module, the build process can use the r.js optimizer to compact all of your JavaScript code into a
single file. Since network calls are the biggest factor affecting the loading time of your application, this is a crucial step in
ensuring your app loads as quickly as possible.

This plugin also generates documentation for your app using JSDoc.

For more information, see the Deploying Help section.

Developing in real time with nodul edev mode

When developing a web module, it’s a severe slowdown to have to rebuild your module and restart your station every time
you want to test out a new change in your browser. It's much faster to simply change a file and refresh the browser to
pick up the latest changes.

To facilitate this, Niagara 4 includes a modul edev mode that allows files from certain modules to be read directly from
your hard drive instead of from a module JAR file. In order to enable this mode, you'll need to perform the following
steps.

First, you'll need to ensure this feature is enabled in your Tridium license. You'll need the devel oper feature included in
your license with the modul eDev property set to t r ue. If your license does not include this feature, please contact your
Tridium sales representative.

Next, add an entry to Syst em properti es: ni agar a. nodul e. dev=t r ue. This is for the browser only; for
Workbench, there is another setting: ni agar a. nodul e. dev. wb=t r ue.

Not every file type can be resolved in this way: by default, only JS, CSS, HTML, image files, and some other web-related
file types are supported. If you wish to resolve some different file types, you can configure this list using this system
property: ni agar a. nodul e. dev. support edExt ensi ons=j s, css,vm htn{...)

Next, create a file ni agar a_hone/ et ¢/ nodul edev. properti es. Each entry in this file maps a module name to the
directory on your hard drive in which that module’s source code lives. For instance,

myModul e=d: / ni agar a/ dev/ nyModul e.

Now, whenever a request is made for a file, with a supported extension, from your web module, it will be resolved from

your hard drive instead of from the JAR. This way, hitting refresh in the browser will always load your up-to-date
changes. Note that this mode should never be enabled in production - only in development.

First Steps

Now that you've set up your environment and gotten a brief introduction to the various JavaScript libraries and
frameworks available to you, it’s time to start developing! This section will contain a full tutorial, from creating your first
module using gr unt - i ni t - ni agar a, to writing your first test, to viewing the result in the browser.

Creating a new module

8/26/2015 80

http://karma-runner.github.io/
http://phantomjs.org/
http://requirejs.org/docs/optimization.html

Niagara Developer Guide

Begin by installing grunt - i ni t - ni agar a to your machine, following the instructions from the Grunt website. Once

installed, navigate in a console to your dev directory containing the source for your Niagara modules. Begin the process
like so:

nkdi r nmyWebModul e
cd nmyWebModul e/
grunt-init grunt-init-niagara

You'll be asked a series of questions. Leaving the answer to any question blank will accept the default (shown in
parentheses). For this tutorial, we’ll ask it to create a bajaux Widget for us to study and modify.

Pl ease answer the follow ng:

[?] N agara nodul e nane (nyWbMdul e)

[?] Shortened preferred synmbol for your N agara nodul e (nmyWsMll)
[?] Description of your N agara nodule My First Web Modul e

[?] Author name (tridium

[?] Would you like to create a bajaux Wdget? (y/N vy

After completing all the questions (you can select default values for all additional questions not shown above), it will
generate a my\\ebMbdul e- ux directory, containing the generated sources for your web module. It should build and
install using the normal build process: gr adl ew : myWebModul e- ux:j ar.

(To facilitate rapid development, ensure that you have enabled modul edev mode and added an entry for nyWWebMbdul e
to modul edev. properti es at this time.)

Just to make sure everything is functional, let’s install and run tests for our module.

cd nyWebModul e- ux/
npm i nstal |
grunt ci

Don’t worry, I'll describe what’s happening in just a moment. These commands should download and install all the
necessary dependencies to run tests for your module, then it should actually run those tests. Hopefully, you’ll see
SUCCESS at the end of this process. Now let’s take a look at a few of the individual steps in this process, and the relevant
configuration files.

package.json

This file is used by Node.js and npm Most of it won'’t be relevant to you unless you decide to publish your module to the
npm repository. The important part is the devDependenci es section, which describes which additional modules your

module depends on. It will be pre-populated with those modules that are necessary to run unit tests for your Niagara web
module.

Typing npm i nst al | will download these dependencies from npmand install them for you.

Gruntfile.js

This file is used by Grunt. It describes all the automated tasks that are available for your module, and sets up
configuration settings for each.

You will see at the bottom of the file that it loads tasks for the gr unt - ni agar a module. This is a utility module that
includes tasks that we at Tridium have found to be very useful when developing web applications. It sets up a default
configuration for each one that we find to work well. You are free to override these configurations as you wish, but just
leaving this file alone and working with the provided config is a great way to get started. (Later on, if you decide that
gr unt - ni agar a isn’t right for you, you can leave it out completely and build your own toolchain as you see fit.)

To see the tasks that are available to you right out of the box, type gr unt usage.

Another feature that gr unt - ni agar a provides for you is the ability to pass in config flags on the command line when
running tests. To see a list of all available flags, type gr unt f | ags. A few flags you may find particularly useful are:

8/26/2015 81

https://github.com/tridium/grunt-init-niagara
http://gruntjs.com/project-scaffolding
https://www.npmjs.com/

Niagara Developer Guide

e --testOnly:ifyour test suite grows large, you may find it taking longer and longer to run all of your specs. You
can use t est Onl y to limit which specs are run.

e --station-http-port:ifyour test station runs a different HTTP port, you can specify which port your tests
should use to attempt to log into the station. Also works for HTTPS, FOX, and FOXS.

e --override-station-ports:usedin conjunction with the previous flags, actually will inject the port number
into the conf i g. bog before starting the station to force it to run on a particular port.

e --station-1og-Ievel: configure how much detail from the station log is output to the console when running
tests.

Many of these flags’ default values are set using the Nl AGARA_HOVE and NI AGARA_USER_HOME environment variables.

Watching - The Important Stuff

Let’s start developing straight away by typing gr unt wat ch. Your test station will be copied into your st at i ons/
directory and started up (note that the default credentials for the test station are user: admin, password: asdf1234), and an
instance of Karma will be started as well. By default, a single instance of Phantom]S - a command-line, headless web
browser - will start and get ready to run tests. (If you wish to run tests in other browsers, like Firefox or IE, it will print
out instructions on how to connect those as well.)

What happens now is that every time you save a change to a file, the gr unt wat ch task will immediately spring into
action, running JSHint to detect syntax errors and other bugs, and then running your suite of tests in Karma to verify
behavior. This allows for a very rapid TDD, red-green-refactor workflow.

Let’s demonstrate the process. gr unt - i ni t - ni agar a should have generated you a file called
M/VebMbdul eW dget . j s. Out of the box, the code should pass all linting and tests, so we’ll have to introduce some
new errors to see how they are handled. Take a look at the doLoad function and you should see a line that looks like this:

t hat . $bui | dBut t ons(val ue);
Change it so that it looks like this:

t hat . $bui | dBut t ons(val ve)

Now save the file. Grunt should detect your change and immediately go to work. The first step in the watch process is to
run JSHint on your code. Our change introduced two errors in our code, and JSHint should have caught them both:

>> File "src\rc\ MWWebMbdul eW dget . js" changed.
Running "jshint:src" (jshint) task

src\rc\ MyWebMbdul eW dget . j s
118 | t hat . $bui | dBut t ons(val ve)
A M ssing sem col on
118 | t hat . $bui | dBut t ons(val ve)
N 'valve' is not defined

As you can see, whenever you introduce an error that JSHint can detect, you will immediately be alerted. Note that JSHint
is a static code analysis tool; your code has not actually run at this point. JSHint looks for syntax errors, misspellings,
code style problems, and similar categories of errors. It will not find logical errors in the execution of your code. That
happens in the next step.

Back out the change we just made so that it looks like it did before:

t hat . $bui | dButt ons(val ue);

Now, we’ll demonstrate the unit testing capabilities of Karma. We're going to follow the traditional TDD method of red-
green-refactor:

1. Write a new unit test and run it. It will fail, because you haven’t yet written the code to make it pass. Unit tests
should be small and focused. This is called the “red” phase because test failures usually are shown in red.

2. Write the bare minimum amount of code to implement the behavior that the test is verifying, then run it again. It
should pass. This is called the “green” phase because test successes usually are shown in green. You should never

8/26/2015 82

http://phantomjs.org/
http://jshint.com/

Niagara Developer Guide

write production code without first having already written a failing test for it.

3. Once you have good test coverage by following steps 1 and 2 many times, you can refactor your code for greater

readability and efficiency, without worrying about breaking old behavior. Just make sure that your refactoring
doesn’t introduce new behavior without accounting for it in the unit tests.

Take a look at the example page at http://localhost/module/myWebModule/r¢/myWebModule.htm that grunt -i ni t -
ni agar a generated for us (remember that the default credentials for the test station are user: admin, password:

asdf1234). You'll see that it creates a clickable button for every slot on a Conponent , and whenever we click one of the
buttons, it updates to show the name of the slot we selected. For this next example, we want to change the widget’s
behavior slightly. Instead of just displaying the slot name, we’ll add an exclamation mark just to properly convey our
excitement.

The first step is to change the test. (If we were adding new behavior to the widget we’d add another test, but since we're
changing existing behavior, we can just change the test.) Take a look at

srcTest/rc/ MyWebModul eW dget Spec. j s. This suite of unit tests is written using the Jasmine framework, which
is Tridium’s test framework of choice and the one automatically configured by gr unt - ni agar a.

Look at the spec named arns a handl er to display sel ected sl ot name. Since we're changing the way the

slot name is displayed, this is also the spec that we will change. Towards the bottom of the spec, you will see the
verification test that looks something like this:

runs(function () {

expect (sl ot Domtext()).toBe(' curlyJoe');
1

Change it so that it’s expecting an exclamation point:

runs(function ()

expect (slotDomtext()).toBe(' curlyJoe!");
1

Save the file. Since gr unt wat ch is running, the change will be immediately detected and your test suite will be run.
You should see the spec fail:

nrmodul e/ nyWebModul e/ r ¢/ MyWebModul eW dget #dolnitialize() arnms a handler to
di spl ay sel ected slot nanme FAI LED

Expected 'curlyJoe' to be 'curlyJoe!'.
Executed 8 of 8 (1 FAILED) (0.562 secs / 0.567 secs)

This is the “red” phase of development: we have a failing unit test. By first having a failing test, we get visual proof that the
behavior we’re writing has correct test coverage behind it. To get back to green, we go into

src/rc/ MyWebModul eW dget . j s and update the $updat eS| ot Text function to add the exclamation point we
need:

that.jq().find('. MyWebModul eW dget - sel ected-slot').text(slotNane + '1");

Save the file and the test will automatically be run. This time, everything should pass.

Using these frameworks and techniques, you have the ability to implement a fully test-driven development process from
beginning to end. It may seem like a large upfront time investment (isn’t it twice as much code for the same
functionality?) but a comprehensive suite of automated tests for your code is invaluable: short-term, it helps to ensure
that the code you write actually does what you think it does; and long-term, it allows you to make changes,
improvements, and refactorings to your code without worrying about breaking existing functionality.

A note on Continuous Integration

Unit tests, as configured by gr unt - ni agar a, will export their results in a JUnit-compatible XML format. This means

that if your organization uses a Continuous Integration solution, like Bamboo or Jenkins, it can consume these XML files.
Your JavaScript code can then be included in your CI process.

When invoking the Grunt process, use gr unt ci to run Cl-related tasks and generate these XML files. If needed, you
can use the - -j uni t-reports-dir flag to specify where the XML results go.

8/26/2015

83

http://localhost/module/myWebModule/rc/myWebModule.htm
http://jasmine.github.io/

Niagara Developer Guide

Building your JavaScript into a Niagara module

Implementing your JavaScript-based widgets is only one part of the development process. They must also be built into
your Niagara module so that they can be deployed to Niagara stations and supervisors.

Compacting using the Gradle RequireJS Plugin

Build your module:
gr adl ew : nyWebModul e- ux: j ar

As part of the build process, you'll notice that one of the build steps is to optimize your JavaScript using the Niagara
Require]S Gradle plugin. Let’s take a closer look at how this works.

Examine myWebMbdul e. gr adl e and take a look at the ni agar aRj s section:

builds = |
"nyWebModul e' ;|
rootDir: "src/rc',
i nclude: [
" nnodul e/ nyWebModul e/ r ¢/ nyWebModul e'
" nmodul e/ nyWebModul e/ r ¢/ MyWebModul eW dget
]
]
]

This tells the Gradle build process to optimize your JavaScript using r.js. The JavaScript modules specified in the

i ncl ude section will have all of their dependencies resolved and included in a single file:

nmyWebModul e. bui I t. nmi n. j s. This allows you to download every JavaScript file in your Niagara module using a
single network call. This is crucial on embedded devices where negotiating network connections can be slow.

Implementing BlJavaScript

Often, your HTML5 web app will have an instance of some BajaScript value: a Facet s, for instance, or a Dynamnmi cEnum
that you wish to present to the user in an editor. You could manually go and fetch the code for Facet skdi t or or
Dynani cEnunEdi t or, then instantiate, initialize, and load it into your page. It would be much easier, though, to simply
ask the framework for an editor that’s appropriate to edit that value. Then, you’ll be certain that you'll be provided the
correct, most up-to-date version of that editor.

Also, consider the Property Sheet. If you have a custom Baja value and a custom field editor to edit that value, you’ll need
to create an association between the two so the Property Sheet knows how to show the correct editor for your custom
value.

The way to do this is to create a simple Java class in your module. Its only job is to provide answers to these questions:

1. What JavaScript file represents the implementation of my editor?
2. What Types can I edit with this editor?

What JavaScript file defines my editor?

To let the Niagara framework know about the JavaScript file containing your editor, create a Java class that extends
BSi ngl et on and implements j avax. baj a. web. j s. Bl JavaScri pt . This simply creates a mapping between a
Niagara Type and a JavaScript file.

public final class BM/WbMdul eW dget

8/26/2015 84

http://requirejs.org/docs/optimization.html

Niagara Developer Guide

ext ends BSi ngl et on
i npl enents Bl JavaScri pt, Bl FornfFact or M ni

/lprivate constructor, TYPE and | NSTANCE as per BSi ngl eton
public Jslnfo getJslnfo(Context cx) { return jsinfo; }

private static final Jsinfo jsinfo =
Jsl nf o. make(
BOr d. make(" nodul e: // myWebModul e/ r ¢/ MyWWebModul eW dget . j s"),
BMW/WebModul eJsBui | d. TYPE

)
}

As you can see, there is very little to a Bl JavaScri pt class. It has only one method to implement, get Js| nfo(),
which lets the Niagara Framework know where the JavaScript implementation of your widget is located.

(Also notice the implemented interface Bl For nFFact or M ni - see the bajaux documentation for details on what this
does.)

You can also see as part of the Js| nf 0. make() method, you can pass in an instance of BJsBui | d. This performs a
very similar function to Bl JavaScr i pt, but instead of providing the location of a single JavaScript module, it provides
the location of an optimized JavaScript built file: e.g., nyWebMdul e. bui | t. m n. j s produced by the Gradle
Require]S plugin as described above.

The implementation of a BJSBui | d class is also very simple:
public class BMyWebMdul eJsBui |l d extends BJsBuild

public static final BMyWebMbdul eJsBuild | NSTANCE = new BMyWebMbdul eJsBui | d(
"nyWebModul e, //webdev |ID
new BOrd[] {
BOr d. make(" nodul e: // myWebModul e/ rc/ nyWebModul e. built. min.js")
}

)

/I TYPE and private constructor

}

While optimizing your JavaScript and creating BJSBui | d classes are strictly optional, they are highly recommended.

Don’t forget that your Bl JavaScri pt and BJsBui | d classes are standard Niagara Types and should be included in
nmodul e-i ncl ude. xm .

What Types can | edit with my editor?

Now that you've implemented a JavaScript editor and registered its existence with the framework, you can also declare it
to be compatible with certain Types. For instance, MyWWebModul eW dget might be able to load values of type
nyWebModul e: MyWWebMbdul eConponent . To declare this relationship, simply register your Bl JavaScri pt as an
agent on a Type. You can do this the usual way, in nodul e-i ncl ude. xm :

<type nane="M/WebModul eW dget "
class="comtridi um mywebnodul e. BWWebMbdul eW dget " >

<agent ><on type="nyWebMdul e: MyWebMbdul eConponent ™ / ></ agent >
</type>

Or the new annotation-based method available in Niagara 4:

@ON agar aType(agent =@\gent On(t ypes={" nyWebModul e: MyWebMbdul eConponent "}))
public final class BM/WbMdul eW dget

8/26/2015 85

module://docdeveloper/doc/index.html#bajaux

Niagara Developer Guide

Switching your Station into Web Development mode

One last thing to consider. At this point you have two files containing your editor’s code: the one you've just created, with
the human-readable JavaScript code (MyWebModul eW dget . j s), and the built and minified version for conserving
network traffic (myWebMbdul e. bui I t. min.js).

During normal usage, your station will only serve up the minified file. This is absolutely the correct behavior: on an
embedded device, conservation of network traffic is key. But take a look at the minified file: it'’s completely
incomprehensible. When developing and debugging, you really want to be able to see the original, human-readable code.

By enabling webdev mode for your module, the station will kick into debug mode: it will switch over to serving up the
original file, so that you can open up the console in Chrome or Internet Explorer and trace through your actual code.

To enable webdev mode, simply go into the spy page for the station and visit the webDev Set up page. (You'll need to
actually visit the web interface first - so the station serves up some files - for it to appear.) Enable webdev mode for the
ID of your BJsBui | d, and from then on, the unminified files from your module will be served to the browser. This is

invaluable when debugging your code live in the browser. (To learn more about browser debugging, search the web for
“{your browser name} console tutorial.”)

Moving Forward

Let’s do a quick recap of what you’'ve accomplished so far.
1. You've created a widget with JavaScript that can be used in the new Niagara 4 HTML5 web views
(MyWebModul eW dget . j s)

. You've registered its existence with the framework (BMyWebModul eW dget implements Bl JavaScri pt)

. You've optimized it down within a single built JavaScript file to minimize network traffic (ni agar aRj s
configuration creates nyWebMbdul e. built. mn.js)

. You've registered the existence of the built file with the framework (BMyWebMbdul eJsBui | d extends BJsBui | d)

5. You've let the framework know to show you a MyWebMbdul eW dget when it tries to load an editor for a
compatible Type (BMyWebModul eW dget is an Agent on BMyWebModul eConponent).

w N

I

At this point, you have everything you need to go full-speed into developing HTML5 widgets and editors. Continue using
the linting and testing tools provided by gr unt - i ni t - ni agar a to iterate over your widget until it is well tested, error-

checked, and fully functional. (If you are developing a field editor intended for use in the HTML5 Property Sheet,
definitely check out the webEditors tutorial for notes on this use case.)

Feel free to stop by the Niagara Central Forums to discuss any questions or problems.

Happy coding!

8/26/2015 86

module://docdeveloper/doc/jsdoc/webEditors-ux/index.html

Niagara Developer Guide

Gx Graphics Toolkit

Overview

The gx module defines the graphics primitives used for rendering to a display device. For example there implements for
"painting” to computer screens and another for "painting" a PDF file. Many of the simple types used in the rest of the

The gx APIs use a vector coordinate system based on x and y represented as doubles. The origin 0,0 is the top left hand
corner with x incrementing to the right and y incrementing down. This coordinate system is called the logical coordinate
space (sometimes called the user space). How the logical coordinate space maps to the device coordinate space is
environment specific. Usually a logical coordinate maps directly into pixels, although transforms may alter this mapping.

Color

BColor stores an RGBA color. It's string syntax supports a wide range of formats including most specified by CSS3:

e SVG Keywords: the full list of X11/SVG keywords is available by name and also defined as constants on BColor.
Examples: red, springgreen, navajowhite.

e RGB Function: the rgb() function may be used with the red, green, and blue components specified as an integer
between 0-255 or as a percent 0%-100%. Examples: rgb(0,255,0), rgb(0%,100%,0%).

e RGBA Function: the rgba() function works just like rgb(), but adds a fourth alpha component expressed as a float
between 0.0 and 1.0. Example: rgba(0,100,255,0.5).

e Hash: the following hash formats are supported #rgb, #rrggbb, and #aarrggbb. The first two follow CSS rules, and
the last defines the alpha component using the highest 8 bits. Examples: #0b7, #00bb77, #{f00bb77 (all are
equivalent).

Font

BFont is composed of three components:

e Name: a font family name stored as a String.
e Size: a point size stored as a double.
e Style: a set of attributes including bold, italics, and underline.

The format of fonts is "[italic || bold || underline] {size}pt {name}". Examples: "12pt Times New Roman", "bold 11pt sans-

serif", "italic underline 10pt Arial". The BFont class also provides access to a font's metrics such as baseline, height,
ascent, descent, and for calculating character widths.

Brush

The BBrush class encapsulates how a shape is filled. The gx brush model is based on the SVG paint model. There are four
types of brushes:

Solid Color: the string format is just a standard color string such as "red"
e Inverse: uses an XOR painting mode

Gradients: linear and radial gradients

Image: based on a bitmap image file which may tiled or untiled

Pen

The BPen class models how a geometric shape is outlined. A pen is composed of:

e Width: as double in logical coordinates
e Cap: how a pen is terminated on open subpaths - capButt, capRound, capSquare.

8/26/2015 87

module://docdeveloper/doc/gx-rt/module-index.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BColor.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BFont.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BPen.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BBrush.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BTransform.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BColor.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BFont.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BBrush.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BPen.bajadoc

Niagara Developer Guide

Join: how corners are drawn - joinMiter, joinRound, joinBevel
e Dash: a pattern of doubles for on/off lengths

Coordinates

The following set of classes is designed to work with the gx coordinate system. Each concept is modeled by three classes:
an interface, a mutable class, and an immutable BSimple version that manages the string encoding.

Point

The IPoint, Point, and BPoint classes store an x and y location using two doubles. The string format is "x, y". Example
"40,20", "0.4,17.33".

Size

The ISize, Size, and BSize classes store a width and height using two doubles. The string format is "width,height".
Examples include "100,20", "10.5, 0.5".

Insets

The IInsets, Insets, and Blnsets classes store side distances using four doubles (top, right, bottom, and right). The string
format for insets follows CSS margin style: "top,right,bottom,left". If only one value is provided it applies to all four sides.
If two values are provided the first is top/bottom and the second right/left. If three values are provided the first is top,
second is right/left, and third is bottom. Four values apply to top, right, bottom, left respectively. Examples "4" expands to
"4,4,4,4"; "2,3" expands to "2,3,2,3"; "1,2,3" expands to "1,2,3,2".

Geom

The geometry classes are used to model rendering primitives. They all following the pattern used with Point, Size, and
Insets with an interface, mutable class, and immutable BSimple. Geometries can be used to stroke outlines, fill shapes, or
set clip bounds.

Geom
The IGeom, Geom, and BGeom classes are all abstract base classes for the geometry APIs.
LineGeom

The [LineGeom, LineGeom, and BLineGeom classes model a line between two points in the logical coordinate system.
The string format of line is "x1,y1,x2,y2".

RectGeom

The [RectGeom, RectGeom, and BRectGeom classes model a rectangle in the logical coordinate system. The string
format of rectangle is "x,y,width,height".

EllipseGeom

The IEllipseGeom, EllipseGeom, and BEllipseGeom classes model a ellipse bounded by a rectangle in the logical
coordinate space. The string format is "x,y,width,height".

PolygonGeom

The IPolygonGeom, PolygonGeom, and BPolygonGeom classes model a closed area defined by a series of line segments.
The string format of polygon is "x1,y1 x2,y2,...".

PathGeom

The [PathGeom, PathGeom, and BPathGeom classes define a general path to draw or fill. The model and string format of

8/26/2015 88

module://docdeveloper/doc/gx-rt/javax/baja/gx/IPoint.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/Point.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BPoint.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/ISize.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/Size.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BSize.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/IInsets.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/Insets.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BInsets.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/IGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/Geom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/ILineGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/LineGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BLineGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/IRectGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/RectGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BRectGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/IEllipseGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/EllipseGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BEllipseGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/IPolygonGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/PolygonGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BPolygonGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/IPathGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/PathGeom.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BPathGeom.bajadoc

Niagara Developer Guide

a path is based on the SVG path element. The format is a list of operations. Each operation is denoted by a single letter. A
capital letter implies absolute coordinates and a lowercase letter implies relative coordinates. Multiple operations of the
same type may omit the letter after the first declaration.

e Moveto: move to the specified point. "M x,y" or "m x,y".

e Lineto: draw a line to the specified point: "L x,y" or "l x,y".

e Horizontal Lineto: draw a horizontal line at current y coordinate: "H x" or "h x".
e Vertical Lineto: draw a vertical line at the current x coordinate: "V y" or "v y".

e Close: draw a straight line to close the current path: "Z" or "z".

e Curveto: draws a Bezier curve from current point to x,y using x1,y1 as control point of beginning of curve and x2,y2
as control point of end of curve: "C x1,y1 x2,y2 x,y" or "c x1,y1 x2,y2 x,y".

e Smooth Curveto: draws a Bezier curve from current point to x,y. The first control point is assumed to be the
reflection of the second control point on the previous command relative to the current point. "S x2,y2 x,y" or "s
x2,y2 x,y".

e Quadratic Curveto: draws a quadratic Bezier curve from current point to x,y using x1,y1 as control point: "Q x1,yl
xy" or "q xL,yl x,y".

e Smooth Quadratic Curveto: draws a quadratic Bezier curve from current point to x,y with control point a
reflection of previous control point: "T x,y" or "t x,y".

e Arc: draws an elliptical arc from the current point to x,y: "A rx,ry x-axis-rotation large-arc-flag sweep-flag x y" or "a
rx,ry x-axis-rotation large-arc-flag sweep-flag x y".

Refer to the W3 SVG spec (http://www.w3.0rg/TR/SVG/) for the formal specification and examples.

Transform

Transforms allow a new logical coordinate system to be derived from an existing coordinate system. The gx transform
model is based on SVG and uses the exact string formatting. BTransform stores a list of transform operations:

e Translate: moves the origin by a tx and ty distance.

e Scale: scales the coordinates system by an sx and sy size.

e Skew: skew may be defined along the x or y axis.

e Rotate: rotate the coordinate system around the origin using a degree angle.

Image

The Blmage class is used to manage bitmap images. Image's are typically loaded from a list of ords which identify a list of
files (GIF, PNG, and JPEG supported). When more than file is specified, the image is composited using alpha
transparency from bottom to top (useful for "badging" icons). Images may also be created in memory and "painted” using
the Gr aphi cs APL

The framework will often load images asynchronsouly in a background thread to maintain performance. Developers
using Bl mages directly can poll to see if the image is loaded via the i sLoaded() method. Use the sync() method to
block until the image is fully loaded. Animated GIFs require that the developer call ani mat e() at a frame rate of
10frames/second. Typically developers should display images using BLabel which automatically handles async loading
and animation.

The framework caches images based on their size and how recently they are used. You may use the Image Manager spy
page to review the current cache.

Graphics
Painting to a device is encapsulated by the Graphics class. The primitive paint operations are:

e fill(IGeom): filling a geometry involves painting a geometry's interior area with the current brush. Remember a
brush can be a solid color, a gradient, or texture.
e stroke(IGeom): stroking a geometry is to draw its outline or line segments. Stroking uses the current pen to derive

the "stroke geometry" based on the pen's width and style. Then the interior of the stroke is filled using the current
brush.

8/26/2015 89

module://docdeveloper/doc/gx-rt/javax/baja/gx/BTransform.bajadoc
module://docdeveloper/doc/gx-rt/javax/baja/gx/BImage.bajadoc
local:|spy:/imageManager
module://docdeveloper/doc/gx-rt/javax/baja/gx/Graphics.bajadoc

Niagara Developer Guide

drawString(): this draws a set of characters to the device. The shape of the characters is derived from the current

font. The interior of the font is filled with the current brush. Note: we don't currently support stroking fonts like
SVG.

e drawImage(): this draws an bitmap image to the device; the image may be scaled depending on the parameters
and/or current transform.

All paint operations perform compositing and clipping. Compositing means that colors are combined as painting occurs
bottom to top. For example drawing a GIF or PNG file with transparent pixels allows the pixels drawn underneath to
show through. Alpha transparency performs color blending with the pixels underneath. Clipping is the processing of
constraining paint operations to a specified geometry. Any pixels from a paint operation which would be drawn outside
the clip geometry are ignored. Use the ¢l i p() method to clip to a specific region.

Often it is necessary to save the current state of the graphics to perform a temporary paint operation, and then to restore
the graphics. An example is to set a clip region, paint something, then restore the original clip. The push() and pop()
are used to accomplish this functionality by maintaining a stack of graphics state. You should always call pop() inatry
final |y block to ensure that your code cleans up properly.

8/26/2015 20

Niagara Developer Guide

Bajaui Widget Toolkit

Overview

The bajaui module contains a widget toolkit for building rich user interfaces. This toolkit is built using the Niagara
component model. Widgets are BConponent s derived from BWidget. Widgets define basic UI functions:

e Layout: defines the layout model - how widget trees are positioned on the graphics device

Painting: defines how widgets paint themselves using graphical composition and clipping

Input: defines how user widgets process user input in the form of mouse, keyboard, and focus events

Data Binding: defines are how widgets are bound to data sources

Widgets are organized in a tree structure using the standard component slot model. Typically the root of the tree is a
widget modeling a top level window such as BFrame or BDialog.

Layout

All widgets occupy a rectangular geometry called the bounds. Bounds includes a position and a size. Position is a x,y
point relative to the widget parent's coordinate system. Size is the width and height of the widget. The widget itself
defines its own logical coordinate system with its origin in the top left corner, which is then used to position its children
widgets. Every widget may define a preferred size using conput ePr ef err edSi ze() . Layout is the process of assigning
bounds to all the widgets in a widget tree. Every widget is given a chance to set the bounds of all its children in the
doLayout() callback. When a layout refresh is needed, you may call r el ayout () . The relayout call is asynchronous - it
merely enqueues the widget (and all its ancestors) for layout at some point in the near future.

Panes

Widget's which are designed to be containers for child widgets derive from the BPane class. A summary of commonly
used panes:

e BCanvasPane: used for absolute positioning (discussed below);
e BBorderPane: is used to wrap one widget and provide margin, border, and padding similar to the CSS box model.

e BEdgePane: supports five potential children top, bottom, left, right, and center. The top and bottom widgets fill the
pane horizontally and use their preferred height. The left and right widgets use their preferred width, and occupy
the vertical space between the top and bottom. The center widget gets all the remainder space.

e BGridPane: lays out it children as a series of columns and rows. Extra space in the rows and columns is configurable
a number of ways.

e BSplitPane: supports two children with a movable splitter between them.
e BTabbedPane: supports any number of children - only one is currently selected using a set of tabs.

e BScrollPane: supports a single child that may have a preferred size larger than the available bounds using a set of
scroll bars.

Absolute Layout

Every widget also has a frozen property called layout of type BLayout. The BLayout class is used to store absolute
layout. Widgets which wish to use absolute layout should be placed in a BCanvasPane. BLayout is a simple with the
following string format "x,y,width,height". Each value may be a logical coordinate within the parent's coordinate space or
it may be a percent of the parent's size. Additionally width and height may use the keyword "pref" to indicate use of
preferred width or height. Examples include "10,5,100,20" "0,0,30%,100%", and "10%,10%,pref,pref".

Lastly the keyword "fill" may be used as a shortcut for "0,0,100%,100%" which means fill the parent pane. Fill is the default
for the layout property which makes it easy to define layers and shapes.

Painting

All widgets are given a chance to paint themselves using the pai nt (Gr aphi cs) callback. The graphics is always

8/26/2015 91

module://docdeveloper/doc/bajaui-wb/module-index.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BWidget.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BFrame.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BDialog.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BPane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BCanvasPane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BBorderPane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BEdgePane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BGridPane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BSplitPane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BTabbedPane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/pane/BScrollPane.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BLayout.bajadoc

Niagara Developer Guide

translated so that the origin 0,0 is positioned at the top, left corner of the widget. The graphic's clip is set to the widget's
size. Widget's with children, should route to paintChild() or pai nt Chi | dr en() . Painting follows the gx compositing
rules. Alpha and transparent pixels blend with the pixels already drawn. Widgets are drawn in property order. So the first
widget is drawn first (at the bottom), and the last widget drawn last (on the top). Note that hit testing occurs in reverse
order (last is checked first). Effective z-order is reverse of property order (consistent with SVG).

Input

User events are grouped into keyboard input, mouse input, and focus events. The following events are defined for each
group:

BKeyEvent

e keyPressed
e KkeyReleased
e keyTyped

BMouseEvent

e mouseEntered

e mouseExited

e mousePressed

e mouseReleased

e mouseMoved

e mouseDragged

e mouseDragStarted
e mouseHover

e mousePulse

e mouseWheel

BFocusEvent
e focusGained

e focusLost

Design Patterns

Some complicated widgets have mini-frameworks all to their own. These include BTable, BTree, BTreeTable, and
BTextEditor. All of these widgets use a consistent design pattern based on a set of support APIs:

e Model: defines the underlying logical model of the widget visualization
e Controller: processes all user input events, handles popup menus, and manages commands
e Renderer: responsible for painting the widget

Selection: manages the current selection of the widget

Commands

The bajaui module provides a standard API for managing user commands using the Command and ToggleCommand
classes. Commands are associated with one or more widgets which invoke the command. Typically this association
happens by using a special constructor of the widget such as BBut t on(Conmand cnd) or using a set Conmand()
method. Conmands are commonly used with BButton and BActionMenultem. Toggl eComrands are commonly used
with BCheckBox, BRadioButton, BCheckBoxMenultem, and BRadioButtonMenultem.

Commands provide several functions. First they provide a centralized location to enable and disable the command. It is
common for a command to be available via a menu item, a toolbar button, and a popup menu. By enabling and disabling
the command all the widgets are automatically enabled and disabled.

Commands also provide a standard mechanism used for localization via the lexicon APIs. If one of the module or lexicon

8/26/2015 92

module://docdeveloper/doc/bajaui-wb/javax/baja/ui/event/BKeyEvent.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/event/BMouseEvent.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/event/BFocusEvent.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/table/BTable.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/tree/BTree.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/treetable/BTreeTable.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/text/BTextEditor.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/Command.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/ToggleCommand.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BButton.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BActionMenuItem.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BCheckBox.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BRadioButton.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BCheckBoxMenuItem.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BRadioButtonMenuItem.bajadoc

Niagara Developer Guide

constructors is used the command automatically loads its visualization from a lexicon using a naming pattern:
keyBase+".label", keyBase+".icon", keyBase+".accelerator", and keyBase+".description". The icon value should be an ord to
a 16x16 png file. Widgets created with the Command will automatically set their properties accordingly.

The Command API also defines the basic framework for undo and redo. Whenever a command is invoked via the
i nvoke() method, the Command can return an instance of CommandArtifact to add to the undo stack. Commands
which don't support undo can just return nul | .

Data Binding

All widgets may be bound to zero or more data sources using the BBinding class. Bindings are added to the widget as
dynamic child slots. You may use the BW dget . get Bi ndi ngs() to access the current bindings on a given widget.
Bindings always reference a data source via an ord. The BBi ndi ng API defines the basic hooks given to bindings to
animate their parent widget.

The most common type of binding is the BValueBinding class. Value binding provides typical functionality associated
with building real-time graphics. It supports mouse over status and right click actions. Additionally it provides a
mechanism to animate any property of its parent widget using BConvert er s to convert the target object into property
values. Converters are added as dynamic properties using the name of the widget property to animate. For example to
animate the "text" property of a BLabel you might add a Obj ect ToSt ri ng converter to the binding using the
property name "text".

Performance Tuning

The gx and bajaui toolkits are built using the AWT and Java2D. A key characteristic of performance is based on how
widgets are double buffered and drawn to the screen. The following system properties may be used to tune widget
renderering:

e niagara.ui.volatileBackBuffer: Defines whether the back buffer used for widget rendering uses
createVol atil e() orcreatel mage() . Volatile back buffers can take advantage of Video RAM and hardware
acceleration, non-volatile back buffers are located in system memory. Note: this feature is currently disabled.

e sun.java2d.noddraw: Used to disable Win32 DirectDraw. Often disabling DirectDraw can correct problems with
flickering.

8/26/2015 93

module://docdeveloper/doc/bajaui-wb/javax/baja/ui/CommandArtifact.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BBinding.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BValueBinding.bajadoc

Niagara Developer Guide

Workbench

Overview

The workbench module define's the framework for building standardized user interfaces. The workbench provides
enhancements to the bajaui widget toolkit:

Standard layout with menu, toolbar, sidebars, and view;

Standard browser based navigation model with an active ord, back, and forward;
Bookmarking;

Tabbed browsing;

Options management;

Plugin APIs;

Ability to customize using WbProfiles;

Enables both desktop and browser based applications;

Note: The term workbench applies both to the actual application itself as well as the underlying technology used to build
customized applications. As you will see, all apps are really just different veneers of the same workbench customized
using WbProfiles.

Layout

MenuBar
ToolBar - - - 4y - m'@fﬁhﬁ'* |}| i |

LocatorBar | D iZonfig Logic HousingUnik AirHandler B8 'wire Sheet -

> - Filter 1 .
e FilterGen Humnercirtable E % =r_mm]
. Sinelilave it = OgO8 -
* t:: . [y Pk |_ Ot 0.0 Jok? j Tnd %:I:I =
.] Inld]
SideBar | 2 Station (demo) Inic
+ {2 Home
1. i Dutsidedir Temp View
E} Config Sinelilave MisedAirTdo
; ‘.‘ PiHome ot 22,53 F fak} Anrerage
+ P services = B1.E4 °F Lokl
+ [Drivers In & 8.5 {ok}
: @) ReturnAirTemp InB 74.2 fak)
E]'- Logic Sinelave =
- 7 HousingL (= 7.7 F Ik
E3 e | firHan =
q T Dl
Y
Console |d: vniagara\r3dewirels Ifl

Swasbar |

The illustration aboves shows the key components of the Workbench layout:

MenuBar: The bar of standard and view specific pulldown menus;
ToolbarBar: The bar of standard and view specific toolbar buttons;
LocatorBar: Visualization and controls for active ord;

SideBar: Pluggable auxiliary bars including navigation and palette;

View: The main tool currently being used to view or edit the active object;

8/26/2015 94

module://docdeveloper/doc/workbench-wb/module-index.bajadoc

Niagara Developer Guide

e Console: Used to run command line programs such as the Java compiler;
e StatusBar: Standard location to display status messages;

The BWhShel | class is used to model the entire workbench window (or the applet in a browser environment). The
get Acti veOrd() method provides access to the current location, and hyper | i nk() is used to hyperlink to a new
ord.

Browser Based Navigation

The fundamental navigation model of workbench is like a web browser. A web browser always has a current URL. As the
current URL is changed, it fetches and displays the contents of that URL. A history of URLs is remembered allowing back
and forward navigation. Most web browsers also allow the user to bookmark URLs for quick retrieval.

The workbench follows the same model. Instead of a URL to identity current location, the workbench uses an ord. The
ord currently being viewed is called the active ord. Every ord resolves to a BObj ect . The target of the active ord is called
the active object.

BWHVi ews are the plugins used to work with the active object. Views are the primary content of the workbench and
provide a user interface to view or edit the active object. The workbench discovers the available views by searching the
registry for WhVi ews registered on the active object.

The workbench provides a ready to use bookmark system that allows users to save and organize ords as bookmarks.
Bookmarks are also used to store NavSideBar and FileDialog favorites. The bookmark system provides a public API via

the javax.baja.ui.bookmark package.

Workbench also provides tab based browsing similar to modern browsers such as Mozilla and FireFox. Most places in the
interface which allow double clicking to hyperlink support Ctrl+double click to open the object in a new tab. Also see the
File menu for the menu items and shortcuts used to manupilate and navigate open tabs.

WbPlugins

The workbench is fundamentally a command and navigation shell, with all of it's functionality provided by plugins. The
plugins available to the workbench are discovered by searching the registry for the appriopate type (WbProfiles allow
further customization). This means that installing a new workbench plugin is as simple as dropping in a module.

All plugins subclass BWPI ugi n, which is itself a BW dget . The following common plugins are discussed in the
following sections:

WbViews
WhbFieldEditor
WhbSideBars
WbTools

WhbView

Views are the workhorses of the workbench. Views provide the content viewers and editors for working with the active
objects. Views also have the unique ability to do menu and toolbar merging. To implementing a new view plugin follow
these rules:

e Create a subclass of BWVi ew, or if your view is on a BConponent , then subclass BWbhConponent Vi ew:
e Override doLoadVal ue(BObj ect, Cont ext) to update the user interface with the active object.

e If your view allows editing of the object, then call set Modi fi ed() when the user makes a change which requires
a save.

e If your view allows editing and set Modi fi ed() has been called, override doSaveVal ue(BObj ect ,
Cont ext) to save the changes from the user interface back to the active object.

e Register your view as an agent on the appriopate object type (or types):

<type name="Al arnConsol e" class="comtridi um al arm ui . BAl ar mConsol e" >
<agent requiredPerm ssions="r"><on type="al arm Consol eReci pient"/>

8/26/2015 95

module://docdeveloper/doc/workbench-wb/javax/baja/workbench/BWbShell.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/view/BWbView.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/bookmark/package-index.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/BWbPlugin.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/view/BWbView.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/view/BWbComponentView.bajadoc

Niagara Developer Guide

</ agent >
</type>

Writing a view for a Bl Fi | e typically involved reading the file's content for display on doLoadVal ue(), and writing
back the contents on doSaveVal ue() .

Writing a BWConponent Vi ewfor a BConponent typically involves subscribing to the necessary component or
components on doLoadVal ue(), and saving back changes on doSaveVal ue() . The WoConponent Vi ew class
provides a series of r egi st er X() methods for managing the view's subscriptions. Remember that if working with
remote components, batching resolves, subscribes, and transactions can make significant performance improvements.
Refer to Remote Programming for more information.

WhFieldEditor

Field editors are similar to views, except they typically are smaller editors used to edit a BSi npl e or BSt r uct . Unlike
views, a field editor never fills the view content area, but rather is used inside views like the PropertySheet.

The rules for building a field editor are very similar to views:

e Create a subclass of BWFi el dEdi t or.

e Override doLoadVal ue(BObj ect, Cont ext) to update UI from object.

e Fire set Modi fi ed() when the user makes a change.

e Override doSaveVal ue(BCbj ect, Context) to update the object from the UL
e Register your view as an agent on the appriopate object type (or type).

BWhFi el dEdi t or also provides some convenience methods for displaying a dialog to input a specific BObj ect type.
For example to prompt the user input a street address:

BSt reet Address addr = new BStreet Address();
addr = (BStreet Address) BWFi el dEdi tor. di al og(null, "Enter Address", addr);
if (addr !'= null) { /* do sonething! */ }

WhSideBar

Sidebars are auxiliary tools designed to be used in conjunction with the active view. Sidebars are displayed along the left
edge of the view. Multiple sidebars can be open at one time. Unlike views, sidebars are independent of the active ord.

The rules for building a sidebar:

e Create a subclass of BWSi deBar .
e Provide display name and icon in your lexicon according to Typel nf o rules:

Bookmar kSi deBar . di spl ayNane=Bookmar ks
Booknar kSi deBar . i con=nodul e: / /i cons/ x16/ bookmar k. png

WhbTool

Tools are plugins to the workbench Tools menu. Tools provide functionality independent of the active ord. Typically
tools are dialogs or wizards used to accompish a task. There are three types of tools:

e BWTool : is the base class of all tools. It provides a single i nvoke(BWbShel | shel |') callback when the tool is
selected from the Tools menu. Often invoke is used to launch a dialog or wizard.

e BWNavNodeTool : is a tool which gets mounted into the ord namespace as "tool:{typespec}|slot:/". Selecting the
tool from the Tools menu hyperlinks as the tool's ord and then standard WbVi ews are used to interact with the
tool. Typically in this scenerio the tool itself is just a dummy component used to register one or more views.

e BWhSer vi ce: is the most sophisticated type of tool. Services are WhNavNodeTool s, so selecting them hyperlinks

8/26/2015 96

module://docdeveloper/doc/workbench-wb/javax/baja/workbench/view/BWbComponentView.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/fieldeditor/BWbFieldEditor.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/sidebar/BWbSideBar.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/registry/TypeInfo.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/tool/BWbTool.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/tool/BWbNavNodeTool.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/tool/BWbService.bajadoc

Niagara Developer Guide

to the tool's ord. Services also provide the ability to run continuously in the background independent of the active
ord. This is useful for monitoring tools or to run drivers locally inside the workbench VM. Services can be
configured to start, stop, and auto start via the WbServiceManager.

The rules for building a tool:

e (Create a subclass of BWhTool , BWhNavNodeTool , or BWhSer vi ce.
e Provide display name and icon in your lexicon according to Typel nf o rules:

Newibdul eTool . di spl ayNanme=New Modul e
NewiMbdul eTool . i con=nodul e: //i cons/ x16/ new\bdul e. png

WhbProfiles

The BWHPr of i | e class provides the ability to create new customized versions of the workbench. WbProfile provides
hooks to replace all of the standard layout components such as the MenuBar, ToolBar, LocatorBar, and StatusBar. Plus it
provides the ability to customize which views, sidebars, and tools are available. Using WbProfiles you can quickly create
custom applications that provide just the functionality needed for your domain.

You can launch workbench with a specific profile via a command parameter: Wo - profil e: {t ypespec}.

Note that if you wish to create an application that runs in the web browser you will need to subclass BWb\WWebPr of i | e.

8/26/2015 97

module://docdeveloper/doc/baja-rt/javax/baja/registry/TypeInfo.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/BWbProfile.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/web/BWbWebProfile.bajadoc

Niagara Developer Guide

Web

Overview

The web module is used to provide HTTP connectivity to a station via the BWebSer vi ce. The web module provides a
layered set of abstractions for serving HTTP requests and building a web interface:

Servlet: a standard j avax. ser vl et API provides the lowest level of web integration.

ServletView: is used to provide object views in a web interface.
Web Workbench: is technology which enables the standard workbench to be run in a browser.
Hx: is technology used to build web interfaces using only standards: HTML, JavaScript, and CSS.

Serviet

Niagara provides a standard javax.servlet API to service HTTP requests. The WebOp class is used to wrap
Htt pSer vl et Request and Ht t pSer vl et Response. WebQp implements Cont ext to provide additional Niagara
specific information. These APIs form the basis for the rest of the web framework.

The BWebSer vl et component is used to install a basic servlet which may be installed into a station database. The
ser vl et Nane is used to define how the servlet is registered into the URI namespace. A ser vl et Nane of "foo" would
receive all requests to the host that started with "/foo". Servlets are automatically registered into the URI namespace on
their component st art ed() method and unregistered on st opped() . The servi ce() ordoCet ()/ doPost ()
methods are used to process HTTP requests.

Note: The current j avax. ser vl et implementation is based on version 2.4. The following interfaces and methods are
not supported:

e javax.servlet.Filter: Unsupported interface
e javax.servlet.FilterChain: Unsupported interface
e javax.servlet.FilterConfig: Unsupported interface
e javax.servlet.RequestDispatcher: Unsupported interface
e javax.servlet.ServletContext: Unsupported methods
o getNamedDispatcher(String)
o getRequestDispatcher(String)
o getResource(String)
o getResourceAsStream(String)
o getResourcePaths(String)
o getServlet(String)
o getServlets()
o getServletContextName(String)
e javax.servlet.ServletRequest: Unsupported method
o getRequestDispatcher(String)
e javax.servlet.ServletRequestAttributeListener: Unsupported interface
e javax.servlet.ServletRequestListener: Unsupported interface
e javax.servlet.http.HttpSessionActivationListener: Unsupported interface
e javax.servlet.http.HttpSessionAttributeListener: Unsupported interface
e javax.servlet.http.HttpSessionListener: Unsupported interface

ServletView

The web framework follows an object oriented model similar to the workbench. The user navigates to objects within the
station using ords. One or more web enabled views are used to view and edit each object.

8/26/2015 98

module://docdeveloper/doc/web-rt/module-index.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/BWebService.bajadoc
http://docs.oracle.com/javaee/6/api/javax/servlet/http/package-summary.html
module://docdeveloper/doc/web-rt/javax/baja/web/WebOp.bajadoc
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html
module://docdeveloper/doc/web-rt/javax/baja/web/BWebServlet.bajadoc

Niagara Developer Guide

When navigating objects using ords, Niagara must map ords into the URI namespace. This is done with the URI format
of "/ord?ord".

The BSer vl et Vi ewclass is used to build servlets that plug into the ord space using the "view:" scheme. For example if
you wish to display an HTML table for every instance of component type "Foo", you could create a ServletView called
"FooTable". Given an instance of "Foo", the URI to access that view might be "/ord?slot:/foo3|view:acme:FooTable". The
WebQp passed to BSer vl et Vi ew. servi ce() contains the target object being viewed (note WebOp subclasses from

O dTar get).

Web Workbench

A nice feature of Niagara's web framework is the ability to run the entire workbench right in a browser. This web
workbench technology allows almost any view (or plugin) to run transparently in both a desktop and browser
environment. The following process illustrates how web workbench works:

User requests a workbench view for a specific object via its ord.

An HTML page is returned that fills the entire page with a small signed applet called wbapplet.

The wbapplet is hosted by the Java Plugin which must be preinstalled on the client's machine.

The wbapplet loads modules from the station as needed, and caches them on the browser's local drive.
The workbench opens a fox connection under the covers for workbench to station communication.

S o

The workbench displays itself inside the wbapplet using the respective WbProfile and WbView.

Web workbench technology allows a sophisticated UI to be downloaded to a user's browser straight out of a Jace. It is
downloaded the first time and cached - subsequent access requires only the download of wbapplet (13kb). Development
for web versus desktop workbench is completely transparent. The only difference is that the BWbPr of i | e used for a web
interface must subclass from BWhWDPr of i | e. Some functionality is limited only to the desktop like the ability to
access the console and Jikes compiler. Also note that web workbench session is limited to a specific station. So it doesn't
make sense to navigate to ords outside that station such a "local:|file:".

Note: in order for web workbench to be used, the client browser machine must have access to the station's fox port. This
may require the fox port to be opened up in the firewall.

Hx

There are cases where using the workbench is overkill or we don't wish to require the Java Plugin. For these use cases,
Niagara provides the /x technology. Hx is a mini-framework used to build real-time web interfaces only with standard
HTML, JavaScript, and CSS. See the hx chapter for details.

WebProfileConfig

The web experience of a given user is controlled via the BWebPr of i | eConf i g class. WebPr of i | eConf i g is a MixIn
added to every User component. The web profile determines whether web workbench or hx is used by specifying an
WbProfile or HxProfile for the user.

8/26/2015 99

module://docdeveloper/doc/web-rt/javax/baja/web/BServletView.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/naming/OrdTarget.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/BWbProfile.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/web/BWbWebProfile.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/BWebProfileConfig.bajadoc

Niagara Developer Guide

Px

Overview

Px is a technology used to package a Ul presentation as an XML file. A px file defines a tree of bajaui widgets and their
data bindings. Any BW dget and BBi ndi ng may be used, including those custom developed by you. Typically px files
are created using a WYSIWYG tool called the PxEditor, although they can also be handcoded or auto-generated.

Px files are always given a ".px" extension, and modeled with the fi | e: PxFi | e type.

Px Views

A px file may be used in a Ul via a variety of mechanisms:

e Navigating directly to a px file will display its presentation
e The px file may be attached to a component as a dynamic view
e Many px files can be automatically translated into HTML using hx

The WOPx Vi ewis the standard presentation engine for px files. WoPxVi ewis the default view of fi | e: PxFi | e, so you
can use px files just like an HTML file - by navigating to one.

The BPxVi ew class may be used to define dynamic views on components. Dynamic views are like dynamic slots, in that
they are registered on an instance versus a type. A dynamic view is automatically available for every BPxVi ewfound in a
component. Each BPxVi ew provides an ord to the px file to use for that view. PxViews may be added through the
workbench or programmatically. Since the bindings within a px file are always resolved relative to the current ord, you
can reuse the same px file across multiple components by specifying bindings with relative ords.

If all the widgets used in a px file have a translation to hx, then the entire px file can be automatically translated into
HTML for hx users. See hx for more details.

PxMedia

As a general rule any BW dget is automatically supported when viewing a px file. However, viewing a px file in hx only
supports a subset of widgets (those that have a hx agent). This means that you must target the lowest common
denominator when creating px presentations. The target media for a px presentation is captured via the BPxMedi a class.
Both the px file and the PxView can store a PxMedia type. Currently there are only two available media types:

wor kbench: WbPxMedi a and hx: HxPxMedi a. The PxEditor will warn you if you attempt to use widgets and bindings
not supported by the target media.

API

The bajaui module provides a standard API for serializing and deserializing a widget tree to and from it's XML
representation. The PxEncoder class writes a widget tree to an XML document. PxDecoder is used to read an XML
document into memory as a widget tree.

Syntax

The bog XML format is optimized to be very concise with equal weight given to both read and write speed. The px XML
format is designed to be more human usable. All px files have a root pXx element with a required ver si on and optional
medi a attribute. Within the root px element is an i mport element and a cont ent element.

The i nport section contains a list of "bdul e elements. Each nodul e specifies a Niagara module name using the name
attribute. This module list is used to resolve type names declared in the cont ent section.

The cont ent section contains a single element which is the root of the px file's widget tree. Each component in the tree
uses a type name as the element name. These type names are resolved to fully specified type specs via the import section.

8/26/2015 100

module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BWidget.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/BBinding.bajadoc
module://docdeveloper/doc/file-rt/javax/baja/file/types/text/BPxFile.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/agent/BPxView.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/px/BPxMedia.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/px/PxEncoder.bajadoc
module://docdeveloper/doc/bajaui-wb/javax/baja/ui/px/PxDecoder.bajadoc

Niagara Developer Guide

Frozen simple properties of each component are declared as attributes in the component's start tag. Complex and
dynamic slots are specified as children elements. The name of the slot inside the parent component may be specified
using the nane attribute. Dynamic simple properties specify their string encoding using the val ue attribute.

Example

The following example shows a BoundLabel placed at 20,20 on a CanvasPane, which is itself nested in a ScrollPane. Note
since the CanvasPane is the value of ScrollPane's frozen property cont ent , it uses the nane attribute. Note how frozen
simple properties like vi ewSi ze, | ayout , and or d are defined as attributes.

<?xm version="1.0" encodi ng="UTF-8"?>
<px version="1.0" nedi a="wor kbench: WbPxMedi a" >
<i mport >
<nodul e nane="baj a"/ >
<nodul e nane="baj aui "/ >
<nodul e nane="converters"/>
<nodul e name="gx"/>
<nmodul e name="kitPx"/>
</inmport>
<cont ent >
<Scr ol | Pane>
<CanvasPane nane="content" vi ewSi ze="500. 0, 400. 0" >
<BoundLabel | ayout="20, 20, 100, 20" >
<BoundLabel Bi ndi ng ord="station:|slot:/Playground/ Si neWave"
st at uskf f ect =" none" >
<Cbj ect ToString nane="text"/>
</ BoundLabel Bi ndi ng>
</ BoundLabel >
</ CanvasPane>
</ Scrol | Pane>
</ cont ent >
</ px>

8/26/2015 101

Niagara Developer Guide

Hx

Overview

The hx module defines the framework for building HTML-based user interfaces using HTML, CSS, JavaScript, and
XmlHttp.

Hx is designed to approximate the same paradigms that exist for developing user interfaces in the Workbench
enviornment, such as Views, FieldEditors, and Profiles. It's main goal is try and transparently produce lightweight
HTML-only interfaces automatically based on the workbench views. Limited support exists for standard views like the
Property Sheet, but Px is the main reuse target.

If you are not familiar with how interfaces are designed in workbench you should read the Workbench documentation
before continuing.

e HxView Details of HxView

e HxOp Details of HxOp

e HxProfile Details of HxProfile
e Events Detail of Events

e Dialogs Details of Dialogs

e Theming Details of Theming

8/26/2015 102

module://docdeveloper/doc/hx-wb/module-index.bajadoc

Niagara Developer Guide

Hx - HxView

HxView Overview

HxVi ew provides the content viewers and editors for working with the active objects. As you have probably guessed,
HxVi ewis the Hx equivalent of WVi ew. HXVi ewis designed to produce and interact with a snippet of HTML.

BHxProfile takes one or more HxVi ews, adds some supporting markup plus some chrome, and produces a complete
HTML page.

HxView Communication

write save

HTTP GET HTTP POST

Redirect

update process

XmlHttp POST XmlHttp POST

Javascript

Javascript

From the diagram, a HxVi ew

e Must have logic to render a HTML snippet from an object (write). This is synonymous to
BW)Vi ew. doLoadVal ue() .

e May have logic to save changes back to the object (save). This is synonymous to BWVi ew. doSaveVal ue() .
e May have logic to periodically update the HT ML snippet (update).
e May have logic to respond to client background requests (process).

The name in parenthesis at the end of each bullet is the corresponding method in HXVi ewresponsible for that behavior.

Details on each method can be found below. The HxProfile is responsible for building the containing HTML around each
HxView.

Example

The details of each method can be found at the end of this document, but lets take a simple example to walk through the
APIL:

public class BFooVi ew extends BHxVi ew

public static final BFooView | NSTANCE = new BFooVi ew() ;

8/26/2015 103

module://docdeveloper/doc/hx-wb/javax/baja/hx/BHxView.bajadoc

Niagara Developer Guide

public Type get Type() { return TYPE;
public static final Type TYPE = Sys. | oadType(BFooVi ew. cl ass);

protected BFooView() {}

public void wite(HxOp op) throws Exception

{
BFoo foo = (BFoo)op.get();
HmWiter out = op.getHm Witer();
out.w("Current nane: ").w foo.getNanme()).w("
");
out.w("<input type='text' name='"").w op.scope("name")).w""'");
out.w(" value="").w(foo.getNane()).w"" />
");
out. w("<input type='submt' value="Submt' />");

}

public BObject save(HxOp op) throws Exception

BFoo foo = (BFoo)op.get();
f 0o. set Nane(op. get For nival ue("nane"));
return foo;

}

}

/'l Register this view on BFoo in nodul e-incl ude. xm
<type name="FooVi ew' class="bar.BFooVi ew'>

<agent ><on type="bar: Foo"/></agent >
</type>

Assuming the current name in our BF0O object is "Peter Gibbons", the above code will produce the following HTML
(ignoring the profile):

Current nanme: Peter G bbons

<i nput type='text' nane='nane' val ue='Peter G bbons' />

<i nput type='submt' value=' Submit' />

If you are familiar with Niagara AX and HTML, this should be pretty straightforward. Let's walk through it though.
Here's the class heirarchy of the main hx components:

BSingleton BlWebProfile Context

BServietView BHxProfile

OrdTarget

BHxView

BHxFieldEditor

The first thing to note is that BHx Vi ewextends BSer v| et Vi ew, which extends BSi ngl et on, which requires a
public static final | NSTANCE variable for all concrete implementations. If you have ever programmed Servlets

8/26/2015 104

module://docdeveloper/doc/web-rt/javax/baja/web/BServletView.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BSingleton.bajadoc

Niagara Developer Guide

before, you'll know that a Servlet must be re-entrant, and HxVi ews follow the same model. The | NSTANCE object is
what will be used to handle requests. (The pr ot ect ed constructor is a convention used to enforce the singleton design
pattern). Since HXVi ew can't maintain state while its doing its thing, we need to stash stuff somewhere - thats where
HxOp comes in. We won't get into the details of HXOp yet, just be aware that anything I need to know about my current
request or response is very likely accessible via the op.

Producing the HTML

Let's move on to the lifecycle of an HxVi ew. The first thing a view will do is render its HTML to the client. This occurs

in thewr i t e() method. By default Hx documents use the XHTML 1.0 Strict DOCTYPE. So you are encouraged to use
valid XHTML in your Wr i t & method. Since HxVi ews are designed to be chromable, and compositable, you'll also only
write the markup that directly pertains to this view in your Wr i t € method. Here are the things you should take note of

aboutwr it e:

Think BWbVi ew. doLoadVal ue()
Only write the HTML that directly pertains to this view.

You should always use op. scope() when writing a form element name. We'll get to why you should do that in
"Writing Reusable HxViews' down below.

This is just a plain old HTML form, so all the normal form elements are applicable. And of course any other
HTML.

Just like a plain HTML file, <i nput type='subnmit' /> isused to submit changes back to the server. The Hx
framework will take care of building the f or mtag so this request gets routed to your save() method.

Saving Changes

Ok, my name is not "Peter Gibbons", so we need to be able to save something else back to the station. This is just as easy
as writing my HTML, you simply implement a Save method on your view. The request will automatically be routed, and
all form data will be available from the HXxOp. get For nval ue() method.

So now if I view our example view in my browser, enter "Michael Bolton" and hit "Submit", the page will refresh to

display:

Current nane: M chael Bolton

<i nput type='text' nane='nanme' value='M chael Bolton' />

<i nput type='subnmit' value=" Subnmit' />

Technically, what happens, is the POST request gets routed to Save, then Hx responds with a redirect back the same
location. This forces the page contents to be requested on a GET request, avoiding double-posting problems.

Writing Reusable HxViews

Hx is designed to allow for reusing and nesting HxVi ews within other HxVi ews. To accomplish this, we need some type
of scoping mechanism to avoid naming conflicts. Luckily, Hx handles this quite cleanly. Each HxOp that gets created has
a name (explicit or auto-generated), which when combined with its parent tree, creates a ungiue path to each "instance"
of a HxVi ew. So if you take the this code:

public void wite(HxOp op) throws Exception

Hom Witer out = op.getHtm Witer();
out. w("<input type='text' nane="").w op.scope("foo")).w"'/>");

}

public BObject save(HxOp op) throws Exception
String foo = op. get Formval ue("foo");

} C

8/26/2015 105

Niagara Developer Guide

The resulting HTML could look something like this:
<i nput type='text' nane='uidl.editor.uid5.foo' />
HxOp. get For mval ue() will automatically handle the "unscoping” for you. This allows any HxVi ewto be nested

anywhere without knowing its context. However, this only works if you follow a few rules:

e Always give sub-views a sub-op using HXxQp. make() - there should always be a 1:1 ratio between HxQps and
HxVi ews. See "Managing Subviews" below.

e Always use HXOp. scope() when writing the nane attribute for a form control.

When using the auto name constructor of HXOp, names are created by appending the current counter value to a
string ("uid0", "uid1", etc). So its very important that the order in which HXQps are created is always the same in

write/save/update/process so the produced paths will always the same. Otherwise views will not be able to correctly
resolve their control values.

Managing Subviews

Hx does not contain any notion of containment, so composite views are responsible for routing all
write/save/update/process requests to its children:

public class BConpositeVi ew extends BHxVi ew
public void wite(HxOp op) throws Exception
BSubVi ew. | NSTANCE. wr i t e(makeSubQOp(op)) ;
} C
public BObject save(HxOp op) throws Exception
BFoo foo = BSubVi ew. | NSTANCE. wri t e(makeSubQOp(op)) ;
} o
public void update(HxOp op) throws Exception

BSubVi ew. | NSTANCE. updat e(nakeSubOp(op)) ;
}

publ i ¢ bool ean process(HxOp op) throws Exception

i f (BSubVi ew. | NSTANCE. pr ocess(makeSubQOp(op)))
return true;
return fal se;
}
private HxOp makeSubQp(HxOp op)
{
BFoo f oo;

ret urn op. make(new OrdTarget (op, foo0));

}

Don't forget to always create a sub-op to your child views so the Hx framework can strut its stuff.

Writing HxView Agents for WhViews

8/26/2015 106

Niagara Developer Guide

Another feature of the hx framework is a transparent transition from the Workbench environment to the hx
environment. For example, if you have created a WoVi ew called WhFoOVi ew, all references to that view can be made to
transparently map to your hx implementation. You just need to register your HxVi ewdirectly on the WbVi ew, and
expect the input argument to be the same type as loaded into the WbVi ew

/'l Register WView agents directly on the View
<t ype name="HxFooVi ew' cl ass="fo0o0. BHxFooVi ew'>
<agent ><on type="foo: WFooVi ew'/ ></ agent >

</type>

public void wite(HxOp op)
t hrows Exception

{

/1 Assune object is what the correspondi ng WVi ew woul d
/'l receive in its doLoadVal ue() nethod.
BFoo foo = (BFoo)op.get();

Then this ord will work correctly in both enviornments:

station:|slot:/bar|view foo: WFooVi ew

Also note that if your view is the default view on that object, the default ord will choose the correct view as well:

station:|slot:/bar

Writing HxView Agents for Px Widgets

Similar to creating WbVi ew agents, a BHXPXW dget is responsible for creating an hx representation of a BW dget used
in a Px document. Note that BHXPXW dget works differently from a typical HxVi ewin that op.get() will return the
BW dget that this agent is supposed to model. The widget will already be mounted in a BConmponent Space and any

bindings will already be active and leased. Also note that in nodul e-i ncl ude. xm this type should be registered as
agent on the BWidget it is supposed to model.

/'l Register PxWdget agents directly on the Wdget

<type name="HxPxLabel " class="comtridi um hx. px. BHxPxLabel ">
<agent ><on type="baj aui : Label "/ ></ agent >

</type>

public void wite(HxOp op)
t hrows Exception
{

/'l OrdTarget is the wi dget we want to nodel
BLabel |abel = (BLabel)op.get();

Hom Witer out = op.getHtm Witer();
out. w(| abel . get Text());

Uploading Files with Multi-part Forms

Hx supports file uploading by using the multi-part encoding for form submission. This capability is only supported for
standard form submissions. You may upload one or more files along side the rest of your form. The files are stored in a
temporary location on the station, and if not moved, will be automatically deleted at the end of the request.

8/26/2015 107

Niagara Developer Guide

e Must call op. set Mul ti Part For n{) to change form encoding.
e Uploaded files are accessible from op. get Fi | (), where the control name designates which file you want.

e If the file is not explicity moved to another location, it will be deleted at the end of the request.

Let's take an example:

public void wite(HxQp op) throws Exception

{
op.set Ml tiPartForm();
out. w("<input type='file' nanme='soneFile [>");
}
public BObject save(HxOp op) throws Exception
{
BIFile file = op.getFile("soneFile");
FilePath toDir = new FilePath("~test");
BFi | eSyst em | NSTANCE. nove(file.getFilePath(), toDir, op);
return op.get();
}

This code will upload a file to a temporary file, accessible as "someFile", and move it to another location so that it will not
be deleted at the end of the request.

HxView Methods in Detail

write

Write is used to output the HTML markup for the current view. HxVi ews should only write the markup that directly
pertains to itself. Avoid writing any containing markup - this is handled by the parent view or the profile. Especially avoid
writing outer tags like ht m , head, and body - these are handled by the profile.

There is only one f or mtag in an hx page, and is written by the profile. HxVi ews should never write their own f or m
blocks. So by design, the entire page content is encoded for save and Event s. Naming collisions are handled
automatically using the HXOp scoping rules (see "Writing Reusable HxViews' above for more info on scoping).

The wr i t e method is always called on an HTTP GET request. However, if its written correctly (which typically means
escaping quotes properly), it may be reused by updat e or pr ocess if it makes sense.

save

Save is used to save changes made from the view back to the target object. This is usually just a standard response to a
form post, where the form values are accessed using HxOp. get For nival ue() . Views on BSi npl es should return a
new instance based on their new value. Views on BConponent s should modify the existing instance and return that
instance.

After a save is handled, a redirect is sent back to the browser to the current location. This is used to refresh the current
page values, but more importantly to avoid double-posting problems. Content is always be requested on a GET request
(and handled by wr i t). You may choose to redirect back to a different URL using the HxOp. set Redi r ect ()
method.

The save method is always called on a standard HTTP POST form submit request. Both standard url-encoded and
multi-part forms are supported. See 'Uploading Files with Multi-part Forms' above for info on multi-part forms.

update
Update is automatically called periodically on all views if at least one view was marked as dynamic (via HXOp). This is a

background request made using JavaScript and XmlHttp. The content returned to the browser must be executable
JavaScript. For example:

8/26/2015 108

Niagara Developer Guide

public void wite(HxOp op) throws Exception

{

op. setDynami c();

Homl Witer out = op.getHtm Witer();

out. w("<div id="tinme'>Current Tinme</div>");
}

public void update(HxOp op) throws Exception

HomlWiter out = op.getHtm Witer();

out.w("var elem = docunent.getEl enentByld('tine');");

out.w("eleminnerHTM. = '"). W BAbsTime.now()).w(""';");
}

Here, after the page is initially written, the browser will poll the station every five seconds running updat e on all the
views. So this code will simply update the current time each time the station is polled.

process

Process is used to handle non-update background requests. A process request is targeted and serviced by a single
HxVi ew. The default implementation for process handles routing events to the correct view. See Events.

Note: If you override process, you must call super or event routing will fail.

8/26/2015 109

Niagara Developer Guide

Hx - HxOp

HxO0p

HxQp maintains all the state for the current request, and provides the interface for creating and consuming a document.
The original HxOp wraps the WebQp for the current request. Sub-views should be given a new HXQp from the current op
via the HXOp. make() method. See "Writing Reusable HxViews' in HxView.

Note: There should always be a one-to-one mapping of HXOps to HxVi ews.

e WebOp API

e HxOp API
e Servlet APL

8/26/2015 110

module://docdeveloper/doc/hx-wb/javax/baja/hx/HxOp.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/WebOp.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/WebOp.bajadoc
module://docdeveloper/doc/hx-wb/javax/baja/hx/HxOp.bajadoc
http://docs.oracle.com/javaee/6/api/javax/servlet/package-summary.html

Niagara Developer Guide

Hx - HxProfile

HxProfiles

The BHXPr of i | e is used to customize the HTML page around the current HxVi ew. The profile is responsible for
writing out the outer HTML tags (ht ml , head, and body), any custom markup, and the current view. It is important

that your profile respect the order HXOps are created in these methods: wr i t eDocunent ,

updat eDocunent ,

processDocunent, and saveDocumnent . If any HxVi ewuses the auto name constructor of HXOp to create a unique
path name, it must be called in the exact same order in order to resolve correctly.

HxPr of i | e exposes customization hooks through convenience methods, so there is no need to handle the boilerplate

code:

8/26/2015

public class BM/Profile

{

}

ext ends BHxProfile

public static final BMyProfile | NSTANCE = new BWProfile();

public Type get Type() { return TYPE; }

public static final Type TYPE = Sys.|oadType(BMProfile.class);

protected BWProfile() {}

public void doBody(BHxVi ew vi ew, HxOp op)
t hrows Exception
{

BHxPat hBar . | NSTANCE. wr i t e(makePat hBar Qp(op)) ;
view. wite(op);
di spl ayError(op);

}

public voi d updat eDocunent (BHxVi ew vi ew, HxOp op)
t hrows Exception

BHxPat hBar . | NSTANCE. updat e(makePat hBar Op(op)) ;
vi ew. updat e(op) ;

}

publ i c bool ean processDocunent (BHxVi ew vi ew, HxCp op)
throws Exception

i f (BHxPat hBar .| NSTANCE. pr ocess(nakePat hBar Op(op)))
return true;
return view. process(op);

}

public void saveDocunent (BHxVi ew vi ew, HxOp op)
throws Exception

BHxPat hBar . | NSTANCE. save(makePat hBar Qp(op)) ;
Vi ew. save(op);

}
protected HxOp makePat hBar Op(HxOp op)
{
return op. make("pathbar", op);
}

111

module://docdeveloper/doc/hx-wb/javax/baja/hx/BHxProfile.bajadoc

Niagara Developer Guide

Hx - Events

Events

Hx uses Event s to provide background interaction between the server and the browser. Events always originate from
the client browser, and must return executable javascript as the response (you are not required to return content). The

html form is encoded and sent for every event fire, so op. get For nval ue() can be used to query the browser page
state.

Event s are implemented on top of the HxVi ew. pr ocess method, and therefore use the Xml Ht t p support
implemented in the major browsers.

Command extends Event to add some convenience methods and a display name property. By convention Comrands are

triggered by the user (maybe by clicking on a button), while Event s are triggered programmatically. Though in reality
they are interchangeable.

Note: j avax. baj a. hx. Conmand is not the same class as the j avax. baj a. ui . Cormand.

8/26/2015 112

module://docdeveloper/doc/hx-wb/javax/baja/hx/Event.bajadoc
module://docdeveloper/doc/hx-wb/javax/baja/hx/Command.bajadoc

Niagara Developer Guide

Hx - Dialogs

Dialogs

Support for modal dialog boxes is provided with Di_al 0g and is typically used from an Command:

cl ass Edit Coomand extends Comrand

}

publ i c Edit Command(BHxVi ew vi ew)

{

}

super (Vi ew) ;
dl g = new Edi t Di al og(this);

public void handl e(HxOp op) throws Exception

}

if ('dlg.isSubnmit(op)) dlg.open(op);

el se

{

String name
String age

op. get For mval ue(" nane");
op. get For nval ue("age") ;

BDude dude = (BDude)op.get();
dude. set Nanme(nane) ;
dude. set Age(I nt eger. parsel nt(age));

refresh(op);

}

private EditDi al og dl g;

class EditDi al og extends Di al og

8/26/2015

public EditDi al og(Command handl er) { super("Edit", handler); }
protected void witeContent(HxOp op) throws Exception

{

BDude dude = (BDude)op.get();
HmWiter out = op.getHim Witer();

out .
out .
out .
out .
out .
out .
out .
out .
out .
out .
out .
out .

Zzzzz2222222

"<tabl e>");

n <t r >Il) ;

' <td>Nanme</td>");

" <td><input type='text' name="").w(op.scope("nane"));

val ue="").w(dude. get Name()).w("'/></td>");

"<ftr>");
"<tr>");
' <td>Age</td>");

<t d><i nput type='text' name="").w op.scope("age"));
val ue="").w(dude. get Age()) . W "' /></td>");

"<ftr>");
"</tabl e>");

113

module://docdeveloper/doc/hx-wb/javax/baja/hx/Dialog.bajadoc
module://docdeveloper/doc/hx-wb/javax/baja/hx/Event.bajadoc

Niagara Developer Guide

Hx - Theming

Theming

All styling in hx is handled with CSS. The core colors and fonts are defined in
nodul e: // hx/ | avax/ baj a/ hx/ def aul t . css. In order for your view to use the default theme, you should write
your markup like this:

<di v cl ass="control Shadow bg nyCustonCl ass" style="...">

</ ai v>
This order is important. The default class should always come first in the selector list, and before any style tag (though
you should avoid using style directly in your view) - so that styles are overridden correctly.

Note: HXPr of i | es that override the theme should always place their custom stylesheet last to make sure it overrides
any stylesheets loaded during the wr i t e() phase.

8/26/2015 114

module://hx/javax/baja/hx/default.css
module://hx/javax/baja/hx/default.css

Niagara Developer Guide

Theme Modules Overview

The scope and capabilities of theme modules has been greatly expanded for Niagara 4. This document will describe the
parts of the Ul that are available for theming, the general process of creating a theme module, then provide details and
tips regarding the individual parts and pieces of a theme.

Niagara 4 Ul Overview

Many more parts of the Ul can have themes applied in Niagara 4.

e bajaui is the Java user interface technology used by all parts of the Workbench Ul in Niagara AX. This includes
things like the Workbench nav tree, Px widgets, wizard dialogs, and any other UI elements carried forward from
AX Workbench. It is styled using files written in a Niagara-specific syntax called NSS.

e JavaFX is a user interface technology that is distributed as part of Java 8 itself. It has a number of capabilities that
bajaui does not support, like rounded corners and drop shadows. It is styled using a specialized set of CSS rules. In
Niagara 4, Workbench uses JavaFX to render certain elements like toolbars and menu buttons.

e Hx is a framework carried forward from Niagara AX. It runs in the station to generate web interfaces using HTML
and JavaScript.

e bajaux is a new framework in Niagara 4, based on HTML and JavaScript. It is used to create browser-based Niagara
applications like Property Sheet, Web Chart, and User Manager. It is styled using pure CSS.

A theme in Niagara 4 consists of a number of different parts, arranged into specified folders.

e src/ hx: contains the CSS used to style Hx views, such as the Hx Property Sheet and HxPx graphics.

e src/fX: contains the CSS used to style JavaFX elements, like toolbars and menu buttons.

e src/imgeOverri des: contains theme-specific replacements for icons from individual Niagara modules.

e Src/ nss: contains the NSS files used to style UI elements created with baj aui . NSS syntax in 4.0 is exactly the
same as it was in AX.

e src/sprite:contains a spritesheet image and CSS file used to minimize the number of network calls necessary to
retrieve icons in web-based views.

sr ¢/ ux: contains the CSS used to style bajaux views, including the Shell Hx profile.

Creating a theme module

Although it is possible to create a brand-new theme module from scratch, it will be much easier to select an existing
theme that comes closest to your desired look, then copy and make modifications to that theme. As part of this tutorial,
we will use t heneZebr a- ux. j ar as a basis, copy and modify it, and save it as t hemeCOkapi - ux. j ar (we love our
striped ungulate mammals here at Tridium).

The process of creating a theme module is very similar to creating any other Niagara module. The process outlined below
will result in an exact copy of t heneZebr a, ready for modification.

e Create the folder structure for your module: t heneCkapi / t hemeCkapi - ux/ .

e Create a Sr C directory in t heneCOkapi - ux and extract the contents of t heneZebr a- ux. j ar into it.

e Included in the Sr ¢ directory are the files cssTenpl at e. nust ache, G untfile.js, and package.json
These should be moved into the root of t hemeCOkapi - ux, not the sr ¢ directory. (META- | NF can be deleted.)
Ensure that any remaining references to t heneZebr a in these files are updated to reference t hemeCkapi
instead.

e Create a standard t hemeCkapi - ux. gr adl e file, just like any other module. Ensure that all necessary files are
included in the jar task.

e Create a modul e-i ncl ude. xni file with the following contents, as described in the Workbench Theming
knowledge base article:

<def s>
<def nane="theneNane" val ue="themeCkapi " />
</ def s>

8/26/2015 115

Niagara Developer Guide

Now, you should be able to build and install your theme module, then select it both in your users’ web profiles and in
Workbench options.

NSS: Styling bajaui elements and icons

The NSS syntax and method for overriding icons are unchanged since Niagara AX. This information is documented on
Niagara Central:

https://community.niagara-central.com/ord?portal:/blog/BlogEntry/235

https://community.niagara-central.com/ord?portal:/dev/wiki/Workbench_Themin

One difference from Niagara AX is that some widgets, such as menus and toolbar buttons, are now rendered using JavaFX
instead of bajaui. This means that styling menu, menu- i t em and other toolbar-related nodes in the NSS will likely have
no effect.

JavaFX: Styling menus and toolbars

In Niagara 4, the Java runtime has been upgraded from 1.4 to 1.8. Java 8 includes a UI framework called JavaFX, which
includes a number of UI widgets which have been integrated into parts of Workbench.

JavaFX widgets are styled using a Java-specific dialect of CSS. A reference for JavaFX CSS is available here:

http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

(Oracle’s documentation on JavaFX CSS seems to have a few omissions, like the . cont ext - menu class. We've already
found a number of these missing classes and included them in the Zebra and Lucid themes.)

Workbench widgets that can be styled using JavaFX include the menu bar, toolbar, and scroll bars. These use the standard
JavaFX class names: menu, menu- it emt ool - bar, scrol | - bar. To style these widgets, place a CSS file in your
theme module at sr ¢/ f x/ t hene. css.

Some common IDs to use in your CSS will include the following. Additional selectors may be added in the future if more
widgets are converted from baj aui to JavaFX.

e #menu- bar - profi | e: the topmost Workbench menu bar containing File, Edit, etc.

e #menu- bar - profil e- backgr ound- cont ai ner, #nmenu- bar - prof i | e- f or egr ound- cont ai ner : wrap
the upper toolbar in two separate containers for advanced border and shadow effects

e #t ool - bar- profil e: the topmost Workbench toolbar containing Back, Forwards, and Refresh buttons, etc.

e Foregrounds and backgrounds: primary areas of the Ul are wrapped in two separate containers for advanced border
and shadow effects.

o #menu- bar - profil e- background- cont ai ner, #nenu- bar - profi | e-f or egr ound- cont ai ner:
topmost Workbench menu bar

o #view profile-foreground,#vi ew profil e-background: the pane containing the primary
Workbench view, such as Property Sheet

o #content-profile-foreground,#content-profile-background: the pane containing all
Workbench content south of the location bar (this includes the main view, sidebars, and console)

Example:

8/26/2015 116

https://community.niagara-central.com/ord?portal:/blog/BlogEntry/235
https://community.niagara-central.com/ord?portal:/dev/wiki/Workbench_Theming
http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Niagara Developer Guide

File Edit Search Bookmarks Tools Window Help
O- O A G -

about.html / Web BrowserView -

@ My Host: VASILTTC
TRIDIUM

= Palette

@ Hierarchvservic _ -
Licensed to Engineering, Logan Byam

- Search

Getting Started Help Documents

| files//letations/demao/html/index. html

Niagara Framework > Niagara 4 Theme Module Creation > JavaFxIDs.png

e red: #nenu- bar - prof i | e- backgr ound- cont ai ner

e orange: #menu- bar - profil e-f or egr ound- cont ai ner
e yellow: #vi ew profil e-foreground

e green: #vi ew profil e- background

e blue: #content - profil e-f oreground

e purple: #cont ent - prof i | e- backgr ound

Note that these background colors will show through any elements configured without a background color of their own.

Hx: Styling classic web views

Hx views can now be styled on a per-theme basis. The CSS file should go in your theme module at sr ¢/ hx/ t heme. css.

These styles will apply on top of the default Hx styles in def aul t . css.

bajaux: Styling the new generation of Niagara web views

bajaux views use a common list of CSS classes, intended to be overridden by themes and to make it easy to apply global
styles to bajaux widgets.

8/26/2015 117

Niagara Developer Guide

The base set of CSS classes lives in the web module at rodul e: / / web/ r ¢/ t hene/ t heme. css. Most baj aux widgets
can be styled using these classes. You can view a visual demonstration of the different classes available by going to

http://localhost/module/web/rc/theme/test.html?theme=Zebra (replacing | ocal host with the address of your station,

if needed).

In order to create a bajaux theme, you can simply redefine these CSS classes in sr ¢/ ux/ t hene. css.

src/ ux/t hene. css can also contain rules for any kind of baj aux widget, even those that might not use the base set of
ux classes. There are several examples of this, which you can see in t hemeZebr a’s sr ¢/ ux/ t hene. css file, including
dialogs, Property Sheet, charts, and other widgets. At the moment, adding additional rules to sr ¢/ ux/ t hene. css is
the only way to style these widgets in a theme. Future releases may include additional functions to apply styles in a more

modular way.
Developer notes on theming Hx and bajaux web views

On using LESS

If you are building a theme using t hemeZebr a as a base, you will notice a folder named | €ss containing a number of

. | ess files. LESS is a CSS compiler that brings the power of variables, functions, mixins, math, and other tools to CSS.
For example, one benefit of using LESS is that we’ve chosen to store a base color palette in pal et t e. | ess, so that they
can be easily shared between the Hx and bajaux themes. In fact, you could simply change pal et t e. | ess with no other

changes, and instantly apply a new color scheme to both.

If you choose not to use LESS, you can simply edit sr ¢/ hx/ t heme. css and sr ¢/ ux/ t heme. css like any other CSS
file. If you do want to give LESS a try, here are the steps you'll need to take:

e Install Node.js.

e Install Grunt by typingnpm install -g grunt-cli.

e Install Phantom]S by typingnpm i nstal | -g phantonj s.

e Inyourt hemeCkapi - ux directory, type npm i nstall .

e Still in your t henmeOkapi - ux directory, type gr unt wat ch: css.

o Now, whenever you save a change to a . | ess file, it will immediately be compiled into the corresponding
CSS. Make your changes, hit reload in the browser, and immediately see those changes reflected in your Hx

or baj aux views.
e To do a one-time compilation, just type gr unt | ess.

On sprites

In previous releases, icons were displayed simply by retrieving the individual icon files from the station and displaying
them as img tags in the browser. On an embedded device, or with HTTPS turned on, minimizing the number of network
calls becomes critical. So in the new Niagara 4 baj aux views, icons are now displayed using sprites.

A sprite is a number of different images, all concatenated together into one large image that forms a kind of mosaic. That
large image is set as the background of an icon, but offset using CSS so that the particular icon you want is scrolled into
view. The end result is that you can retrieve the entire icon set for a module using just two network calls: the sprite

image, and the sprite CSS.

Due to this enhancement, if your theme module contains images, it must also contain a sprite. The sprite image should
existat sSrc/ sprite/sprite.png and the sprite CSS should be at sSrc/ sprite/sprite.css. You may generate
your sprite using any tools you wish, but both t hemeZebr a and t hemeLuci d contain all the necessary configuration
files to generate them for you. If you are using a stock theme as a base, you have everything you need.

A quick overview of the process follows.

e The default Grunt task performs three different steps: spri t e, i mageni n, and concat . (Simply typing gr unt
will do these three things in order.)
e grunt sprite usesa utility called Sprit esmit h to generate the sprite image and sprite CSS files. These both

goinsrc/sprite.
e grunt imageni n will losslessly compress Sprit e. png to save on space.

8/26/2015 118

http://localhost/module/web/rc/theme/test.html?theme=Zebra
https://nodejs.org/

Niagara Developer Guide

grunt concat addsthe @oSnoop tag to the top of the CSS file. (Tech details: this disables the
SnoopHt M Wi t er in the station, which would otherwise break the direct ur | references in sprite. css.)

(t hemeZebr a- ux does not actually contain any image overrides - it relies completely on the contents of the default
i cons- ux module. Sot hemeZebr a’s sprite will be empty. For an example of an actual generated sprite, try these steps
with t heneLuci d.)

The structure of a Niagara sprite (SS file, and how it’s loaded into a theme
(This section is extremely techy. It’s not necessary if all you want to do is create a new theme. Feel free to skip.)

Each icon in a Niagara module, when packed into a sprite, will have its own specified CSS class referenced in
sprite. css. Each will look something like this:

.icon-icons-x16-add: before {
di splay: inline-bl ock;
vertical -align: text-top;
content: '';
background: wurl (/nmodul e/t heneLuci d/ sprite/sprite.png) -180px -494px;
wi dt h: 16px;
hei ght: 16px;
}

.icon-icons-x16-add > ing { display: none; }
This follows certain conventions relating to sprites in Niagara apps.

First, the CSS class of the HTML icon element is derived from the ORD of the icon itself. It begins with . i con and
matches the ORD starting with the module name and omitting the file extension.

Second, it has an additional CSS rule indicating that any i ng tags inside of it are to be hidden. Why this rule? Well, for
baj aux to correctly generate the HTML for the icon, it needs to know whether the icon is already represented in the
spritesheet or not. If it’s already in Spri t e. png, it would make no sense to download the actual add. png on top of
that. But if the icon is not in the sprite, it still needs to be displayed.

So, a dummy element will be added to the DOM offscreen. It will have both the CSS class . i con-i cons- x16- add, and
an i Ny tag inside of it. If it’s in spri t e. css, that CSS rule will hide the i ng tag, and by checking the display CSS
property of that i mg we’ll know if it’s in the sprite or not. Slightly clumsy, but it works.

The Require]S module baj aux/ i con/ i conUt i | s handles all of this logic and will generate the appropriate icon
HTML for you.

Known Limitations
Incorporating premade widgets to stock themes

Say you have an HTML widget you've already built, completely outside the context of Niagara or bajaux, and you wish to
port it over as a baj aux widget. You might want to apply one set of CSS rules to your widget for the Zebra theme, and a

different set for Lucid.

At the moment, there is no way to do this. You will have to change the HTML structure of your widget so that it uses the
standard set of UX classes, or else it will appear the same in all the default themes.

You can still style the widget as you wish using your own custom theme.

8/26/2015 119

Niagara Developer Guide

Niagara Web Modules

In Niagara 4 standard Java Web Server technology can be used.
The Web Server currently being used is Jetty. Jetty is built around the standard Java Servlet Specification.

Currently, the Jetty supports version 3 of the Java Servlet Specification. Currently we’re not supporting the newer Servlet
annotations; a Web XML descriptor must be used instead.

In Niagara AX, there are two other ways of creating Java Servlets. These are still supported in Niagara 4...

e Servlet Views: create a view that is also a Servlet.
e Web Servlet Components: create a component that’s also a Servlet.

Niagara 4

Please note that applications using BWebServlet and BServletView are still and will continue to be supported. From
Niagara 4, we’ve additionally added support for adding standard Java Servlets that extend javax.servlet.http.HttpServlet.

Please click here for more information on using Java Servlets.
My First Niagara Web Module
Here’s how you can create a Niagara Module that extends a standard j avax. servl et . http. Ht t pServl et class...

e In your Niagara Module, add a class that extends j avax. servl et. http. Ht pServl et.
e Override doGet or any other HTTP verb related methods to handle implementation.

e There’s no WebOp. If this Servlet is using Niagara Security, you can call the following HttpServletRequest
methods...

o get UserPrinci pal () : cast this to a BUser.

o get Local e() : returns a java.util.Locale object. Use the forLanguageTag and toLanguageTag methods to get
the Locale to and from a String. Please note that javax.baja.util.Lexicon has a make method that takes a
Locale object. Use a combination of these two methods to create an instance of javax.baja.sys.BasicContext.
Please note, NCCB-7051 will address some of the issues concerning country and variant.

e In your module’s src directory, add a directory called VVEB- | NF.
e In this folder, create a file called web. xni .
e In your module’s gradle file, remember to add an entry to pick up the .xml files that will be created. For example...

jar {
from('src') {

i ncl ude ' VEB- | NF/ *. xnd *
}
}

e Here’s a sample web.xml file that plugs a Servlet into our new Web architecture...

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app>
<servl et >
<servl et - name>t est Ser vl et </ servl et - nane>
<servl et - cl ass>nypackage. Test Servl et </ servl et -cl ass>
</servlet>
<servl et - mappi ng>
<servl et - name>t est Ser vl et </ servl et - nane>
<url-pattern>/test/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

e The Servlet java class is plugged into the specified URL pattern. It’s a URL pattern and not just a servlet name like

8/26/2015 120

http://eclipse.org/jetty/
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html

Niagara Developer Guide

in Niagara AX. This gives developers far more flexibility.

e The* in the pattern means that anything after /test/... will also be picked up by this Servlet. This is very useful if

you're making a RESTful API. The XML listed here is all part of the J2EE standard. There’s nothing specific to the
Jetty implementation.

Now try building your module and starting up a Station. On Station start up, the Servlets will be automatically installed

into the Web Server. No more configuration is required. Once the Station has started, the URL to access the Servlet
would be in the following format...

http://1 ocal host/ nodul eNane/ t est
Or as we're also using a * in the URI pattern...
http://1 ocal host/ nodul eNane/ t est/ what ever/f oobar

e By default, the name of the module is used for the Context Path.

e The Servlet Path is specified in the web.xml file. In this case it’s ‘test’. The path after the Servlet Path is known as
the Path Info. Typically this is what you use in your Servlet. Please never call
Ht t pSer vl et Request #get Request URI () (as is typically done in AX). Servlets should be relative and
reusable. Most of the time they really don’t need to know about their precise plug point within a Web Server!

Changing the Context Path

To change the Context Path of the Servlet we need to add one more XML file alongside web. xim called j et ty-

web. xm . This file configures functionality specific to the Jetty Web Server that can’t be done via web. xni . By default,
using the Niagara Module name is used for Context Path. This is a sound way to try and create a unique path mapping
for a web application. This can be changed with the following j et t y- web. xni file...

<?xm version="1.0" encoding="1S0O 8859-1"?>
<! DOCTYPE Configure PUBLIC "-//Jetty// Configure//EN
"http://ww. eclipse.org/jetty/configure.dtd">

<Configure id="webApp" class="org.eclipse.jetty.webapp. WebAppCont ext" >
<l-- Change the Context Path fromthe nodule nanme to sonething else -->
<Set nane="cont ext Pat h" >/ sonet hi ngel se</ Set >

</ Confi gure>

e Note the cont ext Pat h has been added to the file.
e Once built, the URI would change to htt p: / /| ocal host/ sonet hi ngel se/t est/what ever.

Filters
As well as Servlets, developers can now use j avax. servlet. Filter.

e A class that implements the Fi | t er interface can intercept HT TP Requests before they get to their Ser vl et .
e They can also process the responses out of a Servlet.

e They can have initialization parameters.

e They can be plugged in via some web.xml.

e They're also great for monitoring and profiling Web Server performance.

Click here for more information on using Java Filters.

How can | use a proper WAR file?

This isn’t currently supported in Niagara 4.0.

8/26/2015 121

http://www.oracle.com/technetwork/java/filters-137243.html

Niagara Developer Guide

BServietView

Overview

A Servlet View is Niagara view that typically generates HTML.
Alternatives to extending BWebServlet are...

e BServletView: used by developers who want to create Web Views on Components.
e Java Servlets: create standard Java Servlets.

Please note...

e BHxView extends BServletView and may be a preferred alternative. Click here for more information on creating Hx
Views.

e In Niagara 4’s new Open Web architecture, you can create client side views in JavaScript. You may find this a better
alternative than traditional Server Side Servlet programming for User Interfaces.

A developer creates a Servlet View in the following way...

e Extend]j avax. baj a. sys. BSer vl et Vi ew.
e Override doGet or any other HTTP verb related methods to handle implementation.
e Register the View as an Agent on the desired Niagara Type.

A few things to note about BSer vl et Vi ew...

e BSer vl et Vi ewextends BSi ngl et on. Therefore, there’s only ever one instance of a View.
e BHxVi ewextends BSer vl et Vi ew.

Example

Here’s an example of a Servlet View that will be rendered in a web browser when the user navigates to the UserService.
Please note, in this case the view is declared as an Agent on baj a: User Ser vi ce.

public final class BMFirstServletView extends BServletView
{
private BMFirstServlietViewm) {}
public static final BMFirstServletView | NSTANCE = new BM/Fi rst Servl et View);

@verride
public Type getType() { return TYPE;, }
public static final Type TYPE = Sys.|oadType(BMFirst Servl et Vi ew. cl ass);

@verride
public void doGet (WebOp op) throws Exception
{

op.getH M Witer()

.W(" <! DOCTYPE htm >").nl ()
"<htm >").nl ()
"<head></ head>").nl ()
"<body>").nl ()
"<hl>Hel o World!l </ h1>").nl ()

wW(
W
W
W
w(" </ body></ ht ml >");

8/26/2015 122

file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BServletView.bajadoc
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BWebServlet.bajadoc
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BServletView.bajadoc
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/hx-wb/javax/baja/hx/BHxView.bajadoc
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BServletView.bajadoc

Niagara Developer Guide

BWebServlet

Overview

A Web Servlet is a Component that can be added to a Station. Alternatives to creating a Web Servlet are Servlet View and

standard Java Servlets.

Once a Web Servlet has been added to a Station and is operational...

e The Servlet can be accessed from the Web Server via its Servlet name.
e The Servlet utilizes Niagara’s Security Model. This is a great way to limit access to the Servlet.
e The Servlet Component can be removed from the Station. Once removed, the Servlet is no longer active.

To create a Web Servlet in Niagara AX, a developer has to...

e Extend javax.baja.web.BWebServlet.
e Define a Servlet name.

e Override doGet or any other HTTP verb related methods to handle implementation.

A user adds the Servlet Component to a Station via a palette file.

Example
This is a simple Web Servlet that can be accessed in a browser via ht t ps: / /| ocal host/ nyFi rst Servl et ...

@Ni agar aType
@N agar aPr operty(
nane = "servl et Nane",
type = "baja: String",
flags = Fl ags. READONLY,
defaul t Val ue = "nyFirstServlet"”

)

public final class BM/First\WbServl et extends BWebServl et

{

A T BEG N BAJA AUTO GENERATED CODE ------------ +*/

[*@ $com tridi umweb. servl ets. BWFi rst WebSer vl et (522312782) 1. 0% @/

/* Generated Wed May 13 12:49:26 BST 2015 by Slot-o-Matic (c) Tridium Inc.
2012 */

LELTTEIILLL i bbb b
/1 Property "servl et Nane"
PELTTLTLLEE i bbb

/**
* Slot for the {@ode servl et Nane} property.
* @ee #get Servl et Nane
* @ee #set Servl et Nane
*/
public static final Property servletNanme = newProperty(Fl ags. READONLY,
"nmyFirstServliet",null);

/**

* Cet the {@ode servl et Nanme} property.

* @ee #servl et Name

*/

public String getServletNanme() { return getString(servletNane); }

/**

* Set the {@ode servl et Nane} property.
* @ee #servl et Nane
*/

8/26/2015 123

file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BWebServlet.bajadoc
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BWebServlet.bajadoc
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BServletView.bajadoc
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/web-rt/javax/baja/web/BWebServlet.bajadoc

Niagara Developer Guide

public void setServletNane(String v) { setString(servletNane,v,null); }

LELTILTLLE i bbb
/'l Type
LEPTTLIILLL i bbb bbb

@verride
public Type getType() { return TYPE; }
public static final Type TYPE = Sys.|oadType(BMFirst\WbServl et.class);

R I R END BAJA AUTO GENERATED CODE -------------- +* /
@verride
public void doGet (WebOp op) throws Exception
{

op. getFtn1VV|ter()

"<I DOCTYPE htm >").nl ()
"<htm >").nl ()

"<head></ head>").nl ()
"<body>").nl ()

"<hl>Hel l o Worl d! </ h1>").nl ()
"</ body></htm >");

£E2225¢

8/26/2015 124

Niagara Developer Guide

Apache Velocity

Apache Velocity is an open source web template engine that’s now integrated into the Niagara framework. It provides
users with the ability to script an HTML page together using a very simple scripting language.

For more information on understanding what Velocity is, please visit the Apache website here.
The user guide for using Velocity can be found here.

Velocity support was added to Niagara AX in version 3.7.

Users

The Velocity API is not just for developers but can also be used by advanced users. Advanced users can take advantage of
Velocity through Station Components that one can configure from the axvel oci t y palette.

Velocity Station Components

The AX Velocity Station Components require the ‘axvelocity’ license feature.

There are multiple ways to use Velocity. Advanced users (who aren’t necessarily fully trained Niagara developers) can
configure a Station using Components from the axvel oci t y palette.

Getting Started

e C(Create a new Station
o Add a NumericWTritable and BooleanWTritable to the root of the Station.
o Open the axvel oci ty palette and drag and drop the VelocityServlet into the Station.
e Double click the Servlet, this opens the Velocity Document Manager View.
e In this view, the name of the Servlet can be set and new Velocity Document Components can be created.
e Create a new Velocity Document Component.
o Make sure the template file for the Document Componentisfil e: "t est.vm

o

This text file will be located in the root of the Station’s file system.

o

Create this file using Workbench but leave it blank for now.

o

Double click on the newly created Document Component, this will load the Velocity Context Element
Manager View.

e Create two Velocity Context Ord Elements.

o Set the ORD Property on one of the Elements to point to the NumericWritable you created earlier. The name
of the Element should be nunPoi nt .

o Set the ORD Property of the other Element to point to the BooleanWritable you created earlier. The name of
the Element should be bool Poi nt .

e Now edit the vmfile you created earlier.

o This file will contain the HTML for our web view as well as some VTL (Velocity Template Language) script
to dynamically generate part of the web page.

o We're now going to reference the two points (via the Velocity Context ORD Elements) we created earlier.
o Use this HTML in the view...

<pre>
<! DOCTYPE htm >
<htm >
<head>
<title>My first Velocity test!</title>
</ head>
<body>
<p>Bool ean Poi nt: $bool Poi nt </ p>
<p>Nureric Point: $nunPoi nt</p>
</ body>
</htm >

8/26/2015 125

http://velocity.apache.org/
http://velocity.apache.org/engine/devel/user-guide.html

Niagara Developer Guide

</ pre>

e Save the text file.
e Open a web browser and log on to Niagara. Logging on as adni n will do.

e Change the URL to pointto htt p: / /| ocal host/ vel oci ty/t est (localhost can be changed to an IP address
of your choice).

o Note that vel oci ty is the name of the servlet.
o Note thatt est is the name of the Document Component you created earlier.
e The page should now load.
o Note how the HTML typed in the vmfile has been used for this view.
o Note how $bool Poi nt and $nunPoi nt has been replaced with real point data.

Component Description

e VelocityServlet: the Servlet used by the Web Service to generate the web based view. The Servlet is accessed
through a Web Browser by ht t p: / / your | pAddr ess/ vel oci ty. Please note the name of the Servlet can be
changed from ‘velocity’ to something else in the Velocity Document Manager View. The Velocity Document
Manager is the default view for this Component.

e VelocityDoc: a Document Component has a reference to a VM file and acts as a container for Velocity Context
Elements. The VM file contains the HTML and VTL script used to generate a web page.

e VelocityContextOrdElement: this Component has an ORD Property that’s used to point to another Component in
the Station. The name of the Elememt is used in the VTL file so it can be referenced.

e VelocityDocWebProfile: this is a Web Profile a user can select for VelocityDoc Components. If the VelocityDoc
Component has its usePr of i | e Property set to true, this Profile will be used to generate the outer HTML page.
For more information, please see the section on profiling.

Security

Only a user with operator read permissions on a VelocityDoc Component can access that through the Velocity Servlet.
Navigation
Accessing a particular VelocityDoc through a browser can be done in a variety of ways. For example...

Thevel oci ty Serviet name can be changed by a user.

http://1 ocal host/vel ocity - this will redirect to the first valid VelocityDoc that can be found for the user.
http://1 ocal host/vel ocity/test - thiswill load the VelocityDoc named t est .

http://1 ocal host/ord?station: %Csl ot:/ Vel oci tyServl et - this will redirect to the first valid
VelocityDoc that can be found for the user.

http://1ocal host/ord?stati on: %/Csl ot:/ Vel oci tyServl et %7 Cvi ew. t est - this will redirect to
the VelocityDoc named t est .

station:|slot:/VelocityServlet]|view test -an ORD that can be used as a hyperlink in a Px page.
This will redirect to the VelocityDoc named t est .

Specifying the ORD to the Servlet Component in a NavFile is a really great way to get to your VelocityDoc using Niagara.

View parameters

Parameters can be passed into a view via a URI (or ORD that redirects to a URI). For instance...

e http://local host/vel ocity/test?paranil=val 1&ar anm=val 2 - passes two parameters into a view.

e station:|slot:/VelocityServlet]|viewtest?paranil=val 1; paran2=val 2 - an ORD that can be
used as a hyperlink in a Px page. This will redirect to the VelocityDoc named test with the specified parameters.

The parameters can be picked up from VTL code. For example...
lterate through any query parameters used in the URL

#set ($paraneters = $ax. op. get Request (). get Par anet er Names())
#foreach ($paramin S$paraneters)

8/26/2015 126

Niagara Developer Guide

<p>
Found paraneter: $param - $ax. op. get Request (). get Paranet er ($param

</ p>

#end

Profiling

Profiling is an advanced feature of working with VelocityDoc Station Components. A Profile generates the outer HTML
content while the VelocityDoc generates the inner.

Getting Started

e Create a user who has their Default Web Profile set to Vel oci ty Doc Web Profile.

o Create a VM file for the profile (i.e. fi | e: *profil e. vim. The VM file should have code similar to the
following...

o Set the Template File ORD on the Profile to this VM file.

<p|’ e>
<I DOCTYPE htm >
<htm >
<head>
<title>Velocity Profile</title>
#set ($gener at eHeader = true)

Parse the inner view for the header..
#par se(" $ax. vi ewTenpl at e")

#set ($gener at eHeader = fal se)
</ head>
<body>
<h2>Pat h: $ax.target. get Pat hl nfo()</h2>

Parse the inner view for the header..
#par se(" $ax. vi ewTenpl at e")

</ body>
</htm >
</ pre>

* The Profile creates the outer HTM. and then calls
“#parse("$ax. vi ewTenpl ate")” to the inner HTM.

* Note how the "~ $generateHeader™ flag is used to deterni ne whether the header
of the body of the HTM. docunment is being generated.

e Create a VelocityDoc Component that has its usePr of i | e Property set to true.

o When the VelocityDoc Component view is accessed through a browser (with the Profile we’ve just set up),
the VelocityDoc will rely on the Profile generating the outer HTML.

o If the VelocityDoc’s usePr of i | e Property is set to false, the VelocityDoc is responsible for generating the
whole of the HTML document (just as before).

o Here’s an example of the VTL for the VelocityDoc’s VM file...

<pre>
#if ($generat eHeader)
Anything for the header of the HTM. page goes here.
#el se
Anything for the body of the HTM. page goes here.
<h3>This is fromthe body of the view/h3>
#end
</ pre>

*Note how the $gener at eHeader (created by the Profile) is used to determine whether code is being generated for the
HTML document’s header or body.

8/26/2015 127

Niagara Developer Guide

The ‘Velocity Doc Web Profile’ must always be used to access VelocityDoc views that have their ‘useProfile’ Property set to true!

Standard Velocity Java API

Velocity can be used by Java developers to create Velocity based views. A developer who uses this API should have been
on the Developer Course and hence should be a fully trained Niagara Jedi.

BVelocityView

BVelocityView extends BServletView. This class forms the basis for any Velocity based view. A view may or may not work
in conjunction with a BVelocityWebProfile.

Getting Started

e Create a new class that extends BVelocityView.
e Implement the get Tenpl at eFi | eMet hod.

o This method will return an ORD to a file resource that contains the HTML and VTL (Velocity Template
Language) used to generate the HTML.

o For debugging, it might be easier to point this to a file in your local Station’s file system.

o For distribution, it’s best to reference a file from a Niagara module (using the nodul e ORD scheme).
e Override the i ni t Vel oci t yCont ext method.

o Overriding this method allows a developer to inject new things into a VelocityContext.

o Anything added to the VelocityContext can be referenced from VTL.

BlVelocityWebProfile

An interface used by any profile that wants to act as a Velocity Web Profile.
BVelocityWebProfile

A Web Profile that implements BIVelocityWebProfile.

A Velocity Web Profile has it’'s own VM file used to render the overall page. In the Velocity Context, there’s a symbol
called $ax. vi ewTenpl at e that be then be used by the profile VTL to render the underlying view.

VelocityContextUtil

This is a useful library of functions that can be called via VTL. In VTL, this library can be referenced via ‘$ax.util’ or
‘$util’. For more information on use please see Niagara VTL.

Hx Velocity Views

To enhance Hx development, some Hx Velocity views have been added.

In Hx development, a developer would normally write out an Hx view’s initial HTML by overriding BHxView’swri t e
method. In the following Velocity Hx classes, this method has already been overridden and will return output from
Velocity.

BVelocityHxView

This class extends BHxView.

This class follows the same design as BVelocityView.

Note: the HxOp can be referenced from the VTL from $ax. op. For instance, $ax. op. scope(' i dOr Nane').
BVelocityHxFieldEditor

An Hx Field Editor that uses Velocity.

BVelocityHxPxWidget

8/26/2015 128

Niagara Developer Guide

An Hx Px Widget that uses Velocity.

Niagara VTL

Common to all Velocity based views are some really useful Niagara related methods and properties that are accessed
through the Velocity Context.

Use Cases

There’s a LOT we could add to the VelocityContext. However, to try and stem the tide, we've developed this feature
around the following use cases...

*For anything ‘live’, please consider using BajaScript. It does all of the ‘live’ things (like invoking an Action for instance)
that Velocity isn’t designed to do!

e To print out the value of a point. This includes any facets for units, precision etc.
e To resolve an ORD to a point and print out its value.
e To resolve an ORD with a base and print out its value.
e To resolve an ORD to a table.
o To then be able to iterate through the results.
o To generate an HTML table from the results.
o To print out fully localized display Strings of each value in the table (i.e. that use any necessary units and
precision).
e To create a hyperlink from an ORD or mounted Component.
e To print out translated values from a Lexicon.
e To print out translated values from a Lexicon (with parameters).
e To iterate through a Component’s children.
o To iterate through a Component’s children of a specific Type.
e To test with a particular value is of a certain Type.
e To detect whether a Property should be hidden.

o This includes checking for the hidden Slot flag as well as Types we never typically want the user to see (i.e.
BLink, BNameMap (displayNames) and BWsAnnotation).

e To detect whether a user has appropriate read, write and invoke security permissions on a particular Slot or
Component.

e To easily be able to include BajaScript into a Velocity View.
e To easily be able to include jQuery into a Velocity View.

API

The core Niagara Velocity related methods and properties are part of the $ax namespace. Some sub-namespaces (i.e.
$ax. uti |) are consider so useful that we’ve also added them to the global namespace (i.e. $util).

Core ax namespace

e $ax. sessi on: the HttpSession being used to the current request.

e $ax. target:the OrdTarget for the current request.

e $ax. cx: the Context for the current request.

e $ax. op: the WebOp for the current request.

e $ax. obj : the resolved object for the current request (from Or dTar get #get ()).
e $ax. profil e: the web profile being used.

e $ax. Fl ags: javax.baja.sys.Flags.

e $ax. | ang: the language for the current request.

e $ax. user: the user for the current request.

Util namespace

8/26/2015 129

Niagara Developer Guide

This can be accessed via $ax. util or$util .
All methods are fully listed (and commented) in j avax. baj a. vel oci ty. Vel oci tyContext Util.

The methods are designed to be easy to use and in some cases can take a variety of argument Types (just like in
JavaScript).

For convenience here’s an overview...

Value Access

e $util.get("station:|slot:/"):resolvesan ORD returns the object. If the result is a mounted Component,
it will be leased.

o The argument can be a String or an BOrd.
o If this ORD resolves to a table, then an array will be returned that can be iterated through.

e $util.get("slot:BooleanWitable", "station:|slot:/"):same asabove except this can also take a
base to help ORD resolution.

e Specifying a base is great for creating reusable VM files.
o The base can be an BOrd, String (that get resolves as an BOrd) or a BObject that will get used to resolve the

ORD.
e $util.resolve("station:|slot:/"):same as ‘get’ except this resolves to an OrdTarget.
e $util.resolve("slot:BooleanWitable", "station:|slot:/"):same as ‘get’ except this resolves to
an OrdTarget.

e $util.getChildren(conpl ex):return an array of children of a BComplex.
o The argument can be BComplex or a BOrd (or String) that resolves to a BComplex.
e $util.getChildren(conplex, "myMdul e: MyType"): return an array of children from a Complex of a
specific Type.
o The first argument can be BComplex or a BOrd (or String) that resolves to a BComplex.
o The second argument can be a Type or String to filter what children are returned.

e $util.is(conplex, "myMdule: MyType"): returns a boolean indicating whether the specified value is of
the specified Type.

o The second argument can be a Type or String.

Misc
e $util.ord("station:|slot:/", "bqgl:select * from baj a: Conponent ") : creates a normalized
ORD from a base and child. The argument can be BOrd or String.
e $util.lex("bajaui").get("dial og.ok"):geta Lexicon value.
o $util.lex("bajaui").getText("fileSearch.scanningFiles", "first", "second"):get

a Lexicon value with parameters.
o Please note that $uti | . | ex(" baj aui ") simply returns the Lexicon for the given module name.

e $util.requirejs():addsrequire js support. You need to add this at the top of the document if you want to use
BajaScript or any of the new web technologies added to Niagara 4.

Display

e $util.getDi splay(conpl ex): returns a display string for the given complex.
o The argument can also be an BOrd (or String that get resolves as an BOrd) that resolves to a BComplex.

e $util.getDisplay("slot:BooleanWitable", base):returns a display string for the given complex. If
an ORD is specified as the argument then the base is used to help resolve it.

o The first argument can also be an BOrd (or String that get resolves as an BOrd) that resolves to a BComplex.
o The base argument can be a BOrd (or String that get resolves as a BOrd) or a BObject used to help resolve

any ORDs.
e $util.getDi splayFronProperty(conpl ex, prop):returns a display string for the given complex and
Property.

o The first argument can also be an BOrd (or String that get resolves as an BOrd) that resolves to a BComplex.

8/26/2015 130

Niagara Developer Guide

The second argument can be a Property or a Property name (String).

e $util.getDi splayFronProperty(conpl ex, prop, base):returnsa display string for the given complex
and Property.

o The first argument can also be an BOrd (or String that get resolves as an BOrd) that resolves to a BComplex.
o The second argument can be a Property or a Property name (String).

o The base argument can be a BOrd (or String that get resolves as a BOrd) or a BObject used to help resolve
any ORDs.

Slot Access

e $util.isH dden(conpl ex, slot):returnsaboolean indicating whether the specified slot should be hidden.
o The first argument can be a BComplex or a BOrd (or String) that resolves to a BComplex.
o The second argument can be a Slot or a Slot name (String).

o This method will also filter out Types that aren’t typically shown on a Property Sheet (i.e. BWsAnnotation,
BLink and BNameMap (displayNames).

$uti | . canRead(conponent): returns a boolean whether the currently logged on user has read permissions on
the specified Component.

o The argument can be BComponent or BOrd (or String) that resolves to a BComponent.

$util.canRead(conponent, sl ot):returns a boolean whether the currently logged on user has read
permissions to access the specified Slot.

o The first argument can be BComponent or BOrd (or String) that resolves to a BComponent.
o The second argument can be a Slot or a Slot name (String).

$util.canWite(conmponent, slot):returnsaboolean whether the currently logged on user has write
permissions to access the specified Slot.

o The first argument can be BComponent or BOrd (or String) that resolves to a BComponent.
o The second argument can be a Slot or a Slot name (String).

$util.canl nvoke(conponent, sl ot):returns a boolean whether the currently logged on user has invoke
permissions to access the specified Slot.

o The first argument can be BComponent or BOrd (or String) that resolves to a BComponent.
o The second argument can be a Slot or a Slot name (String).

jQuery

e $util.jQuery():returns the HTML script tag to include jQuery.

8/26/2015 131

Niagara Developer Guide

Velocity Px Views

This document follows on from the core velocity documentation.

In 3.8, a new feature was added that allows non-Java programmers to create dynamic Px Views (Px Views that are created
on the fly). By using the Velocity, to create Px XML, customers have new flexibility in creating graphical views. This
feature is intended for advanced Niagara users who want more dynamic graphics and navigation without having to use
Java.

This feature does require the ‘axvelocity’ license feature.

Getting Started

e In a Station, create a folder.

e Add some points to the folder.

e Go to create a new Px View on the folder.

e (Click the Dynamni ¢ Vi ewoption.

e Select the axvel ocity: Vel oci t yPxVi ewoption and click OK.

e Create a Px file on the file system.

e Using the Px Editor, create your basic template page.

e Exit the Px editor and rename the file to the extension pxvm

e DPlease note that from this point onwards, the Px File can no longer be edited using the Px Editor.
e Using the Property Sheet, navigate to the newly created Velocity Px View.

e Setthe Px Vel ocity Tenpl ate Fil e to point to the newly created pxvm file.

e Load the view and note how it’s rendered the Px page.

e Now edit the Px view and add some VTL to script the creation of the Px file. Here’s an example...

<pr e>
<?xm version="1.0" encodi ng="UTF-8"?>
<l-- Niagara Presentation XM. -->
<px version="1.0" nedi a="wor kbench: WoPxMedi a" >
<i nport >

<nmodul e nane="baja"/ >
<nodul e nanme="baj aui "/ >
<nmodul e nane="gx"/>
<nmodul e nane="converters"/>
</inport>
<cont ent >
<Scrol | Pane>

<CanvasPane name="content" vi ewSi ze="500. 0, 400. 0" background="#cOcOf f ">
#set ($kids = $util.get Children($ax.obj, "baja: Conponent"))
<Gi dPane | ayout="10. 0, 10. 0, 480. 0, 380. 0" col utmCount ="1" rowGap="20">
#f oreach($k in $kids)
<Label >
<Val ueBi ndi ng ord="$k. get Sl ot Pat hOrd()"
hyper|ink="$k. get Sl ot Pat hOrd() ">
<Obj ect ToString nane="text" fornmat="%li spl ayNane% % % />
</ Val ueBi ndi ng>
</ Label >
#end
</ &i dPane>

</ CanvasPane>

8/26/2015 132

Niagara Developer Guide

</ Scr ol | Pane>
</ cont ent >
</ px>
</ pre>

This file will now create the navigation and labels for the points dynamically.

In conclusion, Velocity Px Views are very powerful but can be cumbersome without the initial use of the Px Editor to
create the overall look and feel for the Px View.

PxIncludes

In order to make the page more manageable, it’s best to use this in conjunction with PxIncludes. The PxInclude Px file
can then still be edited. For example, in this example the ‘include.px’ file can still be edited...

<pre>
<?xm version="1.0" encodi ng="UTF-8"?>
<l-- N agara Presentation XM. -->
<px version="1.0" nedi a="wor kbench: WbPxMedi a" >
<i nmport>

<nmodul e nane="haja"/ >
<nmodul e nane="baj aui "/ >
<nodul e nanme="gx"/>
<nodul e nane="converters"/>
</i mport >
<cont ent >
<Scr ol | Pane>

<CanvasPane nanme="content" vi ewSi ze="500. 0, 400. 0" background="#cO0cOf f ">
#set ($kids = $util.get Chil dren($ax.obj, "baja: Conponent"))
<Gi dPane | ayout="10. 0, 10. 0, 480. 0, 380. 0" col umCount ="1" rowGap="20">

#f oreach($k in $kids)
<Pxl ncl ude ord="fil e:px/include. px" variabl es="val =s: $k. get Nane()"/ >
#end

</ Gi dPane>
</ CanvasPane>

</ Scr ol | Pane>
</ cont ent >
</ px>

</ pre>

Querying the Media

The Px Media being used can be queried in Velocity. This is useful for dynamically creating Px Views for a Mobile
experience that may require less Widgets...

<pre>
#if ($ax. pxVi ew. i sMobil eMedi a())
<Label text="Mobile Media is set!"/>
#el sei f ($ax. pxVi ew. i sHxMedi a())
<Label text="Hx Media is set!"/>
#el sei f ($ax. pxVi ew. i sReport Medi a())
<Label text="Report Media is set!"/>
#el sei f ($ax. pxVi ew. i sWor kbenchMedi a())
<Label text="Wrkbench Media is set!"/>
#end
</ pre>

8/26/2015 133

Niagara Developer Guide

Why Velocity Px Views?

A Px file with Velocity code in allows graphics to be created on the fly without the aid of a Java programmer.
Unfortunately, any Px file with VTL code can’t be edited by the Px Editor. That’s why PxIncludes are recommended to
make this less cumbersome. The feature is intended for advanced users and covers the following use cases...

e Dynamically created navigation
e Reports

8/26/2015 134

Niagara Developer Guide

Control

Overview

The control module provides normalized components for representing control points. All control points subclass from
the BControlPoint base class. Control points are typically used with the driver framework to read and write points in
external devices.

There are four normalized categories of data matching the four BSt at usVal ue types. Within each of the four
categories is a readonly component and a writable component. These eight components are:

Type Mode Data
BBooleanPoint RO Models boolean data with BStatusBoolean
. RW / .
BBooleanWritable WO Models boolean data with BStatusBoolean
BNumericPoint RO Models numeric or analog data with BStatusNumeric
BNumericWritable I;\()/VO/ Models numeric or analog data with BStatusNumeric

Models discrete values within a fixed range with

BE Point RO
I BStatusEnum
BEnumWritable RW / Models discrete values within a fixed range with
WO BStatusEnum
BStringPoint RO Models unicode strings with BStatusString
RW /

BStringWritable Models unicode strings with BStatusString

WO

Design Patterns

All control points use BSt at usVal ues to represent their inputs and output. All points have one output called "out".
The readonly points contain no inputs. Typically they model a value being read from a device via the driver framework.

The writable points all contain 16 inputs and a fallback value. These 16 inputs are prioritized with 1 being the highest and
16 being the lowest. The value to write is calculated by finding the highest valid input (1, 2, 3, down to 16). An input is
considered valid if none of the following status bits are set: disabled, fault, down, stale, or null. If all 16 levels are invalid,
then the fallback value is used. Note that the fallback value itself can have the null bit set in which case the point outputs
null. The active level is indicated in the output as a status facet.

Each of the writable points reserves level 1 and level 8 for user invoked overrides. Level 1 is an emergency override which
when invoked remains in effect permanently until the emergencyAuto action is invoked. Level 8 overrides are for normal
manual overrides. Manual overrides may be timed to expire after a period of time, or may be explicitly canceled via the
auto action. Whenever level 1 or 8 is the active level then the overridden status bit is set in the output. If a timed override
is in effect then the overrideExpiration property indicates when the override will expire.

Extensions

Extensions provide building blocks to extend and change the behavior of control points. Every extension must derive
from BPointExtension. They are added as dynamic properties on a control point. Extensions can process and modify the
value of a control point whenever it executes. For example, an alarm extension can monitor the value and set the alarm

8/26/2015 135

module://docdeveloper/doc/control-rt/javax/baja/control/BControlPoint.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BBooleanPoint.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BBooleanWritable.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BNumericPoint.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BNumericWritable.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BEnumPoint.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BEnumWritable.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BStringPoint.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BStringWritable.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BPointExtension.bajadoc

Niagara Developer Guide

bit of the output's status if an alarm condition was detected. A list of extensions include:

e BDiscreteTotalizerExt
o BNumericTotalizerExt

e BProxyExt
e BAlarmSourceExt

e BintervalHistoryExt
e BCovHistoryExt

Extensions are always invoked in the order they are declared in the slot list. They may be reordered using the standard
reorder API and workbench commands.

When the execute method is invoked on a BControlPoint, the poi nt Changed(Cont r ol Poi nt pt) method is in turn
invoked on each extension.

Note that when using extensions with driver proxy points, only the value being read is processed by extensions.

8/26/2015 136

module://docdeveloper/doc/control-rt/javax/baja/control/ext/BDiscreteTotalizerExt.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/ext/BNumericTotalizerExt.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/point/BProxyExt.bajadoc
module://docdeveloper/doc/alarm-rt/javax/baja/alarm/ext/BAlarmSourceExt.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ext/BIntervalHistoryExt.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ext/BCovHistoryExt.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BControlPoint.bajadoc

Niagara Developer Guide

History

Overview

Refer to the javax.baja.history API.

The History module manages the storage, collection, and archiving of data logs (historical data). A data log in Niagara is
often referred to as a Baja history (or history for short) and is an implementation of BIHistory. Within Niagara, histories
can be accessed locally or remotely (via Niagara’s Fox communication). The History API provides the basis for creating,
configuring, modifying, accessing, and deleting histories. The Driver History API provides the means for archiving
histories (pulling/pushing histories from one station to another).

In order to provide support for a database of histories in a Niagara station, the History Service must be added
(BHistoryService). It is responsible for creating the database and enables collection and storage of histories in the
database. Once the History Service is in place, the basis for managing access to histories in the database is through the
History Space (BHistorySpace). Whenever you wish to gain access to a history, it is handled by resolving through the
BHi st or ySpace. BHistoryDatabase is a local implementation of BHi st or ySpace. It handles opening and closing
history files as they are needed and also provides efficient access to these files.

Access

As mentioned, in order to access histories in the database, you must first gain access to the database itself. This is done by
resolving the history ord scheme (as defined by BHistoryScheme). The unique history scheme name is “history”. Refer to
the Naming documentation for details on Niagara’s naming system. For example, if you want to access a history named
“TestLog” in a station’s database (the station being named “demo”), your ord would contain the query,
“history:/demo/TestLog”. You will notice that histories are organized by their source station (device), or BHistoryDevice.

When a history is retrieved from the database, it is always an implementation of BIHistory. Bl Hi st ory is used with a

HistorySpaceConnection to provide access to the following:

e The history’s identification. Histories are uniquely identified by a String identification composed of two parts, the
source device name and the history name. This identification information is encapsulated in
BHistoryld. For example, if you have a history named “TestLog” and it is located uder the local station named
“demo”, the history id would be the combination of device (station) name and history name: “demo/TestLog”. Note:
For convenience when importing/exporting histories between Niagara stations (refer to Driver History), you can
use the shorthand character ‘" to refer to the parent device name. For example, if you are exporting a local history
generated by the local station, the shorthand representation for the previous example would be: “*TestLog”.

e Summary information about the history. This information is encapsulated in
BHistorySummary. It provides such things as the history ID, number of records in the history, the timestamp of the
first record in the history, and the timestamp of the last record in the history.

e The type of records in the history. This is normally a concrete type of BHistoryRecord which will be described in
more detail later.

e The configuration of the history. This is defined in BHistoryConfig which will be described in more detail later.

e The data in the history itself. It provides support for scanning the records in the history, performing a time based
query for records, and appending or updating records within the history.

A history contains records which are keyed by timestamp. A record is an instance of BHistoryRecord which supplies the
timestamp key (records can always be identified by timestamp) and implements the BIHistoryRecordSet interface (always
a set of 1 for a single history record). A BTrendRecord is a special extension of a BHi st or yRecor d which adds two
more tidbits of information to a history record: trend flags (BTrendFlags) and status (BStatus). Trend flags are used to
provide extra context information about the record data, such as the starting record, out of order records, hidden
records, modified records, or interpolated records. The status (“ok”, “alarm”, “fault”, etc.) is associated with the collected
data value. The standard Niagara data value types are supported via extensions of BTr endRecor d:
BBooleanTrendRecord, BEnumTrendRecord, BNumericTrendRecord, and BStringTrendRecord.

Note: When a Bl Hi st ory is scanned or queried for its data records, it most often returns a Cur sor (HistoryCursor) or a
BlCollection. When iterating through this Cur sor or Bl Col | ect i on, it is important to note that it returns the same
instance of BHi st or yRecor d for each iteration. This is done for performance reasons. So, if you need to store the
records for later use as you iterate through them, be sure to make a copy of the instance (you can use the newCopy ()

method).

8/26/2015 137

module://docdeveloper/doc/history-rt/javax/baja/history/package-index.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BIHistory.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryService.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistorySpace.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/db/BHistoryDatabase.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryScheme.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryDevice.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BIHistory.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/HistorySpaceConnection.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryId.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistorySummary.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryRecord.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryConfig.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryRecord.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BIHistoryRecordSet.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BTrendRecord.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BTrendFlags.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/status/BStatus.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BBooleanTrendRecord.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BEnumTrendRecord.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BNumericTrendRecord.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BStringTrendRecord.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/HistoryCursor.bajadoc
module://baja/doc/javax/baja/collection/BICollection.bajadoc

Niagara Developer Guide

You can also query the database via a history ordQuery as defined in HistoryQuery. This allows you to find histories and
filter the data returned.

Configuration and Collection

When a user is ready to start logging data in Niagara, the most common way accomplish this is by adding a concrete
instance of a history extension (BHistoryExt) to a control point. This is just like adding any point extension
(BPointExtension) to a control point, extending its behavior. BH st or yEXxt is an extension of BPoi nt Ext ensi on,
however it also implements the BIHistorySource interface which allows it to be the creator of a history. BHi st or yExt is
an abstract class which provides the following among other things:

e The configuration of the history to create. This information is contained in a BHistoryConfig instance. It contains
the following:

o The unique identifier for the history within the entire system (BH st or y| d).

o The original source of the history.

o The timezone where the history was originally collected.

o The type of records contained in the history (i.e. BBool eanTr endRecor ds, BNuneri cTr endRecor ds,
etc.).

o The schema (BHistorySchema) for the records which allows the history to be read even if the original record
type class has changed or is not available.

o The amount of data that can be stored in the history (BCapacity).

o The behavior when an attempt is made to write records to the (limited capacity) history that is already full
(BEullPolicy).
o The mechanism for storage of the history records (BStorageType).

o The amount of time between records in the history (BCollectionInterval).

e The time period when the history extension should be collecting history records (BActivePeriod). This is normally a
BBasicActivePeriod which allows the user to specify the days of the week and time of day that history records
should be recorded.

e A definition of the pattern for deriving the name of the history created by the history extension. This property is of

type BFormat and it can be static text or a simple pattern that allows the actual history name to be derived from
the context.

There are two main types of BHi st or yEXt s supported in the History module. These are the typed instances of
BCovHistoryExt and BlntervalHistoryExt. BCoVHi st or yExt provides support for collecting history records triggered
on changes to the value of the parent control point while Bl nt er val Hi st or yExt provides support for collecting
history records based on a user defined fixed interval.

Compatibility

It is important to remember that there are two types of changes that an end user can make to a history extension (or

Bl Hi st or ySour ce) to cause its history to be split (recreated with a new name). If the record type changes (i.e. a switch
from numeric records to String records), this is an incompatible change. Another incompatible change is if the interval of
collection changes. In both of these cases, the generated history will be split; the old history will keep its name, and the
new history will have the same root name, but with a postfix ("_cfg#“) appended to the end of it. For example, if the
history "TestLog” encounters an incompatible change, the old history will keep its records and the name "TestLog", while
any new records will be placed in a new history named "TestLog_cfg0“. If yet another incompatible change occurs after
the first, the next split will have the new history named "TestLog_cfgl", and so on.

Archiving
Refer to the Driver History documentation.
History Exceptions

The History API defines a few standard history exceptions. These all extend from HistoryException which is a
BajaRuntimeException.

e A ConfigurationMismatchException is thrown when the properties of a Bl Hi st or y do not match the properties
for that history that are stored in the actual database.

8/26/2015 138

module://docdeveloper/doc/history-rt/javax/baja/history/HistoryQuery.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ext/BHistoryExt.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BPointExtension.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BIHistorySource.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryConfig.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistorySchema.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BCapacity.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BFullPolicy.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BStorageType.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BCollectionInterval.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ext/BActivePeriod.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ext/BBasicActivePeriod.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/BFormat.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ext/BCovHistoryExt.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ext/BIntervalHistoryExt.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/HistoryException.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BajaRuntimeException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/ConfigurationMismatchException.bajadoc

Niagara Developer Guide

e A DatabaseClosedException is thrown when an operation is attempted on a history database that is not open.

e A DuplicateHistoryException is thrown when an attempt is made to create a history with an id that already exists.
e A HistoryClosedException is thrown when a history is closed at a time when it is expected to be open.

e A HistoryDeletedException is thrown when an attempt is made to access a history that has been deleted.

e A HistoryNameException is thrown when an attempt is made to create a history with an invalid name.

e A HistoryNotFoundException is thrown when a history cannot be found in the history database.

e An lllegalConfigChangeException is thrown when an attempt is made to reconfigure a history in an unsupported
way.
e An InvalidHistoryldException is thrown when an attempt is made to open a history without a valid history id.

Changes From Niagara AX

In Niagara 4, the History API was re-factored to better support pluggable persistent storage. This allows for better scaling
of the Niagara History Service since the JACE and the Supervisor are able to have different backing databases. The new
API is connection oriented in order to better support the use to RDMS back-ends.

javax.baja.history.BlHistory

The following methods have been moved to javax.baja.history.HistorySpaceConneciton and take a BIHistory as a
parameter.

BHi st orySunmary get Summary()

i nt get RecordCount ()

BAbsTi me get Fi rst Ti nestanp()

BAbsTi me get Last Ti nest anp()

BH st oryRecord getLast Record()

voi d append(BI Hi storyRecordSet)

voi d updat e(BH st or yRecor d)

Cursor scan()

Cursor scan(bool ean)

Bl Tabl e ti neQuery(BAbsTi ne, BAbsTi ne)
Bl Tabl e ti meQuery(BAbsTi nre, BAbsTi ne, bool ean)
voi d flush()

javax.baja.history.BHistorySpace

The following methods have been moved to javax.baja.history.HistorySpaceConneciton

bool ean exi sts(BHi storyld)

voi d creat eHi story(BHi storyConfig)

voi d del et eHi st ory(BHi storyl d)

voi d del eteHi stories(BOrd[])

renameH story(BHi storyld, String)

voi d cl ear Al | Records(BHi storyld, Context)
void clearAl | Records(BOrd[], Context)

voi d cl ear O dRecords(BHi storyl d, Context)

voi d cl eard dRecords(BOrd[], Context)

The foll owi ng nethod was added to provide access to the HistorySpace
Hi st orySpaceConnecti on get Connecti on(Cont ext)

javax.baja.history.db.BHistoryDatabase

In addition to the methods from BHistorySpace, the following methods have been moved to
javax.baja.history.db.HistoryDatabaseConnection

voi d doDel et eHi st ory(BHi storyl d)

voi d doRenaneHi story(BH storyld, String)

voi d doCreat eHi story(BHi storyConfiQ)

voi d recreateH story(BHi storyConfig, bool ean)

voi d resizeH story(BHi storyld, BCapacity, BFull Policy)
voi d reconfigureH story(BH storyConfig)

8/26/2015 139

module://docdeveloper/doc/history-rt/javax/baja/history/DatabaseClosedException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/DuplicateHistoryException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/HistoryClosedException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/HistoryDeletedException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/HistoryNameException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/HistoryNotFoundException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/IllegalConfigChangeException.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/InvalidHistoryIdException.bajadoc

Niagara Developer Guide

The following method was added to provide access to the HistoryDatabase
Hi st or yDat abaseConnecti on get DbConnect i on(Cont ext)

javax.baja.history.HistorySpaceConnection

The HistorySpaceConnection interface is AutoCloseable. It provides access to the HistorySpace and allows management
of connection boundaries. Histories are obtained, queried and updated via the HistorySpaceConnection.

javax.baja.history.db.HistoryDatabaseConnection

HistoryDatabaseConnection implements HistorySpaceConnection and provides additional methods and implementations
for working with BHistoryDatabases.

Code Examples

The following code examples highlight some of the History API changes between Niagara 4 and Niagara AX.

Add Records

Niagara AX

Bl Hi story history = db.getHi story(historyld);
for (int i=0; i<records.|length; i++)

hi story. append(records[i]);
}

Niagara 4
try (HistoryDatabaseConnection conn = db. get Connecti on(cx))

Bl H story history = conn.getH story(historyld);
for (int i=0; i<records.|length; i++)

{

conn. append(history, records[i]);

}
History Query
Niagara AX
Bl Hi story history = db.getH story(id);

BAbsTi me startTi me= history. getFirstTi mestanp();
BAbsTi me endTi ne = BAbsTi ne. nake(2014, BMont h. JANUARY, 1);

Bl Tabl e collection = history.tinmeQuery(startTine, endTinme);
if (collection !'= null)

{

Cursor cursor = collection.cursor()
while (cursor.next())

BObj ect rec = cursor.get();
if (rec instanceof BNunericTrendRecord)

di spl ayRecord(rec);

}
}

Niagara 4

try (HistorySpaceConnection conn = db. get Connecti on(cx))

8/26/2015 140

Niagara Developer Guide

Bl Hi story history = conn.getHi story(id);

BAbsTi ne startTime = conn. get FirstTi nestanp(history);
BAbsTi ne endTi ne = BAbsTi ne. nake(2014, BMont h. JANUARY, 1);

Bl Tabl e<BHi st oryRecord> col |l ection = conn.tineQuery(history, startTine,
endTi ne) ;
if (collection !'= null)

try(Cursor<BHi st oryRecord> cursor = collection.cursor())
whil e (cursor. next())

BH st oryRecord rec = cursor.get();
if (rec instanceof BNunericTrendRecord)

di spl ayRecord(rec);

}
}
}
}

History Maintenance

Niagara AX
BH st oryConfi g updat edConfi g = nakeNewConfi g();

/1l Update History Configs in target history
i f(db. getH story(oldConfig.getld()) == null)

db. creat eHi st ory(updat edConfi g);
}

el se

db. reconfi gureH story(updat edConfi g);
}

Niagara 4
BHi st oryConfi g updat edConfi g = nakeNewConfi g();
try (HistoryDatabaseConnecti on conn = db. get DbConnection(null))

/'l Update History Configs in target history
i f(conn.getH story(oldConfig.getld()) == null)
{

conn. creat eH st ory(updat edConfi g);
}

el se

{

}
}

conn. reconfi gureHi st ory(updat edConfi g);

8/26/2015 141

Niagara Developer Guide

Alarm

Introduction

The Alarm module provides core functionality for lifecycle management of alarms within the Niagara Framework. Alarms
are used to indicate that some value is not within an appropriate or expected range. Alarms may be routed from the
system to a variety of external sources, be it email, a printer or a console application.

Object Model

All alarms in the Niagara Framework are generated by objects implementing the BIAlarmSource interface. Those alarms
(BAlarmRecord are then routed to the BAlarmService. The service for storing and routing of alarms. Alarms are then
routed to one or more recipients (BAlarmRecipient) via their BAlarmClass.

Alarm Sources

While Bl Al ar mBSour ce is an interface, most alarm sources are instances of
j avax. baj a. control . al ar m BAl ar nSour ceExt, the alarm point extension. The alarm extension determines
when it’s parent point is in an alarmable condition, and uses the AlarmSupport class to take care of routing and issuing

alarms to the alarm service. The alarm source updates the alarm when the parent point goes back to its normal condition
as well as notifies the point that an acknowledgement has been received.

Objects implementing Bl Al ar nfSour ce that have a status (BStatus) should use the following rules when setting the
status bits.

e Generate Offnormal alarm: set the BSt at us. ALARMand BSt at us. UNACKED ALARMbits.

e Generate Fault alarm: set the BSt at us. ALARM BSt at us. UNACKED ALARMand BSt at us. FAULT bits.
AckAlarm methods is called: if the alarm is the last one generated clear the BStatus.UNACKED_ALARMbit.
Generate Normal alarm: clear the BSt at us. ALARMand BSt at us. FAULT bits.

Note that BSt at us. UNACKED ALARMshould only be set if the BAl ar mCl ass. ackRequi r ed bit is set for that
transition in the AlarmSource’s AlarmClass. This can easily be obtained if using the Al ar nSupport class by calling
BAl ar nSupport. ackRequi red(BSourceState state).

Alarm Service

The BAl ar nSer vi ce coordinates routing of alarms within the framework. It routes alarms from their source to the
appropriate recipients, and alarm acknowledgements from the recipients back to the source. The alarm service routes
individual alarms via their alarm class. All alarm classes available to the system are maintained as slots on

BAI ar nSer vi ce. The BAl ar nSer vi ce also maintains the Alarm Database. It is acessed though the get Al ar mDb()
method.

Alarm Class

The alarm classes, as stated above, are maintained as slots on the alarm service and serve to route alarms with similar sets
ot properties along common routes - they serve as channels for like data. BAl ar mCl ass manages the persistence of the
alarms as needed via the alarm database. The AlarmClass manages the priority of an alarm and also which alarm require
acknowledgement. Each alarm class can be linked to one or more alarm recipients.

Alarm Recipients

Alarm recipients are linked to an alarm class (from the al ar mtopic on the alarm class to the r out eAl ar maction on
BAI ar nReci pi ent .) Recipients may be configured to receive alarms only at certain times of day, certain days of the
week, and receiving alarms of only certain transitions (eg. toOffnormal, toFault, toNormal, toAlert).

Three subclasses of BAl ar nReci pi ent are worth noting: BConsol eReci pi ent, BSt at i onReci pi ent and
BEmai | Reci pi ent.

8/26/2015 142

file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/BIAlarmSource.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmRecord.bajadoc'0
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmService.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmRecipient.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmClass.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/AlarmSupport.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/baja-rt/javax/baja/status/BStatus.bajadoc'

Niagara Developer Guide

BConsoleRecipient

This recipient manages the transfer of alarms between the alarm history and the alarm console, i.e. it gets open alarms
from the alarm history for the console and updates the history when they are acknowledged.

BStationRecipient
This recipient manages the transfer of alarms between the alarm service and a remote Niagara station.
BEmailRecipient

The email recipient is part of the email package. It allows alarms to be sent to users via email.

Lifecycle

Each alarm is a single BAlarmRecord that changes throughout its lifecycle. An alarm has four general states that it may be
in:

1. New Alarm

2. Acknowledged Alarm

3. Normal Alarm

4. Acknowledged Normal Alarm

All alarms start as New Alarms and end as Acknowledged Normal Alarms. They may be acknowledged then go back to
normal or go back to normal then be acknowledged.

An Alert is an alarm that does not have a normal state and thus its lifecycle consists of New Alarm and Acknowledged
Alarm.

Alarm Routing Overview

New Alarms

Bl Al ar mSour ce generates an offnormal alarm (or fault alarm).

It is sent to the BAl ar mBer vi ce.

BAl ar nSer vi ce routes it to its BAl ar nCl ass.

The BAI ar nCl ass sets the alarm’s priority, ackRequired bit, and optional data.
It is then routed to any number of BAl ar mReci pi ent s.

SANE I

The normal alarm is sent along this same path.
Alarm Acks

1. When a BAI ar nReci pi ent acknowledges an alarm, the acknowledgement is sent to the BAl ar nfSer vi ce.
2. The BAI ar mBer vi ce routes back to the Bl Al ar nSour ce (if an ack is required).
3. The Alarm Acknowledgement is then routed to AlarmRecipients along the same path as a New Alarm.

Usage

Setup

The most basic piece needed is a control point. Then add an alarm extension from the alarm module palette. There are
several types of extensions depending upon the type of point selected. The AlarmExtension are disabled by default. You
must enabled toOffnormal or toFault alamrs and configure and enable the alarm algorithms.

An Alarm Service is also required. Depending on your needs, it may require some of the following slots:

e Any desired BAl ar nCl asses should be added.
e A BConsol eReci pi ent should be added if an alarm console is required.

8/26/2015 143

file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/email-rt/module-index.bajadoc'

Niagara Developer Guide
Link any of the slots as needed. The alarm recipients must be linked to an alarm class in order to receive alarms from that
alarm class.

To generate an alarm, go to a point with an alarm extension and put it an alarm condition.

Console Recipient / Alarm Console
To view all of the outstanding alarms in the system, double click on the console recipient on the alarm service. The alarm
console manages alarms on a per point basis. Each row in the alarm console is the most recent alarm from a point. To

view all the current alarms from that point, double click the row.

To acknowledge an alarm, select the desired alarm and hit the ack button. An alarm is cleared from the alarm console
when the alarm is acknowledged AND the point is in its normal state.

To view more information about an unacknowledged alarm, right click and select View Details.

Station Recipient
A BSt ati onReci pi ent allows sending alarms to remote Niagara stations. A remote station is selected from the

stations you have configured in your Niagara Network. This recipient require that the remote station be properly
configured in the Niagara Network.

Printer Recipient

A BPrint er Reci pi ent allows printing of alarms on an ink-jet or laser printer. This recipient is only available on
Win32 Platforms. It supports both local and remote printers.

Line Printer Recipient

A BLi nePri nt er Reci pi ent allows printing of alarms on a Line Printer. This recipient is only available on Win32
Platforms. It supports both local and remote printers.

Niagara AX to Niagara 4 APl Changes

Overview

The Alarm API has been re-factored to better support pluggable persistent storage. This will allow for better scaling of the
Niagara Alarm Service since the JACE and the Supervisor will be able to have different backing databases. The new API is
connection oriented in order to support the use to RDBMS and ODBMS back-ends.

BAlarmDatabase now extends BSpace. This is now consistent with how other storage mechanisms are BSpaces with
their Service defining the configuration of the space. As part of this change, database configuration properties on
BAI ar nSer vi ce were refactored.

BAlarmService & BAlarmDatabase
javax.baja.alarm.BAlarmService.capacity & javax.baja.alarm.BAlarmDbConfig
A BAlarmDbConlfig property named alarmDbConfig was added to BAI ar nfSer vi ce. This property will allow a greater
flexibility in defining alarm storage configurations in the future. For the standard file-based Alarm Service, the capacity
property was moved to the BFi | eAl ar mDbConf i g subclass of BAl ar nDbConf i g.
javax.baja.alarm.BAlarmDatabase

BAl ar nDat abase now extends BSpace and implements BIProtected. This allows the AlarmDatabase to appear in the
Nav Tree as a peer to the History and System Databases and be categorized via the CategoryBrowser. Since

BAI ar nDbConf i g now defines the configuration of the alarm database, the following method was added to

BAI ar nDat abase to handle changes to the configuration.

BAlarmDatabase

8/26/2015 144

file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmDatabase.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/baja-rt/javax/baja/space/BSpace.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmDbConfig.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/baja-rt/javax/baja/security/BIProtected.bajadoc'

Niagara Developer Guide

*

Updat e the database with the new configuration.

/

@aram confi g new BAl arnDbConfi g

@aram p Property to update

@ince N agara 4.0
/
public abstract void updateConfi g(BAl arnDbConfig config, Property p)
throws Al arnExcepti on;

L R

The BAI ar nDat abase gets a callback to updat eConfi g() for each property change on the BAl ar nDbConfi g
object.

javax.baja.alarm.BAlarmDbView & javax.baja.alarm.BAlarmDbMaintenanceView

BAl ar nDbVi ew & BAl ar nDbMai nt enanceVi ewhave been moved to be views on BAl ar nDat abase instead of
BAl ar nSer vi ce.

javax.baja.alarm.BAlarmRecord

get Schenu() and get Recor dSi ze() methods were added to BAI ar mRecor d. These are currently placeholders for
future use.

The default behaviour of the previously existing BAl ar mRecor d constructors was changed to not create a new BUuid.
New constructors were created accepting a BUui d as an argument.

Connection Oriented API
javax.baja.alarm.BlAlarmSpace

The BIAlarmSpace interface as added to provide access to the Alarm Space via a connection oriented API It provides the
following method:

Al ar nSpaceConnecti on get Connecti on(Cont ext)
javax.baja.alarm.BAlarmService

The following methods have been moved to javax.baja.alarm.AlarmSpaceConnection

public void append(BAl arnRecord record)

public void updat e(BAl arnRecord record)

public int getRecordCount();

publ i ¢ BAl ar mRecord get Record(BUui d uui d)

publ i c Cursor<BAl ar nSour ce> get OpenAl ar nSour ces()

publ i c Cursor<BAl ar nRecor d> get OpenAl ar ns()

publ i c Cursor<BAl ar nRecor d> get AckPendi ngAl ar s ()

publ i ¢ Cursor <BAl ar nRecor d> get Al ar nsFor Sour ce(BOr dLi st al ar mSour ce)
publ i c Cursor<BAl ar nfRecord> scan()

public Cursor<BAl arnRecord> ti neQuery(BAbsTi ne start, BAbsTi ne end)

The following methods have been moved to javax.baja.alarm.AlarmDbConnection
public abstract void clearAll Records(Context cx)
public abstract void cl eard dRecords(BAbsTi ne before, Context cx)
public abstract void clearRecord(BUuid uuid, Context cx)
The following method was added to provide access to the AlarmDatabase
Al ar rDbConnect i on get DbConnecti on(Cont ext)

javax.baja.alarm.AlarmSpaceConnection

The Al ar nSpaceConnect i on interface is Aut 0Cl oseabl e. It provides access to the | Al ar mSpace and allows
management of connection boundaries. Alarms are obtained, queried and updated via the Al ar nSpaceConnect i on.

8/26/2015 145

file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/baja-rt/javax/baja/util/BUuid.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/AlarmSpaceConnection.bajadoc'
file:///D|/niagara/r4dev/docDeveloper/docDeveloper-doc/doc/'module://docDeveloper/doc/alarm-rt/javax/baja/alarm/AlarmDbConnection.bajadoc'

Niagara Developer Guide

javax.baja.alarm.AlarmDbConnection

Al ar mDbConnect i on implements Al ar mSpaceConnect i on and provides additional methods and implementations
for working with BAI ar mDat abases.

Code Samples

The following code examples demonstrate how to convert common alarm operations from the NiagaraAX Alarm API to
the Niagara 4 Alarm APIL

Query Record by UUID

Niagara AX

BUui d uuid = get Al armui d();

BAl arnRecord alarm = nul | ;

BAl ar nServi ce al arnBServi ce = get Al arnBServi ce();

al arm = al arnfSer vi ce. get Al ar nDb() . get Recor d(uui d) ;

Niagara 4

BUui d uuid = get Al armui d();

BAl arnRecord alarm = nul | ;

BAl arnServi ce as = get Al arnServi ce();

try (Al armDbConnection conn = al arnBervi ce. get Al ar mDb() . get DbConnecti on(null))

al arm = conn. get Recor d(uui d);

}
Alarm Query

Niagara AX

BAI ar nDat abase al arnDb = al ar nSer vi ce. get Al ar mDb() ;
Cursor cur = al arnDb. get OpenAl arns();

whil e (cur.next())

{

BAl ar mRecord al arm = (BAl arnmRecord) cur. get();
}

Niagara 4
try (Al arnDbConnection conn = al arnServi ce. get Al arnDb(). get DoConnecti on(null))

Cur sor <BAl ar rRecord> cur = conn. get OpenAl arns() ;
while (cur.next())

BAl arnRecord al arm = cur.get();

}
}

Alarm Db Maintenance

Niagara AX

BAbsTi me before = get Ti me(f Last Recor dToKeep() ;
BAI ar nSer vi ce service = (BAl arnBServi ce) Sys. get Servi ce(BAl ar nSer vi ce. TYPE) ;
if (service !'= null)

{
service. get Al arnDb() . cl ear d dRecor ds(before, getSessionContext());

}
Niagara 4
BAbsTi ne before = get Ti neCf Last Recor dToKeep() ;

8/26/2015 146

Niagara Developer Guide

BAl ar nServi ce service = (BAl arnfServi ce) Sys. get Servi ce(BAl ar nServi ce. TYPE) ;
if (service != null)
try (A arnDbConnection conn = service.get Al arnDb().get DbConnection(null))
{

conn. cl ear d dRecor ds(before, getSessionContext());

}
}

Create New BAlarmRecord
Niagara AX

BAl ar nRecord record = new BAl arnRecord();
Niagara 4

BAl ar mRecord recordWt hNewUui d = new BAl ar nRecor d(BUui d. nake());
BAl ar nRecord recordWthDefaul tUuid = new BAl ar nRecord();

8/26/2015 147

Niagara Developer Guide

Schedule

Overview

A schedule is effective or it is not. When it becomes effective, it will do something like fire an event or change an
output. When a schedule is not effective, it will have some default configurable behavior.

Most schedules will be a hierarchy of many schedules. Container schedules combine the effective state of their
descendants to determine effectiveness. Atomic schedules use some internal criteria to determine effectiveness. An

example of an atomic schedule is the month schedule. It can be configured to be effective in some months and not in
others.

Creating New Schedule Types
BAbstractSchedule

All schedules subclass this.

Subclassing. To create a new schedule type, one simply needs to implement methods
i sEf f ecti ve(BAbsTi me) and next Event (BAbsTi ne) . See the API documentation for details.

New Properties. Properties on new schedule types should have the user _def i ned_1 flag set. Thisis

important for properties who when changed, should cause supervisor (master) schedules to update their
subordinates (slaves).

Output. If the new schedule is going to be used in a control schedule, it will be necessary to assign an effective
value to it. A control schedule finds output by searching child schedules, in order, for the first effective

schedule with a dynamic property named "effectiveValue". The effectiveValue may be 10 levels deep, it will be
found. Just remember the order of schedules in a composite is important.

BCompositeSchedule

Composite schedules shouldn't need to be subclassed. However, they will be used (frequently) in building new schedule
hierarchies.

These schedules perform a simple function, they determine their effective state by combining the effective state of
their children. A composite can either perform a union or an intersection of it's children. A union means only one

child has to be effective for the parent composite to be effective. An intersection means all children have to be
effective.

Using Existing Schedules

There are six preconfigured schedules. The weekly schedules look like control objects, the calendar schedule helps

configure special events that will be used by multiple schedules. Lastly, the trigger schedule enables sophisticated
scheduling of topics (events) which can be linked to actions on other components.

BBooleanSchedule, BEnumSchedule, BNumericSchedule and BStringSchedule

These are all BWeeklySchedules whose output matches their name. There is one input who if linked and not
null, completely overrides the schedule.

Example: Adding a special event
BDai | ySchedul e speci al Event = new BDai | ySchedul e(
new BDat eSchedul e(5, Bvont h. may, - 1),
BTi me. make(11, 0, 0),
BTi me. make(12,0,0), //first excluded tinme
BSt at usBool ean. make(true));
nmyBool eanSchedul e. addSpeci al Event (speci al Event) ;

Example: Adding to the normal weekly schedule
BDaySchedul e day = nyBool eanSchedul e. get (BWeekday. nonday) ;

8/26/2015 148

module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BAbstractSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BCompositeSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BBooleanSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BEnumSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BNumericSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BStringSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BWeeklySchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDailySchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDaySchedule.bajadoc

Niagara Developer Guide

day. add(BTi ne. make(11, 0, 0), BTi ne. make(12, 0, 0), BSt at usBool ean. nake(true));

Example: Retrieving all schedules in a normal weekday
BDaySchedul e day = nyBool eanSchedul e. get (BWweekday. nonday) ;
BTi neSchedul e[] schedul es = day. get Ti mesl nOrder () ;

Example: Modifying the day schedule of a special event
BDai | ySchedul e specEvent = (BDai |l ySchedul e)
myWeekl ySchedul e. get Speci al Event s() . get (" ci ncobDi Mayo");
BDaySchedul e day = specEvent. get Day();

Example: Retrieving all special events

BDai | ySchedul e[] specEvents = nyWeekl ySchedul e. get Speci al Event sChil dren();
Legal special event schedule types:

BDateSchedule

BDateRangeSchedule

BWeekAndDaySchedule
BCustomSchedule

BScheduleReference
BCalendarSchedule

This schedule has a boolean output. However, it's most common use is for special events in the four weekly

schedules discussed above. The weekly schedule can store a special reference to any calendar in the same
station and assign their own output to it.

Example: Adding a date schedule event
myCal endar Schedul e. add(" ci ncoDi Mayo", aDat eSchedul e) ;

Legal event schedule types:
BDateSchedule
BDateRangeSchedule

BWeekAndDaySchedule
BCustomSchedule

BTriggerSchedule

This schedule fires an event when a schedule becomes effective. There is also an event signifying that a normal
event has been missed.

Example: Add a date schedule event
nmyTri gger Schedul e. get Dat es() . add(" ci ncobi Mayo", aDat eSchedul e) ;

Example: Add a trigger time
nyTri gger Schedul e. get Ti nes() . addTri gger (11, 00);

Legal event schedule types:
BDateSchedule
BDateRangeSchedule

BWeekAndDaySchedule
BCustomSchedule

8/26/2015 149

module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BTimeSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDateSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDateRangeSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BWeekAndDaySchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BCustomSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BScheduleReference.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BCalendarSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDateSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDateRangeSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BWeekAndDaySchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BCustomSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BTriggerSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDateSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BDateRangeSchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BWeekAndDaySchedule.bajadoc
module://docdeveloper/doc/schedule-rt/javax/baja/schedule/BCustomSchedule.bajadoc

Niagara Developer Guide

Report

Introduction

The Report module provides facilities for running periodic background reports on a station.

ReportService

The ReportService provides a container for the components responsible for generating and routing reports. The process
of generating a report is broken down into two components: BReportSource and BReportRecipient.

BReport Lifecycle

ExportSource
ExportSounce

(3

EmailRecipient =

B4 Senerate

ErnailRecipiant

ok

Foute

(ExportSource and EmailRecipient are concrete implementations for ReportSource and ReportRecipient, respectively.)

1. The gener at e action gets invoked on BReportSource. The action can be invoked manually or automatically via

the built-in schedule property.

2. ReportSource creates a new BReport object which gets propagated to the ReportRecipient.
3. BReportRecipient handles routing the report to some destination.

8/26/2015

150

module://docdeveloper/doc/report-rt/javax/baja/report/BReportSource.bajadoc
module://docdeveloper/doc/report-rt/javax/baja/report/BReportRecipient.bajadoc
module://docdeveloper/doc/report-rt/javax/baja/report/BReportSource.bajadoc
module://docdeveloper/doc/report-rt/javax/baja/report/BReport.bajadoc
module://docdeveloper/doc/report-rt/javax/baja/report/BReportRecipient.bajadoc

Niagara Developer Guide

BQL

Introduction

The Baja Query Language (BQL) is an SQL-like query language that provides a mechanism for identifying various sets of
data. It provides an ad hoc way to search for data based on some criteria. By including BQL in an ord, the results can be
easily book marked or embedded in graphics views. This makes BQL an excellent tool for building reports.

Select

The select query is the most common type of BQL query. It is very similar to the select statement in SQL. The syntax is
as follows:

sel ect <projection> from <extent> where <predicate> <havi ng> <order by>

The select statement always returns a table even if the result is actually a single object.

Extent

The first concept to understand about the above query is the extent. The extent is specified in the "from" clause of the
query. The extent works together with the ord base to determine the general set of objects in the result. The rest of the
query only narrows the general result. This is best explained with a few examples.

slot:/alb/c|bgl:select nane, toString fromcontrol: Control Point

In the above query, the base of the "bql" query is the "slot" query. The slot scheme is used to access data in a Baja
component tree. In this case, "slot:/a/b/c" identifies the root of the tree where the BQL query processing will start. From
that point, the query will recursively search the tree for components of type "control:ControlPoint". So, when the base of
the "bgl" query is a slot path, the path identifies the subtree that will be searched by the query, and the extent identifies
the type of component to search for. This query would get the name and toString for all control points under the /a/b/c
in the component tree.

history:|bqgl:select tinestanp, value, status from/nyStation/ nyHi story

In this query, the base of the "bql" query is a "history" query. The history scheme is used to access data in the Baja history
database. In this case, "history:" identifies the entire set of histories in the database. The query extent
"/myStation/myHistory" identifies a specific history in the database. This query would get the timestamp, value, and
status of all records in the history with the id "/myStation/myHistory".

Projection

The projection is a comma separated list of the columns that will be returned in the result. Each element in the list must
have a column specification and may have a display name specified with the 'as' clause. Beginning in Niagara 3.5, columns
may be arbitrary expressions. The most frequent type of expression is a path expression, but you can also call scalar or

aggregate functions.

sel ect nane, toString from baj a: Conponent

select nane as 'Point', out.value as 'Qutput Value', out.status from
control : Nureri cPoi nt

sel ect MAX(out.value), MN(out.value) from control: Nureri cPoi nt

select (out.value * 100) + "% as 'Percent' from control: NunmericPoi nt

In the second query, we know that all numeric points have an "out" property that is a StatusValue. A StatusValue is a
structure that contains both a status and a value. In this query, we use a path to dive into the structure and extract the
value and status individually.

In the third query, we use two aggregate functions, MAX and MIN, to find the largest and smallest value of all the
control:ControlPoints in our query. The result will only have one row. See the section on BQL functions for more details

In the fourth query, we perform a calculation on the out.value to make it a percent, and then append the '%' character to

8/26/2015 151

Niagara Developer Guide

the result so that the column values display with a percent sign. The column name is aliased as 'Percent'.
Predicate

The predicate must be a boolean expression. Its purpose is to apply criteria for filtering objects out of the extent. Look at
this query:

hi story: | bgl:select tinestanp, value from/weatherStation/outsideAirTenp

This query would retrieve the timestamp and value of all records in the specified history. That's often not a useful query
and depending on how long the history has been collected, it may return a lot more data than we care to see. Instead, let's
find all records where the value exceeds 80 degrees.

hi story: | bgl:select tinestanp, value from/weatherStation/outsideAirTenp
where val ue > 80

By adding the "where" clause with "value > 80", all records with a value less than 80 are filtered out of the result. To learn
more about BQL expressions, see BQL Expressions.

Having

The "having" clause must be a boolean expression. The having clause has the same semantics as in SQL. You can use the
having clause to filter the results of your query based on aggregate functions. Consider this query:

sel ect di splayNarme, SUM out.value) from control: NumericPoint having
SUM out . val ue) > 100

First, note that this query could return multiple rows since its projection contains both scalar columns ("displayName")
and aggregate columns ("SUM(out.value)"). Each row will contain a distinct displayName, and the SUM of all the
"out.value" values for the objects with that displayName. The HAVING clause will further restrict the result to only
contain rows where the SUM of all the out.value values is greater than 100.

Note that if the above query had only asked for "SUM(out.value)" and did not ask for the displayName, there would only

be one row in the result. It would contain the SUM of all the "out.value" values regardless of the object's displayName. It
would not be very useful to include a HAVING clause in such a query.

Order By

The "order by" clause can be used to sort the results of the bql query. It also has similar semantics to SQL. You can order
by a path expression, a column alias, or column position (using a 1-based index). Further, you can specify whether you
want the ordering to be done in ascending (ASC) or descending (DESC) order. ASC is assumed if not specified. For
example,

sel ect displayNanme, slotPath as 'Path' from control:NunericPoint order by
out.value, 1, 'Path' DESC

Group By

BQL does not have a GROUP BY clause. If you mention ANY path expression in a query that contains aggregate
functions, BQL implicitly defines a distinct grouping based on all the unique path expressions in your query. Consider:

sel ect di splayName, MAX(out.value) from control: NumericPoint where
i sSWitabl ePoi nt

This query will cause the bql engine to define an implicit grouping based on the "displayName" and "isWritablePoint"
values.

Simple Expressions

In some cases, it may be desirable to fetch a single value instead of a table of objects. You can can accomplish that with
BQL by using a simple BQL expression.

slot:/albl/c|bgl:handle

8/26/2015 152

Niagara Developer Guide

Putting a simple path expression in the BQL ord, causes the expression to be evaluated relative to the base. Resolving this
ord just returns the value of the expression. In this case the result is the handle of the component identified by "/a/b/c".
Note: If you run this query in Workbench, you will get a "No views are accessible" error since the there are no views
registered on the simple type "java.lang.String", which is the type of the "handle" path expression.

Beginning in Niagara 3.5, you can evaluate multiple expressions against the base and have the results returned in a table
with a single row.

slot:/alb/c|bqgl:{handle, out.value * 100, displayName + ' is nmy nane'}

Each of the expressions in the list is evaluated against the component at "slot:/a/b/c". The result is a table with a single
row with the result of evaluating each expression in its corresponding column.

Beginning in Niagara 3.6, you can alias the expressions. The column for that expression will have the alias as its display
name in the resulting table.

slot:/alb/c|bgl:{handle as "h', out.value / 2 as 'half', displayNane}

BQL Paths

BQL paths are an important element of any BQL query. A path can be used to specify column content or to filter the
rows in a query result. In all cases, a path is relative to the set of objects defined by the extent.

A path is a dot-separated list of fields. Consider the following example:

slot:/alb| bgl:select nane, historyConfig.capacity from history: Hi storyExt

This retrieves the name and configured capacity of all history extensions under "/a/b". The extent tells me that I am only
looking for history extensions. The second column specifier tells me to look inside the historyConfig and extract the
value of the "capacity” property. The same concept can be applied in the "where" clause.

slot:/alb|bqgl:select name, out fromcontrol: NumericPoint where out.value > 50

In this case, the extent tells me that I am only looking for numeric points. The where clause looks at the "value" property
of the "out" property of each numeric point in "/a/b" and only includes the ones that are greater than 50.

Presenting a list of all available fields in a path is not feasible. The fields that can be accessed in a path include all frozen
and dynamic properties of any component or struct (given sufficient security permissions) plus many of the methods on
the target type. The Bajadoc reference is the best place to find this information for a particular type.

A method is accessible via a path if it is public and returns a non-void value and takes either no parameters or only a
Context as a parameter. Methods that match the "getX" pattern are handled specially. To access a getter from BQL, the
"get" is dropped and the next letter is changed to lowercase resulting in the name of the desired value rather than the
method name for getting it.

getX -> X
get Current Tenperature -> current Tenperature

A few methods are used particularly often. "name" gets the slot name of a value on its parent. "parent” get the parent
component. "parent” is useful because it allows you to look up the component tree.

slot:/fool bar| bqgl:sel ect parent.nanme, parent.slotPath from
schedul e: Bool eanSchedul e

This query finds the name and path of all containers that contain a BooleanSchedule.
For more examples, see BQL Examples.

For more information about expressions, see BQL Expressions.

Scalar and Aggregate Functions

BQL supports two types of function expressions: 1) scalar functions and 2) aggregate functions. Scalar functions operate
on a single value and return a single value. In this respect they are similar to path expressions. Aggregate functions

8/26/2015 153

Niagara Developer Guide

operate on a set of values, and return a single, summarizing value. BQL also supports the ability for programmers to
create their own scalar and aggregate functions. In all cases, the syntax for calling a function is

(<type spec>.)<function name>(<paraneter |ist>)

The type spec is only required when the function is not part of the built-in BQL library. This is described in more detail
in the sections below.

Scalar Functions

BQL provides the following built-in scalar functions

e BBoolean slotExists(BString slotName): return true if an object has a slot with the given name.
e BBoolean propertyExists(BString propName): return true if an object has a property with the given name.
e BString substr(BString str, BNumber start, BNumber end): similar to Java substr() function.

sel ect substr(displayNane, 0, 1) from baj a: Fol der
sel ect slotPath, displayNane from baj a: Conponent where sl ot Exi sts('out')

The first query returns the first letter of all BFolders. The second query returns the slot path of every BComponent that
has an 'out’ slot.

User-defined Scalar Functions

In this example, we show how to create a new scalar function "strlen” that returns the length of a BString. To create a
new scalar function you simply define a new publ i ¢ st ati ¢ method in one of your BObjects where the first
parameter is a BObject (the target object to work with), and the rest of the parameters match the type of the parameters
for your method. The return type of all BQL functions must be a BObject.

public BLi b extends BObject {
/** Define the strlen function */
public static Blnteger strlen(BObject target, BString str) {
return Bl nteger.make(str.getString().length());
}

public static final Type TYPE = Sys.|oadType(BBLi b. cl ass);
public Type getType() { return TYPE;, }

That's it! Pretty straight-forward. Assuming this function was in a module called "MyBql", here is how you could use it to
get the displayName and its length for every BFolder (note the use of the BTypeSpec to call the function):

sel ect displayName, MyBql:Lib.strlen(displayNane) from baj a: Fol der

Aggregate Functions

BQL provides the following built-in aggregate functions:

1. COUNT(<expresion>): count the number of items in the result set. Supports special syntax COUNT (*).

2. MAX(<expression>): evaluates the expression for every item in the result set and returns the maximum value. The
expression must evaluate to a BNumber or BStatusNumeric.

3. MIN(<expression>): evaluates the expression for every item in the result set and returns the minimum value. The
expression must evaluate to a BNumber or BStatusNumeric.

4. SUM(<expression>): evaluates the expression for every item in the result set and returns the sum of all the values.
The expression must evaluate to a BNumber or BStatusNumeric.

5. AVG(<expression>): evaluates the expression for every item in the result set and returns the average of all the
values. The expression must evaluate to a BNumber or BStatusNumeric.

sel ect MAX(out), M N(out), AV@Eout), SUMout) fromcontrol: NunmericWitable
sel ect substr(displayNanme, 0, 1), COUNT(*) from baja: Fol der

8/26/2015 154

Niagara Developer Guide

The first query returns the max, min, average, and sum of all the out properties of all control:NumericWritables. The
resulting table will have a single row with four columns. The second query gets the first letter of every folder and then
counts how many folders start with that letter.

User-defined Aggregate Functions

Note: The ability to create user-defined aggregate functions is still considered experimental. The steps to create aggregate
functions may change in the future.

In this example we show how to create and implement the AVG() aggregate function provided by BQL. Creating an
aggregate function is a two-step process. The process is outlined below, and then a code example is provided.

e Step 1: Create the aggregator class

o Create a class that extends BObject and implements the "marker” javax.baja.bql.BIAggregator interface. This
interface has no methods, it just serves to signal the BQL engine that the class has aggregator semantics.

o By convention, you must have a publ i ¢ voi d method called "aggregate" with a single parameter that is the

type you want to aggregate on. This method will be called for each object in the result set. This is where the
aggregating should be done.

o By convention, you must have a "public <Type>" method called "commit()" that returns the aggregate value.
This will be called on your class when all the objects have been aggregated. This gives you a chance to do any
further calculation before returning the result.

e Step 2: Declare the aggregator in one of your module's classes so that BQI can find it when given a BTypeSpec
invocation of the aggregate function.

o Declareapublic static final Type[] <function nanme> in one of your module's classes. The
<function name> is the actual function name that would be used in a bql statement. If you have multiple
implementations of the aggregate function (perhaps to support different argument types), include them all in
the array. The BQL engine will search the list of implementing classes until it finds one that implements an
"aggregate(<type>)" method that matches the type of the current object.

Here is an implementation of AVG that supports averaging BNumbers and BStatusNumerics. This code example shows
how to implement step 1 above.

public final class BAverage extends BObject inplenments Bl Aggregator {

/** Aggregate a BNunmber */

public void aggregat e(BNunber val ue) {
++count ;
sum += val ue. get Doubl e() ;

}

/** Only aggregates if the status is valid. Oherwise it is skipped */
public void aggregat e(BStatusNumeric val ue) {
if (value.getStatus().isValid()) {
++count ;
sum += val ue. get Val ue();
}
}

/** Cal cul ate the average and return the result */
public BDouble commt() {

if (count == 0)
return BDoubl e. NaN
el se

return BDoubl e. make(sun count);

}

public static final Type TYPE = Sys. | oadType(BAvg. cl ass);
public Type getType() { return TYPE;, }

private double sum
private | ong count;

8/26/2015 155

Niagara Developer Guide

In the scalar example above, we created a class "BLib" in the "MyBql" module to create the "strlen()" function. Here is
how we can modify that class to define the AVG function we just created. This shows how to implement step 2 from the
outline above.

public BLib extends BObject {
/** Define the strlen function */
public static BInteger strlen(BObject target, BString str) {
return Bl nteger.make(str.getString().length());
}

/'l Declare the AVG aggregate function (step 2)
public static final Type[] avg = { BAverage. TYPE };

public static final Type TYPE = Sys.|oadType(BBLi b. cl ass);
public Type getType() { return TYPE;, }

Note that the name of the aggregate function is determined by its declaration in step 2, it is NOT the name of the class
that implements the aggregation logic. Also, aggregate names are case-insensitive. Here is how you would call your
implementation of the average aggregate function (note the use of the BTypeSpec)

sel ect MyBqgl:Lib.avg(out) fromcontrol: NunericWitable

BQL from Java

BQL query results can easily be displayed in a table or chart in a user interface. However, the results may also be
examined in code using the Baja APIL. The result of a "select" query is always a BITable. The items in the table depend on
the query. If the projection is omitted, the result is a table of objects in the extent that matched the predicate
requirements.

BOd ord = BOd. make("slot:/fool/bar|bqgl:select fromcontrol: NunericPoint");

Bl Tabl e result = (BI Tabl e)ord. resol ve(base). get();
Cursor ¢ = result.cursor();

doubl e total = 0Od

while (c.next())

total += ((BNumericPoint)c.get()).getQut().getValue();

If the query has a projection, the result is a BlTable and must be accessed that way to get the column data.

BOd ord = BOrd. make("sl ot:/fool/ bar|bqgl:sel ect nane, out.value from
control : NunericPoint");

Bl Tabl e result = (BI Tabl e)ord. resol ve(base). get();
Col umLi st colums = result. get Col ums();

Col um val ueCol um = col umms. get (1) ;

Tabl eCursor ¢ = (Tabl eCursor)result.cursor();
doubl e total = 0Od

while (c.next())

total += ((BINuneric)c.get(val ueCol um)). get Nunmeric();

Since Niagara AX 3.5 you have been able to perform BQL queries against unmounted components. This is useful when

8/26/2015 156

module://docdeveloper/doc/baja-rt/javax/baja/collection/BITable.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/collection/BITable.bajadoc

Niagara Developer Guide

you are programmatically constructing component trees, and want to query the tree structure, but the components are
not mounted in a station or bog. The example below illustrates how to do this.

/1 NOTE: using setQut() for nunmeric witables because set() doesn't work
when not nount ed.

BFol der fol der = new BFol der();

BNuneri cWitable nwl = new BNunericWitable();

nwl. set Qut (new BSt at usNuneri c(50.0));

fol der.add("a", nwl);

nwl = new BNunericWitable();

nwl. set Qut (new BSt at usNuneri c(100.0));

fol der.add("b", nwl);

String bgl = "select sum(out.value) fromcontrol:NunericWitable";

/1 Create the unnmounted OrdTarget using new "unmounted" factory nethod
OrdTarget target = OrdTarget. unnounted(fol der);

/1 Query the unnmounted folder to get the sumof all children

/1 control:NumericWitables out.val ue val ues.
Bl Tabl e col |l = (Bl Tabl e) Bgl Query. make(bqgl). resol ve(target).get();

8/26/2015 157

Niagara Developer Guide

BQL Expressions

Back to BOL Overview

BQL Expressions are used in the wher e clause of a BQL query to further qualify a result by narrowing the set of objects
in the extent.

Operator Precedence

BQL supports the following set of operators ordered by precedence:

', not, - logical not, numeric negation
o multiplication, division

+ - addition, subtraction

=, ' =, >1 >:5 <1 <= 1

ke 'in comparisons

and, or logical operators

Parentheses can be used to override the normal precedence.

Typed Literals

All primitive types and BSimple types can be expressed as literals in BQL. The syntax for primitives types is:

String - single quoted string
Example: 'This is a string literal'

number - a numeric value, unquoted
Example: 10

boolean - true or false, unquoted
Example: true

enum - The enum type spec followed by the tag separated by a dot.
Example: alarm:SourceState.normal

Expressing other BSimple types in BQL is more verbose because a type specifier is required. The syntax for a BSimple
value is the type spec (i.e. moduleName:typeName) followed by a string literal with the string encoding of the value (the
result of encodeToString() for the type). Example: baja:RelTime '10000'

Baja types are expressed in BQL using the type spec. Any type spec that is not followed by a quoted string refers to the

type itself.
Example: where out.type = baja:StatusNumeric

8/26/2015 158

module://docdeveloper/doc/baja-rt/javax/baja/sys/BSimple.bajadoc

Niagara Developer Guide

BQL Examples

Back to BOL Overview

This document is a collection of example queries that illustrate how to identify some common sets of data with BQL.
While each example in this document only presents a single solution, keep in mind that in most cases there are several
different ways get the same result.

All points
sel ect slotPath, out from control: Control Point

The result is the slot path and output value of all control points. Since we specified "out" the result is the combination of
value and status. If we wanted just the value, we would have used out.value. Or if we wanted value and status in separate
columns we would have specified out.value and out.status.

All points in alarm
sel ect slotPath, out fromcontrol:Control Point where status.alarm
The result is the slot path and output value of all control points currently in the alarm state. In the where clause, the path

"status.alarm" evaluates to true if the alarm status bit is set and false otherwise. This mechanism can be used to check the
state of any of the status bits. See BStatus for more information on status flags.

All points with "Meter" in their name

sel ect slotPath, out from control: Control Poi nt where nane |ike ' %keter%

The result is the slot path and output value of all points whose name includes the substring "Meter". BQL supports

simple pattern matching. A '%' or ' matches zero or more characters. A'_' matches exactly one character. The normal

character matching is case sensitive.
All points with a totalizer extension

sel ect parent.slotPath, total fromcontrol: NurmericTotalizerExt

The result is the slot path of every point that has a totalizer extension and the total for each totalizer. Note that the extent
is the set of all totalizers. To get the point path, we look at the parent of each object in the extent.

All current schedule output values

sel ect slotPath, out from schedul e: Abstract Schedul e stop

The result is the slot path and output value of all schedules. Note the keyword "stop”. The schedule component model
makes the "stop" keyword necessary. All of the common schedule (BooleanSchedule, NumericSchedule, etc.) are actually
composed of many more precise schedules. Without the "stop", the result would include all of the inner schedules in
addition to the top level schedules that this query is actually looking for. The "stop" tells the query processor to stop the
recursion when it reaches a component whose type matches the extent type.

All points overridden at priority level 8

sel ect slotPath, out fromcontrol:|lWitabl ePoint
where activelLevel = control:PriorityLevel.level_8

The result is the slot path and output value of all writable points that are currently overridden at priority level 8. I know
that every writable point is an instance of BIWTritablePoint. All writable points provide access to their active level with a
method called getActiveLevel(). Following the pattern for translating method names to BQL fields, I can access the active
level on writable points using "activeLevel". In this case I know that active level is represented by a PriorityLevel enum.
The level 8 value of the enum is specified by "control:PriorityLevel.level_8".

All points with units of degrees fahrenheit

sel ect slotPath from control: Nunmeri cPoi nt

8/26/2015 159

module://docdeveloper/doc/baja-rt/javax/baja/status/BStatus.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/BIWritablePoint.bajadoc
module://docdeveloper/doc/control-rt/javax/baja/control/enums/BPriorityLevel.bajadoc

Niagara Developer Guide

where facets.units.unitNane = 'fahrenheit’

The key to this query is understanding how units are associated with a point. All control points have facets. For numeric
points, the units are defined as a facet. So facets.units gets the units for the point. BUnit has a method called
getUnitName() so "unitName" gets the result of that method.

All points linked to a specific schedule

sel ect target Conponent. sl otPath from baja: Li nk
wher e sourceSl ot Name = 'out' and
sour ceConponent. sl ot Path = 'sl ot:/app/ Mai nSchedul e’

This one is tricky. Because links are dynamic, they do not have a fixed name that we can search for. There is also no way
to access just the links to a schedule output from BQL. Instead we have to look at all of the links and check the endpoints.
So the extent is all links. Then we check for a source slot of "out". Finally we check the source slot path.

All points that generate alarms of a specific class
sel ect parent.slotPath from al arm Al ar nSour ceExt where al arnCl ass = ' hvac'

The result is the slot path of all control points that generate alarms for the "hvac" alarm class. The extent is all alarm
source extensions. We find the extensions that specify "hvac" for the alarm class and get the parent slot path from those.
The parent of an alarm source extension is always a control point.

All points with a history extension

sel ect parent.slotPath from history: Hi st or yExt

This one is simple. We find all of the history extensions by using history:HistoryExt as the extent. Then we just get the
slot path of the parent. The parent of a history extension is always a control point.

All points that collect a history with a capacity greater than 1000 records.

sel ect parent.slotPath, historyConfig.capacity from history: Hi st oryExt
where historyConfig.capacity.isUnlimted or
hi st oryConfi g. capaci ty. maxRecords > 1000

For this query you have to understand how history extensions are configured. The capacity is a property of
HistoryConfig. However, Capacity is not a simple numeric value. To exceed 1000 records of capacity, the configured
capacity may either be unlimited or limited to a value greater than 1000. So first we check for unlimited and then we
check for a limit of more than 1000 records.

The number of unacked alarms in all alarm classes

sel ect nane, unackedAl ar nCount from al arm Al ar nCl ass

This query just looks at all of the alarm classes and for each one returns the name and the unackedAlarmCount. In this
case, it will be much more efficient to narrow the search by making the alarm service be the query base. All alarm classes
must be children of the AlarmService. So it is much better to only search the AlarmService container.

slot:/ Services/ Al arm bgl : sel ect name, nunber Of UnackedAl arns from
al arm Al ar nCl ass

8/26/2015 160

module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryConfig.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BCapacity.bajadoc
module://docdeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmClass.bajadoc
module://docdeveloper/doc/alarm-rt/javax/baja/alarm/BAlarmService.bajadoc

Niagara Developer Guide

Driver Framework

Overview

The driver framework provides a common model for abstracting how information is imported and exported from the
station VM. The model is built upon the following concepts

e BDevi ceNet wor k: This models a physical or logical network of devices.
e BDevj ce: This models a physical or logical device such as a fieldbus device or an IP host.

e BDevi ceExt : This models a functional integration at the device level which imports and/or exports a specific type
of information such a points, histories, alarms, or schedules.

e BNet wor kExt : This models an functional extension at the network level.

Driver Hierarchy

Drivers are always structured according to a fixed slot hierarchy as illustrated the Driver Hierarchy Diagram:

e DriverContainer: Typically all drivers are located in this folder directly under the station root.
e DeviceNetwork: Models the specific driver's protocol stack.
DeviceFolder: Zero or more levels of DeviceFolder can be used to organize the driver's Devices.

e Device: Devices model the physical or logical device of the driver. Devices are descendents of the DeviceNetwork
either as direct children or inside DeviceFolders.

e DeviceExt: DeviceExts are always direct children of Devices, typically declared as frozen slots.

Within each DeviceExt, there is usually a well defined hierarchy. For example the PointDeviceExt follows a similar model
with PointDeviceExt, PointFolders, ControlPoints, and ProxyExt.

Status

A key function of the driver framework is providing normalized management of status. The follows semantics are defined
for status flags:

Disabled: the user manually disabled the driver component

e Fault: a configuration, hardware, or software error is detected

e Down: a communication error has occurred

e Stale: a situation has occurred (such as elapsed time since a read) which renders the current value untrustworthy

The driver framework provides a standard mechanism to manage each of these status flags. A component is disabled
when a user manually sets the enabled property to false. Disable automatically propagates down the tree. For example
setting the network level disabled automatically sets all devices and points under it disabled.

The fault status is typically a merge of multiple fault situations. The driver framework does its own fault detection to
detect fatal faults. Fatal faults typically occur because a device or component has been placed inside the wrong container
(such as putting a ModbusDevice under a LonworksNetwork). Licensing failures can also trigger fatal faults. Driver
developers can set their own fault conditions in networks and devices using the confi gFai | () and confi gOk()
methods. A f aul t Cause method provides a short description of why a component is in fault. Fault conditions
automaticlly propagate down the tree.

The down status indicates a communication failure at the network or device level. Down status is managed by the ping
APIs using pi ngFai | () and pi ngOk() . Ping status is maintained in the health property. The driver framework
includes a Pi ngMoni t or which automatically pings devices on a periodic basis to check their health. The

Pi ngMoni t or can generate alarms if it detects a device has gone down.

DeviceExts

8/26/2015 161

module://docdeveloper/doc/driver-rt/javax/baja/driver/BDeviceNetwork.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/BDevice.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/BDeviceExt.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/BNetworkExt.bajadoc

Niagara Developer Guide

The following standard device extensions provide a framework for working specific types of data:

e Doint: For reading and writing proxy points.

History: For importing and exporting histories.

Alarm: For routing incoming and outgoing alarms.
Schedule: Used to perform master/slave scheduling.

User Interfaces

The driver framework provides a comprehensive set of APIs for building tools for managing configuration and learns
based on the AbstractManager API. Also see the Driver Learn illustration.

8/26/2015 162

module://docdeveloper/doc/workbench-wb/javax/baja/workbench/mgr/package-index.bajadoc

Niagara Developer Guide

Point Devicelet Framework

Overview

The] avax. baj a.driver. poi nt APIis used to perform point IO with logical or physical control points. Drivers use
the standard control points found in the cont r ol module. But each driver provides a specialization of BPr oxyExt for
driver specific addressing, tuning, and IO.

Refer to Architecture - Driver Hierarchy for an illustration of the component slot hierarchy.

Refer to Architecture - ProxyExt for an illustration of the design.

Point Modes

There are three modes which a proxy point may operate in:

e Readonly: These points are read from the device, but never written.
e ReadWrite: These are points which the driver can both read from and write to.
e Writeonly: These are points which the driver can write to, but cannot read.

A ProxyExt must indicate which mode it is operating by overriding the get Mode() method

Proxy Ext

The Pr oxyExt component contains two properties used for managing read and write values.

The r eadVal ue property indicates the last value read from the device. For writeonly points this is the last value
successfully written. This value is used to feed the parent point's extensions and out property. If numeric, it is in device
units.

The wr i t eVal ue property stores the value currently desired to be written to the device. If numeric, it is in device units.

Framework to Driver Callbacks

Driver developers have three callbacks which should be used to manage reads and writes:

e ProxyExt.readSubscri bed(): This callback is made when the point enters the subscribed state. This is an
indication to the driver that something is now interested in this point. Drivers should begin polling or register for
changes.

e ProxyExt.readUnsubscri bed(): This callback is made when the point enters the unsubscribed state. This is
an indication to the driver that no one is interested in the point's current value anymore. Drivers should cease
polling or unregister for changes.

e ProxyExt.write(): This callback is made when the framework determines that a point should be written. The
tuning policy is used to manage write scheduling.

Note: All three callbacks should be handled quickly and should never perform IO on the callers thread. Instead drivers
should use queues and asynchronous threads to perform the actual IO.

Driver to Framework Callbacks

The Pr oxyExt contains a standard API which the driver should call once a read or write operation has been attempted.

If a read operation completes successfully then r eadOk () method should be called with the value read. If the read fails
then call the r eadFai | () method.

8/26/2015 163

module://docdeveloper/doc/driver-rt/javax/baja/driver/point/package-index.bajadoc
module://docdeveloper/doc/control-rt/module-index.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/point/BProxyExt.bajadoc

Niagara Developer Guide

If a write operation completes successfully then the wr i t eOk() method should be called with the value written. If the

write fails for any reason then callwri teFai | ().

Tuning

All ProxyExts contain a Tuning property that manages how read and writes are tuned. All drivers which implement proxy
points should create a "tuningPolicies" property of type TuningPolicyMap on their DeviceNetwork. The Tuning structure
on each ProxyExt identifies its TuningPolicy within the network by slot name. TuningPolicies allow users to configure

which state transitions result in awr i t e() callback. TuningPolicies may also be used to setup a minWriteTime to

throttle writes and a maxWriteTime to do rewrites.

Utilities
The driver framework provides a suite of APIs to aid developers in building their drivers:

e BPol | Schedul er: This is a prebuild component that manages polling the points using a set of configurable
buckets. To use this feature have your Pr oxyExt implement the Bl Pol | abl e interface.
e Byt eBuff er: This class provides a wealth of methods when working with byte buffers such as reading and writing

integers using big or little endian.

8/26/2015 164

module://docdeveloper/doc/driver-rt/javax/baja/driver/util/BPollScheduler.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/util/BIPollable.bajadoc
module://docdeveloper/doc/nre-rt/javax/baja/nre/util/ByteBuffer.bajadoc

Niagara Developer Guide

History Devicelet Framework

Overview

Refer to the javax.baja.driver.history API.

History device extensions manage exporting and importing histories (data logs) to and from remote devices for archiving
purposes. For more information on Niagara histories, refer to the History documentation.

The BHistoryDeviceExt component is the container for archive descriptors which specify the details for importing/
exporting histories. A concrete implementation of this component can be placed under a device (concrete
implementation of BDevice) to specify the export/import behavior of histories to and from the device. The actual
descriptions of each history export/import are contained in a subclass of BArchiveDescriptor which supplies the unique
History Id for the history exported/imported. Since it is a BDescriptor, among other things it supplies the execution time
for performing the export/import. Two subclasses of BAr chi veDescr i pt or are available: BHistoryExport is used for
exporting or pushing a history to a remote device (referred to as a history export descriptor), and BHistorylmport is used
for importing or pulling a history from a remote device (referred to as a history import descriptor). Currently these are
the only two options, or active history descriptors. At present there are no passive history descriptors (i.e. history
exported descriptor or history imported descriptor). Also, in the concrete Niagara Driver implementation, the code
prevents a history export from occuring when there already exists a history import for a matching history id.

The BHistoryNetworkExt component manages network level functions for the history transfers. Its primary purpose is to
be the container of the configuration rules (BConfigRules) that specify how the configuration of a history should be
changed when a history is pushed (exported) into a Niagara station. Configuration rules are applied when an exported
history is created. Changing a rule has no effect on existing histories. A BConf i gRul e entry has two String parameters
used for matching a pushed history's device and history name, and once a match is found (the configuration rules are
iterated in slot order, and the first match will be used), any override rules (properties) will be used in place of the
corresponding properties on the incoming history's configuration (BHistoryConfig). For example, if you wanted to
increase the history capacity on a history that has been received from an export for archiving purposes, you could supply
an override property on a configuration rule to increase the capacity.

8/26/2015 165

module://docdeveloper/doc/driver-rt/javax/baja/driver/history/package-index.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/history/BHistoryDeviceExt.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/BDevice.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/history/BArchiveDescriptor.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryId.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/util/BDescriptor.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/history/BHistoryExport.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/history/BHistoryImport.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/history/BHistoryNetworkExt.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/history/BConfigRule.bajadoc
module://docdeveloper/doc/history-rt/javax/baja/history/BHistoryConfig.bajadoc

Niagara Developer Guide

Alarm Devicelet Framework

The BAlarmDeviceExt handles the sending an receiving of alarms to and from remote devices. It is both and alarm
source, implementing BIRemoteAlarmSource, and an alarm recipient, implementing BIRemoteAlarmRecipient.

Receiving Alarms

BAlarmDeviceExt is used for receiving alarms from a remote device. The BAlarmDeviceExt should be used as the source
for all incoming alarms. If more detail is needed about the actual source, the BAlarmRecord. SOURCE_NAME or

additional fields in the BAlarmRecord's alarmData can be used. Alarm Ack Request will be routed back to the
BAlarmDeviceExt when it is set as the source.

In Niagara Offnormal and Normal alarms are not two separate alarms as is found in some systems. In Niagara Offnormal
and Normal are two states of the same alarm. This is important to keep in mind is not using the AlarmSupport class as
each offnormal alarm generated will need it's source state set to Normal when it's source goes back to the normal state.

Sending Alarms

Sending alarms from the Niagara system to a remote device is accomplished by implmenting a BAlarmRecipient. The
BAlarmRecipient's handleAlarm method should route alarms from the Niagara system to the remote device and the
originating source. The actual sending of alarms to the device network should be done on a separate thread so as to not

block the control engine thread. The DeviceExt should not attempt to send alarms to Devices which are down or
disabled.

8/26/2015 166

module://docdeveloper/doc/driver-rt/javax/baja/driver/alarm/BAlarmDeviceExt.bajadoc
module://docdeveloper/doc/alarm-rt/javax/baja/alarm/BIRemoteAlarmSource.bajadoc
module://docdeveloper/doc/alarm-rt/javax/baja/alarm/BIRemoteAlarmRecipient.bajadoc

Niagara Developer Guide

Schedule Device Extensions

Overview

Schedule device extensions manage remote schedule synchonization. A subordinate schedule is a read-only copy of a
supervisor schedule. Subordinate schedules must be children of the schedule device extension.

Refer to the javax.baja.schedule.driver API.

BScheduleDeviceExt
Container of supervisor schedule export descriptors and subordinate schedules.

Subscription
At a random time after station startup and within the subscribeWindow property value, all subordinate schedules
who have not communicated with their supervisor will have their execute action invoked. For drivers where
remote supervisors do not persist information about local subordinates, the subscribe window should be some
small value rather than the default of a day.

Retries
Periodically the execute action of all BScheduleExports and BScheduleImportExts who are in fault is invoked. The
retry interval is controled by the retryTrigger property.

Subclasses

e Implement makeExport(String supervisorld) to create BScheduleExport objects for incoming subscription requests
from remote subordinates.

e Implement makelmportExt() to create the schedule extension for new subordinate schedules.
e Can call processImport() to handle requests from remote subordinates.
e Can call processExport() to handle updates from remote supervisors.

BScheduleExport

Maps a local supervisor to a remote subordinate. Will be a child of a BScheduleDeviceExt.

Execution
The execute action is where the the local supervisor schedule configuration is sent to the remote subordinate. It is
only invoked if the local supervisor schedule has been modified since the last time it was sent to the remote
subordinate. The executionTime property controls when the local supervisor version is compared to the remote
subordinate.

Subclasses

e Implement doExecute() to upload the supervisor schedule configuration.
e Implement postExecute() to enqueue the execute action on an async thread.
e Always call getExportableSchedule() before encoding a schedule for transmission. This inlines schedule references.

BSchedulelmportExt

Maps a local subordinate to a remote supervisor. Will be a child of the subordinate schedule.
Execution

The execute action is where the local subordinate makes a request to the remote supervisor for a configuration
update. The executionTime property controls when execute is invoked but it is turned off by default. Since

8/26/2015 167

module://docdeveloper/doc/driver-rt/javax/baja/driver/schedule/package-index.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/schedule/BScheduleDeviceExt.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/schedule/BScheduleExport.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/schedule/BScheduleImportExt.bajadoc

Niagara Developer Guide
BScheduleImportExt.execute will always result in a message to the remote supervisor, it is more efficient to have
the supervisor push changes only when necessary.

When the schedule device extension performs subscription, it is simply invoking the execute action on
BScheduleImportExt.

Subclasses

e Implement doExecute() to download the supervisor schedule configuration.
e Implement postExecute() to enqueue the execute action on an async thread.
e Can call processExport() to handle configuration updates from the remote supervisor.

BScheduleExportManager
This is the manager view for local supervisor schedules. This is a convenience and can be ignored.
Subclasses

e Subclass ScheduleExportModel to add MgrColumns for properties added to your BScheduleExport.
e Override makeModel() to return your new model.
e Make the manager an agent on your schedule device extenstion.

BSchedulelmportManager

This is the manager view for local subordinate schedules. This is a convenience and can be ignored.
Subclasses

e Subclass SchedulelmportModel to add MgrColumns for properties added to your BScheduleImportExt.
e Override makeModel() to return your new model.
e Make the manager an agent on your schedule device extenstion.

8/26/2015 168

module://docdeveloper/doc/driver-wb/javax/baja/driver/ui/schedule/BScheduleExportManager.bajadoc
module://docdeveloper/doc/driver-wb/javax/baja/driver/ui/schedule/ScheduleExportModel.bajadoc
module://docdeveloper/doc/driver-wb/javax/baja/driver/ui/schedule/BScheduleImportManager.bajadoc
module://docdeveloper/doc/driver-wb/javax/baja/driver/ui/schedule/ScheduleImportModel.bajadoc

Niagara Developer Guide

Basic Driver

Overview

Refer to the Basic Driver API.

This package provides some basic classes that may be useful to developers building a new driver (i.e. field bus driver).
These classes can be used (or subclassed) to provide some basic driver functionality, such as worker (queue)
management, basic poll schedule handling, basic messages and management of these basic messages through
request/response transactions (as well as unsolicited message handling), etc. It also provides a serial implementation
(com.tridium.basicdriver.serial) which can be subclassed by drivers that use a serial port for communication. Here is an
overview of basicDriver's structure:

BBasi cNet wor k

/ / | \

/ /

BBasi cDevi ces /

| \
| Wor ker Queues (BBasi c\Wor ker s)
/ | - dispatcher (used for
/ | synchroni zi ng access to Conm

BBasi cPol | Schedul er | - worker (for posting async

| operations, such as |earns)

| - wite worker (for posting

| async coal esci ng operations,

| such as wites)

I

ConmRecei ver
Conmmlransm tter

Commilr ansact i onVanager
- Conmilr ansact i ons

Unsol i ci t edMessageli steners
(registered if needed by network)

The abstract class BBasicNetwork is the root component of basicDriver. It is the base container for BBasicDevice objects,
and it provides a basic poll scheduler where objects implementing the BIBasicPollable interface can register to be polled
(i.e. points, devices). It also provides three worker threads (queues) for handling asynchonous operations and
synchronization of request messages to the Comm for transmission to the output stream (the following outlines the
INTENDED use of these worker queues):

Asynchronous operations should be posted onto either the worker queue or write worker queue (coalescing). Write
operations should always go to the write worker queue so they will be coalesced. Most other asynchronous operations,
such as learns, should be posted to the worker queue to keep the write worker queue free for write operations. As these
async operations are processed (dequeued), they should post any necessary message requests to the dispatcher queue,
which synchronizes access to the Comm(Conmmis ultimately responsible for sending the request message to the output
stream via the Commilr ansmi t t er and receiving the response message from the input stream via the ConmrRecei ver).
Other threads may also post directly to the dispatcher queue (for example, the poll thread can post poll message requests
directly to the dispatcher queue).

wor ker queue write worker queue

|
| di spat cher queue |
|

8/26/2015 169

module://docdeveloper/doc/basicDriver-rt/module-index.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/serial/package-index.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/BBasicNetwork.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/BBasicDevice.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/util/BIBasicPollable.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/comm/Comm.bajadoc

Niagara Developer Guide

|

| | | (The dispatcher queue
|
|

pol | | is intended to handle
requests __ | nessage requests only)
I
I
I
--------- + send a request nessage
to Commto transmt to
the output stream and
wait for and return
any response fromthe
i nput stream
Supporting Classes

BBasi cNet wor k also handles initialization, starting, and stopping the Conm or communication handler. Conmis used
to manage request/response message transactions for the network, handles the interaction between the low-level
transmitter and receiver, and routes any unsolicited received messages to the appropriate listener. Commuses the
following supporting classes to accomplish its tasks:

e CommTransactionManager: provides a pool of CommTransaction objects that are used for request/response
message matching. Matching a request message to a response message is determined through an Obj ect tag on
the Message (discussed below).

e CommReceiver: an abstract class implementing Runnabl e which handles receiving and forming
Recei vedMessages from the input stream. Subclasses must override the r ecei ve() abstract method to read
and return a complete Recei vedMessage. CommRecei ver will loop and continuously call r ecei ve() in order
to receive messages. Once a complete Recei vedMessage is received, this class routes the Recei vedMessage
back up to the Commfor further processing. The returned Recei vedMessage may also need to contain data for
request/response message matching (tag data) and unsolicited message listener processing (unsolicited listener
code).

e CommTransmitter: provides access and synchronization for writing Messages (and/or bytes) to the output stream.

e UnsolicitedMessageListener: ComMmcan store a list of objects implementing this interface in order to process
unsolicited received messages. Unsol i ci t edMessageLi St ener objects can be registered to the Commwith an
unsolicited listener code key. Then when a Recei vedMessage is received and determined to be unsolicited, it
can match the unsolicited listener code to determine which Unsol i ci t edMessagelLi st ener instance should
handle the Recei vedMessage.

e MessageListener: This is a helper interface that should be implemented by objects that wish to receive a response
Message. When using the sendAsync() or sendAsyncW it e() convenience methods of BBasi cNet wor k,
they require a parameter of type MessageLi st ener in order to determine where to route the response
Message.

Messages

The com.tridium.basicdriver.message package contains classes useful for building driver messages (using the Message
abstract class), allowing these Messages to be written to the output stream, and formatting a response received
(Recei vedMessage) into a proper Message.

e Message: an abstract class for wrapping a driver message and providing some methods necessary for handling a
response to this message. At a minimum, subclasses will need to provide the implementation for writing the
message to the output stream and determine how a response (Recei vedMessage) should be interpreted and
formed into a Message.

e ReceivedMessage: an abstract class for wrapping a received driver message and providing some methods for
determining if it is unsolicited and/or the unsolicited listener code to use for finding the correct
Unsol i ci t edMessagelLi st ener if the message is determined to be unsolicited. Subclasses should provide a
means to serve the appropriate data to form a complete Message.

Utility Classes

8/26/2015 170

module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/comm/CommTransactionManager.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/comm/CommTransaction.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/comm/CommReceiver.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/comm/CommTransmitter.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/UnsolicitedMessageListener.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/MessageListener.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/message/package-index.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/message/Message.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/message/ReceivedMessage.bajadoc

Niagara Developer Guide

The com.tridium.basicdriver.util package contains utility classes useful to most drivers.

e BasicException: an extension of BajaRuntimeException, a Basi CExcept i on can be thrown when an error occurs
in the driver.

BBasicWorker: an extension of BWorker, it manages a basic worker thread for a queue. Used by the
BBasi cNet wor k for the asynchronous worker.

BBasicCoalescingWorker: an extension of BBasi cWbr ker , it manages a basic worker thread for a coalescing
queue. Used by the BBasi cNet wor k for the asynchronous write worker.

BBasicPollScheduler: an extension of BPollScheduler, it handles subscribing, unsubscribing, and polling of
Bl Basi cPol | abl e objects.

BlBasicPollable: an extension of BIPollable, this interface should be implemented by any objects that wish to
register to receive poll requests from the BBasi cPol | Schedul er . Subclasses of basicDriver can use this to poll
any devices, points, etc. as needed.

Serial Driver

The com.tridium.basicdriver.serial package contains classes useful to most serial drivers (with the communication
handler, Conm) at the network level).

e BSerialNetwork: an extension of BBasi cNet wor k that supports serial communication on a single configurable
serial port. This abstract class can be subclassed to provide a frozen property of type BSerialHelper. This property,
called 'Serial Port Config', provides an end user the ability to configure a serial port and its settings (i.e. baud rate,
data bits, etc.) to use for communication with devices on the serial network.

e SerialComm: an extension of Conmthat handles opening the user selected serial port as well as the input and
output streams to that port. It is used by the BSer i al Net wor k to handle synchronization of the serial
communication.

8/26/2015 171

module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/util/package-index.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/util/BasicException.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BajaRuntimeException.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/util/BBasicWorker.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/util/BWorker.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/util/BBasicCoalescingWorker.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/util/BBasicPollScheduler.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/util/BPollScheduler.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/util/BIBasicPollable.bajadoc
module://docdeveloper/doc/driver-rt/javax/baja/driver/util/BIPollable.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/serial/package-index.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/serial/BSerialNetwork.bajadoc
module://docdeveloper/doc/serial-rt/javax/baja/serial/BSerialHelper.bajadoc
module://docdeveloper/doc/basicDriver-rt/com/tridium/basicdriver/serial/SerialComm.bajadoc

Niagara Developer Guide

BACnet Driver

Overview

The Niagara AX BACnet driver provides both client and server side BACnet functionality. On the server side, the
Niagara station is represented as a BACnet device on the network. Certain objects in Niagara can be exposed as BACnet
Objects. Niagara will respond to BACnet service requests for these objects, according to the BACnet specification. On the
client side, Niagara can represent other BACnet devices in the Framework. Properties of BACnet objects can be brought
into Niagara as BACnet Proxy Points. In addition, the BACnet driver provides client side schedule and trend log access.
The BACnet objects can also be viewed as a whole, using the Config views. Both client-side and server-side alarm support
is provided, using the intrinsic alarming mechanism. The basic components in the BACnet driver are

e BBacnet Net wor k: This represents the BACnet network in Niagara.
e Blocal Bacnet Devi ce: This represents Niagara as a BACnet device.
e BBacnet Devi ce: This models a remote BACnet device.

Server

The server side functionality of the driver is accomplished by using export descriptors to map Niagara objects as
BACnet Objects. The Local BACnet Device contains an export table from where all of the export descriptors are
managed. The | avax. baj a. bacnet . export package contains the standard export descriptors. The base interface for
an export descriptor, which must be implemented by all export descriptors, is Bl Bacnet Ser ver Qbj ect . This contains
the methods that are used by the comm stack and export mechanisms to access the BACnet Object properties of
whatever Niagara object is being exported. The primary classes implementing this interface are

e BBacnet Poi nt Descri pt or and its subclasses - for exporting control points.
BBacnet Schedul eDescri pt or and its subclasses - for exporting schedules.

BBacnet Tr endLogDescri pt or and BBacnet Ni agar aHi st oryDescri pt or - for exporting native BACnet
trend logs and Niagara histories, respectively.

BBacnet Fi | eDescri pt or - for exporting file system files.

BBacnet Notificati onC assDescri ptor - for exporting Niagara BAlarmClasses as Notification Class
objects.

Wherever a BACnet property is available directly from the exported Niagara object, this property is used. In some cases, a
BACnet-required property is not available on the Niagara object being exported. In those cases, the property is defined
within the export descriptor itself.

To export an object, the Bacnet Export Manager is used. A BQL query is made against the station to find components of
a particular type, and the results are displayed. When a decision is made to add an export descriptor for a particular
component, the registry is searched for export descriptors that are registered as agents on the component's Type. If any
are found, these are presented to the user in the Add dialog.

For accepting writes, the BACnet driver requires that a BACnet user be defined in the User Service. The password for
this user is not important, except for Device Management functions such as DevicecCommunicationControl and
ReinitializeDevice. The permissions assigned for this user define what level of access is allowed for BACnet devices. Reads
are always allowed; writes and modifications (such as AddListElement) are governed by the permissions of the BACnet
user. If no BACnet user is defined, writes are not allowed.

The main area where the server side of the BACnet driver is extensible is through the creation of new export descriptor
types. To create export descriptors for object types that are not currently exportable (such as a String Point), you simply
need to create a class that implements Bl Bacnet Ser ver Qbj ect . You may find that you want to subclass one of the

base export descriptor classes mentioned above, or you may find it easier to create your own, using these classes as a
guide.

Client

The client side functionality of the driver is accomplished with the BBacnet Devi ce and its device extensions. There
are extensions for each of the normalized models

8/26/2015 172

module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/BBacnetNetwork.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/BLocalBacnetDevice.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/BBacnetDevice.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/package-index.bajadoc
module://bacnet/doc/javax/baja/bacnet/export/BIBacnetServerObject.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/BBacnetPointDescriptor.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/BBacnetScheduleDescriptor.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/BBacnetTrendLogDescriptor.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/BBacnetNiagaraHistoryDescriptor.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/BBacnetFileDescriptor.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/export/BBacnetNotificationClassDescriptor.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/BBacnetDevice.bajadoc

Niagara Developer Guide

e BBacnet Poi nt Devi ceExt - for modeling properties of BACnet objects into Niagara control points.

e BBacnet Schedul eDevi ceExt - for representing BACnet Schedules as Niagara schedules for monitor or
control.

e BBacnet Hi st oryDevi ceExt - for representing BACnet Trend Logs as Niagara histories for configuration and
archiving.

e BBacnet Al ar mDevi ceExt - for managing BACnet alarms from the device.

e BBacnet Confi gDevi ceExt - for viewing and modifying BACnet Objects in their native model - as an entire
object, rather than by individual properties.

BACnet Proxy Points are configured by using a BBacnet Pr oxyExt . There are four subclasses of this, one for each type
of Niagara control point. The extensions are polymorphic, in that they know how to convert data from any of the
primitive data types to the data type of their parent point. Any proxy point can be written to if it is of the proper type.
The BACnet proxy extensions manage writes for both priority-array and non-prioritized points.

BACnet client-side Scheduling can be accomplished in two ways

e BBacnet Schedul eExport - This descriptor is used when Niagara is the supervisor, driving the schedule in the
device. It contains the object identifier of the remote schedule, and the ord to the Niagara schedule that is to be the
source of scheduling data. At configurable times this data is written down to the remote schedule.

e BBacnet Schedul el npor t Ext - This extension is used when the remote schedule is the source of data, and
Niagara is simply reading scheduling information from the device. The schedule is queried at configurable times to
update the Niagara schedule.

BACnet client-side Trending is accomplished by using the BBacnet Hi st or yl npor t . This descriptor periodically
archives data from the Trend Log object in the remote device for storage by the Niagara station.

The operation of BACnet objects is sometimes easier to understand when the object is viewed as a whole, with all of its
properties viewed toegether. For this reason, the Config device extension is provided. This allows you to view, for
example, all of the properties of an Analog Input object together, without having to create proxy points for all of them.
The expected use case is initial configuration or commissioning. The base object for representing BACnet Objects is
BBacnet bj ect . Specific subclasses for BACnet standard object types exist in | avax. baj a. bacnet . confi g.

The main areas where the client side of the BACnet driver is extensible are

1. BBacnet Devi ce. For specialized device behavior, the BBacnet Devi ce can be subclassed. This is not for adding
additional BACnet properties; the device object properties are contained in the BBacnet Devi ceQbj ect . Each
BBacnet Devi ce has an enumeration list which contains all of the extensions known to that device. Specific
device classes might have preconfigured entries for these enumerations, that allow it to better interpret and
represent proprietary enumeration values received from this device.

2. BBacnet Qbj ect . For specialized object types, such as a representation of a proprietary object type, the
BBacnet Qbj ect class should be subclassed. This includes any specific device object properties, which would be
contained in a subclass of BBacnet Devi ceCbj ect .

3. proprietary data types. If any proprietary data types are created, they can be modelled corresponding to the data
types inj avax. baj a. bacnet . dat at ypes. Primitive data types are generally modelled as simples. Constructed
data types are generally modelled as a subclass of BComplex. The data type must implement
Bl Bacnet Dat aType.

4. proprietary enumerations. Proprietary enumerations can also be created. If a property in an object is of an
extensible enumeration, it should be modelled as a dynamic enum whose range is defined by the specified frozen
enum. Examples of both extensible and non-extensible enumerations exist in | avax. baj a. bacnet . enum

For additional information, refer to the BACnet API.

8/26/2015 173

module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/point/BBacnetPointDeviceExt.bajadoc
module://docdeveloper/doc/bacnet-rt/com/tridium/bacnet/schedule/BBacnetScheduleDeviceExt.bajadoc
module://docdeveloper/doc/bacnet-rt/com/tridium/bacnet/history/BBacnetHistoryDeviceExt.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/alarm/BBacnetAlarmDeviceExt.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/config/BBacnetConfigDeviceExt.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/point/BBacnetProxyExt.bajadoc
module://docdeveloper/doc/bacnet-rt/com/tridium/bacnet/schedule/BBacnetScheduleExport.bajadoc
module://docdeveloper/doc/bacnet-rt/com/tridium/bacnet/schedule/BBacnetScheduleImportExt.bajadoc
module://docdeveloper/doc/bacnet-rt/com/tridium/bacnet/history/BBacnetHistoryImport.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/BBacnetObject.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/config/package-index.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/config/BBacnetDeviceObject.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/config/BBacnetDeviceObject.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/datatypes/package-index.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/datatypes/BIBacnetDataType.bajadoc
module://docdeveloper/doc/bacnet-rt/javax/baja/bacnet/enums/package-index.bajadoc
module://docdeveloper/doc/bacnet-rt/module-index.bajadoc

Niagara Developer Guide

Lonworks Driver

Overview

The Lonworks API provides the means to model lonwork networks and devices for configuration and run time control. A
network is a collection of connected lonworks devices and routers.

Basic components

e BlLonNet wor k: Is the top level container for BLonDevi ces. It provides manager views for commissioning,
binding and trouble shooting.

e BlonDevi ce: Provides a database model for lonDevices to facilitate configuration and access to run time data.
e BlonPr oxyExt : Customizes proxy points for data elements on lonDevices. Proxy points provide the mechanism
to interface point data in devices with Niagara control logic and graphics

Misc components

e BlonRout er: Contains the database model needed for network management of lonworks router.

LonDevice

A BLonDevi ce contains BDevi ceDat a and the means to manage a collection of BLonConponent s and
BMessageTags.

BLonConponent s are database representation of specific components in a device. They contain one or more data
elements (see LonDataModel below) and specific config information. There are three types: BNet wor kVar i abl e,
BNet wor kConf i g, BConfi gPar anet er .

BMessageTags are only for linking. There is no behavior implemented in massage tags in the station.

BLonDevi ce is an abstract class and is the root class for all lonworks devices. There are two flavors of BLonDevi ce
implemented in the lonworks drivers:

e Blocal LonDevi ce is a final class which provides the means to manage the local neuron. It is a frozen slot on
BLonNet wor k.

e BDynani cDevi ce provides support for dynamically building the devices data and BLonConponent s. There are
two actions to accomplish this: learnNv uses the self documentation in the device, importXLon uses an xml file
containing a representation of the device.

Lon Data Model

Each BLonConponent contains one or more data elements which mirror the data structure of the component in the
device. These data elements are managed by BLonDat a which handles conversion between the database representation
and the devices binary format. BLonDat a can also contain other BLonDat a components allowing for nested data types.

NOTE: BLonDat a has been folded into BLonConponent . The effect is to place the data elements at the same tree level
as the LonComponent config properties. This was done to improve efficiency in the workbench. The getter settor
methods in BLonConponent access LonData as though it were contained by the LonComponent. The get Dat a()
method will return the BLonConponent as a BLonDat a. The set Dat a() method will replace the current data
elements with the new elements passed in data argument.

Each data element is modeled asa BLonPrimiti ve. There are BLonPri mi ti ves for each primitive datatype.

e BlonBool ean models a boolean element
e BlonEnummodels a enumeration element
e BLonFl oat models a numeric element

e BlLonSt ri ng models a string element

8/26/2015 174

module://docdeveloper/doc/lonworks-rt/module-index.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BLonNetwork.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BLonDevice.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/proxy/BLonProxyExt.bajadoc
module://docdeveloper/doc/lonworks-rt/com/tridium/lonworks/BLonRouter.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/datatypes/BDeviceData.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BLonComponent.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BMessageTag.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BNetworkVariable.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BNetworkConfig.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BConfigParameter.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BLonDevice.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BLocalLonDevice.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BDynamicDevice.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/BLonComponent.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonData.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonPrimitive.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonBoolean.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonEnum.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonFloat.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonString.bajadoc

Niagara Developer Guide

Special element types

e Blonl nt eger models a numeric element when full 32 bits of data is needed

e BlonByt eArray is used in special cases to model data when can not be meaningfully modeled as primitive
elements

e BlLonSi npl e is used in special cases to model data which has been representated by a simple. The simple must
implement Bl LonNet wor kSi npl e .

Proxy points

Proxy points are standard Niagara control points used to access data elements in foreign devices. Proxy points have a
driver specific ProxyExt that handles addressing data elements in a specific device and data conversion needed to present
the data in a normalized format. The inputs and outputs of proxies can be linked to other control logic or graphical
points.

A BLonPr oxyEXt in a Proxy point makes it a lonworks proxy point. There are different BLonPr oxyExt s for each
primitive data type. These can be seen in javax.baja.lonworks.proxy.

Lon Proxy Points are managed by LonPointManager which is a view on the points container in each BLonDevi ce.

Network Management

Implements a set of standard lonworks network management functions. The user has access to these functions through
the following manager view.

e DeviceManager - provides support for discovering and adding lonwork devices to the database, for managing device
addresses, and downloading standard applications to devices.

e RouterManager - provides support for discovering and adding lonwork routers to the database, and for managing
device addresses

e LinkManagar - provides means to manage link types and bind links.
e LonUtiliesManager - provides a set of utilities useful for managing a lon network

LonComm

The lonworks communication stack can be accessed through a call to BLonNetwork.lonCommy(). LonConmis provides
APIs which allow the user to send LonMessages with one of the LonTalk service types (unackowledged, acknowledged,
unackowledged repeat, request response).

LonConmalso provides a means to receive unsolicited messages by registering a LonLi st ener for a specifed message
type from an optional subnetNode address.

LonMessage
LonMessage is the base class for all messages passed to/from LonComm APIs.

Users should subclass LonMessage if they wish to create a new explicit message type.

A set of LonTalk defined messages is provide in com/tridium/lonworks/netmessages. The definition of these message is
found in Neuron Chip Data Book Appendix B, Lonworks Router User's Guide, and EIA/CEA-709.1-B.

Mapping Programld to Device Representation

A mechanism is provided to associate an xml or class file with a particular device type. The device type is identifyed by its
Programld as described in LonMark Application-Layer Interoperability Guidelines. The association is created by putting
"def" entries in a modules module-include.xml file. This association is used during the learn process to determine the
appropriate database entity for discovered devices.

A "def" entry consists of name and value attribute. The name has the formate "lonworks:programlId” where programld is

8/26/2015 175

module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonInteger.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonByteArray.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonSimple.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BILonNetworkSimple.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/proxy/BLonBooleanProxyExt.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/proxy/package-index.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/LonComm.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/LonComm.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/LonListener.bajadoc
module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/LonMessage.bajadoc
module://docdeveloper/doc/lonworks-rt/com/tridium/lonworks/netmessages/package-index.bajadoc

Niagara Developer Guide

the devices Programld represented as 8 hex encoded bytes with leading zeros and <space> delimiter. Multiple mappings
are allowed for the same programld. Any nibble can be replaced with an *' to indicate a range of programIds mapped to

the same object. The value field can reference a class or xml file.

The formate for a class is cl=module:cname. The module is the niagara module containing the class and the cname is the
name as defined in the module-include.xml for that module. The class must be a sub class of BLonDevi ce or

BDynam cDevi ce

The formate for an xml file is xml=module/xname. The module is the niagara module containing the xml file and the
xname is the name of the file containing the device representation. The xml file formate is described in Lon Markup

Language.

Examples of def entries in lon device module-include.xml file.

<def s>
<def nane="|onworks. 80 00 Oc 50 3c 03 04 17" val ue="cl =l onHoneywel | : Q7300"

/>

<def nanme="| onworks. 80 00 16 50 Oa 04 04 0a"
val ue="xnl =l onSi ebe/ Mnl rv3. | nm "/ >

<def nanme="l| onworks. 80 00 8e 10 Oa 04 O* **"
val ue="xm =l onConpany/ dev. | nm "/ >
</ def s>

For further information refer to the Lonworks API.

8/26/2015 176

module://docdeveloper/doc/lonworks-rt/module-index.bajadoc

Niagara Developer Guide

Lon Markup Language

Overview

This document defines the content of a lon XML interface file. Basic syntax: The xml interface file represents a collection of objects.
These objects may contain predefined elements and/or undefined elements. LonDevice contains the predefined element deviceData
and any number of undefined NetworkVariables. As a general rule, elements which are not a defined element of the parent must have
a type attribute. Defined elements must provide a value "v" attribute or contain defined elements.

<nane type="XLonXnm Type">
<name v="val ue">

Example:

<T7300h type="XLonDevi ce">

<!-- Defined elenment deviceData with no type specified -->
<devi ceDat a
<l-- Defined elenent with value -->

<program D v="80 0 ¢ 50 3c 3 4 17"/>
<)dévi ceDat a>

<!-- Undefined elenent with specified type -->
<nvi Request type="XNetworkVari abl e">
<i ndex v="0"/>
</ nvi Request >
<T7300h type="XLonDevi ce">

The set of valid LonXmlTypes are: XLonXMLInterfaceFile, XLonDevice, XEnumDef, XTypeDef, XNetworkVariable,
XNetworkConfig, XConfigProperty, XMessageTag

LonXMLInterfaceFile

The root type is LonXMLInterfaceFile. It may contain EnumDefs, TypeDefs, and LonDevices. It may also reference other
LonXMLInterfaceFiles to allow for EnumDefs, and TypeDefs to be shared. The file attribute indicates the element is an included file

<!-- Exanple with reference to other interface files. -->
<T7300h type="XLonXM.I nterfaceFile">

<HwTherm fil e="dat at ypes\ HwTherm | nnmi "/ >

<HwConmon fil e="dat at ypes\ HwComon. | nm "/ >

<T7300h type="Xl onDevi ce">
</ T7300h>

<!-- Exanple with enunDefs and typeDefs included in single file. -->
<T7300h type="XLonXM.I nterfaceFile">

<HwWTher mAl ar rtEnum t ype="XenunDef "> . . . </ HwTher mAl ar nEnun®
<HwTher mAl ar m t ype="XTypeDef "> . . . </ HwTher mAl arn»
<T7300h type="XLonDevice"> . . . </ T7300h>
</ T7300h>
TypeDefs

EnumDefs and TypeDefs elements are needed to define the data portion of nvs, ncis, and config properties. An EnumDef contains a
set of tag/id pairs where the name of the element is the tag and the value is the id.

<HwTher mAl ar mEnum t ype=" XEnunDef " >
<NoAl arm v="0"/>
<T7300Commtai | ed v="2"/>
<Al arnmNot i f yDi sabl ed v="255"/>

8/26/2015 177

Niagara Developer Guide

</ HwTher mAl ar nEnun®

A TypeDef contains a set of data elements. Each data element contains a name and set of qualifiers. The "qual” attribute contains a
type field(u8, s8, b8, €8 ..), type restrictions (min,max) and encoding (resolution, byteOffset, bitOffset, len) information. For a

description of valid element values see Appendix B. If an element is an enumeration then the enumDef attribute must be included to
specify the name of the EnumDef used.

<HwTher mAl ar m t ype=" XTypeDef " >
< el em n="subnet" qual ="u8 res=1.0 of f=0.0"/>

< elem n="type" qual ="e8" enunDef ="HwTher mAl ar nEnunt'/ >
</ HwTher mAl ar n»

A TypeDef element may also include "default" and "engUnit" attributes.

<HwTher mConfi g type="XTypeDef ">
<TODOf f set qual ="u8 byt=0 bit=0 | en=4 m n=0.0 nmax=15.0 "
defaul t="0" engUnit="F"/>
<DeadBand qual ="ub byt=0 bit=4 | en=4 m n=2.0 nax=10.0 "
defaul t="2" engUnit="F"/>
</ HwTher nConf i g>

A TypeDef may have nonstandard features which require a software implementation. This is the case for typedefs with unions.
Unions are not currently supported. A t ypeSpec attribute can be used to specify a class file in a baja module as the implementation
of the TypeDef. The class must be a subclass of BLonDat a and provide overrides to byt e[] t oNet Byt es() and

fronmNet Byt es(byte[] netBytes).

<Fi | eSt atus type="XTypeDef">
< typeSpec v="Ilonworks: LonFil eStatus"/>
</ Fi |l eStatus>

LonDevice

A LonDevice consists of a defined element deviceData and sets of 0 or more of each XNetworkVariable, XNetworkConfig,
XConfigProperty, and XMessageTag type elements.

<T7300h type="XLonDevi ce">

<devi ceData> . . . </deviceData>
<nvi Request type="XNetworkVariable"> . . . </nvi Request>
<nvoAl arnLog type="XNetworkVariable"> . . . </nvoAl arnLog>
<nci Appl Ver type="XNetworkConfig"> . . . </nciAppl Ve>
<Schedul eFi | e type="XConfigProperty"> . . . </Schedul eFil e>
<fx_explicit_tag type="XMWessageTag"> . . . </fx_explicit_tag>
</ T7300h>
DeviceData

DeviceData is a defined set of values need to describe or qualify a lonworks device. A complete list of elements and their default
values provided later.

<devi ceDat a>
<mgj or Ver si on v="4"/>
<program D v="80 0 ¢ 50 3c 3 4 17"/>
<addressTabl eEntries v="15"/>

</ devi ceDat a>

NVs, NCIs, ConfigProps

8/26/2015 178

module://docdeveloper/doc/lonworks-rt/javax/baja/lonworks/londata/BLonData.bajadoc

Niagara Developer Guide

NetworkVariable, NetworkConfig (nci), and ConfigProperty elements share a common structure. Each one consists of a set of
defined elements and a data definition. See Appendix A for a complete list of defined elements and their default values.

The data definition can take one of three forms:

1. for standard types a snvtType(for nv/nci) or scptType(for nci/cp) element
2. a typeDef element to specify the XTypeDef containing the data elements
3. aset of elem entries contained in the nv,nci,cp with the same definition as used for TypeDef

<nvoAl arnLog type="XNetwor kVari abl e>
<i ndex v="38"/>
<direction v="output"/>
<t ypeDef =" HwTher mAl ar m_Log"/ >

</ nvoAl ar nLog>

<nvi Request type="XNetwor kVari abl e">
<i ndex v="0"/>
<snvt Type v="obj Request"/>

</ nvi Request >

<nci Set poi nts type="XNet wor kConfi g">
<i ndex v="17"/>
<snvt Type v="tenpSetpt"/>

</ nci Set poi nt s>

<bypassTi me type="XConfi gProperty">
<scpt Type v="CpBypassTi ne"/>
<scope v="object"/>
<sel ect v="0"/>

. <) b&/passTi nme>

File Attribute

There will be cases where it is desirable to nest interface files. This will provide a means to share type definitions between multiple
device interface files. It may also ease the process of auto generating the files when the data is contained in multiple forms (i.e. xif
files, resource files, ...).

To include a file an element with the "file" attribute is included in the root. The path in the file attribute entry is specified relative to
the containing file.

The following is an example of nested files. File #1 contains enum definitions, File #2 contains type definitions which use the
enumDefs and file #3 contains the device definition which may use both.

File #1 ..\honeywell\enum\ HwThermEnum.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<HwTher mEnum t ype="XLonXM.I nt er f aceFi | e" >
<HwTher mAl ar mEnum t ype=" XEnunDef " >
<NoAl arm v="0"/>
<InvalidSetPtAlrmv="1"/>

<) I—MTHer mAl ar nEnun®

<} WvTher nEnune
File #2 ..\honeywell\datatypes\ HwTherm.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<HwTher m t ype="XLonXM.I nt er f aceFi | e" >
<HwTher mEnum file="..\ enum HwTher mEnum xm "/ >
<HwTher mAl arm type="XTypeDef">
<el em n="subnet" qual ="us res=1.0 off=0.0 "/>

8/26/2015 179

Niagara Developer Guide

<el em n="node" qual ="us res=1.0 off=0.0 "/>
<el em n="al arnType" qual ="en " enunDef =" HwTher mAl ar mEnuni'/ >
</ HwTher mAl ar n»

</ HwTher
File #3 ..\honeywell\

<?xm version="1.0" encodi ng="UTF-8"?>
<T7300h type="XLonXM.I nterfaceFile">
<HwTherm file="..\datatypes\ HnvTherm xm "/ >
<T7300h type="XLonDevi ce">
<nvoAl arm t ype="XNet wor kVari abl e" >
<t ypeDef =" HnTher mAl ar mi'/ >
<i ndex v="36"/>
<direction v="output"/>

</ nvoAl ar n>

</ T7300h>
</ T7300h>

XDeviceData Definition

XDeviceData definition: see LonMark External Interface File Reference Guide 4.0B

| Type H Name H Default H Valid Values ‘
|int HmajorVersion HO H— ‘
|int Hminor\/ersion HO H- ‘
byte[] |[programID 0000000 0l

|int Hdomains H2 H— ‘
|int HaddressTableEntries HO H— ‘
|boolean‘|handlesIncomingExplicitMessagesHfalse H- ‘
|int HnuvaDeclarations HO H- ‘
|int HnumExplicitMessageTags HO H— ‘
|int Hnetworl(InputBuffers HO H— ‘
|int HnetworkOutputBuffers HO H- ‘
|int ‘|priorityNetworkOutputBuffers HO H- ‘
|int ‘|priorityApplicationOutputBuffers HO H- ‘
|int ‘|applicationOutputBuffers HO H— ‘
|int ‘|application1nputBuffers HO H— ‘
|int ‘|sizeNetworl<InputBuffer HO H— ‘
|int ‘|sizeNetworkOutputBuffer HO H— ‘
|int HsizeAppOutputBuffer HO H- ‘
|int HsizeAppInputBuffer HO H- ‘
|String HapplicationType ‘|unl<nown‘|unknown,mip,neuron,hostSelect,hostNISelect‘
|int ‘|numNetworkVariablesNISelect HO H— ‘
[Il Il Il I

8/26/2015

Niagara Developer Guide

|int HrchransactionBuffers HO H- ‘
|int HaliasCount HO H- ‘
|boolean“bindingII Hfalse H- ‘
|boolean‘|allowStatRelativeAddressing Hfalse H- ‘
|ir1t HmaxSizeWrite Hl 1 H— ‘
|int HmaxNuvaSupported HO H- ‘
|int HneuronChipType HO H- ‘
|int HclockRate HO H— ‘
|int HfirmwareReVision HO H- ‘
|int ‘|rCVTransactionBlockSize HO H— ‘
|int HtransControlBlockSize HO H- ‘
|int HneuronPreeRam HO H- ‘
|int HdomainTableEntrySize HO H— ‘
|int HaddressTableEntrySize HO H- ‘
|int anConfigTableEntrySize HO H— ‘
|int HdomainToUserSize HO H— ‘
|int anAliasTabIeEntrySize HO H- ‘
|boolean‘|standardTransceiverTypeUsed Htrue H- ‘
|int ‘|standardTransceiverTypeId HO H— ‘
|int HtransceiverType HO H— ‘
|int ‘|transceiverlnterfaceRate HO H— ‘
|int HnumPrioritySlots HO H- ‘
|int HminimumClockRate HO H- ‘
|int HaveragePacketSize HO H- ‘
|int HoscillatorAccuracy HO H— ‘
|int HoscillatorWakeupTime HO H— ‘
|int HchannelBitRate HO H- ‘
|boolean”specialBitRate Hfalse H- ‘
|boolean‘|specia1PreambleControl Hfalse H— ‘
|String ‘|special\X/al<eupDirection Hinput Hinput,output ‘
|boolean‘|overridesGenPurposeData Hfalse H— ‘
|int H generalPurposeDatal HO H- ‘
|int H generalPurposeData2 HO H- ‘
|int H generalPurposeData3 HO H- ‘
|int H generalPurposeData4 HO H— ‘
|int ngneralPurposeData5 HO H— ‘
|int ngneralPurposeData6 HO H- ‘

8/26/2015

181

Niagara Developer Guide

|int ngneralPurposeData7 HO H- ‘
|int HrcvStartDelay HO H- ‘
|int HrchndDelay HO H- ‘
|ir1t HindeterminateTime HO H- ‘
|ir1t HminInterpacketTime HO H— ‘
|int HpreambleLength HO H- ‘
|int HturnaroundTime HO H- ‘
|int HmissedPreambleTime HO H— ‘
|int ‘|pac1<etQualificationTime HO H- ‘
|booleanHrawDataOverrides Hfalse H— ‘
|int HrawDataClockRate HO H- ‘
|int HrawDatal HO H- ‘
|int HrawDataZ HO H— ‘
|int HrawDataB HO H- ‘
|int HrawData4- HO H— ‘
|int HrawDataS HO H— ‘
|String HnodeSelﬂD H"" H- ‘
NetworkVariable and Network Config common elements
| Type H Name H Default “ Valid Values ‘
String |[snvtType - ff;):glli\l\/fe\;f Master List."SNVT_angle_vel" becomes
|ir1t Hindex H-l ”-
|int HaverateRate HO “-
|int HmaximumRate HO “—
|int HarraySize Hl ||—
|boolean”ofﬂine Hfalse ”-
|boolean”bindable Htrue ”—
|String Hdirection H"input" ”input,output

|String HserviceType

H"unacked"“acked, repeat, unacked, unackedRpt

|boolean‘|serviceTypeConfigurable Htrue

|boolean”authenticated Hfalse

|boolean‘|authenticatedConfigurable‘|true

|boolean“priority Hfalse

|boolean‘|priorityConfigurable Htrue

NetworkVariable only elements

| Type H Name HDefault”Valid Values”

8/26/2015

182

Niagara Developer Guide

|String HobjectIndex H"" ”—

|

|int Hmemberlndex H-l ”- |

|int HmemberArraySizeHl ”- |

|booleanHmngember Hfalse ”— |

|boolean”changeType Hfalse ”— |

NetworkConfig only elements

| Type H Name H Default H Valid Values ‘
|String HscptType H"" H— ‘
|String Hscope H"node" Hnode,object,nv ‘
|

|String Hselect

H“" HIf for node select=-1. Possible formates are n n~m n-m n.m n/m

anytime, mfgOnly, reset, constant, offline, objDisable,

String ||modifyFlag |["anytime" deviceSpecific

|ﬂoat Hmax HFloat.NaNH— ‘

|ﬂoat Hmin HFloat.NaNH— ‘

|boolean”changeTypeHfalse H- ‘
ConfigParameter elements

|Type|| Name H Default H Valid Values

|String||scptType H"" H-

|String||scope H"node" Hnode,object,nv

|String||select

H"“ HIf for node select=-1. Possible formates are n n~m n-m n.m n/m

|String||modifyFlag

|
|
|
|
H"anytime" Hanytime, mfgOnly, reset, constant, offline, objDisable, deviceSpecific ‘
|
|
|
|

|int ”length HO H—
|int ||dimension Hl H-
|ﬂoat ”max HPloat.NaNH-
|ﬂoat ||min HFloat.NaNH~

String||principalNv/||""

if the scope is object and the scpt is inherited then this specifies the
memberNumber of the principalNv in the selected object. Prefixed
with '#' if mfgDefined member '|' if standard member.

Element Qualifier

The format for an element attribute is:

qual =" Type [qualifier=xx]"
exanpl e: qual ="u8 res=0.1 m n=5 max=12"

|Type|| Device Data Type ” Valid Qualifiers

|
|c8 ”character - 1 byte ”— ‘
|
|

|58 ”signed short - 1 byte ||res, off, min, max, invld

|u8 ”unsigned short - 1 byte ||res, off, min, max, invld

8/26/2015

183

Niagara Developer Guide

|sl6 ”signed long - 2 byte

||res, off, min, max, invld

|u16 ”unsigned lon - 2 byte

||res, off, min, max, invld

|f32 “ﬂoat - 4 byte

||res, off, min, max, invld

|332 ”signed int - 4 bytes

||res, off, min, max, invld

|b8 ”boolean - 1 byte ”-

|e8 ”enumeration - 1 byte ”-

bb [boolean in bit field (bt bit, len

|eb ”enumeration in bit field”byt, bit, len

|ub ||unsigned int in bit field ||byt, bit, len, min, max, invld‘

|sb ”signed int in bit field ||byt, bit, len, min, max, invld‘

|st ”string ||len ‘

|na ”no type - byte array ”len ‘

|Qualifier Code” Description H Default ‘
|res Hresolution float Hl.O ‘
loff [Offset 0.0 |
|min HMinimum legal value HNot specified‘
|max HMaximum legal value HNot specified‘
|invld HInvalid value HNot specified‘
|byt HByte offset - 0 based H-l ‘
|bit HBit offset - 0 based, 7 for msb, 0 for Isb HO ‘
|len HNumber of bytes(na), char(st) or bits(bb,eb,ub)”l ‘

8/26/2015

184

Niagara Developer Guide

Build

Contents

o QOverview

e Gradle Configuration
® Droject Setup
o Project Configuration Files
o Project Source Code Layout
= Stand-alone Module Project
m Multi-project Module Set
o Running Gradle

= Gradle Task Resolution
m Common Gradle Tasks

o Additional Gradle Options
m Set Up Intelli] IDEA for Niagara 4 Development
m Set Up Eclipse for Niagara 4 Development
= External Dependencies

e Gradle Build Scripts

o Gradle Wrapper Script - gradlew.bat

o Build Script Elements - build.gradle
= Gradle Dependency Notation
m Convert build.xml to build.gradle
= Mapping Summary

m Example Conversion
e Other Module Files

o module-include.xml

o module.palette

o module.lexicon

o moduleTest-include.xml

e Single Module Project
o DProject Setup
o Project Build
e Multiple Module Project Set
o Project Setup
o Project Build
o Example Gradle Scripts
m build.gradle (for the project)
m vendor.gradle
® settings.gradle
e External Library Dependencies
o DProject Setup

Overview

Niagara 4 contains many architecture and functionality improvements. One area Tridium is improving on is the Niagara
system’s support for standard software development tools. The intent is that there will be minimal changes required in
your development environment to compile modules in Niagara 4, while providing a better and more standard user
experience for our Java developer customers.

One change being made is to incorporate Gradle into our build tool chain and migrate away from the proprietary build

8/26/2015 185

Niagara Developer Guide

system used in Niagara AX. This should enable a more standard setup of development projects and provide more
standard integration with Java IDEs (specifically Eclipse or Intelli]).

Additional information on Gradle can be found by following the links below. It is not expected that Niagara developers
become experts in Gradle, but there is a lot of information available on the web, as well as several books available for
those who wish to learn more.

Gradle home page
Gradle user guide
Gradle language reference

Also, a number of example Gradle projects are provided as part of the Niagara 4 installer. After extracting the installer
. zi p file, check inside the dev folder, right next to the installer . exe files.

Gradle Configuration

There is some configuration required to run Gradle to compile module source code, build a module jar file, and assemble
module a javadoc jar file. For single module projects, a basic bui | d. gr adl e script is required to actually build the
module, and a gr adl ew. bat script is required to install Gradle, set up the environment, and initiate the build process.

Build scripts for single module projects or the main project of a multi-project build should be executed with the
gr adl ew. bat . The first time it is run it will install Gradle for you, so there is no installation required by the developer.
It also sets up the build environment (Java classpath, etc.) for a Gradle project to use during execution. The

The bui | d. gr adl e script contains the actual Domain Specific Language (DSL) code used by Gradle to run the module
build task. It contains the same basic information as a build.xml file has for Niagara AX modules, like the module name,
version, vendor, and dependencies. More details of the elements defined in the bui | d. gr adl e and a mapping of
build.xml elements to a bui | d. gr adl e script are located in the Build Script Elements section below.

For multi-project builds, a single gr adl ew. bat file and a bui | d. gr adl e script is needed for the main project of the
build. Each module will have a gradle file containing module-specific configuration elements.

For large multi-project builds, Gradle includes a Configuration On Demand mode that improves build performance by
only configuring projects that are relevant for the required tasks. To enable this feature, add it to your Gradle properties
file:

e In your home folder, create a .gradle\gradle.properties file. Your home folder is typically C: \ User s\ <user nane>
in windows7

e Insert the line or g. gradl e. confi gur eondenmand = tr ue into the file

Other elements can be configured here, including or g. gr adl e. daenon = tr ue. Enabling the daemon element can
improve build times, but will keep the JVM binary locked on Windows. You can read more about Gradle configuration
on the Gradle web site.

Note: Certain network configurations may require setting proxy information in the gr adl e. properti es file in the
user’s home folder. More information on how this is configured can be found on the Gradle web site.

Project Setup

Project Configuration Files

In addition to the gr adl ew. bat and bui | d. gr adl e files, a rodul e- i ncl ude. xm file is required, and the

nodul e. pal ett e and nodul e. | exi con files are optional. If you have test classes for your module, a nodul eTest -
i ncl ude. xm is needed. The contents of these files are described in a later section of this document. Note that the
Niagara AX bui | d. xm file is no longer needed to build Niagara 4 modules.

Project Source Code Layout
Gradle locates source code through a configuration called sourceSets. The default source set configuration for Niagara

projects is for the source code to be in a folder called St ¢ and for test source code to be in sr cTest . This folder
structure is used during compile to allow Gradle to locate source code and during module jar creation to enable Gradle to

8/26/2015 186

http://www.gradle.org/
http://www.gradle.org/docs/current/userguide/userguide.html
http://www.gradle.org/docs/current/dsl/index.html
http://www.gradle.org/docs/current/userguide/userguide.html
http://www.gradle.org/docs/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Niagara Developer Guide

locate any files to include in the module. See the build script for examples of include files for main and test modules - the
from(...) syntax. More details on setting up tests can be found in the TestNG Support in Niagara 4 document.

Stand-alone Module Project

\ <modul e name> - Top | evel source directory

|- build.gradle - Gadle script file

| - nodul e.lexicon - Default lexicon file

| - nodul e.palette - Defines Palette information for the nodul e

| - nmodul e-include. xm - Declares Types, Defs, etc. for the nodul e

| - nodul eTest-include. xm - Declares Types, Defs, etc. for the test nodule

| - src\ - Folder containing nodul e packages, source files, and resource files

| - srcTest\ - Folder containing test packages, source files, and resource files

Multi-project Module Set

\<sone folder name> - Top | evel directory

|- build.gradle - Main Gadle script file

| - vendor.gradle - Define the group (vendor Nane) and version here - they will be used
in all nodul es

| - settings.gradle - Gradle script containing the nanmes of all nodules or folders
cont ai ni ng nodul es

<nmodul e 1 nanme>\ - Fol der containing Mdule 1

| - <nmodule 1 nanme>.gradle - Module 1 Gadle script file

| - nmodul e.lexicon - Default Iexicon file for nodule 1

| - nmodule.palette - Defines Palette information for nodule 1

| - nmodul e-include.xm - Declares Types, Defs, etc. for nodule 1

| - nmodul eTest-include. xm - Declares Types, Defs, etc. for test nodule 1

| - src\ - Folder containing nodule 1 packages, source files, and resource files

| - srcTest\ - Folder containing test 1 packages, source files, and resource files
<nmodul e 2 nanme>\ - Fol der containing Mdule 2

| - <nmodule 2 nane>.gradle - Mddule 2 Gradle script file

Running Gradle
Gradle Task Resolution

Part of the reason for using Gradle is that it includes a DSL (Domain Specific Language) for building Java projects. A small
amount of script configuration results in a powerful set of tasks for compiling, assembling, testing, and publishing
software. When you run gr adl ew <t askNanme>, Gradle will apply that task to all projects that declare that task. For
example, gr adl ew cl ean will clean all modules in a multi-project configuration. If you want to execute a task against a
specific project, use the gr adl ew : pat h: t o: pr oj ect : <t askNane> syntax. If your multi-project module set is
organized as described above, you can run Gradle tasks for a single module using gr adl ew : <nmodul eNane>:

<t askNane>. For example, to clean the component Li nks module in the developer examples under the dev folder, run
gradl ew : conponent Li nks: cl ean. When you execute gr adl ewfor the first time, it will download the Gradle
framework required to complete task execution. This will take a few moments, but will only be needed once.

Common Gradle Tasks

gr adl ew t asks - List the Gradle tasks available for execution

gradl ew j ar - Compile module source code, assemble the module jar, and copy it to the installation location
gr adl ew j avadocJar - Generate javadoc files and assemble them into a jar file

gr adl ew nodul eTest Jar - Compile, jar, and install test module code

gr adl ew cl ean - Clean compiled artifacts from the module folder

gr adl ew : <nodul eName>: j ar - Compile, jar, and install a single

gradl ew - p <nodul eNane> j ar - Compile, jar, and install a single

Additional Gradle Options

Gradle provides tasks to generate Eclipse and Intellij project files from script configurations.

8/26/2015 187

Niagara Developer Guide

Set Up Intelli) IDEA for Niagara 4 Development

1. Open a command prompt console and execute gr adl ew cl eanl dea idea in your main project folder to generate
the necessary IDEA project files.

o cl eanl dea will clean any previous project files out, then idea will rebuild them.
2. Run Intelli]. At the welcome screen, select “Open Project”.
3. Browse to your project folder and select niagara4.ipr.

Set Up Edlipse for Niagara 4 Development

1. Open a command prompt console and execute gradlew cleanEclipse eclipse in your main project folder to generate
the necessary eclipse project files.

o cl eanEcl i pse will clean any previous project files out, then eclipse will rebuild them.
2. Run Eclipse. Select “Import...” for each module.
3. Navigate to the module folder in the Import wizard.

External Dependencies

In Niagara AX, if you had an external dependency on a third-party jar (like Apache commons-pool) and choose not to
convert it to a module, then you included it in the extdirectory of your module source and bui | d. j ar would take care
of including it in your generated module. This process is typically called creating an “uberjar” or “fatjar”.

In Niagara 4, using Gradle we take a slightly different approach. You declare all your external dependencies in your Gradle
script using a special uberjar dependency configuration. Any dependencies declared against the uberjar configuration will
be automatically included in the generated module. Also, in Niagara 4 we are moving towards pulling external
dependencies from a central repository. Gradle includes support for the central Maven repository, which is a commonly
used repository for software artifacts. Gradle will download the dependency automatically from the central Maven
repository and include it in the generated module. The Gradle build scripts will no longer look for dependencies in the
ext directory of your module.

NOTE: Internet connectivity is required for accessing the central Maven repository.

Gradle Build Scripts

The Gradle script files contain elements similar to those in the Niagara AX build.xml file, configured for Gradle. The
specific configuration will depend on the type of project (stand-alone or multi-project) required by the developer. For a
stand-alone module, the Gradle script file is bui | d. gr adl e. For a multi-project build environment, there will be one
bui | d. gr adl e for the main project, and each module within the project will have a <modul e>. gr adl e file. The
developer examples found in the dev folder contain script files for both configurations. See the description of stand-alone
and multi-project configurations for details on the two project types.

Each bui | d. gr adl e script, either stand-alone or multi-project, will have an associated gr adl ew. bat Gradle wrapper
file.

Gradle Wrapper Script - gradlew.bat

A gradle wrapper file is available in the bin folder of the Niagara installation. It sets up the build environment for
compiling Niagara modules, including Java class paths and Gradle configuration settings. The first time it is used to
compile a module, it will download the Gradle runtime libraries and any external dependencies needed to compile. It
should be used every time modules are compiled, as it enables a Gradle daemon to improve compile efficiency.

Additional information about the Gradle wrapper is available on the Gradle web site. More advanced users may choose to
modify the wrapper script as needed, but it is likely that this will not be necessary.

Build Script Elements - build.gradle

Several Gradle properties must be declared in the appropriate script file in order for the module to compile, jar, and test
correctly. The examples shown later in this document and the source examples in the dev folder contain the commonly
used properties that will need to be defined for each module. Use them as templates for your stand-alone modules. There
are other elements in these examples that should be left as they are; these are noted by comments in the Gradle scripts.
Some common elements used in Gradle build scripts are described below. The specific Gradle file containing these

8/26/2015 188

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html

Niagara Developer Guide

elements depends on which configuration being used (stand-alone or multi-project). Refer to the examples for guidance
on where to locate these elements in your projects.

ext {} - This namespace is used to declare extra properties within the project.

bui I dscri pt {} - Configures the classpath used by the build script for this project.

repositories {} - Gradle uses these to resolve and download dependency artifacts. The defaultconfigurations for
Niagara 4 projects uses Maven and local flat file repositories for providing dependencies.

dependenci es {} - Specific artifacts required by particular phases of the build sequence (r.g. compile, test, etc.).
jar {} - Enables the jar task to locate additional files to include in the jar file.

apply - Include shared Gradle code into the current project.

sourceSets {} - Configurations for source file locations.

ni agar aMbdul e {} - Provided by the niagara-module plugin to enable construction of a Niagara 4 compliant jar file.
nodul eTest Jar {} - Provided by the niagara-module plugin to enable construction of a Niagara 4 compliant test jar
file.

NOTE: The examples in the dev folder contain configurations for both project types. You only need to configure one of
these (stand-alone or multi-project).

Gradle Dependency Notation

Your modules will generally have a dependency on one or more Niagara 4 modules. These dependency declarations are
declared in the module build Gradle file. The first element in the dependency declaration is the configuration name. The
standard Gradle configuration for compiling Java code is conpi | e. A second configuration used for test classes in
Niagara 4 is ni agar aModul eTest Conpi | e. The second element in the dependency declaration is the dependency
notation. The notation used in the example modules for external dependencies uses the String notation format. The
notation contains the group (vendorName), name (module), and version, each separated by a colon (:). So the notation
for declaring a dependency on the baja.jar module is " Tr i di um baj a: 4. 0".

One advantage of using Gradle is that it does transitive dependency resolution automatically. This means that you only
need to declare direct dependencies on modules or external libraries that your code directly references. If these direct
dependencies have their own compile-time dependencies (i.e. transitive dependencies), Gradle will resolve these
automatically.

Other notation formats are possible. See the Gradle documentation for additional information on dependency
management.

Convert Niagara AX build.xml to Niagara 4 build.gradle

In the Niagara AX Developer Guide, the section on Build provides an overview of the elements available for inclusion in
the bui | d. xm file. This includes a definition of XML element and attributes that can be used in bui | d. xm . There
are four XML elements described in the documentation: module (the root element), dependency, package, and resources.
Most of the element and attribute mappings from bui | d. xml to the Gradle script are straightforward. Pay particular
attention to the dependency declarations. Gradle contains a more sophisticated approach to dependency resolution
described above, and has a standard way of declaring and resolving dependencies that has been adopted in Niagara 4.

Mapping Summary

The table below contains a mapping of common elements used in the bui | d. X to declarations in a corresponding
Gradle script.

build.xml Gradle Script
Root <module> Attributes ext or niagaraModule Elements
name = "foo" ext { name = "foo" }
vendor = "X" ext { project.group = "X" }
vendorVersion = "1.5.0" ext { project.version = "1.5.0" }
description = "X foo" ext { project.description = "X foo" }
preferredSymbol = "x" niagaraModule { preferredSymbol = "x" }
bajaVersion = "0" niagaraModule { bajaVersion = "0" } (optional)
<dependency> Tag dependencies Elements
name="bar" vendor="X" vendorVersion="4.0" dependencies { compile "X:bar:4.0" }
<resources> Tag jar Elements

8/26/2015 189

http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

Niagara Developer Guide

name="/com/example/icons/*.png" jar { from("src") { include "/com/example/icons/*.png" } }
<dependency> Tag for Test dependencies Elements

rzrsrtliftrliaez" vendor="X" vendorVersion="4.0 dependencies { niagaraModuleTestCompile "X:baz:4.0" }
<resources> Tag for Test moduleTestJar Elements

name="com/example/test/*.bog" test="true" moduleTestJar { from("srcTest") { include
p ’ "com/example/test/*.bog" } }

Example Conversion
build.xml

<nodul e
nane = "conponent Li nks"
baj avVersion = "0"
preferredSynmbol = "cl"
description = "Exanple of checking and creating Links programmatically"
vendor = "Tridiunf

<dependency nane="baj a" vendor="Tridi unf' vendor Version="4.0" />
<dependency nane="kitControl" vendor="Tridi um vendor Version="4.0" />
<dependency nane="control" vendor="Tridi un vendor Version="4.0" />
<dependency nane="baj aui " vendor="Tri di uni' vendor Versi on="4.0" test="true"

<package nane="com exanpl es. conponent Li nks" />

<resources nane="com exanpl es/icons/*.png" />
<resources nane="conl exanpl es/test/bogs/*.bog" test="true" />
</ nodul e>

NOTE: The module version is retrieved from the devkit.properties file
build.gradle

/luse default niagara configurations for nodul es
apply from "${System getenv('niagara_hone')}/etc/gradl e/ niagara.gradle"
ext {

/'l Decl are nmodul e nane and project properties

nane = "conponent Li nks"

project.version = "5.0.1"

project.group = "Tridiunt

description = "Exanpl e of checking and creating Links progranmatically"

}

/'l Decl are ni agar aMbdul e properties
ni agar aMbdul e {

preferredSynmbol = "cl"

/1 The runtinme profile indicates the m ninum Java runtine support required
for this nodule jar

runti meProfile = "rt"

/1 The nmodul eNane is registered with the Niagara runti ne engi ne.

/1 In Nlagara 4, it is possible for a nodule to have nmultiple jar files for
separate runtinmeProfile val ues

nodul eNane = "conponent Li nks"

}

/'l Declare conpile and test dependencies
dependenci es {
conpile "Tridiumbaja:4.0.0"
conpile "TridiumkitControl-rt:4.0.0"
conpile "Tridiumcontrol-rt:4.0.0"

ni agar aMbdul eTest Conpi | e " Tri di um baj aui : 4. 0. 0"

8/26/2015 190

Niagara Developer Guide

}
/'l Include additional files in nodule jar
jar {
from("src") {
i ncl ude "com exanpl es/i cons/*. png"
}
}

/'l I'nclude additional files in the test jar
nodul eTest Jar {
from("srcTest") {
i ncl ude "coni exanpl es/test/bogs/*. bog"
}

}
Other Module Files

module-incdlude.xml

This file is placed directly under the module’s root directory. If it is declared, then the build tools automatically include it
in the module’s manifest as META- | NF/ modul e. xm . Its primary purpose is to allow developers to declare def , t ype,
and | exi con elements.

module.palette

The nodul e. pal et t e file is an optional file that is placed directly under the module’s root directory. If included it is
automatically inserted into the module jar file, and accessible in the module as / nodul e. pal ett e. The

nodul e. pal et t e file should contain the standard palette of public components provided by the module. The format of
the file is the same as a standard .bog file.

module.lexicon

The modul e. | exi con file is an optional file that is placed directly under the module’s root directory. If included it is
automatically inserted into the module jar file. The lexicon file defines the name/value pairs accessed via the Lexicon API.

moduleTest-include.xml

Put any Niagara def , t ype, and | exi con elements used in your test classes in this file.

Single Module Project

Project Setup

A stand-alone module not part of a multi-project build needs to have only the bui | d. gr adl e and gr adl e. bat files in
the top level folder to support building the module with Gradle. The modul e-i ncl ude. xm is still required, and the
nmodul e. | exi con and nodul e. pal et t e files can be included if needed. A nodul eTest -i ncl ude. xm is needed
for any test classes. Here is the file structure for a stand-alone project.

\ <npdul e namne> - Top level source directory

| - buil d. gradl e - Gradle script file

| - gradl ew. bat - Gradle wrapper file

| - nodul e. | exi con - Default lexicon file

| - nodul e. pal ett e - Defines Palette information for the module

| - nodul e-incl ude. xm - Declares Types, Defs, etc. for the module

| - nodul eTest -i ncl ude. xm - Declares Types, Defs, etc. for the test module
| - src\ - Folder containing module packages, source files, and resource files

| - srcTest\ - Folder containing test packages, source files, and resource files

Project Build

8/26/2015 191

module://docdeveloper/doc/baja-rt/javax/baja/util/Lexicon.bajadoc

Niagara Developer Guide

Gradle commands will be run from a Windows command prompt. For a single module, navigate to the folder containing
the module source and configurations. The Gradle tasks for separate phases of the build sequence are below.

gr adl ew t asks - List the Gradle tasks available for execution

gradl ew j ar - Compile module source code, assemble the module jar, and copy it to the installation location
gradl ew sl ot omati ¢ - Run slot-o-matic on the module source code creating boiler plate slot code

gradl ew j avadocJar - Generate javadoc files and assemble them into a jar file

gr adl ew nodul eTest Jar - Compile, jar, and install test module code

gr adl ew cl ean - Clean compiled artifacts from the module folder

Multiple Module Project

Project Setup

A multi-project set of module jar files will have a bui | d. gr adl e and gr adl e. bat in the top-level folder. There will
alsobeasettings. gradl e and vendor. gr adl e files containing Gradle elements that will be applied to all module
builds. Each module jar will require a <nbdul eNane>. gr ad| e file containing Gradle configurations specific to that
module. The modul e-i ncl ude. xm is required for each module jar, and the nodul e. | exi con and

nodul e. pal et t e are included as needed. A nodul eTest -i ncl ude. xm is needed for any module jar containing
test classes.

Niagara 4 supports multiple runtime profiles for a single Niagara module. To take advantage of this runtime
configuration, there will be a separate module jar file for each profile. By convention, the gradle build file for a module jar
file will be<modul eNane>- <pr of i | e>. gr adl e and the runtime profile will be declared in that file as part of the
Gradle build configuration. Profiles include rt, ux, wb, se, and doc. Here is the file structure for a project containing
multiple modules.

\ <sone fol der name> - Top level directory
bui | d. gr adl e - Main Gradle script file
gr adl ew. bat - Gradle wrapper file
vendor . gr adl e - Define the group (vendorName) and version here - they will be used in all modules
settings. gradl e - Gradle script containing the names of all modules or folders containing modules
<modul e 1 name>\ - Folder containing Module 1

| - <nodul e 1 name>. gr adl e - Module 1 Gradle script file

| - modul e. | exi con - Default lexicon file for module 1

| - nodul e. pal ett e - Defines Palette information for module 1

| - nmodul e-i ncl ude. xm - Declares Types, Defs, etc. for module 1

| - nmodul eTest -i ncl ude. xm - Declares Types, Defs, etc. for test module 1

| - src\ - Folder containing module 1 packages, source files, and resource files

| - srcTest\ - Folder containing test 1 packages, source files, and resource files
<nmodul e 2 name>\ - Folder containing Module 2

| - <nodul e 2 nane>. gr adl e - Module 2 Gradle script file

| - rmodul e-i ncl ude. xm - Declares Types, Defs, etc. for module 2

Project Build

Gradle commands will be run from a Windows command prompt. For a multi-module project, navigate to the main
project folder. The Gradle tasks for separate phases of the build sequence are below.

gradl ew t asks - List the Gradle tasks available for execution

gradl ew j ar - Compile source code, assemble jars, and installation for all modules

gradl ew sl ot omati ¢ - Run slot-o-matic on the all source code.

gradl ew j avadocJar - Generate javadoc files and assemble them into jar files for all modules
gradl ew nodul eTest Jar - Compile, jar, and install test code for all modules

gr adl ew cl ean - Clean compiled artifacts for all modules

gr adl ew : <nodul eName>: j ar - Compile, jar, and install a single

gr adl ew : <nodul eNane>: sl ot omat i ¢ - Run slot-o-matic on the source code.

This same module-specific syntax can be also used for the rest of the Gradle tasks.

8/26/2015 192

Niagara Developer Guide

Example Gradle Scripts

build.gradle (for the project)

ext {
ni agar aHone = System get env("ni agara_hone")
i f (niagaraHone == null) {
| ogger.error("ni agara_hone environment variable not set")
}
}

//to enable idea/intellij or eclipse support, un-conment the |ines bel ow
Il apply from "${System getenv("niagara home")}/etc/gradle/idea.gradle"
/1 apply from "${System getenv("niagara_home")}/etc/gradle/eclipse.qgradle"

gradl e. beforeProject { p ->
configure(p) {
def vendorSettings = file("${rootDir}/vendor.gradle")
i f (vendorSettings.exists()) {
apply from vendor Settings

apply from "${System getenv("niagara_honme")}/etc/gradl e/ ni agara. gradle"

}
t asks. addRul e("""

Pattern: [jar[Test]|clean|<any gradle task>]/[path]: Run a Gradl e task agai nst

a set of nodul es rooted at path.
"vm)y { String taskNane ->
def matcher = taskNanme =~ /(.*?)(Test)?\/(.*)/
if (matcher) {
def command = mat cher. group(1)
def includeTest Mbdul es = mat cher. group(2) == "Test"

def path = file("${projectDir}/${matcher.group(3)}").toPath()

assert path.toFile().exists()
def targetProjects = subprojects.findAll {
it.projectDir.toPath().startsWth(path) }

/1 default is build command and build is an alias for Gadle"s jar task

if (command.isEnmpty() || command == "build") { comand = "jar" }

/'l Create task for subproject
task(taskNanme, dependsOn: targetProjects.tasks[command])
i f (includeTestMdul es & command == "jar") {
tasks[t askNane] . dependsOn target Proj ects. nodul eTest Jar
}
}
}

vendor.gradle

/'l Vendor nane applied to all nodul es

group = "Tridiunt

/1 Major, mnor, and build version

def nodul eVersion = "5.0.1"

/1 Patch version can be decl ared

/'l For example, to patch envCrlDriver nmodule as 5.0.1.1

/1 nodul eVersi onPatch. ' envCirl Driver' = ".1"

def nodul eVersionPatch = [:]

/1 Final version property applied to all nodul es

version = "${nodul eVer si on} ${ nodul eVer si onPat ch. get (pr oj ect . nane,

settings.gradle

i mport groovy.io.FileVisitResult
i mport groovy.io.FileType

8/26/2015

Sy

193

Niagara Developer Guide

def di scoveredProjects = [:] as Mp

ext {
/'l Configure your sub-project folders here
/1 This will include ALL sub-folders as sub-projects

ni agaraRoots = ["."]
/[l To explicitly define sub-project folders, nanme themin the array like this

/'l niagaraRoots = ["conponentLinks", "envCtrlDriver"]

/'l Configure any directories to exclude fromsearch for nested sub-projects
excludeDirs = [".hg", "build", "out", "src", "srcTest"]

}

/'l niagaraRoots configuration - do not nodify
ni agaraRoots. col lect ({ file(it) }).findAII({ it.exists() }).each { File
proj ect Root ->
proj ect Root.traverse(
type: Fil eType. DI RECTORI ES
preRoot: true,
preDir: { File projectDir ->
def projectNane = projectDir.nane
i f (excludeDirs.contains(projectNane)) {
return FileVisitResult. SKIP_SUBTREE

}

File buildScript = new File(projectDir, "${projectNane}.gradle")
if (buildScript.exists()) {
di scoveredProj ects[projectNane] = projectDr

if (projectDir !'= projectRoot) {
i ncl ude project Nane
return FileVisitResult. SKIP_SUBTREE

}
}
}
)
}
/1 Set up the project tree - no need to nodify
r oot Proj ect.nanme = "ni agara"

root Proj ect.children.each { project ->
project.projectDir = discoveredProjects[project.namne]
proj ect. buil dFi |l eName = "${proj ect Nane}. gradl e"
assert project.projectDir.isDirectory()
assert project.buildFile.isFile()

}

External Library Dependencies

Project Setup

Modules may depend on 3rd party libraries that implement some desired functionality. These dependencies are
configured much like Niagara module dependencies, but are contained in a configuration called uber j ar . For example,
if a module has a direct dependency on the Apache Velocity library and the baja module, the dependency declaration
would look like:

/'l Declare conpile and test dependencies
dependenci es {

conpile "Tridiumbaja:4.0.0"

uberjar "org.apache.velocity:velocity:1.7"

}

Libraries compiled with the uber j ar configuration will cause the classes of the dependency to be included in the

8/26/2015 194

Niagara Developer Guide

resulting module jar file. This makes it straightforward to distribute modules with external dependencies.

Note that the string used to identify a particular library follows a specific convention of gr oup: name: ver si on. So in
the above example, the group is org.apache.velocity, the name is velocity, and the version is 1.7. This information relates
to the Maven information for that library, and it will be verified and downloaded from a central Maven repository. See
the Gradle documentation on dependency management for more information on external library dependency naming
and the central Maven repository.

8/26/2015 195

http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

Niagara Developer Guide

Deploying Help

Overview

Help documentation is deployed as a set of files zipped up in a module jar. With the introduction of module parts in
Niagara 4, help content should be contained in a part with a runtime profile of doc. See Modules for a description of
modules and runtime profiles. Help content can be any MIME typed file. The primary content types are:

e HTML: Niagara 4 provides support for HTML 5. This is the main format used to distribute help content.

® Bajadoc: These are an XML-based file type used to distribute Java API reference documentation. Niagara provides a
special view for this file type, which allows users to view the documentation. Bajadoc files are generated from
Javadoc comments in source code, using configuration specified in the build script.

There are three steps in help content creation:

1. The module developer supplies help content files and help structure files. Most of help content will be in form of
HTML files, optionally with some graphics to enhance the presentation. As a general rule, you, as developer,
should not concern yourself with anything but the content itself, providing HTML files with defined title and body
that contains only content-related information. Developers should also include guide help for all their views. This
view documentation is in the form of standard HTML files, located in the “doc” directory using a naming
convention of “module-TypeName.html”. A table of contents file should be provided, to specify the logical order of
the help files.

2. (Optional) The developer supplies a lexicon key to point to module containing help. Guide help (Guide on Target)
will look for the HTML file defined above in the doc directory of its module if the help.guide.base is not defined in
its lexicon. You can supply this key to point to another module. As an example, most core modules point to
docUser: hel p. gui de. base=nodul e: // docUser/ doc.

3. Build the module. The module part containing the help content is built using the same tools as other module parts.
See the build documentation for more information on this. During this step, the help content is indexed for the full
text search purposes.

Build script

A doc module part’s build script should have the ‘docmodule.gradle’ script applied to it, as follows:

apply from "${System getenv('niagara_hone')}/etc/gradl e/docnodul e. gradl e"

This will cause several things to happen when the module is built:

e HTML files in the / doc folder and referenced in the table of contents will be enhanced with a link to the standard
help style sheet. This style sheet is not user configurable.

e A copyright notice will be applied to the HTML, if specified.

e Navigation links, based on the table of contents, will be inserted at the top and bottom of the document. There are
three navigation links generated:

o [ndex - always points to i ndex. ht m .
o Prev - points to the previous file in TOC, or is disabled if this is the first file in the TOC.
o Next - points to the next file in TOC, or disabled if this is the last file in the TOC.

In order for the HTML enhancement processing to insert the style sheet and navigation links in the correct positions, the
<head>, <body> and </ body> elements in the document HTML should start on new lines. It is also required that

HTML documentation files in the module are encoded with the UTF-8 character set.

The copyright text applied to the HTML can be specified in the project’s build script as an extra property named
copyri ght on the project. For example, the build script could include the following extra property:

ext.copyright = 'Copyright © 2000-2015 TridiumlInc. Al rights reserved.'

This will apply the copyright text to a single module part. For multi-project builds, the copyright text can also be specified
in the vendor . gr adl e file, again as an extra property. This will ensure that the same copyright text is applied to all doc

8/26/2015 196

Niagara Developer Guide

module parts under the root Niagara project.

Generating Bajadocs

When optionally generating Bajadoc API documentation, there will be one or more projects containing the Java code to
be documented - these projects will have runtime profiles such as ‘rt’ or ‘wb’. There will also be a project with a ‘doc’
runtime profile. This will be the project configured to contain user documentation relating to the other projects, and also
to generate the Bajadocs from the source code in the other projects:

\<sone folder nane> - Top level directory
| - build.gradle

| - vendor.gradle

| settings.gradle

| - <project nane-rt>\ - Fol der containing project nanme-rt’
| |- <project nane-rt>.gradle - rt Project Gradle script file’
“|- <project name-wb>\ - Fol der containing project nane-wb’
| |- <project 2 nanme-wb>.gradle - wb Project Gradle script file’
| - <project nane-doc>\ - Fol der containing project nane-doc’
| |- <project nane-doc>.gradle - doc Project Gradle script file’

The application of the docnodul e. gr adl e script will add a dynamic method named baj adoc() to the doc project.
This method is called to generate Java API documentation for a project, with the resulting documentation being included
into the ‘doc’ module part the script is applied to.

Several configuration values can be passed to the method:

e sour ce This is the project containing the code to be documented. This is always required. A project can
referenced by calling the pr oj ect () method, passing the name of the project, prefixed with a colon. Example:
source project(":myDriver-rt")

e incl udePackage This can be used to pass the name of a single Java package to be documented. There are two
further configuration properties required here (see below for an example):

o name = The name of the Java package.

o baj aOnly = A boolean value, which, if true, will only generate API documentation for the properties,
actions and topics of Niagara types. Methods, functions and regular Java classes will not be documented.
e incl udePat t er n This can be used to include code files via an ANT style include pattern. The pattern should
target ‘java’ files relative to the project’s/ Sr ¢ directory. Example: i ncl udePatt ern
"com nmyconpany/ nydri ver/ nessages/ *.j ava"
e excl udePat t er n This can be used to exclude files via an ANT style exclude pattern. The pattern should target
‘java’ files relative to the project’s / sr ¢ directory. This might be used to exclude certain classes that need to be in

a documented package, but are not considered part of the public API and therefore can be ignored. Example:
excl udePattern "com nmyconpany/ nydriver/**/*Util.java"

The bajadoc declaration must contain at least one usage of includePackage or includePattern in order to have a set of
source files to generate the documentation from. Note that i ncl udePackage specifies a single package name, while
i ncl udePat t er n and excl udePat t er n specify file paths, which could potentially match more than one Java
package.

The ‘doc’ part’s build script should invoke the baj adoc() method for each project to be documented, referencing the
other project as the source. The following example is an extract from a build script for a project with a ‘doc’ runtime
profile, which calls baj adoc() to generate class documentation for a project named “myDriver-rt”. It references the
project containing the source code, and passes configuration such that two packages are documented, and classes with
names ending “Util” are excluded.

myDriver-doc.gradle:

ni agar aMbdul e {

preferredSynbol = "nydriv"
nodul eNane = "nyDriver"
runti neProfile = "doc"

}

baj adoc {

8/26/2015 197

Niagara Developer Guide

source project(":nyDriver-rt")

i ncl udePackage {
name = "com myconpany. nmydriver. core"
bajaOnly = true

i ncl udePackage {
name = "com nmyconpany. nydriver. nmessages"
bajaOnly = fal se

excl udePattern "com nmyconpany/ nydriver/**/*Util.java"

Generating JavaScript Documentation

In addition to the Bajadoc feature for documenting Java source code, documentation may also be generated for JavaScript
code by specifying a j sdocBui | ds configuration with the Niagara rjs plugin. This will generate HTML-based
documentation from comments in the source code using the JSDoc tool. See the JSDoc site for details on the syntax of
documentation comments.

To enable this functionality, the plugin needs to be applied in the project’s build script:
apply plugin: "niagara-rjs"

The build script can then specify one or more projects to generate HTML documentation from. For each project, there
are several options that can be configured:

e root D r: This string specifies a path to the root folder of the JavaScript code for the project. This will include all
Jjs files it finds, but will exclude built and minified files.

e source: Asan alternative to the ‘rootDir’ option, a file tree containing the JavaScript files to be documented can
be specified. This option allows the set of documented source files to be refined by the use of ANT style include
and exclude patterns.

e destinationDir: Specifies the directory to receive the JSDoc output. If it isn’t already, this directory should be
added to the includes for the project’sj ar task.

e options: This optional configuration value allows a list of string values to be passed to JSDoc command line.
Tutorials can be specified via this option; see the command line options for JSDoc here.

The following is an example of the usage of these options to document the JavaScript for two projects:

ni agaraRj s {
j sdocBuilds = |
Modul eA: [

source: project(":nmodul eA-ux").fileTree(".") {
include "src/rc/**/*. js"
i ncl ude "README. md"
exclude "src/rc/**/*. buil*.js"

1

destinationDir: "$buildDir/jsdoc/ nmodul eA- ux"

],
Modul eB: [
rootDir: project(":nodul eB-ux").projectDir.path + "/src/rc",
destinationDir: "$buildDir/jsdoc/ nodul eB-ux"
]
1
}

jar {

/'l 1Include generated JS docs into the jar
from(new File("$buildDir/jsdoc")) {
include "**/* *
into 'doc/jsdoc/'

}

8/26/2015 198

http://usejsdoc.org/
http://usejsdoc.org/about-commandline.html

Niagara Developer Guide

Help Side Bar
The help side bar has three tabs: Table of Contents, API and Search.

e Table of Contents, a.k.a. TOC, is used for presenting help content as a structured tree, in some logical order.
e API is used for presenting Bajadoc API documentation, organized by module part.
e Search allows full text search of the help content based on some search criteria.

Table Of Contents (TOC)

As a general rule, you should provide a TOC with your help content. This should be an XML file, named toc.xml, located
in the src/ doc/ directory. This file is required for a module to appear in the help table of contents. The DTD for this
file is as follows:

<! ELEMENT toc (tocitent)>
<! ATTLI ST toc versi on CDATA #FI XED "1.0">
<I ATTLI ST toc xni: |l ang CDATA #l MPLI ED>

<l-- anitem-->
<! ELEMENT tocitem (#PCDATA | tociten)*>
<I ATTLI ST tocitem xm : 1 ang CDATA #| MPLI ED>
<I ATTLI ST tocitemtext CDATA #| MPLI ED>
<I ATTLI ST tocitem i nage CDATA #l VPLI ED>
<I ATTLI ST tocitem target CDATA #l MPLI ED>

It should have <t oc> as its root element, and a list of files that you want to include in the final TOC, in the logical order.
Although the TOC structure can be many levels deep, the most likely case will be a flat list of files. Each file is included
via the <t oci t enP element, and has two important attributes: t ext and t ar get . The t ext attribute is used to specify
the label text of the node as it appears in the TOC tree, while the t ar get attribute specifies the relative URL of the help
content file associated with this TOC item. It is required that at least one of the target or text attributes is present.

The target attribute:

e Must be a sub-path relative to the project’s sr ¢/ doc/ directory.
e Must not contain backup characters: . .

You may use tocitem elements with only the text attribute defined as a way of grouping TOC nodes. If you want to define
a TOC node associated with some help content, you must provide the target. If you provide the target only, the text will
be generated as the name of the target file, without path and extension.

The following is an example TOC file:

<toc version="1.0">
<tocitemtext="Index" target="index.htm" />
<tocitemtext="User Cuide" target="userGuide.htm" />
<tocitemtext="Devel oper Cuide" target="devCuide.htm" />
</toc>

API

This is a tree of module parts that have Bajadoc API documentation available. Packages and types within a module part
can be viewed by expanding the items in the tree.

Search

This is a search view, used to search for occurrences of text. Enter the search term in the Find:’box, and click the ‘Search’
button. Matching results will be displayed in a list below the search box.

8/26/2015 199

Niagara Developer Guide

Slot-0-matic

Overview

The Slot-o-matic is a java source code preprocessor which generates java source code for Baja slots based on a
predefined comment header block. The generated code is placed in the same source file, and all other code in the original
source is not modified in any way.

Usage

Invocation
Slot-o-matic is invoked by the executable sl ot . exe . To get help invoke:
D:\>slot -?
usage: slot [-f] [-?] <dir | file ...>
-f force reconpile of specified targets
-? provides additional help.

sl ot conpiles Baja object files.

For a file to be conpiled, it nust have a nane
of the formB[A-Z]*.]ava.

slot will happily recurse any and all directory argunents.

Slot-o-matic will compile any file that meets the following conditions:

1. The file name is of format B[A-Z]*java, e.g. BObject.java or BSystem.java, but not Ball.java.
2. The source code has a comment block delimited by / *- -*/.

When Slot-o-matic compiles a file, it reads the comment block and generates new java source code based on the contents
of that block. The new source is placed in the file being compiled immediately after the Baja comment block. If any
errors are found, the contents of the file are not altered in any way. The source file may (and indeed probably must) have
any other source code required to implement the class in the source file, as with normal java source. The only difference
between a normal java source file and one usable by Slot-o-matic is the / *- -*/ comment block.

Compiling a file is simple:

D:\ >sl ot D:\niagara\r3dev\fw history\javax\baja\hi story\BHi storyService. java
Conpi | e BHi storyService. java
Conpiled 1 files

D\ >

As is a directory:
D:\ >sl ot D:\niagara\r3dev\fw history
Conpi | e BHi storyService.java
Compiled 1 files
D\ >

Slot-o-matic works like make in that it will only compile files whose /*- -*/ comment block’s content has changed since
the last compile. To force recompile, use the - f flag on a file or directory:

8/26/2015 200

Niagara Developer Guide

D:\>slot -f D:\niagara\r3dev\fw history\src\javax\baja\ hi story\
Conpi | e BBool eanHi story. java
Conpi | e BFl oat Hi story. java
Conpi |l e BHi story.java
Conpi | e BHi storyDevi cel et.java
Conpi | e BHi storyJoin. java
Conpi | e BHi storyPeriod. java
Conpi | e BHi storyService. java
Conpi | e BHi storySync. j ava
Conpi | e BSt orageType. j ava

Compiled 9 files

D\ >

Slot file format
As stated above, Slot-o-matic will compile only files that meet certain conditions. In addition to having an appropriate

file (and by extension class) name, the source code in the file must contain a comment block that describes the slots on
the object to be compiled.

Examples
Class Example

This example class would resolve in a file named BlmaginaryObject.java.

/[*-
cl ass Bl magi naryObj ect
{
properties
{
i magi naryNane: String
-- The imaginary nanme for the imaginary object.
default {["inmagi naryName"]}
size: int
-- The size of the inaginary object.
flags { readonly, transient }
default {[0]}
}
actions
{
i magi ne(arg: BConponent)
-- |l magi ne sonet hing
default {[new BConponent()]}
create(): BSystem
-- Create a new i magi nary system
}
t opi cs
t .
i magi nati onLost: Bl magi naryEvent
-- Fire an event when the object |oses its inmagination
}
Y

There are blocks for each of the major slot types: properties, actions, and topics. None of the blocks needs to be present.
Properties Block

Each property has a name and a data type. Comments are specified via the "--" tag per line of comment. All comments

8/26/2015 201

Niagara Developer Guide

are transferred to the javadoc headers of the generated source code but are of course optional. A default value for all
properties must be specified. The default block is delineated by {[]} and may have any sequence of java code inside it.
Flags on the property may also optionally be specified. For more information on the available flags, see the Flags bajadoc.
Slot-o-matic will generate all get and set methods for the property.

Actions Block

Each action may have 0 or 1 input (formal) arguments, and may optionally return a value. Actions are commented like
properties. The input argument, if present, must have a default value as with a property. Slot-o-matic will generate the
action invocation code; the implementor of the class must provide a do<actionName> method that provides the action
implementation.

Topics Block

Each topic specifies a name and an event type that it sends when fired. Slot-o-matic generates code to fire the event.

Enum Example

This example class would resolve in a file named BlmaginaryEnum.java.

/*-
enum Bl magi nar yEnum
{
range
{
good,

bad,
ugly

default {[bad]}
Y

Each member of the enumeration is specified.

BNF

The formal BNF of the format is as follows:

Unit ::= (Annotation)? (Class | Enum)
Class ::= "class" Identifier "{" (Singleton)? (PropertyBlock | ActionBlock |
TopicBlock)* "}"
Singleton ::= "singleton"
PropertyBlock ::= (Annotation)* "properties” "{" (Property)* "}"

Property ::= (Annotation)* Identifier ":" BajaType (Default | Flags | SlotFacets
)*
ActionBlock ::= (Annotation)* "actions" "{" (Action)* "}"

nn
.

Action ::= (Annotation)* Identifier "(" (FormalParameter)? ")" (":" BajaType
)? (Default | Flags | SlotFacets)*

FormalParameter ::= Identifier (":" BajaType)?

8/26/2015 202

module://docdeveloper/doc/baja-rt/javax/baja/sys/Flags.bajadoc

Niagara Developer Guide

TopicBlock
Topic

Enum
RangeBlock
Range
EnumDefault
Flags

Default
SlotFacets
Facets
Identifier
BajaType
BajaPrimitive
BajaName

Annotation

SingleAnnotation ::

NormalAnnotation
KeyValue
JavaExpressionList

JavaExpression

8/26/2015

::= (Annotation)* "topics" "{" (Topic)* "}"
::= (Annotation)* Identifier (":" BajaType)? (Flags | SlotFacets)*

::= "enum" Identifier "{" RangeBlock EnumDefault"}

= "range" "{" (Range (

mn
)

Range)*)? (

::= Identifier ("="JavaExpression)?

mn
)

::= "default” "{" "[" JavaExpression "]" "}"
= "flags" "{" (Identifier ("," Identifier)*)? (",")? "}"

= "default" "{" "[" JavaExpression "]" "}"

::: Hslotfacetsll H{ll H[ll (Facets (II’VI Facets)*)? (H’ll)? H]H H}H

n_mn

::= (BajaName "=
::= <IDENTIFIER>

)? JavaExpression

::= (BajaPrimitive | BajaName)

= ("boolean" | "int" | "long" | "float" | "double")

::= Identifier ("." Identifier)*

= "@" Identifier (NormalAnnotation | SingleAnnotation)?

ngn

=="(" KeyValue ("," KeyValue)* ")"

::= Identifier "=" (JavaExpression | JavaExpressionList)

= "{" JavaExpression ("," JavaExpression)* (",")? "}"

= <JAVA_EXPRESSION>

7y

="(" (JavaExpression | JavaExpressionList) ")"

"

203

Niagara Developer Guide

Architecture - Software Stack

Niagara AX Software Stack

Device Interfaces Enterprise Interfaces Human Interface

B F [Brow Profi ! F
. 4 Graphics

8/26/2015 204

Niagara Developer Guide

Architecture - Class Diagram

Niagara AX Class Diagarm

BAbstractFileStore

BDataFile

e | e |

BFoxSession BGifFile

BMemoryFileStore

BlpegFile

—I BComponentSpace | BPngFile

g
]

L{apmymmpnnmﬁpam| —| BTextFile |

BHtmilFile

BModuleSpace

8/26/2015 205

Niagara Developer Guide

Architecture - Communication

Supervisor

Fieldbus
XYz

Web Browser

8/26/2015

206

Niagara Developer Guide

Architecture - Remote Programming

Workbench

Transaction

SyncBuffer

Proxy Space ip:x|fox:|station:

Station

ProxyBroker

falble

SyncBuffer

Master Space |ocal:|station:

XML Encoder
XML Decoder
config.bog

8/26/2015 207

Niagara Developer Guide

Architecture - Driver Hierarchy

([,] DeviceNetwork Driver Hierarchy

E@ DeviceFolder(s)
i | Device

EB PointFolder(s)

() controlPoint

ControlPoint

| | DeviceExt

DeviceExt

" Device

8/26/2015 208

Niagara Developer Guide

Architecture - ProxyExt

Readonly Proxy Point Read/Write Proxy Point

[inpu.

|
writeDk()

‘ ‘ write() writaFail()

dSubscribed readOk() readOK()
reacsd “n. edl) mad““.“m readSubscribed() readReset()
readUnsubscribed() readFail()

readUnsubscribed() readFail()

8/26/2015 209

Niagara Developer Guide

Architecture - Driver Learn

Discovery (Learn) Process

Workbench g Station

Submit

- Discovery
Driver MgrController Request

Driver

] Discover Create BDiscoverylJob

>
I ‘—_’_’//—'
BDiscoverylob Reference gOrd for Job

BDiscoveryJob.submit(cx) Physical
0 Cancel el ,__‘&TSCOPE JobService " Driver Network
T Sy "'--ry"'ob-ta
seu;l:lnl?;d] =~ _,_"Efff; BDiscoverylob
Register for Component “MB docancel(cx)
Events on BDiscoveryJob
v doRun(cx)
Learn Objects
Driver MgrLearn ave® - progress(int pecent
essupd - success()
g9~ failed(Exception)
Job Bar
A canceledd
T As objects discovered, add

“gnts =
BLearnTable com Pongnii | them to BDiscoveryJob
jobComplete(Blob)
updateRoots(Object[])

8/26/2015 210

Niagara Developer Guide

Working with Series Schema

The data schema concept is heavily relied upon throughout the transform framework. A data schema defines the
structure of some piece of data. An everyday example of a data schema is a BStruct or BComponent that defines frozen
property slots. These frozen slots are guaranteed to be present for each instance of the defining struct or component
object, and so other applications may reliably make use of these frozen slots.

In the series transform framework, the record schema is defined much the same way. However, rather than dealing with
frozen slots on a defined component object, the transform framework defines the schema as the dynamic property slots
that will be present on the record cursor object at the time the graph is resolved.

Schema Composition

A series transform schema is a collection of field names with each field name associated with a BTypeSpec to represent
the data type and BFacets to represent metadata for the field.

The Schema Field

Each schema field is stored in a BSeriesSchema instance as a dynamic property. The schema field name is the name of
the Property slot. The data type of the schema field, the type of data that is represented by the field, is the value of the
Property slot. This value is a BTypeSpec to allow the value to be stored in a property slot.

When a graph node is resolved to a cursor, the schema information is used to construct the record BComponent object
that is returned from the Cursor.get() method. The record component properties are the same properties of the schema,
with the exception that the value of the properties are data values of the Type represented by the schema field's
BTypeSpec value.

Key Field

Each schema includes a key field. The key field is the data field that will include a unique value for each data row at the
time that the graph node cursor is resolved. The key field is akin to the primary key field used in relational databases.

In the case of histories, the key field is the Timestamp field. Each record returned by a history is guaranteed to have a
unique Timestamp value. By using the Timestamp field as the key field, the transform framework can perform tasks such
as grouping a collection of records together in five minute intervals. This is possible because key field allows the
framework to uniquely identify each cursor record, or "table row", as a unique record.

Input and Output Schema

Each graph node deals with two separate schemas: the schema, or schemas, of the data source or sources for the graph
node, and the schema of the record data that the graph node cursor will return.

The Incoming schema data is defined by the outgoing schema of the node source. In cases where a graph node has
multiple incoming schemas, such as the Composite graph node, the schemas should be namespaced by the name of the
graph node that the schema originates from.

The BGraphNode base class includes the getSources() method which returns an array of BGraphNode objects that are
the inputs of the current graph node instance. This method is used to obtain the incoming schema of the graph node.
Below is a code snippet from the composite editor that is used to create the fields available for selection to configure the
composite node:

private String[] getConpositeFields()

{
Set srcFields = new HashSet();

/1 get the input sources for our node
BGraphNode[] sources = srcNode. get Sources();
for(int i =0 ; i < sources.length; i++)

{

BGr aphNode src = sources[i];
String srcNodeNane = src. get Nane();

8/26/2015 211

Niagara Developer Guide

BSeri esSchena nodeSchena = src. get Schenma();
String keyFi el d = nodeSchena. get KeyFi el d();

String[] fieldNanes = nodeSchena. get Fi el dNanes() ;
for(int j =0; j < fieldNanmes.length; j++)

String fieldName = fiel dNames[j];

i f(fieldNane.equal s(keyField)) continue;
String col Name = srcNodeNanme + "." + fiel dNaneg;
srcFi el ds. add(col Nane) ;

}

return (String[])srcFields.toArray(new String[]{});
}

In the above example, the schema fields are obtained from all schemas associated with the composite node. These fields
are later used to build the composite editor interface.

The output schema is the result of configuring the incoming schema or schemas in conjunction with the functionality of
the transform graph node. In the case of the Composite node, the output schema is the collection of renamed input
schema fields that are composited together to create a new data structure. The output schema is the representation of the
dynamic properties of the BComponent that will be returned by the CompositeCursor.get() method.

It is not possible to know the composition of a series cursor record until the graph node of the cursor is resolved. This is
a direct result of the end user's ability to dynamically alter data structures through the transform graph. The schema is
absolutely necessary to grant each graph node cursor the knowledge of how to handle the incoming data.

BSeriesSchema

The BSeriesSchema is the framework component that represents the schema for a graph node. The series schema
component stores the schema fields as dynamic Property slots. By definition, this requires that each schema field has a
unique name in the schema.

The series schema offers several convenience methods for working with the schema in an intuitive manner.

The getKeyField() method returns the key field for the entire schema. The key field is the data field that will include a
unique value for each data row at the time that the graph node cursor is resolved. The key field is akin to the primary key
field used in relational databases.

The getFieldNames() returns all schema field names. Each schema field name is unique and is the name of the Property
Slot that will be set on the series cursor record BComponent returned from the cursor's get() method.

The facets and type information for each field is retrieved using the getFieldFacets() and getFieldType() methods. Each
method takes a string Field name as the method argument.

Below is a code snippet demonstrating how to create a cursor template record using a series schema supplied from a
graph node:

public static BConmponent createTenpl at eRecord(BSeri esSchena
recordSchenm)

{

/I make sure our conposite Tenplate includes the tinme stanp col um
BConponent tenpl at eRecord = new BConponent () ;

/luse our schema to initialize our tenplate

String[] fieldNames = recordSchenan. get Fi el dNames() ;

for(int i =0; i < fieldNames.length; i++)

String fieldName = fiel dNanmes[i];

8/26/2015 212

Niagara Developer Guide

BTypeSpec fi el dType
BFacets fiel dFacets
Bval ue def aul t Val ue

recordSchema. get Fi el dType(fi el dNane);
recordSchema. get Fi el dFacet s(fi el dNane) ;
get Def aul t Val ue(fi el dType. get Resol vedType());

t enpl at eRecor d. add(fi el dNane, def aul t Val ue, O, fi el dFacets, null);
}

return tenpl at eRecord;

}

Note that once the field names are obtained from the schema, the field type and field facets information is retrieved for
each field name to construct the dynamic properties of the template BComponent record.

8/26/2015 213

Niagara Developer Guide

Creating a Graph Component

Transform Graphs are made of a series of Graph Nodes. These nodes interconnect to represent data transformations.
These transformations may include scaling the data, reconstructing the schema of the data, performing mathematical
transformations on the data to produce new data, and so on.

A graph node has two separate states that must be considered at time of implementation: the design time configuration
state and the graph resolve time state.

The configuration state includes setting custom properties of the graph node and defining both the data input schema
that defines the structure of the data that will be processed by the node at graph resolve time, and the output data
schema the describes the structure of the data returned by the node at resolve time.

New Graph Nodes can be created and integrated into the transform graph framework by following these simple steps:

e (Create a BComponent that extends the BGraphNode abstract base class.
e (Create a concrete implementation of the BSeriesTransformTable class.

e Create a Cursor implementation.
e Optionally provide a wiresheet popup editor for the graph node component.

8/26/2015 214

Niagara Developer Guide

Extending the Graph Node

All graph node implementations must extend from BGraphNode. This base class provides several key elements necessary
to integrate with the transform graph.

Graph Properties

Each graph node includes 4 properties which are used by the transform graph as follows:

e Status - Provides the configuration status of the graph node. If the node is currently misconfigured due to a change
in the incoming series schema or node property settings made by the end user, this status should be set to fault.

e faultCause - The fault cause provides a description of why the node is currently in a fault state. This message
should provide a description of what settings of the node are incorrectly set to assist the end user in properly
configuring your graph node within the transform graph.

e transformInputs - The transform inputs property is a target property to allow the end user to connect one or more
data input schemas to your graph node. An input source will most often be the output of another graph node.

This property defines the flow of data from a data source to a graph node and also defines the structure of data that
the graph node can expect when processing the data at graph resolve time.

By default, this property does not declare the fanln flag. You can set the fan in flag, or any other flag, on this
property in the constructor of your graph node using the following code snippet:

Sl ot sl ot get Sl ot (transform nputs. get Nane()) ;
if(null !'= slot)
set Fl ags(sl ot, Fl ags. TRANSI ENT| FI ags. SUMVARY| Fl ags. FAN_I N) ;

e transformOutput - The transform output is a target property that allows an end user to connect the output
schema of the node as a data source to another node.

While these 4 properties may not be overridden, a graph node implementation may include as many additional properties
as desired.

Node properties should be thought of as design time configuration settings for the graph node. These settings will be
used at the time that the graph is resolved to determine how the incoming data for the node should be processed.

Abstract Methods

When extending the BGraphNode base class, a handful of methods must be overridden and implemented.
getSchema()

This method allows the node to return the expected output data schema of the record object produced by the resolve
time cursor. The schema is returned as a BSeriesSchema object.

Returning the schema via method call rather than a property on the node allows the schema to be built dynamically at
the time the schema is requested based on the node configurations.

doCheckSchema()

This method is called by the transform framework to allow the graph node to check the current incoming schema or
schemas against its current outgoing schema configuration. In cases where the input schemas are no longer sufficient to
support the configuration of the output schema, a ConfigException should be thrown and the node placed in fault to
notify the end user that the node is currently misconfigured.

This should be implemented by calling getSchema() on the source input nodes of the graph node and comparing that

input schema to the configurations of the graph node. If the graph node configurations are supported by the incoming
schemas we return from our method.

8/26/2015 215

Niagara Developer Guide

Below is a snippet from the BScaleNode class that shows how the incoming schema is checked against the current scale
node configuration. What is important to node is that the method first retrieves all the input sources for the node using
the getSources() method of BGraphNode, then retrieves the schema for each input node calling getSchema() on each
source node. Each field of the schema that is used in the Scale Node's configuration is then checked to ensure that the
value represented by the schema field is a numeric type.

/1 get the sources for our node by calling BG aphNode. get Sources()
BG aphNode[] sources = get Sources();

/1 get the configuration of our node. In the case of the Scal e Node,
/1the configuration is stored as a collection of BScal eFact or
/1 objects. Each scale factor is a sinple mapping of an incom ng
/lschema field with a nuneric scale factor
BScal eFact ors scal eFact or Cont ai ner = get Scal eFactors();
hject[] factors =

scal eFact or Cont ai ner. get Chi | dr en(BScal eFact or. cl ass);

/Il check if we have any sources

i f(sources.length == 0)
{
/1if we have factors but no sources, we are in fault
if(factors.length > 0)
{
get Transform nput s().set Status(BStatus.fault);
get Transf orm nput s() . set Val ue(
| ex. get Text (SCHEMA FAULT_UNVATCHED FI ELD));
}
return,
}

BGr aphNode src = sources[0];
src. | ease();
BSeri esSchena srcSchema = src. get Schema();

/1l brute force check of all schema inputs to nmake sure that all our
/'l scal e maps use schema val ues that are still present

Set fields = getScal el nputFields();

String keyField = srcSchena. get KeyFi el d();

for(int i =0 ; i < factors.length; i++)

BScal eFactor factor = (BScal eFactor)factors[i];
String fieldName = factor. getlnputFi el dNane();

/lignore our key field
i f(fieldNane.equal s(keyField)) continue;

/1 check that the incom ng scherma field exists in our set. If
/[/the field is not present in our set of configured fields,
//throw an exception indicating that the schena does not
//correspond with our configuration

if(!'fields.contains(fieldNane))

purge. add(factor);
get Transform nput s(). set Status(BStatus.fault);
get Transf or m nput s() . set Val ue(
| ex. get Text (SCHEMA_FAULT | NVALI D_FI ELD
new Cbject[]{fi el dNane}));

conti nue;

}

/1 check that the type value of the field is numeric

8/26/2015 216

Niagara Developer Guide

BTypeSpec fiel dType = srcSchena. get Fi el dType(fi el dNane) ;
if(!'fieldType.getTypelnfo().is(BlINuneric. TYPE)){
get Transform nputs().setStatus(BStatus.fault);
get Transf orm nput s() . set Val ue(
| ex. get Text (SCHEMA FAULT | NVALI D_TYPE,
new Cbj ect[]{
fieldType.toString(),
fi el dNane,
BScal eNode. TYPE. t oSt ri ng()

)

conti nue;

}
}

doResolve(BSeriesTransformTable[] , GraphNodeParams, BOrd)

This method is called when the graph node is resolved to a data cursor. This is the method which brings together the
Series Table defined for our graph node, the node Cursor, and the configurations of the node itself.

When this method is called, the graph node is expected to return an array of BSeriesTable objects. This array will usually
consist of one series table value.

When creating the series table instance or instances to return, the method will use the configuration data of the node to
generate the table instance. This configuration data is gathered in one of two ways in the following order:

1. The configuration data is obtained from the GraphNodeParams object passed into the method. This object is map
of the properties of the graph node to a value passed in at run time. This value overrides the current property
setting for this node.

2. If no value is present for the property in the GraphNodeParams object, the value currently set for the node property
is used.

Below is a code snippet from the BHistorySourceNode class that demonstrates overriding the doResolve method. Note
that the GraphNodeParams object is first checked to see if it contains a value for the given property name. If not, the
value is obtained directly from our property.

protected BSeriesTransformlabl e[] doResol ve(
BSeri esTransf or mfabl e[] inputs,
GraphNodePar ans ar gs,
BOrd base) throws TransfornException

/[l Attenpt to construct a history ORD fromour node settings. First
/lattenpt to retrieve the value fromour graph node args. If the
/lvalue is not present, return the value found in our graph node
/I property.
BOrd schemaOrd = BOrd. NULL;
BFormat rel ativeSource =
(BFor mat) ar gs. get (dat aSour ce. get Nane(), get DataSource());
BDynam cTi neRange range =
(BDynami cTi mreRange) ar gs. get (dat eRange. get Nane(), get Dat eRange());
String historyOrdParans = get Hi storyOrdParans(range);

//construct our ORD fromour format string and date range

8/26/2015 217

Niagara Developer Guide

/1 If we have a source ORD, process the source
if(schemaOrd ! = BOrd. DEFAULT)

/1get our Ord Target
BObj ect object = schemaOrd. get(base.get());
i f(object instanceof BICollection)

Bl Col l ection ¢ = (BICollection)object;

/lcreate our quantization cursor for this source
Bl Tabl e table = c.toTabl e();

BSerieslnterval interval = getQuantlnterval ();
BSeri esTransfor nrabl e tabl e;
if(interval.getDesc() == BSerieslnterval Enum none)

tabl e = new BNonQuanti zedTabl e(get Nane(),
get Schema(),

table));
}
el se
tabl e = new BQuanti zati onTabl e(get Nane(),

get Schena(),
interval,
table));

}

return new BSeriesTransfornrlabl e[]{tabl e};

}

/11f we reach this point, we have an invalid data source
t hrow new Sour ceExcepti on(1 NVALI D DATA SRO);

}

8/26/2015

218

Niagara Developer Guide

Creating a Series Transform Table

All graph node implementations are expected to return a BSeriesTransformTable implementation. The Series Transform
Table is an abstract implementation of the BITable interface that includes additional series data information.

When creating a series transform table, two pieces of information are required: the Series Schema of the records that will
be returned by the table's cursor, and the Series Name of the data.

The schema data is the same schema data that is returned for the graph node's getSchema() method. This schema is the
format of the data of each record that will be returned by the Cursor returned by the table instance.

The Series Name is name of the graph node that creates the table instance. The series name is used to handle name space

issues when combining data from multiple input sources.

publ i c BConpositeTabl e(String seriesNane, BSeriesSchema schenms,
Conposi t eMappi ng[] mappings, IFilter filter)

{

super (seri esNane, schems);

t hi s. mappi ngs = mappi ngs;

setFilter(filter);

/lPerformother initialization operations as necessary
}

The only required method implementation is the cursor() method. This method will return a Cursor that performs the
data transformations as intended by the graph node. Below is an example implementation of the cursor method for the
BCompositeTable class.

public Cursor cursor()

{
return new ConpositeCursor(get Schema(), mappi ngs,getFilter())

}

8/26/2015 219

Niagara Developer Guide

Creating the Series Cursor

Each series transform table must return a Cursor implementation. The Cursor is responsible for retrieving data in the
form of records from an input source (one or more Cursors) and performing operations on the data before returning the
transformed data in a component record format.

Creating a Cursor

The only requirement of implementing a Cursor for use with the Series Transform Table is to create an object that
implements the Cursor interface.

As the Cursor interface requires a number of method implementations, the transform framework provides the
SeriesCursor base class as a convenience base class for implementing a Series cursor. This document will focus on
extending the Series Cursor base class.

The Series Cursor requiers two method implementations: the get() method and the next() method.

The get() method will return a BComponent record. It is important to note that this method should not create a new
record instance when it is called. Instead, the cursor should create a single instance of the record component at the time
of initialization and load the record with new data each time the get() method is called, returning that record instance.
This prevents an out of memory exception when iterating over large data sets.

The next() method is responsible for incrementing the cursor to the next record. If the cursor record cannot be
incremented, due to lack of data or other causes, this method should return false.

Cursor Implementation

When implementing a transform cursor, there are a few considerations to take into account.

The most important rule is that the get() method must return a reference to the same BComponent record each time it is
called. It should never create a new instance of the component record. This implies that the Cursor will have a single
BComponent instance instantiated and initialized at the time of class construction and returned whenever the get()
method is called.

A second and equally important rule is that the BComponent record must conform to the Series Schema defined for the
graph node that the Cursor represents. The component record must include a set of dynamic Property slots that conform
to the Series Schema of the graph node.

Both of these rules are readily accomplished by creating a BComponent instance that is a record template and makes use
of the Series Schema defined by the represented graph node as shown in the following code snippet.

public class ConpositeCursor
extends SeriesCursor

publ i c ConpositeCursor(BSeriesSchema schema, ConpositeMapping|]
conposi teMappings, IFilter filter)

keyFi el d = schenm. get KeyFi el d();

this.filter = null

this.tenpl ateRecord = makeTenpl ate (schem);
creat eSubCur sor s(conposi t eMappi ngs) ;

}

public static BConponent nakeTenpl ate(BSeri esSchema recordSchema)

{

/lcreate our tenplate instance
BConponent tenpl ateRecord = new BConponent () ;

/luse our schena to initialize our tenplate

String[] fieldNanes = recordSchena. get Fi el dNanes();
for(int i =0; i < fieldNanmes.length; i++)

8/26/2015 220

Niagara Developer Guide

String fieldName = fiel dNames[i];

BTypeSpec fi el dType
BFacets fiel dFacets
BVal ue defaul t Val ue

get Def aul t Val ue(fi el dType. get Resol vedType());

recordSchena. get Fi el dType(fi el dNane);
recor dSchena. get Fi el dFacet s(fi el dNane) ;

tenpl at eRecor d. add(fi el dNane, def aul t Val ue, O, fi el dFacets, nul |);
}

return tenpl at eRecord;

}
public BOoject get()

/lreturn our tenplate instance
return tenpl at eRecord;

}

public bool ean next ()

{

/1 get record values fromour internal cursors. In the case of the
/I conposite cursor, these internal cursors are passed in as part
/1 of the constructors ConpositeMappi ng val ues.

/lafter retrieving our internal data from our sub cursors,
/1 copy the conposite properties to the conposite record
Set dst PropNanes = propMappi ngs. keySet () ;
for(Iterator dstlt = dstPropNanes.iterator(); dstlt.hasNext();)
{
String dstPropNane = (String)dstlt.next();
String srcPropNanme = (String)propMappi ngs. get (dst PropNane) ;
Property property = tenpl at eRecord. get Property(dst PropNane);

BFacets facets = property. get Facets();

BVal ue val ue = record. get (srcPropNane) ;

t enpl at eRecor d. set (dst PropNane, val ue);

Sl ot slot = tenpl at eRecord. get Sl ot (dst PropNane) ;
tenpl at eRecor d. set Facet s(sl ot, facets);

}

/lour only record instance
private BConponent tenpl ateRecord;

}

Wrapping Cursors

The concept of wrapping cursors is simple. When a series cursor is instantiated, one or more cursors are passed into the
cursor constructor. How the cursor is passed in is determined by the implementation.

In the case of the Scale Cursor, the data cursor is passed into the constructor by passing in the BSeriesTransformTable
that is the data source that the scale cursor will operate against. Remember that a Series Transform table is a specific
implementation of the BITable. Each time the scale cursor is initialized, we want to ensure that the scale cursor gets a
new cursor by calling the cursor() method of the underlying data source, the series transform table.

public class Scal eCursor
ext ends SeriesCursor

8/26/2015 221

Niagara Developer Guide

publ i ¢ Scal eCursor (BSeri esSchema schema, BSeriesTransfornirlabl e tabl e,
Map scaling, IFilter filter)

fi el dNames = schenm. get Fi el dNanes() ;
this.scal eFactors = scaling
this.innerCursor = table.cursor();
this.filter = filter;

private Cursor innerCursor;

}

The series transform table passed into the cursor constructor is itself passed into the BScaleTable constructor and used
when creating the ScaleCursor.

8/26/2015

public class BScal eTabl e
ext ends BSeri esTransf ornTabl e

{

LELTTLIILLE bbb bbb
/'l Type
PELTTLEELE bbb

public Type getType() { return TYPE;, }
public static final Type TYPE = Sys.|oadType(BScal eTabl e. cl ass);

public BScal eTabl e(String seriesNanme, BSeri esSchema schenma
BSeri esTransforniabl e tabl e, Map scal eFact ors)

t hi s(seri esNane, schenm, t abl e, scal eFactors, nul|);

}

publ i c BScal eTabl e(String seriesNanme, BSeriesSchema schens,
BSeri esTransfornirabl e table, Map scal eFactors,
IFilter filter)

{
super (seri esNane, schems) ;
this. scal eFactors = scal eFactors;
this.table = table;
this.setFilter(filter);
}
public Cursor cursor()
{
return new Scal eCursor (get Schema(), table, scal eFactors
getFilter());
}
public BlCollection filter(lFilter filter)
{
return new BScal eTabl e(get Seri esNane(), get Scherma(), table,
scal eFactors, filter);
}

private Map scal eFactors;
private BSeriesTransfornilabl e table;

222

Niagara Developer Guide

Finally, the series transform table that is the data source for the Scale Cursor is passed into the BScaleTable at the time
the scale table is instantiated: in the doResolve() method of the BScaleNode.

protected BSeriesTransfornTabl e[] doResol ve(
BSeri esTransf ornifabl e[] inputs,
GraphNodePar ans paranms, BOrd base)
throws TransfornException

{
/'l get our scale factors
Map scal eFactors = convert Scal eFact or sToMap();
BSeri esTransfornilabl e[] results =
new BSeri esTransf ornTabl e[i nputs. | ength]
/'l create a scale table for each input table
for(int i = 0; i < inputs.length; i++)
BSeri esTransfornrable table = inputs[i];
/1 pass in the transformtable into our new scal e table
BScal eTabl e scal eTabl e = new BScal eTabl e(get Nane(), getSchema(),
tabl e, scal eFactors);
results[i] = scal eTable
}
return results;
}

8/26/2015 223

Niagara Developer Guide

Creating a Rounded Popup Editor

A new feature included with Niagara AX 3.7 is the wiresheet popup editor. This editor, if defined for a BComponent type
in the wiresheet, is displayed in lieu of the Property Sheet for the component.

It is important to note that the Property Sheet view is still available for the component; the end user must select the view
from the available views on the component.

The popup editor allows the application to create a BWbEditor for the component as a whole, rather than for each field
in a component as is required by the Property Sheet.

To create a popup editor, simply create a class which extends the BWbEditor base abstract class and implements the new

BIPopupEditor interface. The editor should be implemented as any other Workbench editor and will display whenever
the component is clicked in the workbench wiresheet.

8/26/2015 224

Niagara Developer Guide

Creating Aggregate Functions

The Aggregate and Rollup graph nodes provide a few base functions for aggregating or performing a "rollup” on the
incoming data. Additional functions can be created and will automatically be included by the Aggregate and Rollup graph
nodes by extending the BTransformFunction base class.

Of the five required method implementations, four of these are required to integrate with the GUI workbench editors.
These methods provide a name and description of the function as well as acceptable argument types (numeric, Boolean,
etc.) and the return type.

The method of most importance is the applyFunction() method. This method is called by the aggregate and rollup
cursors to perform the data calculation for each data record or set of records in a cursor iteration.

The applyFunction Method
The method includes four arguments: a map of series names to records lists an array of source property names, the
destination property where the final calculated value will be stored, and the result record that the calculated value in

which the value will be stored.

The Series Map
The series argument is a map of BComponent records contained in a java.util.List object that is keyed by the String
name of the series that the records are associated with. Each source property name contained in the array of source

property names is namespaced with the name of the series that the property is associated with.

The list of records associated with a value in the source property array can be obtained using the getSeriesRecords
method available in the transform function API:

for(int i =0; i < srcProps.length; i++)
String name = srcProps[i];

/1get our records for the series associated with this input field
Li st records = getSeriesRecords(series, getSeriesNanme(nane));

The Source Properties Array
The srcProps array is an array of String values that represent the arguments for the transform function. Each String value

contains the name of the Property containing the argument value and the name of the series that contains the record
from which to pull the value. Each String value in the array of source properties uses the following format:

Seri esName. PropertyNane

Prefixing the source property name with the associated series name allows implementing transform function to pull data
from multiple input sources at cursor resolve time.

Example Implementing applyFunction

The following code snippet is an example of implementing the applyFunction method using the methods available in the
Transform Function API This example uses the Max function from the transform framework:

public void appl yFuncti on(Map series, String[] srcProps,

8/26/2015 225

Niagara Developer Guide

Property destProp, BConpl ex resultRecord)
throws TransfornException

BNunber maxVal ue = nul |

/'l Use the getUnits static nmethod of the Transform Function to get
t he

/1 Unit netadata of the destination property.

BUnit dstUnits = getUnits(destProp);

/'l iterate through each argunent property nane. For each argunent,

/'l get the series that contains the list of records that the property
/'l is associated with and the nanme of the property.

for(int i = 0; i < srcProps.length; i++)

String name = srcProps[i];

/1 Use the getSeriesRecord nmethod to retrieve the list of records
/] associated with this input argunent. The static get Seri esNanme
/1 method parses the series name fromthe argunment nane.

Li st records = get SeriesRecords(series, getSeriesName(nane));

/|l iterate over our list of records and find our max for the
/1l given field val ue
if(null == records)continue
for(lterator it = records.iterator(); it.hasNext();)
{
BConpl ex record = (BConplex)it.next();
Property field = record. get Property(getFi el dName(nane));

/1 calculate our current nmaxi mum val ue, taking into account our
/1 previous maxi mum and the source and destination Unit

i nformation
maxVal ue = get MaxVal ue(nmaxVal ue, field, dstUnits, record);

/1 In the case of working with nunmeric data, if we have an
/1 an invalid value returned as our maxi mum we quit all attenpts
/1 to recalculate the max value and return the NaN to signify

t hat
/1 invalid data is included in the data set.
i f(maxVal ue == BDoubl e. NaN) break;
}
}
/1 if we have no records, we have no max
i f(null == nmaxVal ue)
maxVal ue = BDoubl e. NaN
/'l Use the setRecordVal ue nethod to handle setting facet infornmation
/1 and creating a new dynam ¢ property in the BConponent if
necessary.
set RecordVal ue(resul t Record, destProp, maxVal ue);
}
Helper Functions

The BTransformFunction abstract base class includes several useful static functions that may be used when
implementing the applyFunction method.

8/26/2015 226

Niagara Developer Guide

getUnits(javax.baja.sys.Property)

This method retrieves the BUnit facet data from the given Property slot. If no unit facet information is found, the
method returns BUnit.NULL.

convertToUnits(javax.baja.sys.BNumber , javax.baja.units.BUnit sourceUnit, javax.baja.units.BUnit targetUnit)
This method converts the given number from the source unit type to the destination unit type. An example is when the
source unit value is defined in Fahrenheit while the target unit type for the destination property in the result record is

Celsius. This method will convert the numeric value from the source unit to the destination unit, returning the value in
the format of the target unit.

getSeriesName(String)

This method assumes that the String value given is as namespaced function argument of the following format:

Seri esName. PropertyNane

This method parses the String value and returns the series name.

getFieldName(String)

This method assumes that the String value given is as namespaced function argument of the following format:

Seri esName. PropertyNane

This method parses the String value and returns the Property name.

8/26/2015 227

Niagara Developer Guide

Security

Overview

Security in the Niagara framework covers a couple of broad topics:

e Authentication: Logging in and verifying a user;
e Encryption: When and how to use cryptography to secure data;

Categories: Categorizing objects we wish to protect via the security model;
e Permissions: Configuring and verifying user permissions on objects through categories;

Auditing: Logging user actions to create an audit trail;
The following steps are used to setup a Niagara security model:

1. First we have to define the users, which are modeled as BUsers.

2. We have to authenticate users, to make sure they are who they say they are. This is done via a login, with a
username and password or other credentials appropriate to the user's authentication scheme.

3. We have to determine what each user can do with each object. The objects we typically wish to protect are
Components, Files, and Histories. Each of these objects is categorized into one or more categories.

4. We grant each user a set of permissions in each category. This defines exactly what each user can do with each
object in the system.

5. Last we audit anything a user does for later analysis.

Users

The BUser component models security principles in a Niagara system. Typically, BUser s map to human users, but can
also be used to represent machine accounts for machine to machine logins.

The BUserService is used to store and lookup BUsers during login. The BUser Ser vi ce simply stores the system users
as dynamic slots.

BUser is used to store the authentication credentials, roles, as well as any other required meta-data for each user. As a

developer, if you wish to add additional meta-data to users, then you might consider declaring your own BIMixIn.

Authentication

For a detailed look at the BAut hent i cat i onSer vi ce, and how to create new BAuthenticationSchemes, see the
authentication documentation.

All authentication in the Niagara framework is based on the BUserService and the BAut hent i cati onSer vi ce
configured for a station database.

The BAut hent i cat i onSer vi ce determines what BAut hent i cati onSchenes a station supports. These
BAut hent i cati onSchenes are then assigned to each user in the BUser Ser vi ce

The BUser Ser vi ce is used to lookup BUsers by username during login, to determine what
BAut hent i cati onSchermne to use. This determines what types of credentials to acquire from the user, and how to
acquire them. The credentials are then compared to the credentials stored in the BUser Ser vi ce.

There are three primary authentication points in the Niagara system:

1. Fox Workbench to Station: When a connection is made from workbench to a station, the user is prompted for a
username and credentials which are used to authenticate the Fox connection.

2. Fox Station to Station: When a connection is made from a station to another station, preconfigured credentials are
used to authenticate the Fox connection. These credentials are stored in the
Ni agar aSt ation. cl i ent Connecti on component.

3. HTTP Browser to Station: When a browser hits a station URL, an HTTP authentication mechanism is used to

8/26/2015 228

module://docdeveloper/doc/baja-rt/javax/baja/user/BUser.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/user/BUserService.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/sys/BIMixIn.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/authn/BAuthenticationScheme.bajadoc
module://docdeveloper/doc/security/authentication.html
module://docdeveloper/doc/baja-rt/javax/baja/user/BUserService.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/user/BUser.bajadoc

Niagara Developer Guide

validate the user.

Authentication and Communication Protocols

Niagara 4 supports authentication over fox and over HTTP. However, not all BAut hent i cati onSchenes support
both protocols. For example, the HTTPBasi cAut hent i cat i onSchene only works over HTTP. Pick a
BAut hent i cat i onSchene appropriate for the user's requirements.

Details about what a BAut hent i cat i onSchene needs to support authentication over fox or HTTP are described in the
authentication documentation.

(Categories

All objects designed to be protected by the security model implement the BIProtected interface. The Bl Pr ot ect ed
interface extends from the BlCategorizable interface. An | Cat egor i zabl e object has the ability to be assigned to one
or more categories. In essense a category is just a number: Category 1, Category 2, Category 3, etc. You can give
meaningful names categories by mapping category numbers to a BCategory component within the BCategoryService.
Most objects of interest implement the Bl Pr ot ect ed interface including BConponent , Bl Fi | e, and Bl Hi st ory.

Categories are just arbitrary groups - you can use categories to model whatever your imagination dreams up. Typically
for security they will map to some type of role, for example any device associated with lighting may be assigned to a
"lighting" category. But that same device may also be assigned to a "floor3" category.

Categories are implemented as variable length bit strings with each bit representing a category number: bit 1 for Category
1, bit 2 for Category 2, etc. This bit mask is encapsulated via the BCategoryMask class. Cat egor yMasks are stored and
displayed as hex strings, for example the mask for membership in category 2 and 4 would be "a". There are two special
Cat egor yMasks, the "' empty string represents the NULL mask (membership in no categories) and "*" represents the
W LDCARD mask (membership in all categories).

The Bl Cat egor i zabl e interface provides a get Cat egor yMask() method to get the configured category mask for the
object. However most objects support the notation of category inheritence, where the configured mask is null and the
applicable category mask is inherited from an ancestor. This is called the applied category mask and is accessed via the
get Appl i edCat egor yMask() method.

Permissions

Once a user has been authenticated, the user is granted or denied permissions for each protected object in the system
using the user's configured BPermissionsMap. This map grants the user permissions for each category, thereby granting
the user permissions for objects assigned to that category. Users may be configured as super users by setting their
permissions map to BPer mi ssi onsMap. SUPER_USER. Super users are automatically granted every permission in
every category for every object.

Permission Levels

Niagara defines two permission levels called operator and admin. Each slot in a BComponent is assigned to be operator or
admin based on whether the Flags. OPERATOR bit is set.

Permissions
Each slot is defined as admin or operator level. Six permissions are derived to control access to slots:

e Operator-Read: Allows the user to view operator level information;

e Operator-Write: Allows the user to change operator level information;

e Operator-Invoke: Allows the user to view and invoke operator level operations;
e Admin-Read: Allows the user to view admin level information;

e Admin-Write: Allows the user to change admin level information;

e Admin-Invoke: Allows the user to view and invoke admin level operations;

The BPermissions class is used to store a bitmask of these six permissions.

8/26/2015 229

module://docdeveloper/doc/security/authentication.html
module://docdeveloper/doc/baja-rt/javax/baja/security/BIProtected.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/category/BICategorizable.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/category/BCategory.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/category/BCategoryService.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/category/BCategoryMask.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/security/BPermissionsMap.bajadoc
module://docdeveloper/doc/baja-rt/javax/baja/security/BPermissions.bajadoc

Niagara Developer Guide

Component Permission Semantics

The following are the standard semantics applied to BConponent s:

Operation On Slot Permission Required
read operator non-BComponent properties|joperatorRead

write operator non-BComponent properties|joperatorWrite

read admin non-BComponent properties |ladminRead

write admin non-BComponent properties |[adminWrite

read operator BComponent properties operatorRead on child
read admin BComponent properties operatorRead on child
invoke operator actions operatorInvoke
invoke admin actions adminInvoke

read operator topics operatorRead

read admin topics adminRead

Note that the permissions required to access a property containing a BComponent are based on the child BComponent
regardless of access to its parent or whether the containing slot is marked operator or admin.

File Permission Semantics

Bl Fi | es use the operatorRead permissions to check read access for the file and operatorWrite to check write access. For
a directory operatorRead is required to list the directory, and operatorWrite to create a new file.

Computing Permissions

To check the permissions available for a specific object use the Bl Pr ot ect ed. get Per ni ssi ons(Cont ext)
method. If working with an OrdTarget, then it is preferable to use Or dTar get . get Per m ssi onsFor Tar get (),
which computes the permissions once and then caches the result.

The standard mechanism to compute permissions by an | Pr ot ect ed object is:

1. If the Context is null or doesn't specify a user, then return BPer mi ssi ons. al |

2. Route to BUser . get Per m ssi onsFor () . Note: don't use this method directly, because it might by-pass special
cases within | Pr ot ect ed. get Per mi ssi onsFor () (see below).

3. Get the object's mask using get Appl i edCat egor yMask() .

4. Map the category mask to a permissions mask via BPer mi ssi onsMap. get Per mi ssi ons(BCat egor yMask) ,
which is a logical "OR" of each permission asssigned to the configured categories.

There are a couple special cases to note. First is that BConponent access requires access to the entire ancestor tree. For

n_n

example to access "c" in "/a/b/c", requires at least operatorRead access to "a" and "b". The system will automatically grant
operatorRead to all ancestors of a component which a user has at least one permission on. Note that this calculation is
only done periodically, but can be forced using the Cat egor ySer vi ce. updat e action.

Another special case is Bl Fi | e which applies these special rules for file system protection:

1. Files in a BModule are automatically granted operatorRead (this does not include .class files which are never
mapped into the ord name space).

2. If the user is not a super user, automatically deny any permissions outside of the station home directory
3. Any remaining cases map to user's configured permissions via the file's categories

8/26/2015 230

module://docdeveloper/doc/baja-rt/javax/baja/naming/OrdTarget.bajadoc

Niagara Developer Guide

Checking Permissions

Permission checks are built-in at several layers of the framework:

e Checked on the BComponent modification methods.
® Checked on all Fox network traffic.
e Access in Workbench.

Each of these checks is discussed in detail.

BComponent Modification

The following methods will check user permissions if a non-null Context is passed with a non-null BUser. If the
permission is not available then a PermissionException is thrown.

e set(): If the property is operator, then must have operator write, otherwise admin write of the containing
BComponent.

e setFlags(): Must have admin write of containing BComponent.

e add(): Must have admin write.

o remove(): Must have admin write.

e rename(): Must have admin write.

e reorder(): Must have admin write.

e invoke(): If the action is operator, then must have operator invoke, otherwise admin invoke.

Developers should take care to use the proper version of the method with a user context when applicable.

Fox Traffic

Fox is the primary protocol used for workbench-to-station and station-to-station communication. Fox automatically
performs all permission checks on the server side before sensitive data can be accessed or modified by a client. By the
time a BComponent reaches the client Fox ensures the following:

e Dynamic slots which the user lacks permission to read are never sent across the network and will never appear in
the client.

e Frozen slots which is the user lacks permission to read/invoke will automatically have the hidden flag set.
e Frozen properties which the user lacks permission to write will automatically have the readonly flag set.

Furthermore all attempts to modify components are checked by the server being committed.

Workbench Access

Each view declares the permissions a user is required to have on a given BComponent in order to access the view. These
permissions are usually declared in the module manifest (module-include). By default views require adminWTrite. To
override the default:

<type name="PropertySheet"
class="com tridi um wor kbench. propsheet . BPr opert ySheet ">
<agent requiredPerm ssions="r"><on type="baj a: Conponent "/ ></ agent ></t ype>

Note that required permissions for a dynamic PxVi ews are configured via the BPXVi ew. r equi r edPer ni ssi ons
property.

Auditing

One of the important aspects of security is the ability to analyze what has happened after the fact. The Niagara
component model is designed to audit all property modifications and action invocations. Auditable actions include:

e Property changed
e Property added

8/26/2015 231

Niagara Developer Guide

Property removed

e Property renamed

e DProperties reordered
e Action invoked

Component modifications are only audited when the modification method is passed a non-null Context with a non-null
BUser. The history module includes a standard implementation of an audit trail stored to a history database file.

Code Samples

In order to check if a BUser has a operator read permission on specified component:

target. get Perm ssi onsFor (user). has(BPerm ssi ons. operatorRead) // BUser
i mpl enent s Cont ext

This snippet of code will throw a PermissionException if the user lacks the admin invoke permission:
user. check(target, BPerm ssions. adm nl nvoke)
To filter a list of | NavNode children for security:

Bl NavNode[] ki ds = node. get NavChil dren();
ki ds = BNavContainer.filter(kids, context);

Use an AccessCursor to automatically skip slots that a user lacks permission to read/invoke:

Sl ot Cursor ¢ = AccessSl ot Cursor. make(target.getSlots(), user)
while(c.next()) {}

8/26/2015 232

Niagara Developer Guide

Security Manager

Overview

One of the changes implemented in Niagara 4 is the activation of the Java Security Manager. The Security Manager allows
us to restrict who can call what code using permissions. By default, no one has any permissions. Any code that requires a
permission check will fail, with an AccessCont r ol | er Except i on. Each permission must be granted explicitly, using

a policy file.

This allows us to ensure that certain sensitive calls can only be made by trusted code or individuals — for example, we can
limit who can read, write, delete or execute specific files or folders, usingaj ava. i 0. Fi | ePer m ssi on. This way, we
can protect sensitive files like the contents of the security folder, ensuring that only modules that absolutely need to
access those files have permissions to do so.

As a developer, this means that you may encounter access control issues and defects, caused by the new Security
Manager. In this document, we will show how to deal with these issues by:

e Identifying Access Control Issues
e Disabling the Security Manager
e Reporting Security Manager Issues

Identifying Access Control Issues

When using Niagara 4 with the Security Manager enabled, you may come across issues where certain features are no
longer functioning as expected. These problems may or may not be related to the Security Manager. To identify whether
it truly is an access control issue, you have a number of options. We will go over each of these options in the sections
below.

Inspect Output and Stack Traces
If you run across an issue you think may be related to the Security Manager, the first thing to do, as for any other issue, is
to inspect the output for either the station or workbench, as appropriate. Typically, issues caused by the Security
Manager will include one of the following in the output or stack trace:

AccessCont r ol Exception: access denied (<required perm ssion>)

access deni ed (<required pernission>)

The presence of either of these two lines indicates a Security Manager issue, which should be reported.

Enable Security Manager Debug Output

Not all issues (Security Manager related or otherwise) generate a stack trace or other output, making it a little trickier to
determine if the issue you are seeing is related to the Security Manager or not. In these cases, there are logs that may be
turned on to obtain additional debug information.

Niagara Debug Output

For some basic debug output, you can go to the DebugService in the station, or to Tools > Logger Configuration in
workbench, and turn on the “security.niagaraPolicy” log. Different settings will give different levels of detail:

e FINE. Logs failed permission checks, including the permission name and code base that failed the check.

e FINER. Logs successful permission checks for certain Niagara-specific permissions, including the permission name
and the Niagara permission that granted it.

e FINEST. Logs successful permission checks for all permissions.

This is very basic information and is good for quickly determining the source of the problem in simple situations. For
more complex situations, the built-in Java debug output can be used.

Built-in Java Debug Output

8/26/2015 233

http://docs.oracle.com/javase/8/docs/api/java/io/FilePermission.html

Niagara Developer Guide

If you can start your station or workbench from the command line, Java offers a command line property to enable
debugging on the Security Manager, allowing you to precisely identify access control issues. To enable Security Manager
debug output, add the following (shown in green) to the command line:

station <stationnane> - @) ava. security. debug=access, failure

Note that this will produce a LOT of output, which may be difficult to view from the console. If you would like to stream
this output to a file, use the following (show in green):

station <stationnanme> - @) ava. security. debug=access,failure > D:\tnp\debug.txt 2>&1

where D: \ t np\ debug. t xt is the file you want to stream your output to. The path and file can be changed, and the path
must exist.

Note

The full debug output may only completely stream to the file once the application stops. The best way to test Security
Manager issues, if possible is to start your application, attempt to reproduce the issue as soon as possible, then close the
program and inspect the debug output.

Note

The Security Manager debug feature produces a lot of output, a lot of which you don’t need to worry about if you're
looking for access denied issues. You can filter out a lot of output if you use a text editor which allows a search and
replace based on regular expressions, such as Notepad++. Simply use find and replace with:

Find:".*access al |l owed. *\r\n"

Replace with: " "

Disable the Security Manager and Try Again

If you have an issue and don’t see any debug output, and cannot start your station or workbench from the command line,
you do have another option available. If you know you can reproduce the issue consistently with the Security Manager
on, you can stop the application and then disable the Security Manager, then restart the application. If you're still seeing
the issue, it’s not related to the Security Manager. If you aren’t seeing it anymore, it may be Security Manager related.

See the following section for instructions on how to disable the Security Manager.

Disabling the Security Manager

Enabling the Security Manager was a change with a massive scope. The Security Manager can potentially affect any and
all features. As a result, it was not possible to identify every single potential issue before enabling it. In order to allow
work to continue even when issues come up, we have provided the ability to disable the Security Manager when a
blocking issue is found.

The first requirement to disable the security manager is to have the “smDeveloperMode” license feature. If you don’t
have this license feature, you will not be able to disable the Security Manager even if you follow one of the methods described
below.

Once you have the “smDeveloperMode” license feature, you need to request to your application that it run without the
Security Manager. There are three ways to do this, which we will go over in the sections below.

Use the Command Line Argument

If you can start your application using the command line, the simplest way to request to disable the Security Manager is
using the command line argument. Simply add the following (shown in green) to the command line:

station <stationnanme> - @ni agara. security. manager. di sabl e

Set a System Property

If you can’t start your application from the command line, you can request to disable the Security Manager by setting the
ni agara. security. nmanager. di sabl e system property. The system property needs to be present at boot, so you

8/26/2015 234

Niagara Developer Guide

should include it in your <niagara.user.home>/etc/system.properties file.

Enable the no-security-manager Flag (QNX)

In QNX, if you can’t start your application from the command line, you can request to disable the Security Manager by
opening an SSH connection to the JACE and issuing the following command:

touch /etc/no-security-manager

This will disable the Security Manager for both niagarad and stations.

Reporting Security Manager Issues

Security Manager issues should be reported the same way as any other issue you come across. To help get the issue
resolved more quickly, however, there are some additional details you can include.

e When describing how the issue occurs, precise reproduction steps are extremely important with Security Manager
issues. The order of operations can affect whether the issue occurs at all, as can any change from default settings,
or the presence of a new Service, etc...

e If you used the Security Manager command line debug argument, please include the entire debug output captured
(before or after filtering the “access al | owed” lines) in your issue report.

e If the issue caused a stack trace or other output in the console, please include the entire stack trace in your issue
report.

Having all this information from the start will allow issues to be dealt with much more quickly, and will reduce the need
for follow ups.

Fixing Access Control Issues

Currently, the ability for third party developers to fix access control issues is limited. We do, however, allow the following:

e As(read/wite/del et e/ execut e) access to files is a restricted action requiring a specific permission for the
file in question, third party modules that try to access the file system may run into issues. To address this, we have
added shared directories that all modules have r ead/ wri t e/ del et e access to in the following locations:

o Under the station. This location is now called st at i on_hon®, and can be obtained via
Sys. get St ati onHone() .

o Under ni agar a_user _home. This location can be obtained via Sys. get Ni agar aShar edUser Horre() .

8/26/2015 235

Niagara Developer Guide

Authentication

Overview

In Niagara 4, the Authentication Service manages how users can log in to the station. It supports using multiple
Authentication Schemes at once, so that different users can log in using different methods appropriate to the type or
sensitivity of the account. Developers can create additional Authentication Schemes if desired.

Authentication Service Model

Overview

In Niagara 4, all authentication (that is, how users prove who they are to the station) is managed by the Authentication
Service. In a Niagara 4 station, all authentication requests are routed through the Authentication Service. The types of
authentication a station supports (both for fox and web) is determined solely by the Authentication Service. This results
in a more robust authentication framework. Functionality that can be centralized is handled by the service itself, avoiding
duplication of code. Functionality that cannot be centralized is handled by specialized handlers, which can be reused.

In this section, we describe how the Authentication Service works, and what steps are required to create new
authentication schemes.

Authentication Schemes

The most important element of the Niagara 4 Authentication Service is the Authentication Scheme. An Authentication
Scheme determines how the client authenticates to the server. For example, with the

HTTPBasi cAut hent i cat i onSchen®, a username and password are sent over in plaintext; with the

Di gest Aut henti cati onSchemne, multiple messages are passed back and forth to prove the client knows the
password, without ever actually sending the password.

A station can support multiple authentication schemes. Each user account is tied to a specific scheme. This allows more
sensitive accounts to use a more secure scheme (e.g. digest or two-factor), while still allowing other accounts to use other
schemes such as LDAP. This is done via the aut hent i cat i onScheneNane property on the BUser , which allows you
to choose any Authentication Scheme configured in the Authentication Service and assign it to that user.

New schemes are added to the Authentication Service and configured as needed (e.g. the LDAP scheme will require
certain parameters like the URL of the LDAP server to which you wish to connect). Only schemes added to the
Authentication Service are supported by that station.

Using the Authentication Service
In this section, we’ll discuss how to set up a station to use the Authentication Service.
Add the Authentication Service

Each station needs an Authentication Service. New stations are created with an AuthenticationService already in the
“Services” container. If you have accidentally removed the AuthenticationService, you can manually add one from the
“baja” palette into the “Services” container.

Add the Desired Authentication Schemes

A station may support multiple Authentication Schemes. Which ones you want depends entirely on what you need your
station to do.

Authentication Schemes should be added to the AuthenticationService’s Aut hent i cat i onSchenes folder. Only
schemes in that folder are supported by the station.

Each station is created with the DigestAuthenticationScheme and AXDigestAuthenticationScheme in the
Aut hent i cat i onSchemnes folder. This way, any Niagara 4 station can do digest authentication with both N4 and AX

8/26/2015 236

Niagara Developer Guide

clients.

Additional Schemes can be found in the baja and ldap palettes. Schemes may be added or removed from the
Aut hent i cati onSchemnes folder, but be aware that removing a scheme may leave your users with an invalid reference
to a non-existent scheme, and unable to log in.

Assign Authentication Schemes to Users

In Niagara 4, each user is assigned its own AuthenticationScheme. This allows different users to use different schemes
appropriate to the user type. For example, the DigestScheme is appropriate for human users, whereas the
HTTPBasicScheme is more appropriate for devices that can’t do digest.

A user’s AuthenticationScheme can be changed via the user’s aut hent i cat i onSchemeNane property in the user’s
property sheet. Simply select the desired scheme from the drop down list.

Once these setup steps are complete, the station should be ready for authentication. Note that by default, each new

station comes with the Digest scheme installed, which is assigned to all users by default, so that in simple cases no
additional setup is required.

Creating an Authentication Scheme

When creating a new authentication scheme, there are a few things to take into consideration:

e The station must know how to gather information from the client.
e The client must know how to provide the server with information.
e The station must know how to process the information it gathers.

Multiple protocols (e.g. fox or web) may need to be supported.

For each new authentication scheme created, a number of handlers may also need to be created to ensure that
communication is possible between the client and the server. In this section, we will go over all the different objects that
must be created when implementing a new authentication scheme.

e Step 1: Create a BAut hent i cat i onSchene subclass
e Step 2: Create a Logi nivbdul e
e Step 3: Create the BAut hent i cat i onSchene building blocks
o Cal | backHandl ers
o Fox
m BFoxCal | backHandl er
m BFoxd i ent Aut hnHandl er
o Workbench
= BWhDi al ogHandl er
o Web
m BWebCal | backHandl er
= Bl Logi nHTM Form

Step 1: Create a BAuthenticationScheme subclass

Each new authentication scheme must be a subclass of BAut hent i cati onSchene. A BAut henti cati onSchene is
essentially a wrapper for a JAAS (Java Authentication and Authorization Service) Logi nModul e. Each subclass must
implement the following methods:

e get ScheneNane() . This should return a String containing a unique name for the authentication scheme (e.g.
“n4digest” or “n4HTTPBasic”). This name will be used by the server to inform the client which scheme is being
used.

e get Logi nConfi gurati on(). This should return a JAAS login Conf i gur at i on that indicates which login
module(s) to use, whether they are required, and what options to use. In most cases, a new
Ni agar aLogi nConfi gur ati on can be created with the appropriate Logi nMbdul e name, the
Logi nModul eCont r ol Fl ag. REQUI RED flag, and whatever options are appropriate to the scheme (e.g. LDAP
server name).

8/26/2015 237

module://docdeveloper/doc/baja-rt/javax/baja/authn/BAuthenticationScheme.bajadoc
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
module://docdeveloper/doc/fox-rt/javax/baja/fox/authn/BFoxCallbackHandler.bajadoc
module://docdeveloper/doc/fox-rt/javax/baja/fox/authn/BFoxClientAuthnHandler.bajadoc
module://docdeveloper/doc/workbench-wb/javax/baja/workbench/authn/BWbDialogHandler.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/authn/BWebCallbackHandler.bajadoc
module://docdeveloper/doc/web-rt/javax/baja/web/authn/BILoginHTMLForm.bajadoc

Niagara Developer Guide

BAut hent i cat i onSchemne subclasses must also be declared as agents on BAut hent i cat i onSchene.
Step 2: Create a LoginModule

One of the most important pieces of a new Authentication Scheme is its corresponding JAAS Logi nMbdul e. The
Logi nMbdul e decides what information it needs from the user, delegates the task of acquiring it to the various handlers
described in step 3, and then processes that information to determine whether authentication was successful or not.

For example, an authentication scheme for a basic authentication scheme could acquire the username and password from
the user, and then compare the password to the stored hash to determine if the supplied password was correct. An LDAP
scheme, on the other hand, might acquire the username and password from the user in the same way, but would then
turn around and authenticate to the LDAP server rather than compare to an internally stored password.

A full discussion of how to create a JAAS Logi nMbdul e is beyond the scope of this document. For more information,
see Oracle’s LoginModule Developer’s Guide.

Step 3: Create the BAuthenticationScheme building blocks

In order to keep BAut hent i cat i onSchemes modular and easily extensible, authentication functionality is separated
into a number of building blocks. Each building block provides a different piece of completely self-contained
functionality.

Depending on what you want your BAut hent i cat i onSchen® to support, some of the building blocks may not be
required. For example, an Authentication Scheme meant only to be used only over fox does not need any of the web
building blocks. Note that this would mean that users using this scheme would not be able to log in via the web.

The building blocks are described in the following sections, grouped by functionality.

CallbackHandlers

As mentioned in Step 2, the LoginModule delegates the task of acquiring user information to a JAAS
Cal | backHandl er . In essence, the Logi nMbdul e doesn’t care how the information it needs is acquired, so long as it
is acquired. Different Cal | backHandl er s can acquire the same information in different ways.

This is particularly important for Niagara — it means that the same Logi nModul e can be used for both fox and web
authentication, or any other protocol we might want to use. The only thing that needs to be added is a new

Cal | backHandl er for each required protocol. It also means that different Logi nMbdul es that happen to require the
same information can get it using the same Cal | backHandl er s, and can then process it differently.

In Niagara 4, we have two Cal | backHandl er superclasses defined, one for fox (BFoxCal | backHandl er) and one for
web (BWebCal | backHandl er). Each BAut hent i cat i onSchene must be associated to a subclass of these in order
for authentication over that protocol to be possible.

Fox

For BAut hent i cat i onSchenes intended to communicate over Fox, both the BFoxCal | backHandl er and
BFoxC i ent Aut hnHandl er must be implemented.

BFoxCallbackHandler

All Cal | backHandl er s intending to acquire information over fox for a scheme’s Logi nModul e must be a subclass of
BFoxCal | backHandl er . Each subclass must implement JAAS’s Cal | backHandl er . handl e(Cal | back[]

cal | backs) method, which will send and receive messages over fox to acquire information from the client, and fill in
the cal | backs array with the appropriate information.

It may override BFoxCal | backHandl er . i nit (FoxSessi on sessi on), which is called before starting the
Logi nMbdul e login process. If it is overridden, super (sessi on) must be called, as it ties the
BFoxCal | backHandl er to a specific FOxSessi on, allowing it to send messages to the client.

To associate a BFoxCallbackHandler to a specific BAut hent i cat i onSchene, it must be declared as an agent on
that scheme.

BFoxClientAuthnHandler

8/26/2015 238

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Niagara Developer Guide

The BFoxCl i ent Aut hnHandl er is the client counterpart to the server’s BFoxCal | backHandl er . Although the
client doesn’t specifically need a Cal | backHandl er (which is only required for JAAS Logi nModul es), it does need to
know what messages to expect from the server and how to respond to them. Therefore, each new

BAut hent i cat i onSchene must be associated with a subclass of BFoxC i ent Aut hnHandl er, which is “paired” to a
BFoxCal | backHandl er.

Subclasses of BFoxCl i ent Aut hnHandl er must implement handl eAut henti cati on(FoxSessi on sessi on,

Bl Credenti al s credenti al s), which is responsible for sending and receiving messages over fox, to give the
station the information it needs for authentication. The messages it receives should correspond to the messages sent by
the corresponding BFoxCal | backHand! er, and vice-versa.

To associate a BFoxC i ent Aut hnHandl er to a specific BAut hent i cati onSchene, it must be declared as an
agent on that scheme.

Workbench

If your BAut hent i cat i onSchemne will be used for users logging in via Workbench, a BWDi al ogHand| er must be
created.

BWhDialogHandler

Different BAut hent i cat i onSchemnes may require the user to supply different credentials. For example, digest
authentication requires only a username and password. Two-factor authentication, on the other hand, requires a
username and password, as well as an additional token. Workbench needs to know which dialog to present to the user in
order to collect the appropriate information.

The BWDi al ogHandl er is responsible for building the appropriate dialogs when Workbench attempts to log in to a
station.

Subclasses of BWDi al ogHandl er must implement get PaneFor St ep(Aut henti cati onReal mreal m int

step, BI Object seedl nfo), which constructs and returns an appropriate BCr edl nput Pane for the given
authentication step. While many authentication schemes will only have a single step, some may require multiple passes to
enter additional credentials; since these steps may require different credentials from the user, a different pane can be built
for each step.

The Bl Obj ect seedl nf 0 argument can be used to pre-populate the pane. For example, if the username and password
have previously been stored, they can be pre-filled for the user.

Web

If your BAut hent i cat i onSchene is meant for users who will be logging in via the web interface, a
BWebCal | backHandl er must be implemented. For users logging in via the browser, a Bl Logi nHTM_For mmust be
implemented.

BWebCallbackHandler

All Cal | backHandl er s intending to acquire information over HTTP for a scheme’s Logi nMbdul € must be a subclass
of BWebCal | backHandl er . Each subclass must implement

BWebCal | backHandl er . handl eRequest (Ht t pSer vl et Request req, HttpServl et Response resp),
which is responsible for acquiring information from the user by processing HTTP requests and sending HT TP responses.

Each subclass must also implement JAAS’s Cal | backHandl er . handl e(Cal | back[] cal | backs) method, which
uses the data acquired from the user in handl eRequest () to fill in the callbacks array.

Note that the mechanism for acquiring information is slightly different for BFoxCal | backHandl er and

BWebCal | backHandl er . While fox allows us to send multiple messages within a single call to handl e(Cal | back[]
cal | backs), the servlet request handling process does not allow us to make multiple requests and responses within a

single method. Since Logi nModul es don’t support a partial login process, we are forced to gather all the user

information before we start the login process at all. Therefore, handl eRequest () will continue to be called until it

returns a state of BWebCal | backHandl er . READY, indicating that it has all the information it needs to process a
handl e() call, at which point the Logi nMbdul e’s login process will begin.

To associate a BWebCallbackHandler to a specific BAut hent i cat i onSchene, it must be declared as an agent on

8/26/2015 239

Niagara Developer Guide

that scheme.
BlLoginHTMLForm

Just as we need to let a fox client know how to handle fox authentication messages, we also need to ensure that a web
client knows what information to acquire from the user, how to acquire it, and how to send it back to the server. We do
this by ensuring that each BAut hent i cat i onSchene can create its own customizable HTML login form — each
BAut hent i cat i onSchene must be associated with a class implementing the Bl Logi nHTMLFor minterface.

Classes implementing the Bl Logi nHTM_For minterface must implement the get Logi nFor mHTM_(Cont ext

cont ext) method. This method is responsible for creating an HTML snippet containing any input fields, buttons, or
additional information the login form might require. The context argument can be used to pass in a Local e, or any
other customizable information supported by the Bl Logi nHTM_LFor m(BDi gest Logi nHTM_For m for example, allows
the username, password and login labels to be customized via the context argument).

To associate a Bl Logi nHTM_For mto a specific BAut hent i cat i onSchene, it must be declared as an agent on that
scheme.
Process Overview

This figure outlines the login process over fox, and how the various pieces (BAuthenticationScheme, LoginModule,
BFoxCallbackHandler and BFoxClientAuthnHandler) fit together.

pp— ——

pick BEquCallbackHandlsr
pigk Logi
acguire user credentials BLAvire login info
CallbackHandlsr.handls
welcome/reiect process, login info

Niagara AX to Niagara 4 APl Changes

Overview

In Niagara AX, authentication is handled by a number of different services and agents. The Fox Service, Web Service and
User Service all determine in part what type of authentication the station supports. Not all possible configurations are
valid, and this can lead to confusion and reduced security. What’s more, because authentication is handled in so many
different places, the authentication system tends to be fairly fragile.

In Niagara 4, the authentication model has been changed so that all authentication functionality goes through a single
service, the Authentication Service. This helps centralize common functionality like auditing or approving or rejecting

8/26/2015 240

Niagara Developer Guide

authentication, and allows us to easily create and integrate new authentication schemes.

For more information about the Niagara 4 Authentication Service, view the Authentication Service Model section. As a
result of these changes, some modifications were made to the APIL. These are described below.

Who is Impacted

Any custom authentication implementation using BAut hAgent s or subclasses of BUser Ser vi ce will be affected.

What Changed
A number of things have changed with the new Authentication Service implementation:

e BAut hAgent s are no longer used for authentication. Any implementation of a BAut hAgent will need to be
refactored into the appropriate BFoxCal | backHandl er , BWebCal | backHandl er,
BFoxd i ent Aut hHandl er and Bl Logi nHTMLFor mcomponents.

e All BAut hAgent s have been removed. Any code that uses or implements BAut hAgent will not compile.

e The methods BUser Ser vi ce. get Aut hAgent () and BUser Ser vi ce. aut henti cat eBasi c() have been
removed.

e Theaut henti cati onPolicy and| egacyAut henti cati on properties has been removed from
BFoxSer vi ce.

e The aut henti cati onSchemne property has been removed from BWebSer vi ce.

e javax. baj a. web. BAut henti cati onType has been removed.

e All stations must have an Authentication Service for authentication to be possible.

e There is no longer any need to subclass BUser Ser vi ce if an alternate authentication scheme is desired.

Resolution

Any custom BAut hAgent should be replaced by the various components described in the Authentication Service Model
section.

Subclasses of BUser Ser vi ce are no longer required to implement alternate authentication schemes. Authentication
specific elements of the BUser Ser vi ce subclasses should be moved to the appropriate BAut hent i cati onSchemne
component (e.g. the scheme’s Logi nModul e).

8/26/2015 241

	Niagara Developer Guide
	Framework
	Architecture Overview
	Architecture
	directoryRestructure.html
	API Information
	Modules
	Object Model
	Component Model
	Building Simples
	Building Enums
	Building Complexes
	Registry
	collections.html
	Naming
	Links
	Execution
	Station
	Remote Programming
	Files
	Localization
	Spy
	Licensing
	XML
	Bog Files
	Distribution
	Test
	Virtual Components

	User Interface
	Gx Grphics Toolkit
	Bajaui Widget Toolkit
	Workbench
	Web
	Px
	Hx
	Hx - HxView
	Hx -HxOP
	Hx - HxProfile
	Hx - Events
	Hx - Dialogs
	Hx - Theming

	Theme Modules
	Web Server
	Servlet Modules
	Web Servlet Components
	Velocity
	Velocity Px Views

	Horizontal Applications
	history.html
	alarm.html
	Schedule
	Report

	BQL
	BQL Expressions
	BQL Examples

	Driver Framework
	Point Devicelet
	History Devicelet
	Alarm Devicelet
	Schedule Devicelet
	Basic Driver
	BACnet Driver
	Lonworks Driver
	Lon Markup Language

	Development Tools
	build.html
	deployingHelp.html
	Slot-o-matic

	Architecture Diagrams
	Architecture - Software Stack
	Architecture - Class Diagram
	Architecture - Communication
	Architecture - Remote Programming
	Architecture - Driver Hierarchy
	Architecture - ProxyExt
	Architecture - Driver Learn

	Series Transforms
	Node Schema
	Creating Graph Components
	Extending BGraphNode
	Creating a Series Transform Table
	creatingSeriesCursors
	Rounded Popup Editor
	Creating Aggregate Functions

	Security
	Security Manager
	Authentication

