
Technical Document

November 5, 2013

NiagaraAX Drivers Guide

AX-3.8 and AX-3.7u1

NiagaraAX Drivers Guide
Copyright © 2013 Tridium, Inc.
All rights reserved.
3951 Westerre Pkwy., Suite 350
Richmond
Virginia
23233
U.S.A.

Confidentiality Notice
The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation (“Tridium”). Such
information, and the software described herein, is furnished under a license agreement and may be used only in accordance with
that agreement.
The information contained in this document is provided solely for use by Tridium employees, licensees, and system owners; and,
except as permitted under the below copyright notice, is not to be released to, or reproduced for, anyone else.
While every effort has been made to assure the accuracy of this document, Tridium is not responsible for damages of any kind,
including without limitation consequential damages, arising from the application of the information contained herein. Information
and specifications published here are current as of the date of this publication and are subject to change without notice. The latest
product specifications can be found by contacting our corporate headquarters, Richmond, Virginia.

Trademark Notice
BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Conditioning Engineers.
Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL Server are registered trademarks of
Microsoft Corporation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Mozilla and Firefox are trademarks
of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation.
Tridium, JACE, Niagara Framework, NiagaraAX Framework, and Sedona Framework are registered trademarks, and Workbench,
WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services mentioned in this publica-
tion that is known to be trademarks, registered trademarks, or service marks are the property of their respective owners.

Copyright and Patent Notice
This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those
products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Trid-
ium, Inc.

Copyright © 2013 Tridium, Inc.
All rights reserved. The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

CONTENTS
Preface . vii
Document Change Log . vii

Driver architecture . 1–1
What are networks? . 1–1

Where are networks located? . 1–1

About Network architecture . 1–2
Network component hierarchy . 1–2
About network components . 1–3
About device components . 1–3
About device extensions . 1–4

About the Driver Manager . 1–4
Driver Manager New and Edit . 1–4

Common network components . 1–5
Network status properties . 1–6
About network Alarm Source Info . 1–6
About Monitor . 1–7
About Tuning Policies . 1–8
About poll components .1–10
Using poll statistics in tuning poll rates .1–13
Additional network components .1–13

About the Device Manager . 1–14
Device New Folder and New .1–15
All Descendants .1–16
Device Edit .1–17
About Device Discover, Add and Match (Learn Process) .1–18
Match (Device) .1–20
Manager table features .1–21

Common device components . 1–21
Device status properties .1–22
Device Alarm Source Info .1–22
Device address properties .1–23
Driver-specific device slots .1–23

Virtual gateway and components . 1–23
About virtual component spaces .1–24
About virtual gateways .1–24
Application and limitations of virtual components .1–25
Virtual components in Px views .1–25
Virtual ord syntax .1–26

Types of device extensions . 1–26

About the Points extension . 1–27
About proxy points .1–27
ProxyExt properties .1–32
Proxy point status .1–33
Effect of facets on proxy points .1–33
NiagaraAX-3.7-3.8

Drivers Guide
i

November 5, 2013
About the Histories extension . 1–34
About the Retry Trigger .1–34

About the Alarms extension . 1–35
Alarms extension properties .1–35

About the Schedules extension . 1–36

About the Point Manager . 1–37
Points New Folder and New .1–38
Point Edit .1–39
About Point Discover, Add and Match (Learn Process) .1–41
About other Points views .1–45

About Histories extension views . 1–46
History Import Manager .1–46
About the Device Histories View .1–49

About Schedules extension views . 1–49

Schedule Import Manager . 1–49
Schedule Import New .1–50
Schedule Import Edit .1–50
Schedule Import properties .1–51
Schedule Import or Export “gang” edits .1–52
About Schedule Import Discover, Add and Match (Learn Process) .1–52

Schedule Export Manager . 1–53

Niagara Network . 2–1
About the Niagara Network . 2–1

NiagaraNetwork component notes . 2–1
Niagara Tuning Policy notes . 2–2
About the Fox Service . 2–2
About History Policies . 2–7

Niagara Station Manager notes . 2–9
Station Learn and Discover notes .2–10
Station Add notes .2–12

NiagaraStation component notes . 2–14
About station status properties .2–14
About client connection properties .2–14
About server connection properties .2–14
About station “provisioning” extensions .2–15

About the Users extension . 2–15
About Users extension properties .2–15
Example Sync In and Out values .2–16
About Users sync strategy .2–17
Users device extension configuration notes .2–18

About the User Sync Manager . 2–18
Sync process description .2–19

Niagara Discover enhancements . 2–19

Niagara Point Manager notes . 2–20
Niagara point Discover notes .2–20
About the Bql Query Builder .2–21

Niagara proxy point notes . 2–24
Best practices for Niagara proxy points .2–25
Proxy of a proxy, other candidates .2–26
Link control and Niagara proxy points .2–26

NiagaraStation Alarms notes . 2–27
Prepend and Append alarm routing notes .2–27
NiagaraAX-3.7-3.8

Drivers Guide
ii

November 5, 2013
Station Schedules import/export notes . 2–28
Niagara schedule import/export default configuration .2–28
Schedule Export Edit .2–28

Niagara histories notes . 2–29

NiagaraStation Histories features . 2–30

Niagara History Import Manager . 2–30
Discovered selection notes .2–31
Niagara History Import properties .2–31
On demand properties in history import descriptors .2–32
Using System Tags to import Niagara histories .2–32

Niagara History Export Manager . 2–33
Niagara History Export New .2–34
Niagara History Export Edit .2–34
Niagara History Export properties .2–35
About History Export Discover and Match (Learn Process) .2–36
Discovered selection notes .2–37
Using System Tags to export Niagara histories .2–37

About Niagara virtual components . 2–38
Niagara virtuals background .2–38
Niagara virtuals in AX-3.7 .2–38
Licensing and application overview .2–39
About the Niagara Virtual Device Ext .2–40
Ords for Niagara virtual components .2–42
Niagara virtuals cache (Virtual Policies) .2–42
Security and Niagara virtuals .2–45
Views on Niagara virtuals .2–46
Actions on Niagara virtuals .2–47
Niagara virtuals in Px views .2–47
Spy page diagnostics for Niagara virtual components .2–49
Localization support for Niagara virtuals .2–51

About Sys Def components . 2–51
About the Niagara Sys Def Device Ext .2–51
About network level Sys Def components .2–52

About the Files extension . 2–54
About the Niagara File Manager .2–54
Add or Edit dialog for NiagaraFileImports .2–55
About Niagara FileImport properties .2–56

Field Bus Integrations . 3–1
Port and protocol variations . 3–1

Ethernet-connected driver . 3–1
Serial-connected driver . 3–1
Special-port driver . 3–2

Learn versus New devices and points . 3–2

Serial tunneling . 3–2
Serial tunnel overview . 3–3
Client side (PC application) . 3–3

To install the serial tunnel client on a Windows machine . 3–3
Station side (TunnelService) . 3–7

To configure the station for serial tunneling . 3–7
To configure for safer tunneling access . 3–8

Serial tunneling usage notes . 3–9

Plugin Guides . 4–1
Types of modules with plugins . 4–1
NiagaraAX-3.7-3.8

Drivers Guide
iii

November 5, 2013
Plugins in driver module . 4–1
driver-DelimitedFileImportManager . 4–1
driver-DeviceManager . 4–2
driver-DriverManager . 4–2
driver-FileDeviceManager . 4–2
driver-HistoryExportManager . 4–2
driver-HistoryImportManager . 4–2
driver-PointManager . 4–2

Plugins in niagaraDriver module . 4–2
niagaraDriver-NiagaraFileManager . 4–2
niagaraDriver-NiagaraHistoryExportManager . 4–2
niagaraDriver-NiagaraHistoryImportManager . 4–2
niagaraDriver-Niagara PointManager . 4–2
niagaraDriver-NiagaraScheduleExportManager . 4–3
niagaraDriver-NiagaraScheduleImportManager . 4–3
niagaraDriver-ServerConnectionsSummary . 4–3
niagaraDriver-StationManager . 4–3
niagaraDriver-UserSyncManager . 4–3

Plugins in niagaraVirtual module . 4–3
niagaraVirtual-NiagaraVirtualCacheView . 4–3
niagaraVirtual-Nva File View . 4–3

Component Guides. 5–1
Component Reference Summary . 5–1

Components in driver module . 5–1
driver-ArchiveFolder . 5–1
driver-ConfigRule . 5–1
driver-DelimitedFileImport . 5–2
driver-DriverContainer . 5–2
driver-ExcelCsvFileImport . 5–2
driver-FileDevice . 5–3
driver-FileHistoryDeviceExt . 5–3
driver-FileHistoryWorker . 5–4
driver-FileNetwork . 5–4
driver-HistoryNetworkExt . 5–5
driver-HistoryPollScheduler . 5–5
driver-PingMonitor . 5–5
driver-SendTimer . 5–5
driver-SendTimes . 5–5
driver-TuningPolicy . 5–5
driver-TuningPolicyMap . 5–5

Components in fox module . 5–5
fox-FoxClientConnection . 5–5
fox-FoxFileSpace . 5–6
fox-FoxServerConnection . 5–6
fox-FoxService . 5–6
fox-FoxSession . 5–6
fox-ServerConnections . 5–6

Components in niagaraDriver module . 5–6
niagaraDriver-BogProvider . 5–7
niagaraDriver-CyclicThreadPoolWorker . 5–7
niagaraDriver-LocalSysDefStation . 5–7
niagaraDriver-NiagaraAlarmDeviceExt . 5–7
niagaraDriver-NiagaraFileDeviceExt . 5–7
niagaraDriver-NiagaraFileImport . 5–7
niagaraDriver-NiagaraFoxService . 5–7
niagaraDriver-NiagaraHistoryDeviceExt . 5–7
niagaraDriver-NiagaraHistoryExport . 5–7
niagaraDriver-NiagaraHistoryImport . 5–7
niagaraDriver-NiagaraNetwork . 5–7
niagaraDriver-NiagaraPointDeviceExt . 5–8
niagaraDriver-NiagaraPointFolder . 5–8
niagaraDriver-NiagaraProxyExt . 5–8
NiagaraAX-3.7-3.8

Drivers Guide
iv

Chapter 2 –
November 5, 2013
niagaraDriver-NiagaraScheduleDeviceExt . 5–8
niagaraDriver-NiagaraScheduleImportExt . 5–8
niagaraDriver-NiagaraStation . 5–8
niagaraDriver-NiagaraStationFolder . 5–8
niagaraDriver-NiagaraSysDefDeviceExt . 5–8
niagaraDriver-NiagaraSystemHistoryExport . 5–8
niagaraDriver-NiagaraSystemHistoryImport . 5–9
niagaraDriver-NiagaraTuningPolicy . 5–9
niagaraDriver-NiagaraTuningPolicyMap . 5–9
niagaraDriver-NiagaraUserDeviceExt . 5–9
niagaraDriver-NiagaraVirtualDeviceExt . 5–9
niagaraDriver-ProviderStation . 5–9
niagaraDriver-RoleManager . 5–9
niagaraDriver-SyncTask . 5–9

Components in niagaraVirtual module . 5–9
niagaraVirtual-NiagaraVirtualBooleanPoint . 5–10
niagaraVirtual-NiagaraVirtualBooleanWritable . 5–10
niagaraVirtual-NiagaraVirtualCache . 5–10
niagaraVirtual-NiagaraVirtualCachePolicy . 5–10
niagaraVirtual-NiagaraVirtualComponent . 5–10
niagaraVirtual-NiagaraVirtualDeviceExt . 5–10
niagaraVirtual-NiagaraVirtualEnumPoint . 5–10
niagaraVirtual-NiagaraVirtualEnumWritable . 5–10
niagaraVirtual-NiagaraVirtualNumericPoint . 5–10
niagaraVirtual-NiagaraVirtualNumericWritable . 5–11
niagaraVirtual-NiagaraVirtualStringPoint . 5–11
niagaraVirtual-NiagaraVirtualStringWritable . 5–11

Components in serial module . 5–11
serial-SerialHelper . 5–11

Components in tunnel module . 5–11
tunnel-TunnelService . 5–11
tunnel-SerialTunnel . 5–12
tunnel-TunnelConnection . 5–12
NiagaraAX-3.7-3.8

Drivers Guide
2-v

 Chapter 2 –

November 5, 2013
NiagaraAX-3.7-3.8

Drivers Guide
2-vi

PREFACE

Preface
Document Change Log

Document Change Log
Updates (changes/additions) to this NiagaraAX Drivers Guide document are listed below.
• Updated: November 5, 2013

Updated this document concurrent with the initial release of NiagaraAX-3.8, denoted in this docu-
ment as “AX-3.8”. This release provides additional security enhancements to those implemented in
the 2013 “update 1” releases (AX-3.7u1). Document changes were mostly minor, as follows:
• In the “About the Fox Service” section (in the “Niagara Network” main section) the section “Fox

Service properties” on page 2-3 was edited, including a new subsection “FoxService defaults
(new station) changed in AX-3.8” on page 2-6.

• In the “About client connection properties” on page 2-14, a Note: about the non-portablility of
client passwords was edited to mention the difference with an AX-3.8 station.

• Updated: June 5, 2013
Updated this document concurrent with “update 1” release of AX-3.7, denoted in this document as
“AX-3.7u1”. This releases provide security enhancements that mainly affect the NiagaraNetwork
(niagaraDriver). The following summarize the main changes made to this document:
In the “Niagara Network” main section, the following subsections had changes or improvements:
• “About the Fox Service” on page 2-2 was expanded, including “Fox Service properties” with a

description of a new “Legacy Authentication” property starting in AX-3.7u1.
• The “NiagaraStation component notes” section “About client connection properties” has a new

Note: about the password property as “non-portable” in AX-3.7u1. Relating to the Users device
extension, a new sub section “Update mismatch with Users device extension fault” on page 2-
18 describes a condition that can occur while a system is being upgraded to AX-3.7u1.

• The section “Best practices for Niagara proxy points” has a new subsection “Avoid links to proxy
point actions” on page 2-25 that explains why this can result in issues.

In the “Field Bus Integrations” main section, the “Serial tunneling” subsection had numerous secu-
rity-related notes and cautions added, for example in the section “Serial tunnel overview” on page
3-3, “Serial tunnel client configuration” on page 3-5, and “Configuring the serial tunnel server” on
page 3-7. A new section “Best security practices for tunneling” on page 3-8 provides related details.

• Updated July 22, 2012
Document is a “version-split” from previous versions, and applies to NiagaraAX-3.7 (AX-3.7), espe-
cially in regards to the “niagaraDriver”, as related changes were made in AX-3.7. With this version
split, some notes and references to the previous (AX-3.6 and AX-3.5) revisions remain, but most ref-
erences to the oldest revisions (AX-3.0 - AX-3.4) are gone.
AX-3.7-related changes to this document are many, but are concentrated in the following sections:
• “Niagara Network” changes includes sections “About the Fox Service” on page 2-2 including

subsection “Fox Service properties” on page 2-3.
The main section on “About Niagara virtual components” on page 2-38 was reworked to reflect
changes in the Niagara virtuals architecture, with most screen captures updated. New subsec-
tions include “Niagara virtuals background” on page 2-38, “Niagara virtuals in AX-3.7” on page
2-38, “About the Niagara Virtual Device Ext” on page 2-40, and “Niagara virtuals cache (Virtual
Policies)” on page 2-42.

• In the “Field Bus Integrations” section, the subsection “Serial tunneling” on page 3-2 was updat-
ed to describe new self-executable files for installing the NiagaraAX serial tunneling client on
NiagaraAX-3.7-3.8

Drivers Guide
vii

November 5, 2013
Windows 7 and Windows Vista PCs. Included are details on installed files and the Windows in-
terface for all variations of the serial tunneling client.

• Some new entries were added to the summary descriptions in the “Component Guides” and
“Plugin Guides” to support context sensitive Help in Workbench, mostly relating to Niagara
virtuals.
NiagaraAX-3.7-3.8

Drivers Guide
viii

1CHAPTER

Driver architecture
In any NiagaraAX station, one or more driver networks are used to fetch and model real-time data values.
Real-time values are modeled with proxy points, lower-tier components in that driver’s architecture. In
addition, (depending on the driver/devices) other data items “native” in devices may also integrated into
the station, such as schedules, alarms, and data logs (histories).
To support proxy points and other modeled data, the station must have that driver’s network architecture.
The following main topics apply to common driver architecture:
• What are networks?
• About Network architecture
• About the Driver Manager
• Common network components
• About the Device Manager
• Common device components
• Virtual gateway and components
• Types of device extensions
• About the Point Manager
• About Histories extension views
• About Schedules extension views

What are networks?
Networks are the top-level component for any NiagaraAX driver. For drivers that use field bus commu-
nications, such as Lonworks, BACnet, and Modbus (among many others), this often corresponds directly
to a physical network of devices. Often (except for BACnet), the network component matches one-to-one
with a specific comm port on the NiagaraAX host platform, such as a serial (RS-232 or RS-485) port,
Lonworks FTT-10 port, or Ethernet port.

Note: A BacnetNetwork component is unique because it supports multiple logical BACnet networks, which
sometimes use different comm ports (e.g. if a JACE with BACnet MS/TP, one or more RS-485 ports). See the
Bacnet Guide for more details.
Other “non field bus” drivers also use a network architecture, for example the Ndio driver (Niagara Direct
Input / Output) and Nrio driver (Niagara Remote Input/Output) each have a network (NdioNetwork,
NrioNetwork, respectively) to interface to physical I/O points on the appropriate host JACE or hardware
I/O module (either directly attached or remotely connected). Also, “database” drivers also use a network
architecture, for example the “rdbSqlServer” driver includes an RdbmsNetwork. (Database drivers apply
only to Supervisor or AX SoftJACE hosts.)

Where are networks located?
In any NiagaraAX station, all driver networks are located under the DriverContainer component in the
station’s database (“Drivers” in the root of the station, as shown in Figure 1-1).
NiagaraAX-3.7-3.8

Drivers Guide
1–1

About Network architecture Chapter 1 – Driver architecture
Network component hierarchy November 5, 2013
Figure 1-1 DriverContainer in Nav tree

Note: By default, most stations include a NiagaraNetwork. It may be used to model data in other NiagaraAX
stations. Also, it contains the NiagaraFoxService required for Workbench-to-station communications. For
more details, see “Niagara Network” on page 2-1.

Note: By convention, you should keep all driver networks located under the station’s Drivers container—it is a
special component with a view that provides some utility. See “About the Driver Manager” on page 1-4 for
more details.

About Network architecture
To represent any driver in a station database, a consistent “driver framework” using a network archi-
tecture is used. This includes the upper-tier parent network component, and one or more child device
components, each with device ext (extension) child components.
The following sections explain further:
• “Network component hierarchy”
• “About network components”
• “About device components”
• “About device extensions”

Network component hierarchy
Hierarchically, the component parentage is: network, device, device extensions, points (Figure 1-2).

Figure 1-2 Example driver architecture (Bacnet)

To simplify driver modeling, the New Station wizard automatically creates the necessary “Drivers”
container, complete with a NiagaraNetwork (and its required component slots).
• If engineering a JACE station, you invariably add additional driver networks, opening the driver’s

palette and copying the network-level component into Drivers. Or, you can use the New button in
the Driver Manager. Examples are a LonNetwork or BacnetNetwork.

• If engineering a Supervisor (PC) station, the NiagaraNetwork may be the only one needed. Option-
ally, you may add a “database” network (providing the PC host is licensed for it). And, if a PC host
licensed as a direct “integration Supervisor” (e.g. BACnet Supervisor), you may add a driver network
(e.g. BacnetNetwork) directly into its Drivers container.

Note: Regardless of host platform, in most cases the network component is the only item you need to manually
copy from that driver’s palette. After that, you use “manager views” to add child components like devices
and proxy points, even if programming offline.
NiagaraAX-3.7-3.8

Drivers Guide
1–2

Chapter 1 – Driver architecture About Network architecture
November 5, 2013 About network components
This enforces the correct component hierarchy under that driver as you engineer, and helps coordinate
mechanisms used by the driver for communications. Exceptions to this rule are noted (as applicable) in
other documentation about NiagaraAX drivers.

About network components
A network component (“generically”: DriverNetwork) is the top-level component for any driver, and by
default has mandatory (frozen) component slots, such as:
• “Health” and other status properties—see “Network status properties” on page 1-6.
• AlarmSourceInfo—see “About network Alarm Source Info” on page 1-6.
• PingMonitor—see “About Monitor” on page 1-7.
• TuningPolicyMap—see “About Tuning Policies” on page 1-8.
Access these slots in the DriverNetwork’s property sheet (Figure 1-3).

Figure 1-3 Example BacnetNetwork property sheet

Note: Depending on the specific driver, there may be additional slots in the DriverNetwork. For example, if a field
bus network, there may be “PollScheduler” and/or “CommConfig” slots. Some of these may require proper
configuration before driver communications occur. See “Additional network components” on page 1-13.
The DriverNetwork is also the parent container for all device-level components. Devices list in tabular
format in the default view for that network, the DeviceManager. See “About the Device Manager” on page
1-14. You use the Device Manager to create and manage device components, and (if the driver provides
this), use discover features.

About device components
A device component (“generically”: DriverDevice) is a second-tier component for any driver, and by
default has mandatory (frozen) component slots, such as:
• “Health” and other status properties—see “Device status properties” on page 1-22.

Note: Depending on the driver type, a device typically has other properties. For example, if a device
under a field bus, it may have a “Device Address” property, or a similar properties. See “Driver-specific
device slots” on page 1-23. Or, a device may have a “Virtual” gateway slot. See “Virtual gateway and
components” on page 1-23.

• One or more device extensions—for example “Points” (DriverDevicePointExt). See “About device ex-
tensions” on page 1-4.

Typically, the property sheet is the default view for a device component—you can access device
properties, slots, and its extensions using the device’s property sheet (Figure 1-4).

Figure 1-4 Example BacnetDevice property sheet

The DriverDevice is also the parent container for all device extensions. As shown in Figure 1-5, device
extensions (e.g. “Points”) are visible under the device when you expand it in the nav tree.
NiagaraAX-3.7-3.8

Drivers Guide
1–3

About the Driver Manager Chapter 1 – Driver architecture
About device extensions November 5, 2013
Figure 1-5 Example BacnetDevice extensions in Nav tree

About device extensions
A device extension is a child of a device, and represents some functionality of the device. Each extension
contains properties and other components. Device extensions are container components, often with one
or more special views. For more details, see “Types of device extensions” on page 1-26.
For example, in any of the field bus networks, each device has a Points extension, the parent container
for proxy points. The default view of the Points extension is the Point Manager, which you use to
create and manage proxy points. See “About the Point Manager” on page 1-37 for details.

Note: Device extensions are required (frozen) components of a device—you cannot delete them. They are created
automatically when you add a device to the station database. This varies from the “point extension” model,
where you individually add/delete extensions under control points and components.

About the Driver Manager
The Driver Manager is the default view for the DriverContainer (showing all networks) in a station.
Figure 1-6 shows an example Driver Manager for a JACE station.

Figure 1-6 Driver Manager

By default, each driver network lists showing its name, a type description, a real-time status field, whether
it is enabled, and a fault cause field (empty, unless the network is in fault).
Within the Driver Manager view, network-level operations are available:
• Double-click a network to go to its Device Manager view. See “About the Device Manager” on page

1-14.
• Right-click a network to see its popup menu, including available actions. Available actions will vary

by driver, but may include “Ping,” “Upload,” and “Download” as examples.
Buttons at the bottom of the Driver Manager provide other functions. See the section “Driver Manager
New and Edit” on page 1-4.

Driver Manager New and Edit
Buttons at the bottom of the Driver Manager include:
• New
NiagaraAX-3.7-3.8

Drivers Guide
1–4

Chapter 1 – Driver architecture Common network components
November 5, 2013 Driver Manager New and Edit
• Edit
Note: New and Edit are also on the Driver Manager toolbar and the Manager menu.

New
The New button in the Driver Manager allows you to add a new driver network to the station. This is
equivalent to copying a driver network component from that driver’s palette. The New dialog provides a
selection list for network type, and also the number of networks to add (Figure 1-7).

Figure 1-7 New dialog in Driver Manager

Note: Currently, you are allowed to add multiples of any driver network, as well as any network type (regardless
of the station’s host platform). However, please understand that many networks should be “one-only” per
station, e.g. a NiagaraNetwork and BacnetNetwork. Also, consider that networks shown in the selection list
reflect only the modules available on your Workstation, and may not be present (or supported) on the
target NiagaraAX host.

Edit
The Edit button in the Driver Manager allows you to rename a selected network, or to set it to disabled
(Figure 1-8).

Figure 1-8 Edit dialog in Driver Manager

Caution Whenever you set a network to disabled (Enabled = false), the network component and all child driver
components (all devices, proxy points, etc.) change to disabled status. If a field bus driver, communications
routines like polling and device status pings also suspend. By default, disabled status color is gray text on
a light gray background.

This network-wide action may be useful for maintenance purposes. Note that Enabled is also individually
available at the device-level and proxy point-level, using the Edit button/dialog in the Device Manager or
Point Manager, respectively.
A disable at the device-level disables all child (proxy points), as well as polling to that points under that
device. A disable at the proxy-point level disables the single point.

Common network components
Each driver network contains common properties and other components. This section describes those
items.
NiagaraAX-3.7-3.8

Drivers Guide
1–5

Common network components Chapter 1 – Driver architecture
Network status properties November 5, 2013
• Network status properties
• About network Alarm Source Info
• About Monitor
• About Tuning Policies
• Additional network components

Network status properties
Status
The Status property of a network indicates if the driver is capable of communications—for any
configured driver, network Status is typically “{ok}.” However, when adding some networks, the initial
Status may be fault, as shown in Figure 1-9. This might mean a communications port is yet unassigned,
or there is a port conflict.

Note: A fault status also occurs if the host platform is not properly licensed for the driver being used. If a network
fault, see the Fault Cause property value for more details.

Figure 1-9 Network status properties

Enabled
By default, network Enabled is true—you can toggle this in the property sheet, or in the Driver Manager
(by selecting the network and using the Edit button). See related Caution on page 5.

Health
Network Health contains historical properties about the relative health of the network in the station,
including historical timestamps.

About network Alarm Source Info
A network’s Alarm Source Info slot holds a number of common alarm properties (Figure 1-10). These
properties are used to populate an alarm if the network does not respond to a monitor ping. See “About
Monitor” for details on the monitor mechanism.

Figure 1-10 Example Network Alarm Source Info properties
NiagaraAX-3.7-3.8

Drivers Guide
1–6

Chapter 1 – Driver architecture Common network components
November 5, 2013 About Monitor
Alarm Source Info properties work the same as those in an alarm extension for a control point. For
property descriptions, see the User Guide section “About alarm extension properties”.

Note: Each child device object also has its own Alarm Source Info slot, with identical (but independently
maintained) properties. See “Device Alarm Source Info” on page 1-22.

About Monitor
A network’s Monitor slot holds configuration for the “ping mechanism” used by the driver network. In
the network’s property sheet, expand the Monitor slot to see configuration (Figure 1-11).

Figure 1-11 Example Monitor properties

Monitor provides verification of the general health of the network, plus the network’s “pingables”
(typically, devices) by ensuring that each device is minimally “pinged” at some repeating interval.
• If a device responds to the monitor ping, device status is typically “ok,” and normal communications

routines to it (proxy-point polling, plus reads of device schedules, trends, etc. if supported by the
driver) proceeds normally. Typically, this applies even if the device returns an error response to the
ping, because this indicates that the device is “alive.”

• If a device does not respond to the monitor ping, it is marked with a down status—this causes normal
communications routines to that device to be suspended. Upon the next successful monitor ping to
that device, device status typically returns to “ok” and normal communications routines resume.

Note: Whenever successful communications occur to a device, that device component’s Health property is
updated with the current time. The network ping Monitor will only “ping” the device if the time of last
health verification is older than the ping frequency. Therefore, in normal operation with most drivers, the
proxy point polling mechanism actually alleviates the need for the monitor ping, providing that the ping
frequency is long enough. Also, in most drivers if a point poll request receives no response (not even a “null”)
from a device, a “ping fail” condition is immediately noted, without waiting for the monitor ping interval.
The following sections provide more Monitor details:
• Monitor properties
• Monitor considerations by driver

Monitor properties
The monitor ping properties are as follows:
• Ping Enabled

• If true, (default) a ping occurs for each device under the network, as needed.
• While set to false, device status pings do not occur. Moreover, device statuses cannot change

from what existed when this property was last true.
Note: It is recommended you leave Ping Enabled as true in almost all cases.

• Ping Frequency
Specifies the interval between periodic pings of all devices. Typical default value is every 5 minutes
(05m 00s), you can adjust differently if needed.

• Alarm On Failure
• If true (default), an alarm is recorded in the station’s AlarmHistory upon each ping-detected de-

vice event (“down” or subsequent “up”).
• If false, device “down” and “up” events are not recorded in the station’s AlarmHistory.

• Startup Alarm Delay
Specifies the period a station must wait after restarting before device “down” or “up” alarms are gen-
erated. Applies only if the Monitor’s property Alarm On Failure is true.
NiagaraAX-3.7-3.8

Drivers Guide
1–7

Common network components Chapter 1 – Driver architecture
About Tuning Policies November 5, 2013
Monitor considerations by driver
The monitor mechanism used by a specific driver may have unique characteristics.
• For example, in a BacnetNetwork, any monitor ping is directed to the device’s BACnet “Device Ob-

ject,” and in particular, to its “System_Status” property. In this unique case, a received response of
“non-operational” is evaluated the same as getting no response at all!

• Or, in any Modbus network, when a monitor ping message is sent, it is directed to the device’s “Ping
Address,” which is configured by several properties in the ModbusDevice object.

Other drivers may have specific considerations for the Monitor ping mechanism. For more information,
refer to the “Device Monitor Notes” section within any NiagaraAX driver document.

About Tuning Policies
A network’s Tuning Policies holds one or more collections of “rules” for evaluating both write requests
(e.g. to writable proxy points) as well as the acceptable “freshness” of read requests from polling. In some
drivers (such as Bacnet), also supported is association to different poll frequency groups (Slow, Normal,
Fast). Tuning policies are important because they can affect the status of the driver’s proxy points.
In the network’s property sheet, expand the Tuning Policies (Map) slot to see one or more contained
Tuning Policies. Expand a Tuning Policy to see its configuration properties (Figure 1-12).

Figure 1-12 Example Tuning Policies Map (Bacnet)

Note: Some driver networks do not have Tuning Policies, for example an RdbmsNetwork for a database driver.
Also, the NiagaraNetwork has greatly simplified Tuning Policies.
By default, a driver’s TuningPoliciesMap contains just a single TuningPolicy (“Default Policy”). However,
you typically create multiple tuning policies, changing those items needed differently in each one. Then,
when you create proxy points under a device in that network, you can assign each point (as needed) to
the proper set of “rules” by associating it with a specific tuning policy.

Caution Using only a single (default) tuning policy, particularly with all property values at defaults, can lead to
possible issues in many driver (network) scenarios. In general, it is recommended that you create multiple
tuning policies, and configure and use them differently, according to the needs of the network’s proxy points
and the capabilities of the driver. In particular, tuning policy properties that specify writes from Niagara
should be understood and applied appropriately. See Tuning Policy properties for more details.

As a simple example (under a BacnetNetwork), you could change the default tuning policy’s “Write On
Start” property from the default (true) to false. Then, duplicate the default tuning policy three times,
naming the first copy “Slow Policy”, the second copy “Normal with Write Startup”, and the third copy
“Fast Policy”. In two of those copies, change the “Poll Frequency” property from “Normal” to “Slow” or
“Fast”, corresponding to its name. In the “Normal with Write Startup” tuning policy copy, you could
change its “Write On Start” property back to true.
Then, only the “Normal with Write Startup” tuning policy has “Write On Start” set as true. At this point
you would then have 4 available (and different) tuning policies to pick from when you create and edit
proxy points, where you could selectively apply the policy needed.
The following sections provide more Tuning Policy details:
• Tuning Policy properties
NiagaraAX-3.7-3.8

Drivers Guide
1–8

Chapter 1 – Driver architecture Common network components
November 5, 2013 About Tuning Policies
• Tuning Policy considerations by driver

Tuning Policy properties
Tuning Policy properties for typical field bus drivers are as follows:
• Min Write Time

Applies to writable proxy points, especially ones that have one or more linked inputs. Specifies the
minimum amount of time allowed between writes. Provides a method to throttle rapidly changing
value so that only the last value is written. If this property value is 0 (default), this rule is disabled (all
value changes attempt to write).

• Max Write Time
Applies to writable proxy points. Specifies the maximum “wait time” before rewriting the value, in
case nothing else has triggered a write. Any write action resets this timer. If property value is 0 (de-
fault), this rule is disabled (no timed rewrites).
Note: In some cases setting this to some value, for example 10 minutes, may be useful. Often, a
network may have devices that upon a power cycle (or even a power “bump”), have writable points
that reset to some preset “default” value or state. Note that often in a “site-wide” power bump of a few
seconds, such field controllers (devices on the network) typically reset, but a JACE continues normal
operation on backup battery. Since the network’s default monitor ping is usually 5 minutes, the station
(network) may never mark these devices as “down,” such that a “Write On Up” does not occur.
Here, if a writable point represents an AHU or chiller that defaults to unoccupied following a device
reset, the load never restarts until the next day, when the schedule toggles. Assigning the point to
tuning policy that does have a configured Max Write Time can correct issues like this.
At the same time, realize that many networks may be configured such that “multiple masters” may be
issuing conflicting writes to one or more points in a device. Exercise caution with this property in this
case, to avoid “write contention” that could result in toggling loads.

• Write On Start
Applies to writable proxy points. Determines behavior at station startup.
• If true, (default) a write occurs when the station first reaches “steady state.”
• If set to false, a write does not occur when the station reaches “steady state.”
Note: Consider setting this to false in most tuning policies, except for tuning policies selectively
assigned to more critical writable proxy points. This is particularly important for large networks with
many writable proxy points. For example, a BacnetNetwork with 4,000 writable proxy points, if
configured with only the “Default Tuning Policy” (at default values), will upon station startup attempt
to write to all 4,000 points, putting a significant load on the station. As a consequence, it is possible
that in this scenario the Bacnet driver (network) may generate “write queue overflow” exceptions.

• Write On Up
Applies to writable proxy points. Determines behavior when proxy point (and parent device) transi-
tions from “down” to “up.”
• If true, (default) a write occurs when the parent device transitions from down to up.
• If set to false, a write does not occur when the parent device transitions from down to up.

• Write On Enabled
Applies to writable proxy points. Determines behavior when a proxy point’s status transitions from
“disabled” to normal (enabled).
• If true, (default) a write occurs when writable point transitions from disabled.
• If set to false, a write does not occur when writable point transitions from disabled.
Note: The disabled-to-enabled status transition can be inherited globally by points if the parent
device had been set to disabled—or network-wide if the driver network was set to disabled. Therefore,
be aware that if left at true in tuning policies, that all associated writable points receive a write upon
either the device or network when it transitions from status “disabled” to “enabled.”

• Stale Time
Applies to all proxy points.

• If set to a non-zero value, points become “stale” (status stale) if the configured time elapses without
a successful read, indicated by Read Status “ok.”

• If set to zero (default), the stale timer is disabled, and points become stale immediately when unsub-
scribed.
By default, proxy point status “stale” is indicated by tan background color. In addition, stale status is
considered “invalid” for any downstream-linked control logic. For more details, see the User Guide
section “About “isValid” status check”.
NiagaraAX-3.7-3.8

Drivers Guide
1–9

Common network components Chapter 1 – Driver architecture
About poll components November 5, 2013
Note: Stale time is recommended to be specified at least three times the expected poll cycle time.
Most peer-to-peer networks do experience collisions and missed messages. Setting the stale time short
will likely produce nuisance stale statuses. If a message is missed for some reason, then another poll
cycle time or two is allowed for the message to be received before setting the stale flag.

• Poll Frequency
(May not exist in some driver’s tuning policies, but is instead a separate property of each ProxyExt)
Applies to all proxy points. Provides a method to associate the tuning policy with one of 3 Poll Rates
available in the network’s Poll Service: Fast Rate, Normal Rate, or Slow Rate. The default poll fre-
quency is “Normal.”
Note: Depending on the driver, there may be a single “Poll Service” (or “Poll Scheduler”) slot under
the network, or as in the case of a BacnetNetwork, a separate “Poll Service” for each configured port
(IP, Ethernet, Mstp) under its BacnetComm > Network container. The NiagaraNetwork uses subscrip-
tions instead of polling.

Tuning Policy considerations by driver
Tuning policies used by a specific driver may have unique characteristics. For example, under a Niagar-
aNetwork, its TuningPolicy has only three properties: Stale Time, Min Update Time, and Max Update Time. For
more details, see “NiagaraStation component notes” on page 2-14.
Other drivers may have specific considerations for tuning policies. For more information, refer to the
“Tuning Policy Notes” section within any NiagaraAX driver document.

About poll components
Many driver networks use a single polling mechanism (Poll component, named “Poll Service” or “Poll
Scheduler”) adjusted at the network level in the station. In the case of a BacnetNetwork, a separate
BacnetPoll is used for each port under the BacnetStack’s Network component, as shown in Figure 1-13.
• Poll scheduler operation
• Poll Service properties
• Using poll statistics in tuning poll rates

Note: The Niagara Network does not use polling, but uses subscriptions only.

Figure 1-13 Example BacnetPollService

Poll scheduler operation
Regardless of driver type, the Poll Service provides a “poll scheduler” that operates in the same basic
manner.

Note: A driver typically uses a single thread for all polling on that specific network. However, there are some
exceptions to this model. For example, polling in a BacnetNetwork uses two threads per network port. It is
important to note that if a driver’s Poll Service uses multiple threads, that poll statistics reflect the sum of
activity for all the threads—there is no way to determine a statistics breakdown for each thread.
• The Poll Service provides three different configurable poll rates (Slow, Normal, Fast). Note these are

just arbitrary names—there is no logic that enforces a relationship between their values. Meaning,
NiagaraAX-3.7-3.8

Drivers Guide
1–10

Chapter 1 – Driver architecture Common network components
November 5, 2013 About poll components
the slow rate can actually be configured for a faster interval than the normal rate, without issues.
• “Pollables” (mainly proxy points) are associated with one of three “rate” groups (Slow, Normal, Fast)

via either:
• assigned Tuning Policy in each point’s proxy extension (BacnetNetwork)
• assigned Poll Frequency in each point’s proxy extension (most drivers other than Bacnet)
In the case of device objects, a Poll Frequency property is used to select the rate directly.

• The poll scheduler maintains a group of four rate “buckets” to service “pollables”, three of which cor-
respond to these configured poll rates (slow, normal, fast).
A fourth “dibs stack” bucket is allocated for pollables that transition to a subscribed state. This may
be a “temporary subscription,” such as results when viewing unlinked proxy points (without alarm
or history extensions) in Workbench or a browser. Or, it may occur when a permanently subscribed
point is first polled (thereafter, it is no longer “dibs stack-polled”).

• Every 10 seconds, the poll scheduler rebuilds the list of objects that are assigned to each of the poll
buckets. An algorithm is used to break up the list of objects for each poll bucket into optimally-sized
groups, which allows the poll thread to switch back and forth between the rate buckets. This algo-
rithm is designed to spread the message traffic out evenly over the configured intervals, and to allow
points assigned to quicker buckets to update multiple times before points assigned to a slower buck-
et update once.

• Poll statistics are updated every 10 seconds. Fast, slow, and normal cycle times display the average
time in milliseconds (ms) to complete a single poll cycle. The poll scheduler algorithm automatically
calculates an inter-message delay time to evenly spread poll messages out over the configured rate.
For example, if there are 5 points assigned to a normal rate/Tuning Policy, then it may poll a point
in the list every 2 seconds. In this case, the normal poll cycle time would be around 10000 ms, but
that does not mean that actually took 10 seconds to actually poll those 5 points.

Priority of polling by the scheduler occurs in this fashion:
1. Dibs stack. When first subscribed, a pollable moves to the top of the dibs stack (first dibs). The poll

scheduler always polls the dibs bucket before doing anything else. The dibs stack is polled last-in,
first-out (LIFO). As long as entries are in the dibs stack, they are polled as fast as possible with no
delays.

2. When the dibs stack is empty, the scheduler attempts to poll the components in each “rate” bucket
using an algorithm designed to create uniform network traffic.
For example, if the fast rate is configured to 10 seconds and there are 5 components currently sub-
scribed in the fast bucket, then the scheduler will attempt to poll one component every 2 seconds.

Note: Every ten seconds the poll scheduler rechecks the buckets for configuration changes. So if a pollable’s config-
uration is changed from slow to fast, it takes at most ten seconds for the change to take effect.
You can manually reset poll statistics using the Reset Statistics action to the Poll Service (Figure 1-14).

Figure 1-14 Reset Statistics action of PollService

Poll Service properties
Properties of the Poll Service component for typical field bus drivers include four writable properties and
various read-only statistics properties, as follows:
• Poll Enabled

• If true (default), polling occurs for all associated pollables (proxy points, devices) under the net-
work component, or if a BacnetPoll, under that BacnetStack, Network, Port.

• While set to false, polling is suspended and further value updates from polling do not occur.
Note: PollService actions Enable and Disable allow access to this property, see Figure 1-14.
Note: The three Rate properties below are named arbitrarily, however, typical convention is to use
them as named. For related information, see “Poll scheduler operation” on page 1-10.

• Fast Rate
Target poll interval for pollables assigned to this rate group (default often is 1 second).
NiagaraAX-3.7-3.8

Drivers Guide
1–11

Common network components Chapter 1 – Driver architecture
About poll components November 5, 2013
• Normal Rate
Target poll interval for pollables assigned to this rate group (default often is 5 seconds).

• Slow Rate
Target poll interval for pollables assigned to this rate group (default often 30 seconds).
Note: All remaining properties are read-only statistics properties.

• Statistics Start
Timestamp reflecting either the last manual reset of poll statistics, or if statistics have not been reset,
the first “steady state” time immediately following the last station restart.

• Average Poll
Average time spent during each poll event. This does not relate to the total time required to complete
a poll cycle for any of the three rate buckets. It is the time spent polling a given group before pausing
and switching to another group of objects, either in the same or a different poll rate bucket.

• Busy Time
Displays a percentage of time spent by the poll thread actually polling points, across all poll buckets.
Includes (in parentheses) a ratio of “(time spent polling/total time since statistics were restarted)”.
Given a small amount of time is spent transitioning between poll buckets, and with the thread sleep-
ing to evenly space out polling messages, it is unlikely to ever see Busy Time reach exactly 100%.
However, any percentage above 95% indicates that the poll thread is basically spending all of its time
actually polling. Also see “Using poll statistics in tuning poll rates” on page 1-13.
Note: In the case of the Poll Service for a Bacnet network port, because two threads are used for
polling, it is possible to see a Busy Time approaching 200%. In this case, divide the Busy Time in half
to get an average busy time for each thread.

• Total Polls
Total number of polls performed, along with the time spent actually polling. Note that this time is
the same time indicated in the ratio of the Busy Time property. Typically, the total poll count indi-
cates the number of times any object has been polled. It is not a running total of the actual poll cycles.

Total Polls, Example You have 2 points assigned to a fast policy of 1 second, 2 points assigned to a
normal policy of 5 seconds, and 2 points assigned to a slow policy of 10 seconds. When the statistics
update every 10 seconds, you would expect the total polls to increment by 26, where:
Total polls = (2 fast/1 sec * 10 sec) + (2 normal/5sec * 10 sec) + (2 slow/10 sec * 10 sec)
Total polls = 20 fast + 4 normal + 2 slow
Total polls = 26

Note: In some cases, such as a BacnetNetwork, Total Polls may indicate the number of poll messages
sent to devices. Potentially, there could be multiple points being processed in a single message, such if
performing “read property multiple” for BACnet devices, or possibly when performing COV subscrip-
tions.

• Dibs Polls
Percentage and ratio of the number of dibs polls versus the total polls.

• Fast Polls
Percentage and ratio of the number of fast polls versus the total polls.

• Normal Polls
Percentage and ratio of the number of normal polls versus the total polls.

• Slow Polls
Percentage and ratio of the number of slow polls versus the total polls.

• Dibs Count
Current and average number of components in dibs stack.

• Fast Count
Current and average number of components in fast queue.

• Normal Count
Current and average number of components in normal queue.

• Slow Count
Current and average number of components in slow queue.

• Fast Cycle Time
Average cycle time of the fast queue.

• Normal Cycle Time
Average cycle time of the normal queue.

• Slow Cycle Time
Average cycle time of the slow queue.
NiagaraAX-3.7-3.8

Drivers Guide
1–12

Chapter 1 – Driver architecture Common network components
November 5, 2013 Using poll statistics in tuning poll rates
Note: Depending on driver, additional statistics properties may be present in a Poll component. For example, a
BacnetPoll has additional properties Device Count, Point Count, and Object Count. See the specific driver
document for unique Poll Service features or notes.

Using poll statistics in tuning poll rates
There are several statistics (Poll Service status properties) to watch when setting poll rate times and/or
assigning points to different poll frequencies/tuning policies. See the related sections “Poll scheduler
operation” on page 1-10 and “Poll Service properties” on page 1-11 for detailed descriptions.

Note: Again, it is important to note that if a driver’s Poll Service uses multiple threads (such as in the Bacnet
driver), that poll statistics reflect the sum of activity for all the threads—there is no way to determine a
statistics breakdown for each thread.
• Busy Time - How busy is too busy?
• Tuning poll rates

Busy Time - How busy is too busy?
A Poll Service with a busy time being near 100% does not necessarily indicate a problem. It just means
that the number of objects in the poll queues, along with the configured poll rate times, are causing the
poll thread to constantly execute, instead of being able to periodically sleep. This means that the inter-
message delay is basically at 0 seconds.

Note: Some protocols, such as Modbus, use a “silent time” to define the start and end of a message. In this case,
the inter-message delay is typically hard-coded as a minimum value. Other drivers, such as the American
Auto Matrix PUP driver, include a property to define the inter-message delay time—in which case the Poll
Service will use that setting as its minimum. In these cases, the inter-message delay may be longer than the
configured minimum, but it will never be less than the minimum time.
Note when points are first subscribed, they are initially added to the dibs poll bucket for immediate
polling. After this initial poll, they are moved to their assigned poll buckets, which simply results in a
longer poll cycle time for that rate bucket.

Tuning poll rates
Typically, there is a “base number” of points that are permanently subscribed, including any points that
are linked, and/or have a history or alarm extension. Note these permanently subscribed points will
always reflect in their assigned poll rate queue. A good starting point would be to adjust the configured
poll rates such that the Busy Time is at 75%, with only these points polling.
Maintaining some free time for the Poll Service should allow subscription surges (users viewing graphics,
property sheets, wire sheets, etc.) as new points are processed, without causing a noticeable increase in
the poll cycle times. If poll cycle times do change noticeably during normal operations, then it may be
necessary to adjust the configured poll rates, such that steady state Busy Time is below 75%.
Assuming that a bucket poll cycle time is approximately equal to the configured rate, and the Busy Time
does not indicate that the poll scheduler is constantly polling, then it should be possible to reduce that
configured rate value (speed up polling). This should result in quicker poll cycle times, which would be
confirmed by seeing the bucket’s actual poll cycle time decrease to something near the newly configured
value, along with an increase in the poll service’s Busy Time.
If a bucket’s actual poll cycle time is longer than the configured time, then this indicates that the objects
in the poll list are being polled as quickly as the driver can. Decreasing the poll rate value (to speed up
polling) has no negative effects on the Busy Time, but it will not speed up the polling process either—
unless the quantity of points in that queue is reduced.
If the JACE’s CPU usage is high, and the poll service’s Busy Time is near 100%, then increasing the poll
interval rate values (to slow down polling) should reduce both the Busy Time and the CPU usage.

Note: Some drivers use a combination of polling and other mechanisms to update point values, such as the
LonNetwork, which uses nvUpdate rules for bound links. The Poll Service’s Busy Time and poll cycle times
do not reflect any statistics regarding points that update values using these other methods, such as
nvUpdates or any similar mechanisms.

Additional network components
Depending on the driver type, a network typically includes other components that define communica-
tions settings. Access these components on the property sheet of the network. More details are in the
following subsections:
• About communication components
• About driver-specific properties
NiagaraAX-3.7-3.8

Drivers Guide
1–13

About the Device Manager Chapter 1 – Driver architecture
Additional network components November 5, 2013
About communication components
Communication components contain properties and possibly other components that configure and
represent communications ports, or other protocol layers. These components will vary from driver to
driver. Often, you must configure (or verify) these components to allow online operations.
For example, the NiagaraNetwork contains the NiagaraFoxService, a BacnetNetwork contains a Bacnet-
Stack (Bacnet Comm), a LonNetwork contains LonCommConfig (Figure 1-15).

Figure 1-15 LonNetwork’s LonCommConfig component

See the driver document for specific details on configuring a network’s communications components.

About driver-specific properties
Depending on the driver, other specific properties (or even component containers) may be found in the
network component’s property sheet.
For example, the NiagaraNetwork has container components Fox Service and History Policies, a
ModbusAsyncNetwork contains a number of properties for timeouts and byte-order conventions, and a
LonNetwork contains a LonNetmgt component with various child properties (Figure 1-16).

Figure 1-16 LonNetwork’s LonNetmgmt component

For more details see “Niagara Network” on page 2-1, or the corresponding driver document for driver-
specific properties and components of a network.

About the Device Manager
The Device Manager is the default view for any network container (for a NiagaraNetwork only, this view
is called the Station Manager). The Device Manager is a table-based view, where each row represents a
unique device (Figure 1-17). When building a network in the station, you use this view to create, edit, and
delete device-level components.
NiagaraAX-3.7-3.8

Drivers Guide
1–14

Chapter 1 – Driver architecture About the Device Manager
November 5, 2013 Device New Folder and New
Figure 1-17 Example Device Manager (BacnetDeviceManager)

Following station configuration, this view provides a status and configuration summary for all devices
networked using that driver. The “Exts” column provides quick double-click access to device extensions,
such as Points for proxy points, Schedules for imported schedules, and so forth (see “Types of device
extensions” on page 1-26 for details). You can also use it to issue actions to selected devices, such as “ping,”
upload, and so forth.
At the bottom of the view, buttons “New Folder” and “New” let you create new device folders and devices
in the station database. The “Edit” button lets you edit one or more selected devices in the station
database. If the driver supports online “device learning,” buttons “Discover,” and “Match” are also typically
available. Finally, additional buttons may be available, depending on the driver.
For more details, see:
• Device New Folder and New
• All Descendants
• Device Edit
• About Device Discover, Add and Match (Learn Process)
• Manager table features

Device New Folder and New
Buttons New Folder and New exist in the Device Manager view of a device-level component under any
driver network. Use of New Folder is optional. Typically, you use New only if the driver does not support
online discovery, or if you are programming offline.

Note: New Folder and New are also on the Device Manager toolbar and the Manager menu.

New Folder
The New Folder button in the Device Manager adds a special “DeviceFolder” component you can use
to organize devices. This is equivalent to copying that same component from that driver’s palette. A
Name dialog lets you name the folder before it is created (Figure 1-18).

Figure 1-18 Example New Folder dialog in Device Manager

When you click OK, a new DeviceFolder component is added under the network.
Note: A driver’s DeviceFolder component is different than a “normal” Folder component, as it provides that

driver’s Device Manager view by default (just like the parent network component). Also, an “All
Descendants” command is available from the root Device Manager, which allows you to see all devices
in the network. For details, see “All Descendants” on page 1-16.
NiagaraAX-3.7-3.8

Drivers Guide
1–15

About the Device Manager Chapter 1 – Driver architecture
All Descendants November 5, 2013
New
The New button in the Device Manager allows you to add a new device component to the station. This
is equivalent to copying a device component from that driver’s palette. The New dialog provides a
selection list for device type, and also the number of devices to add (Figure 1-19).

Figure 1-19 Example New dialog in Device Manager

When you click OK, a new device-level component is added under the network. You usually need to edit
specific details for each new device, including addressing parameters for communications.

All Descendants
When in the Device Manager of a device folder, it is “unaware” of devices in other device folders (or in the
root of the network component). However, from the root Device Manager view (of the network), you can
“flatten” the folder structure to view all devices by selecting it from the Manager menu (Figure 1-20) or
by simply clicking the “All Descendants” tool on the toolbar (Figure 1-21).

Note: Be aware that in a large network, with many device folders and devices, using the all descendants feature
may decrease performance. This might result from so many devices/points being subscribed.

Figure 1-20 Manager menu “All Descendants” command

Figure 1-21 Device Manager “All Descendants” tool on toolbar

Note: If you are using device folders, and you click on a table column to resort devices, please be aware that any
device-to-device folder organization is lost during that view. However, you can always see contents of device
folders clearly in the Nav tree, and again when returning to the Device Manager view from another view.
NiagaraAX-3.7-3.8

Drivers Guide
1–16

Chapter 1 – Driver architecture About the Device Manager
November 5, 2013 Device Edit
Device Edit
In the Device Manager view, you can edit any device component in the station database by simply double-
clicking it. (Editing does not apply to device folders.)

Edit
The Edit dialog appears with the device listed (Figure 1-22).

Figure 1-22 Example Edit dialog in Device Manager (single device)

Note: The Edit dialog for a device component only shows some of the device component’s properties. Typically,
these are key properties required for communications, and will vary among drivers (to access all properties
of the device component, go to its property sheet).
When a single device is selected in the Edit dialog, you can edit any property except Type (it was fixed when
you added the device). Included is the ability to edit the Name of the device in the station. This is equivalent
to the right-click Rename command on the component.
The following related topics also apply:
• Device “gang” edits
• Manager table features

Device “gang” edits
The Edit button in the Device Manager allows you to edit one or more device components in the station
in a single dialog. Before clicking Edit, use standard Windows keyboard controls to highlight (select)
multiple devices (e.g. hold down Ctrl key and click desired devices).

Note: Edit is also available on the Device Manager toolbar and the Manager menu.
The “gang” edit feature is useful for making the same change in multiple (selected) devices. For example,
as shown in Figure 1-23, you can change “Poll Frequency” in multiple devices at the same time (versus
editing this individually).
NiagaraAX-3.7-3.8

Drivers Guide
1–17

About the Device Manager Chapter 1 – Driver architecture
About Device Discover, Add and Match (Learn Process) November 5, 2013
Figure 1-23 Example “gang edit” in Edit dialog in Device Manager

When you have the Edit dialog open with multiple devices, you can also click on select ones to make
individual edits (e.g. Name, or any other editable property), during the same dialog session where you
made “gang” property edits. When you click OK, all the changes are applied to the device components as
made during your Edit session. For more details, see “About gang edits.”

Note: When you have multiple devices selected in the Edit dialog, properties that must be unique (such as Name)
are automatically unavailable (dimmed). However, note that some properties that typically should be
unique (often address properties) may still be available for “gang edit,” as this rule is not automatically
enforced. Typically, when editing these properties, you should verify only a single device component (row)
is highlighted in the table.

About Device Discover, Add and Match (Learn Process)
Online “device learns” are possible using the Device Manager for many drivers, for example the Niagar-
aNetwork, BacnetNetwork, LonNetwork, and NdioNetwork. Whenever available, this method is the
easiest way to accurately add device components to the station database.

Note: With the exception of a “Quik Learn” option in a LonNetwork, any device learn in NiagaraAX is a two-step
process where you first:
1. Discover device candidates for inclusion in the station database.
2. Select and Add from those candidates, creating device components in the network.

If you already added devices using New, you can also Match candidates to existing devices. For more
details see “Match (Device)” on page 1-20.

The Device Manager reinforces this process by providing two separate panes in the view whenever you enter
“Learn Mode.” See “About Learn toggle” on page 1-18.

About Learn toggle
Any driver that offers online “learns” of devices, points, and possibly schedules and log data (histories)
provides specialized “Manager” views. Any such view offers both a two-pane view (Learn Mode) and a
single-pane view (Database only).
At any time, you can toggle between Learn Mode and the single-pane (Database) view by clicking the
Learn Mode tool in the toolbar (Figure 1-24), or using the Learn Mode command in the Manager menu.
Also, note that the Discover tool (binoculars) is next to the Learn Mode tool.

Figure 1-24 Learn Mode toggle tool in any Manager

Note: Whenever in Learn Mode of any Manager view (DeviceManager, PointManager, and so forth) you can drag
the border between the two panes to resize, as necessary.
NiagaraAX-3.7-3.8

Drivers Guide
1–18

Chapter 1 – Driver architecture About the Device Manager
November 5, 2013 About Device Discover, Add and Match (Learn Process)
Discover
The Discover button is available in the Device Manager only if the driver supports online discovery.
When you click Discover, the Device Manager view splits into two panes (Learn Mode), and at the same
time typically launches a discovery “job” (Figure 1-25).

Figure 1-25 Discover splits Device Manager view

Note: In some drivers, an intermediate dialog may appear before the discovery job begins. For example, in a
discover for a BacnetNetwork, a “Configure Device Discovery” dialog allows you to limit possible ranges of
devices, before discovery begins. For more details, see the Bacnet Users Guide.
The two panes in the Device Manager operate as follows:
• Discovered (top pane)

Lists devices discovered on the driver’s network, as candidates. Any device found that already exists
in the station database appears “ghosted” (faintly listed). A job “progress bar” is also included on top
of the Discovered pane.
Note: A Cancel button is available during a discovery job. If needed, use it to stop discovery.

• Database (bottom pane)
Lists devices and device folders that are currently in the station database.

Add
The Add button is available in the Device Manager in Learn Mode when you have one or more devices
selected (highlighted) in the top Discovered pane. When you click Add, an Add dialog appears that allows
you to edit items before the device component(s) are created in the station database (Figure 1-26).

Figure 1-26 Add dialog from Add button in Device Manager
NiagaraAX-3.7-3.8

Drivers Guide
1–19

About the Device Manager Chapter 1 – Driver architecture
Match (Device) November 5, 2013
The Add dialog is nearly identical to the device Edit dialog, but allows you to edit Type as well as other
device properties. Often, device address properties in the Add dialog already have acceptable values for
operation (otherwise, communications to that device would not have occurred). Often, you change only
Name, unless you know other settings you wish to change. You can always Edit the device component(s)
after you click OK and add them to your station.

Note: When you have one or more devices selected in the top Discovered pane, an Add tool is also available on
the toolbar (“plus” symbol), as well as a command in the Manager menu. Also, you can simply double-click
a discovered device to bring it up in the Add dialog.

Match (Device)
Device Match is a feature that may be useful when you have an application replicated many times at the
device level, or if you have programmed offline using the New device feature.
• In the first case (replicated device application), you could discover and add one typical device, and

complete further engineering under it (learning and adding proxy points, point extensions, creating
other control logic, adding Px views, including all self-contained links and bindings).
Then, you could duplicate that typical device component (choosing Duplicate in its right-click
menu) for as many identical devices as exist. The Match feature now allows you to match each du-
plicated device component to a unique discovered device, saving engineering time. This repopulates
the necessary properties of the duplicated device object with the correct values from the discovered
device.

• In the second case (offline programming) where a connection to the actual device network is un-
available, you can manually add New devices and begin station engineering of a driver network. Typ-
ically, most component creations under a driver network are possible (including all levels) using the
New feature in the various “manager” views (Device Manager, Point Manager, other device exten-
sion managers). Or, you can add saved applications (from the device level on down) and edit as nec-
essary. Then, when online with the driver network later, you could use Match to “sync” to existing
components (device-level, proxy points, and so forth).

The Match button in the Device Manager becomes available when in Learn Mode, and you have:
1. Selected one device candidate in the top (Discovered) pane.
2. Selected one existing device component in the bottom (Database) pane.

Note: In this case, the toolbar also has an available Match tool, and the Manager menu has a Match command.
When you click Match, the Match dialog appears, as shown in Figure 1-27.

Figure 1-27 Match dialog example in Device Manager

Note: Match is strictly a “one-to-one” function for “discovered-to-database”—note that it is unavailable any time
you have multiple items selected either in either the top or bottom pane.
The Match dialog is nearly identical to the single-device Edit dialog, and typically provides the
“discovered” device address values. Often, most properties in the Match dialog already have acceptable
device address values required for operation (otherwise, communications to the discovered device would
not have occurred). You can always Edit the device component after you click OK and add it to your
station.
NiagaraAX-3.7-3.8

Drivers Guide
1–20

Chapter 1 – Driver architecture Common device components
November 5, 2013 Manager table features
Manager table features
As with other table-based views in Workbench, manager views of various components under a driver’s
network provide common features that can be useful (see “About table controls” for a general overview).
These features apply to various component views found throughout a station’s driver architecture, for
example, the Driver Manager, Device Manager, Point Manager, History Import Manager, and so on.
Of particular utility are the following table features:
• Table options menu
• Column resorting

Table options menu
Use the table options drop-down menu (small control in upper table right, as shown in Figure 1-28) to
perform any of the following:

Figure 1-28 Table options menu in Device Manager

• Reset Column Widths
Useful if you manually changed widths of columns, and now some contents are hidden (even after
scrolling). The reset restores all columns to widths that accommodate contents.

• Export
Produce the standard Export dialog, where you can select exporting the table to PDF, text, HTML,
or CSV (comma separated variable). See “About table exports” for more details.

• select or clear columns for display
Depending on the driver, a certain “default” collection of columns is pre-selected for display in the
Manager view. You can change that by checking or clearing column headings.

Column resorting
Click on any column header to toggle the table sort between ascending (first click) and descending
(second click). The current table sort is indicated by a small triangle in the sorting column.

Common device components
Each device component has some number of required (frozen) slots and properties, which will vary by
driver. However, the following categories of components and slots are typical to most device-level
components:
• Device status properties
• Device Alarm Source Info
• Device address properties
• Driver-specific device slots
Also, a device component has one or more device extensions, which are visible when you expand the
device in the Nav tree. For more details, see “Types of device extensions” on page 1-26.

Note: A few drivers implement “virtual components,” which typically adds a frozen “Virtual” gateway slot under
the device component. See “Virtual gateway and components” on page 1-23.
NiagaraAX-3.7-3.8

Drivers Guide
1–21

Common device components Chapter 1 – Driver architecture
Device status properties November 5, 2013
Device status properties
Status
The Status property of a device indicates whether it is communicating—good status is “{ok}” (no status
flags). However, if using New to add a device, initial Status may be down or fault, as shown in Figure 1-
29. This could mean device address properties are yet unassigned, or are misconfigured.

Note: If a device status fault, see the Fault Cause property value for more details.

Figure 1-29 Device status properties

Status of devices is verified by successful polling, or the device status “ping” as configured in the network
component’s Monitor configuration. See “About Monitor” on page 1-7.
From the Device Manager view, you can also right-click a device, and from the popup menu select
Actions > Ping to manually verify communications.
Depending on conditions, a device may have one of various status flags set, including fault or disabled, or
others in combination, such as down, alarm, stale, and/or unackedAlarm. In the Device Manager, non-
ok status in indicated for any device by row color other than white.

Enabled
By default, device Enabled is true—you can toggle this in the property sheet, or in the Device Manager
(by selecting the device and using the Edit button). See Caution on page 5.

Health
Device Health contains historical properties about the last successful message received from the device,
including timestamps.

Device Alarm Source Info
A device’s Alarm Source Info slot holds a number of common alarm properties (Figure 1-10). These
properties are used to populate an alarm if the device does not respond to a monitor ping. This ping is
configured at the network level—see “About Monitor” on page 1-7.

Figure 1-30 Example Device Alarm Source Info properties
NiagaraAX-3.7-3.8

Drivers Guide
1–22

Chapter 1 – Driver architecture Virtual gateway and components
November 5, 2013 Device address properties
These properties work the same as those in an alarm extension for a control point. For property descrip-
tions, see the User Guide section “About alarm extension properties”.

Note: Each parent network component also has its own Alarm Source Info slot, with identical (but independently
maintained) properties. See “About network Alarm Source Info” on page 1-6.

Device address properties
Depending on the driver, a device-level component typically has one or more address type properties,
accessible from the device’s property sheet. For example, a BacnetDevice has an Address property with 3
separate fields (Figure 1-31).

Figure 1-31 Example device address properties

In the case of a Lon device (DynamicDevice) various address parameters are stored under a DeviceData
component, itself visible when you expand the device in the Nav tree. For more details on device-level
address properties, see the specific driver document.

Poll Frequency
Common to most devices is a Poll Frequency property, typically located below device address properties.
It provides a drop-down menu to select among 3 poll frequencies, as configured in the network’s Poll
Service. For more details, see “About poll components” on page 1-10.

Driver-specific device slots
A device-level component typically has slots unique to that driver, accessed on its property sheet. For
example, a Lon device has a large collection of nv slots (network variables nvi, nvo, and nci), each as an
expandable container holding numerous values. A BacnetDevice holds a number of properties that define
Bacnet “services” that it supports. For details, see the specific driver document.

Virtual gateway and components
A few drivers have device-level components that contain a Virtual gateway child . This is in addition
to the “standard” collection of slots for device-level components (See “About device components” on page
1-3.) In the NiagaraAX driver architecture, a device’s virtual gateway provides access to “virtual compo-
nents” in the station’s “virtual component space,” specific to that device.
At the time of this document update, there are two drivers that have implemented virtual components:
the BACnet driver, and the AX-3.4 and later niagaraDriver (Niagara Network). Details on the latter are
in this document, see “About Niagara virtual components” on page 2-38.
Virtual components are sometimes referred to as “virtual points”, quite different from the “proxy point”
components found in most drivers. The term “virtual point” is a actually a misnomer to describe the
niagaraDriver implementation, as Niagara virtual components reflect whatever component types are in
the source remote NiagaraAX station (not just control points).

Note: Baja virtual components are not specific to just drivers. However, the original need for virtual components
(which are transient, and do not permanently reside in a station’s database) and a persisted “gateway”
component to access them, came about from driver “use case needs.” It is possible that other applications
for virtual gateways (with virtual components) may evolve in future builds of NiagaraAX.
See the following sections for more details:
• About virtual component spaces
• About virtual gateways
• Application and limitations of virtual components
• Virtual components in Px views
• Virtual ord syntax
NiagaraAX-3.7-3.8

Drivers Guide
1–23

Virtual gateway and components Chapter 1 – Driver architecture
About virtual component spaces November 5, 2013
About virtual component spaces
A NiagaraAX station contains object “types,” each within a defined “space” at a top level (Figure 1-32).

Figure 1-32 Top level object spaces

Object types in these spaces are:
• Components — in the component space under a Config node (regular component space).
• Files — in the files space under a Files node.
• Histories— in the histories space under a History node.
A station uses these objects when running, and when it is stopped they persist—components in the
station’s database (config.bog), files in the station’s directory, and histories within the history database.
Virtual component spaces are different, in the following ways:
• There can be multiple virtual component spaces—each belongs to a different virtual gateway, which

are specialized components in the station’s component space (under Config).
• A virtual component space is a mapping of virtual components, organized in a tree fashion, created

at runtime when components under its virtual gateway are accessed, that is become subscribed.
• Virtual components are transient components created in the station only when needed. When no

longer necessary (i.e. become unsubscribed) they are automatically removed in the running station.
This permits monitoring applications in cases where proxy points would use too many resources.

• Virtual components have limitations, and should not be confused with other components (such as
proxy points). For example, links to and from virtual components, use of point extensions (history,
alarm, etc.), and typical copy/paste operations are not supported.

About virtual gateways
Virtual gateways reside in the station database, along with other persisted components. Each virtual
gateway provides the link between the normal component space and its own virtual components. In the
initial “driver application” of virtual components, each device component in a driver network has its own
single virtual gateway, as shown in Figure 1-33 for a BacnetDevice in the bacnet palette.

Figure 1-33 One virtual gateway per device

This is a logical division of gateways (separating data by its source device). However, note that future
virtual component applications may not always use this “one-to-one-device” hierarchy for virtual
gateways. At some future point, a driver may have a “network level” virtual gateway, or possibly provide
multiple virtual gateways under the same device level or network level.

Gateway activation
Unlike with most device extensions, there is no special view for a virtual gateway—in Workbench you can
simply double-click it to access the gateway’s property sheet, or expand it in the Nav tree. When you do
this for a device’s virtual gateway, a “driver-specific” call is made to the device to gather data, where the
results appear as child virtual components.
In the case of the BACnet driver, expanding a virtual gateway fetches “an object list,” where each BACnet
object in the device appears as a virtual component (slot) under the gateway. You can further expand each
property of an object to see its “virtual properties,” including a value and poll status. See Figure 1-34.
NiagaraAX-3.7-3.8

Drivers Guide
1–24

Chapter 1 – Driver architecture Virtual gateway and components
November 5, 2013 Application and limitations of virtual components
Figure 1-34 Virtual properties of BacnetVirtualComponent

In this case, each “virtual property” component is a virtual point. For further details about the BACnet
implementation, see the “About Bacnet virtual points” section in the NiagaraAX BACnet Guide. For
details about virtual components in the NiagaraNetwork of a Supervisor, see “About Niagara virtual
components” on page 2-38.

Application and limitations of virtual components
In a NiagaraAX driver that offers virtual components, there are two main applications for “virtual points”:
• Px view bindings for simple polling of values, without the station resource overhead of (persisted)

proxy points. Upon being unsubscribed, virtual components are simply removed from the driver’s
poll scheduler (or subscription mechanism), and also station memory. The only persisted parts are
the ords (using virtual syntax) in the Px widget bindings. In some cases, particularly with replicated
device applications, this allows a JACE station to graphically monitor many more devices than if us-
ing just proxy points. See the next section “Virtual components in Px views” for more details.

• Quick review and (if possible) adjustments to one or more properties in objects in native devices,
from the Workbench property sheets of virtual components. Otherwise, you might need to create
proxy points, then delete them after reviewing and changing properties. This application applies to
both Niagara driver virtual components as well as to BACnet virtual components.

As for limitations, note that virtuals are transient vs. persisted components—they are dynamically
created (and subscribed) only when accessed, and are not permanently stored in the station database.
This precludes any linking to or from virtuals—as links would be lost. Nor are point extensions (alarm,
history) supported under virtual components. These things require use of proxy points, which are
persisted in the station database.
To summarize, here are some quick application guidelines for virtual components versus proxy points:
• If you need to link station logic into or out of the data item, use a proxy point.
• If you need to alarm or trend/log (history) a data item, use a proxy point.
• If you only need the data item value while a user is looking at a Px view, use a virtual component.
• If you want to configure values in the device for one-time commissioning, use a virtual component.
Note that often proxy points are used for monitoring only, becoming subscribed only when a user is
looking at a Px view, then becoming unsubscribed when not being viewed. However, such proxy points
persist in the station database always—consuming station resources. The difference with using virtual
component in this application is that they not only become unsubscribed, but are removed from the
station’s memory. The only persisted part is the “ord” to the virtual components in the Px widget bindings.

Virtual components in Px views
As previously mentioned, virtual components can be used to show real-time values in Px views—at least
when all the rich features of proxy points are not required.

Note: A virtual gateway cannot have its “own” Px view, but you can use its child virtual components in Px views
for other components, for example on the device component itself, or its Points extension, and so on.
NiagaraAX-3.7-3.8

Drivers Guide
1–25

Types of device extensions Chapter 1 – Driver architecture
Virtual ord syntax November 5, 2013
The only persisted (permanent) record of such a virtual component is its ord in the Px binding to it, which
uses a “Virtual ord syntax” that includes the virtual gateway within it (and activates it at runtime). This
ord is automatically resolved when you drag a virtual component onto the Px page, and make your
selection in the popup Px “Make Widget” dialog, as shown in the Bacnet example in Figure 1-35.

Figure 1-35 Dragging Bacnet virtual component into Px editor view, with resulting Make Widget popup

Depending on driver, Px usage details may differ for virtual components. For example, usage of Niagara
virtual components in Px views includes special considerations. For details, see “Niagara virtuals in Px
views” on page 2-47.
For complete details on Px views and widget editing, see the “About Px Editor” section in the User Guide.

Virtual ord syntax
The general syntax for a “virtual ord” uses a specialized form as follows:
<ord to VirtualGateway>|virtual:/virtualPath

 where virtualPath represents some hierarchy of virtual components and child properties.
For example, for BacnetVirtualComponents, the general virtual path syntax is:
<ord to VirtualGateway>|virtual:/objectType_Instance/propertyName

Or in the special case of an arrayed property:
<ord to VirtualGateway>|virtual:/objectType_Instance/propertyName/elementN

 where N is the property array index.
For specific virtual ord details, refer to the corresponding driver document.

Note: Starting in AX-3.7, virtual components in a NiagaraNetwork (Niagara virtuals) use a much simpler
virtual ord than in previous releases, due to a new “virtual cache” mechanism. Much information that was
formerly in the “virtualPath” portion of the ord syntax now resides in this cache. For related details, see
“Niagara virtuals in AX-3.7” on page 2-38 and “Ords for Niagara virtual components” on page 2-42.

Types of device extensions
When you create a device-level component (New, Add, or simply drop from the driver’s palette), you may
notice that it has default children, collectively called device extensions. Device extensions group various
functions of a device.

Note: For any device, its extensions are typically visible both in the Nav tree and in the Device Manager view
(Figure 1-36), providing double-click access to each extension’s default view. One exception to this is for a
Supervisor, in its Station Manager view of the NiagaraNetwork, where special “provisioning” extensions for
NiagaraStations do not appear. See “NiagaraStation component notes” on page 2-14 for related details.
NiagaraAX-3.7-3.8

Drivers Guide
1–26

Chapter 1 – Driver architecture About the Points extension
November 5, 2013 About proxy points
Figure 1-36 Device extensions in Nav tree and Device Manager

Perhaps the most important of all device extensions is the Points extension—the container for all proxy
points (representing real-time data originating from that device).
Common types of Device extensions include:
• Points extension—see “About the Points extension” on page 1-27.
• Histories extension—see “About the Histories extension” on page 1-34.
• Alarms extension—see “About the Alarms extension” on page 1-35.
• Schedule extension—see “About the Schedules extension” on page 1-36.

Note: The NiagaraStation component (device in a NiagaraNetwork) has additional device extensions,
including a “Users” extension, and starting in AX-3.5, a “Files” extension and “Sys Def” extension.
For more details, see “NiagaraStation component notes” on page 2-14.

About the Points extension
A device’s Points extension (or simply Points) serves as the top parent container for real-time data values
originating from that device.

Figure 1-37 Points under a Lon device

These values are “proxied” using NiagaraAX control points, or proxy points. Values can be both read from
data values in that device, and written to value stores in the device.

Note: You create all proxy points using the Point Manager view of Points—simply double-click Points under any
device component, or right-click Points and select Views > Point Manager. See “About the Point
Manager” on page 1-37 for more details.
For general information on control points, refer to “About control points” in the User Guide. See the next
section “About proxy points” for further details on proxy points.

About proxy points
Proxy points are often the bulk of all points in a station. This is true whether a JACE or a Supervisor
station. Proxy points are any of the 8 simple control points (BooleanPoint, BooleanWritable, EnumPoint,
EnumWritable, and so forth), only with a non-null proxy extension (for general control point information,
refer to the User Guide section “About the proxy extension”.)
NiagaraAX-3.7-3.8

Drivers Guide
1–27

About the Points extension Chapter 1 – Driver architecture
About proxy points November 5, 2013
These following sections provide more details about proxy points:
• Location of proxy points
• How proxy points are made
• Proxy points versus simple control points
• ProxyExt properties

Location of proxy points
In the AX station architecture, proxy points must reside under the driver network and device from which
the specific data originates. Proxy points are under that device’s Points container (Points extension), as
shown in Figure 1-38.

Figure 1-38 Proxy points location example

As needed, you can create folders under a device’s Points container to further organize the proxy points.
In addition to proxy points, you can also add simple control points (null proxy ext), schedule objects, and
other kitControl objects under a device’s Points container.

Note: See also “Location for kitControl components” in the kitControl Guide.
Depending on station type, proxy point locations will vary as follows:
• JACE station

Most proxy points are under non-Niagara driver networks, such as Lonworks, Bacnet, and Modbus,
to name a few. These points represent real-time data in various devices attached (or somehow net-
worked) to the JACE controller.
Like all AX stations, a JACE typically has a Niagara Network too. Any proxy points under it will rep-
resent data received from other JACE stations and/or perhaps the Supervisor station.

• Supervisor station
Typically, most proxy points are under its Niagara Network, where each JACE appears as a station
device. Proxy points under each station device represent real-time data from that JACE. Typically,
most data in a JACE station also originates as a proxy point, and so these points are often a “proxy
of a proxy.” For details, see “About the Niagara Network” on page 2-1.
Note: If the Supervisor is specially licensed for direct field device communications, such as a BACnet
Supervisor or OPC Supervisor, its station will have many proxy points under other driver network
types, and perhaps only a few under its NiagaraNetwork. In Drivers architecture, it resembles a JACE.

For more details, see “About Network architecture” on page 1-2.

How proxy points are made
Note: You create proxy points in a station as one of the later stages in building a driver network. This section only

provides an overview of the proxy points portion.
When you add a device under a network, one of its default extensions is a container named “Points.” The
default view for Points is a “Point Manager,” which you use to add proxy points to the station database.
An example Bacnet device Points Manager is shown in Figure 1-39.
NiagaraAX-3.7-3.8

Drivers Guide
1–28

Chapter 1 – Driver architecture About the Points extension
November 5, 2013 About proxy points
Figure 1-39 Points Manager example (Bacnet Device)

Typically, you have performed your previous station configuration of this network with the host (e.g.
JACE) networked and communicating to the devices of interest. This allows you to use the “Learn Mode”
feature (provided by most drivers). This feature is especially useful for adding proxy points to the station.
In the Point Manager, the Learn Mode toggles the view between only proxy points that are currently in
the station (“Database”), and a split view showing both a “Discovered” area and the “Database” area. See
“About Learn toggle” on page 1-18 for more details.
Clicking the Discover button launches a “point discovery job.” The driver queries the selected device
to retrieve available data. Depending on a number of factors (driver type, communications rate, amount
of data), this can take from only a few seconds to over a minute. See Figure 1-40.

Figure 1-40 Points Discover in progress

When the discover completes, the “Discovered” view portion provides a table of available data items.
Each row represents at least one item (a candidate for one proxy point). If there are multiple, closely-
related data items, that row appears with a leading plus (“+”). You can expand it to see other available data
items. Again, each row is a candidate for one proxy point.
Depending on the driver type, table column headings vary—for example a Bacnet points discover shows
“Object Name,” “Object ID,” etc., in the Discovered table (see Figure 1-41).
NiagaraAX-3.7-3.8

Drivers Guide
1–29

About the Points extension Chapter 1 – Driver architecture
About proxy points November 5, 2013
Figure 1-41 Points Discover completed

As needed, you click on column headers to resort and/or use the scroll bar to view available discovered
data items. After selecting one or more items by clicking on rows (to highlight), you can click the Add
button to start the proxy point creation process. The Add dialog appears (Figure 1-42).

Figure 1-42 Add points dialog

The Add dialog allows you to select each data item and change things about its default point creation
before it is added to the station database. Most important is “Type,” meaning the control point type—as
unlike other things (such as Name) you cannot change that after the creation. Apart from Name and
Type, most other properties are proxy extension properties.
Selecting the Type drop-down, alternate point types are available for selection, see Figure 1-43. If the
driver recognizes the data item as writable, this will include writable point types.
NiagaraAX-3.7-3.8

Drivers Guide
1–30

Chapter 1 – Driver architecture About the Points extension
November 5, 2013 About proxy points
Figure 1-43 Type drop-down in Add dialog

Typically, you do not change the data category type (Boolean, Numeric, etc.), but you may wish to select
either a read-only point or a writable point.
You click any discovered data item to select it for changing Type, or any other property. If a common
change is needed among data items (for example, Poll Frequency), you can select multiple items and edit
that property one time.
When you are satisfied with the point types shown for each item, you click the OK button at the bottom
of the Add dialog. Those proxy points are then created in the station database in the Points container, and
now appear as table rows in the “Database” (lower) table of the Point Manager view. The source data
items now appear “ghosted” in the “Discovered” (upper) table, to indicate that they now exist in the
station database. See Figure 1-44.

Figure 1-44 Proxy points added to station

You may repeat this process as needed to create additional proxy points, where you can toggle the display
of the Discovered portion off and on by clicking the Learn Mode tool.
Once in the Database table of the Points Manager, you can click to select (highlight) a proxy point, then
modify it using the Edit button, or simply double-click it. This produces an Edit dialog nearly identical
to the Add dialog, where you can change the same proxy extension properties and Name (but not Type).
You can also select multiple proxy points and use the Edit dialog to “gang edit” one or more of the same
properties that are common to each selected point.
In the Database portion, you can right-click a proxy point to access its normal views, including property
sheet. There, you can expand its Proxy Ext to see many of the same properties you saw in the Add and
Edit dialogs. Also, you can right-click a proxy point in the Database table to access any available point
actions (if a writable point).
Each Points container has other views besides the default Point Manager. For example, you can select its
Wire Sheet view to see and organize the proxy points glyphs (Figure 1-38 on page 28), add additional
objects from palettes control and/or kitControl, and so forth.

Note: The following notes apply when working with proxy points.
• In a Niagara Network, the Discover and Add process is different than in other driver networks.

There, you use a “BQL Query Builder” to select data items in a remote station. For more details, see
NiagaraAX-3.7-3.8

Drivers Guide
1–31

About the Points extension Chapter 1 – Driver architecture
ProxyExt properties November 5, 2013
“About the Niagara Network” on page 2-1 and “About the Bql Query Builder” on page 2-21.
• Any Point Manager view only shows proxy points. If you added other objects (for example, control

points with null proxy extension, or kitControl objects), they do not appear in the Database table.
However, they are visible in the Nav tree and the Points wire sheet.

• If you want folders under Points to organize your proxy points and other objects, use the “New Fold-
er” button in the Point Manager to create each folder. This provides a Point Manager view for each
folder. For more details, see “About the Point Manager” on page 1-37.

Proxy points versus simple control points
Functionally, there is little difference between a simple control point (NullProxyExt) and the equivalent
proxy point. For example, you can add the same extensions (e.g. control, alarm, and history) to a proxy
point as to a simple control point—there is no need to “duplicate” the point first.
However, apart from the location differences (see “Location of proxy points” on page 1-28) and manner
of creation (see “How proxy points are made” on page 1-28), proxy points have the following differences
from simple control points:
• Status flag processing

Status flags of proxy points are affected by real-time changes that may occur in the remote device,
plus changes in communications between that device and the station. This is in addition to “AX-add-
ed” status flags set by an alarm extension (for example, “alarm” or “unackedAlarm”). See “Proxy
point status” on page 1-33.
Related are “global” status rules common among NiagaraAX drivers, set at both the network-level as
well as adjustable at the proxy-point level. For details, see “About Tuning Policies” on page 1-8.

• Point duplication
When you duplicate a proxy point, you are duplicating information in its Proxy Ext that might be
better left unique. This may result in redundant messages between the device and station for the
same data item, adding overhead. If duplicating a proxy point, you should have a clear idea of what
you will change to prevent this inefficiency.

ProxyExt properties
Regardless of the driver, the proxy extension (ProxyExt) for any proxy point has a number of core
properties that provide the same behavior. Depending on the driver, other ProxyExt properties are often
present—see the particular driver document for details on those properties.
Core properties in any ProxyExt include the following:
• Status

(read only) Status of the proxy extension, which in turn determines parent point status. See “Proxy
point status” on page 1-33.

• Fault Cause
(read only) If point has fault status, provides text description why.

• Enabled
Either true (default) or false. While set to false, the point’s status becomes disabled and polling is sus-
pended.

• Device Facets
(read only) Native facets used in proxy read or writes (Parent point’s facets are used in point status
display, and are available for edit in Add and Edit dialogs in Point Manager).

• Conversion
Specifies the conversion used between the “read value” (in Device Facets) and the parent point’s out-
put (in selected point facets).
Note: In most cases, except when working with particular Ndio proxy points, or perhaps Modbus
proxy points, the standard “Default” conversion selection is best.
Conversion selections include:
• Default

(The default selection). Conversion between “similar units” is automatically performed within
the proxy point. For example, if a Lon proxy point with a LonFloatProxyExt (Device Facets of
degrees C), if you set the point’s Facets to degrees F, its output value automatically adjusts.
If you set the parent point’s Facets to dissimilar units (say, in this case to kilograms), the parent
point has a fault status to indicate a configuration error.

• Linear
Applies to certain Ndio proxy points, such as NdioVoltageInput and NdioResistiveInput. Also
commonly used in some Modbus proxy points. For these points, you typically want the point’s
NiagaraAX-3.7-3.8

Drivers Guide
1–32

Chapter 1 – Driver architecture About the Points extension
November 5, 2013 Proxy point status
output value in some units other than Device Facets (if Ndio, voltage or resistance), and the Lin-
ear selection provides two fields to make the transition:
– Scale: Determines linear response slope.
– Offset: Offset used in output calculation.

• Reverse Polarity
Useful in a Boolean-type Ndio proxy point to reverse the logic of the hardware binary input. Al-
so, may be used in any driver’s proxied BooleanPoint, as a way to “flip” the read state of the na-
tive value.
Note: Be careful in the use of the reverse polarity conversion, as it may lead to later confusion
when troubleshooting logic or communications problems.

• Thermistor Type 3
Applies to an NdioThermistorInput point, where this selection provides a “built-in” input re-
sistance-to-temperature value response curve for Type 3 Thermistor temperature sensors.

• Tabular Thermistor
Applies to an NdioThermistorInput point, where this selection provides a control for a popup
dialog for a custom resistance-to-temperature value response curve, including ability to import
and export response curves.

• Tuning Policy Name
(most drivers) Associated network tuning policy for this proxy point, by name. Tuning policies are
used to separate poll rates and other driver features. See “About Tuning Policies” on page 1-8.

• Read Value
(read only) Last value read from the device, expressed in device facets.

• Write Value
(read only) Applies if writable point only. Last value written, using device facets.

Proxy point status
In addition to status flags that also apply to non-proxy points (refer to the User Guide section “How status
flags are set”), some status flags in proxy points are set and cleared resulting from polled value or status
updates received via the parent driver’s communications subsystem, for example:
• down

Driver unable to receive reply from parent device, as per configuration in Monitor extension. In this
case, all proxy point children of the device will have status down.

• fault
Typically, this indicates an AX configuration error or license error. If a fault occurs following normal
(ok) status, it could be a “native fault” condition detected within the device, or perhaps some other
fault criteria that was met. The point’s proxy extension contains a “Fault Cause” text property that
contains more information.

• stale
Since the last poll update, the point’s value has not updated within the specified “Stale Time” of its
Tuning Policy. This stale status clears upon next received poll value.

Statuses above are set automatically, but you typically set a fourth status for a proxy point manually:
• disabled

Using the proxy extension’s Boolean property “Enabled” (default is true). While set to false (dis-
abled), polling stops for that point, as well as any further status changes.

Note: Typically, a proxy point has an alarm status only if its value falls in the “offnormal algorithm” limits
specified in its own (NiagaraAX) alarm extension. If the driver and protocol has “intrinsic” or “native”
alarm determination methods (such as with BACnet), a proxy point may show alarm status that origi-
nated locally within that device. In the case of the Niagara Bacnet driver, this also applies to override
status, possibly a “native” condition for a proxied BACnet object.

Effect of facets on proxy points
Each proxy point typically represents a piece of data in a remote device (see “About proxy points” on page
1-27). In cases for drivers that support a “learn” mechanism, a proxy point may be created with its facets
(units) already defined—these reflect its “Device Facets” (in its ProxyExt).
If needed, you can change the parent proxy point’s facets to use similar (same family) units. For example,
if a Lonworks proxy point for a temperature NVI (learned in degrees C), you can change the proxy points
facets to degrees F. The “default” conversion performed in the LonProxyExt automatically adjusts the
output value appropriately. In this case, facets directly affect the point’s out value.
NiagaraAX-3.7-3.8

Drivers Guide
1–33

About the Histories extension Chapter 1 – Driver architecture
About the Retry Trigger November 5, 2013
Note: If you change a proxy point’s facets to use units that are dissimilar from the device facets in its ProxyExt
(without also changing its Conversion from “Default”), the proxy point will have a fault status (to show
misconfiguration). For example, if its device facets are temperature, and you change the point’s facets to
pressure, the point will have a fault status.
For details on properties common to the ProxyExt in all proxy points, including Device Facets and
Conversion, see “ProxyExt properties” on page 1-32.

About the Histories extension
Not all drivers have devices with a HistoryDeviceExt—notably, this exists only if the driver protocol (or
device) provides local data logging. Currently, a Histories device extension exists under components
NiagaraStation, ObixClient, R2ObixClient, and BacnetDevice (under a BacnetDevice, this extension is
named “Trend Logs”).

Note: “Database device” components in any of the RdbmsNetwork drivers (rdbSqlServer, rdbMySQL, etc.) also
each have a Histories extension. See “Importing and exporting data using the RdbmsNetwork” in the
Rdbms Driver Guide for related details.

Figure 1-45 Histories device extension (NiagaraStation)

A device’s Histories extension serves as the parent container for history descriptors—components
that specify how history-type collections (log data) are imported or exported. By default, it also contains
a Retry Trigger, see “About the Retry Trigger” on page 1-34.
The difference between a history import and history export are as follows:
• Import

Any imported history appears in the local station as a Niagara history, where data is effectively
“pulled” from a remote source device.
• For example, if a history import descriptor under Histories of a NiagaraStation device, the

source is another Niagara history in that remote station.
• If a history import descriptor under Trend Logs of a BacnetDevice, the source is a BACnet

Trend Log object residing in that BACnet device.
• Export

Applies to a NiagaraStation (or “database device” under an RdbmsNetwork). An exported history is
a Niagara history that exists in the local station, and is configured by a history export descriptor to
“push” its data to a remote NiagaraStation (or RDBMS database). This adds it to the histories in that
remote station (or to an RDBMS database).
Note: Under a BacnetNetwork, the single “LocalDevice” component (that represents station data
exported to BACnet) has a special view on its child Export Table component that permits
exporting station histories as BACnet Trend Log objects. See the BACnet Guide section “Bacnet server
configuration overview” for more details.

You create history import descriptors and export descriptors under the Histories extension of a device
using separate views. For details, see “About Histories extension views” on page 1-46.

About the Retry Trigger
By default, device extensions like Histories, Schedules, and others contain a “Retry Trigger”-
named component, appearing in the Nav tree but not in any Manager view (Figure 1-46).

Note: Retry Trigger is unique in that it requires no linking of its output for operation.
NiagaraAX-3.7-3.8

Drivers Guide
1–34

Chapter 1 – Driver architecture About the Alarms extension
November 5, 2013 Alarms extension properties
Figure 1-46 Retry Trigger under device Histories extension

Upon any unsuccessful execution of a descriptor component (i.e. history import descriptor, schedule
import descriptor, and so on) contained in that same device extension, the Retry Trigger defines
subsequent “retries” that will automatically occur upon the interval period defined (default value is 15
minutes). This continues until successful execution occurs.

About the Alarms extension
Not all drivers have devices with an AlarmDeviceExt (Alarms)—notably, this exists only if the driver
protocol (or device) provides for local (native) alarming. Currently, only a device component under a
NiagaraNetwork (station), BacnetNetwork, or ObixNetwork has a child Alarms extension.
Alarms extension properties in devices NiagaraStation and BacnetDevice (drivers NiagaraDriver and
Bacnet, respectively) specify how alarms from that device are mapped into the station’s own alarm
subsystem, plus provide status properties related to alarm sharing. Unlike some other device extensions,
there are no special views, nor does the extension contain other special components.
The Alarms extension under an ObixClient device (ObixDriver) is modeled differently, where properties
specify the oBIX “watch” interval and URI, and one or more child ObixAlarmImport components specify
the available “alarm feeds” from the represented oBIX server. Each alarm feed (ObixAlarmImport) has
properties to specify the AlarmClass used to map into the station’s subsystem, as well as status properties.
This Alarms device extension is unique in its special “Obix Alarm Manager” view, from which you
typically discover, add, and manage alarm feeds. See the NiagaraAX oBIX Guide for more details.

Alarms extension properties
The following properties apply to the Alarms device extension under a NiagaraStation or BacnetDevice:
• Alarm Class

Under a BacnetDevice, or using the first Alarm Class property option (Replace) under a NiagaraS-
tation, provides a selection list of a local AlarmClasses, from which you can select one to use for all
alarms received from this device.
Included is a “Use Existing” checkbox option, where:
• Alarms from this remote station are routed to any “matching” AlarmClass, that is, one with

identical name as the “alarmClass” field in each alarm record. If no local “matching” AlarmClass
is found, the station's default AlarmClass is used.

• If the checkbox is cleared, all received alarms are routed to the single local AlarmClass specified.
Two additional Alarm Class property options are available for the Alarm Class property of the Nia-
garaStation Alarms extension:
• Prepend — To add leading text (as specified) to the incoming “alarmClass” field string, then

route to any local “matching” Alarm Class in the station.
• Append — To add trailing text (as specified) to the incoming “alarmClass” field string, then

route to any local “matching” Alarm Class in the station.
For more details, see “Prepend and Append alarm routing notes” on page 2-27.

• Last Received Time
Timestamp when last alarm from this device was received. This is configured remotely, either in the
sending Niagara station or the BACnet device.
Note: Remaining properties apply to the Alarms extension under a NiagaraStation component only
(are not available in Alarms extension under a BacnetDevice).
NiagaraAX-3.7-3.8

Drivers Guide
1–35

About the Schedules extension Chapter 1 – Driver architecture
Alarms extension properties November 5, 2013
• Source Name
Available in the Alarms extension of a NiagaraStation, so that the name of the sending station can
be added to the received alarm’s “alarm source” name, or another format be selected. This affects the
alarm’s display (versus routing).
The available choices are:
• Prepend — (default) To add leading text (as specified) to the incoming “alarmSource” field

string, where the default format is %parent.parent.displayName%:
For example, an alarm in the remote station named “EastWing” for an alarm record with its lo-
cal alarm source of “Room101”, the resulting alarm source would look like EastWing:Room101

• Append — To add trailing text (as specified) to the incoming “alarmSource” field string. For
example, if the format entered is -%parent.parent.displayName%
And the alarm in the remote station named “EastWing” is for an alarm record with its (local)
alarm source of “Room101”, the resulting alarm source would be Room101-EastWing

• Use Existing — Only uses the incoming “alarmSource” field string (ignores whatever for-
mat text is entered in this property).

• Replace — Only uses the format text entered in this property as alarm source (ignoring what-
ever incoming “alarmSource” string is received).

• Last Send Time
Timestamp when last local alarm was routed to this device. This is configured under the local sta-
tion’s AlarmService with a corresponding StationRecipient or BacnetDestination component linked
to one or more AlarmClass components).

• Last Send Failure Time
Timestamp when last local alarm routed to this station could not be sent.

• Last Send Failure Cause
Text string describing failure cause routing local alarm to this station.

About the Schedules extension
Not all drivers have devices with a ScheduleDeviceExt (Schedules)—notably, this exists only if the driver
protocol (or device) provides local event scheduling. Currently, this device extension exists only under
components NiagaraStation and BacnetDevice.

Figure 1-47 Schedules device extension (NiagaraStation)

A device’s Schedules extension is the parent container for imported schedules—Niagara schedule compo-
nents with a ScheduleImportExt. Events in an imported schedule are obtained from that device, and are
read-only (often called “slave schedules”). By default, the Schedules extension also contains a Retry
Trigger, see “About the Retry Trigger” on page 1-34.
The Schedules extension can also contain schedule export descriptors. These correspond to local station
schedules that are exported (“pushed”) to that remote station (often called “master schedules”). A
schedule export descriptor is automatically created whenever a local schedule is “imported” into a remote
station.
The difference between a schedule import and schedule export are as follows:
• Import

An imported schedule appears in the local station as a Niagara schedule, where read-only schedule
events are configured/adjusted in a remote source device.

• If under a NiagaraStation device, the source is a Niagara schedule in that remote station.
• If under a BacnetDevice, the source is a BACnet Schedule or Calendar object residing in that BACnet
NiagaraAX-3.7-3.8

Drivers Guide
1–36

Chapter 1 – Driver architecture About the Point Manager
November 5, 2013 Alarms extension properties
device. That object’s data is now modeled as a Niagara schedule component.
• Export

This is a Niagara schedule in the local station that is exported into a remote station (NiagaraNet-
work) or BACnet Schedule or Calendar object (BacnetNetwork). A resulting schedule export de-
scriptor allows configuration of a “push” mechanism to keep event configuration synchronized in
the remote device.
Note: Under a BacnetNetwork, the single “LocalDevice” component (that represents station data
exported to BACnet) has a special view on its child Export Table component that permits “exposing”
Niagara schedule components in the station as either a BACnet Schedule object or Calendar object.
For details, see the Bacnet Users Guide.

You create imported schedules under a device’s Schedules extension using an Import Manager view. A
separate Export Manager view provides access to schedule export descriptors. For details, see “About
Schedules extension views” on page 1-49.

Note: Schedule components local to the station can reside anywhere under the station’s Config hierarchy and be
imported by one or more other stations. As this occurs, a schedule export descriptor is automatically
created under the NiagaraStation component that represents the remote station (and is located in its
Schedules container). On the other hand, if you import a schedule from another NiagaraStation or Bacnet-
Device, it must reside in that device’s Schedule container. Imported schedules are always under a specific
device.

About the Point Manager
The Point Manager is the default view for the Points extension under any device object. Like other
manager views, it is table-based (Figure 1-48). Here, each row represents a proxy point (or a points folder)
under Points.

Figure 1-48 Point Manager under a BacnetDevice

When building a network in the station, you use this view to create, edit, and delete proxy points in the
station database. See “About proxy points” on page 1-27.
Following station configuration, this view provides a status summary for proxy points. You can also use
it to issue an override action to a writable proxy point, e.g. “Active,” “Off,” and so on.

Note: Only proxy points appear in the Point Manager view—any other components that may also reside under
Points do not appear. For example, you do not see kitControl or schedule components, or any control point
with a “null proxy extension.” However, you can use other views of Points (wire sheet, property sheet, slot
sheet) to access these items.
At the bottom of the view, buttons “New Folder” and “New” let you create new point folders and proxy
points in the station database. An “Edit” button lets you edit one or more selected proxy points. If the
driver supports online “device learning,” buttons “Discover,” and “Match” are also typically available.
Finally, additional buttons may be available, depending on the driver.
NiagaraAX-3.7-3.8

Drivers Guide
1–37

About the Point Manager Chapter 1 – Driver architecture
Points New Folder and New November 5, 2013
For more details, see:
• Points New Folder and New
• Point Edit
• About Point Discover, Add and Match (Learn Process)
• About other Points views

Note: Also see “Niagara Point Manager notes” on page 2-20 for details specific to the Point Manager view of a
Points device extension under a NiagaraStation device component (NiagaraNetwork).

Points New Folder and New
Buttons New Folder and New exist in a device’s Point Manager view under any driver network.

Note: New Folder and New are tools on the Point Manager toolbar, and in the Manager menu.

New Folder
New Folder in the Point Manager adds a special “PointFolder” component that you can use to organize
proxy points. This is equivalent to copying that same component from that driver’s palette. A Name
dialog lets you name the folder before it is created (Figure 1-49).

Figure 1-49 Example New Folder dialog in Point Manager

When you click OK, a new PointFolder component is added under Points. Point folders are often useful,
especially if you are creating many proxy points, or need extra wire space for additional kitControl or
schedule components (and whatever links you wish to create between them).

Note: A devices’s PointFolder component is different than a “normal” Folder component, because it includes that
devices’s Point Manager view as its default view (just like the parent Points component). You can double-
click a point folder (either in the Point Manager view pane or in the Nav tree), to access its Point Manager.
Also, an “All Descendants” command is available from the root Points Manager, which allows you to see all
proxy points in that device.
All Descendants When in the Point Manager of a point folder, it is “unaware” of proxy points in other
point folders (or in the root of Points). However, from the root Point Manager view (of Points), you can
“flatten” the folder structure to view all proxy points by selecting “All Descendants” from the Manager
menu (Figure 1-50) or simply clicking the “All Descendants” tool on the toolbar (Figure 1-51). Note that
“all descendants” is also available at any point folder (level) as well—you just see all points in descendants
from that folder level on down.

Note: Be aware that in a device with many point folders and proxy points, using the all descendants feature
(particularly at the Points root level) may decrease performance. This might result from so many points
becoming subscribed.

Figure 1-50 Manager menu “All Descendants” command
NiagaraAX-3.7-3.8

Drivers Guide
1–38

Chapter 1 – Driver architecture About the Point Manager
November 5, 2013 Point Edit
Figure 1-51 Point Manager “All Descendants” tool on toolbar.

Note: If you are using point folders, and you click on a table to column to resort points, please be aware that any
proxy point-to-point folder organization is lost during that view. However, you can always see contents of
point folders clearly in the Nav tree, and again when returning to the Point Manager view from another
view.

New
New in the Point Manager is to add new proxy points to the station. Typically, you use New only if the
driver does not support online discovery, or if you are programming offline. Under any of the Modbus
drivers, for example, you use New to add proxy points.
Using New is equivalent to copying proxy points from that driver’s palette, except it provides more utility
to specify other parameters. Minimally, the New dialog provides a selection list for proxy point type, and
also the number of points to add (Figure 1-52).

Figure 1-52 Example New dialog in Point Manager

In some driver networks, the New dialog may provide other parameters, such as a starting address range
when adding multiple proxy points. When you click OK, the number and type of proxy points you
specified are added under Points or a point folder. You need to edit specific properties for each new proxy
point (note these are typically properties of its proxy extension).

Point Edit
In the Point Manager view, you can Edit any proxy point shown in the station database by simply double-
clicking it. (Edit does not apply to point folders.)

Edit
The Edit dialog appears with the proxy point listed (Figure 1-53).
NiagaraAX-3.7-3.8

Drivers Guide
1–39

About the Point Manager Chapter 1 – Driver architecture
Point Edit November 5, 2013
Figure 1-53 Example Edit dialog in Point Manager (single point)

Note: The Edit dialog for a proxy point shows mostly properties under its proxy extension, plus (typically) the
parent point’s Name and Facets. Many of the proxy extension values are required for communications, and
will vary among drivers. To access all properties of the proxy point, including all those under any of its
extensions, go to its property sheet.
When a single point is selected in the Edit dialog, you can edit any property except Type (fixed when you
added the point). Included is the ability to edit the Name of the proxy point in the station. This is equivalent
to the right-click Rename command on the point.
The following related topics also apply:
• Proxy point “gang” edits
• Manager table features

Proxy point “gang” edits
The Edit button in the Point Manager allows you to edit one or more proxy points in the station in a single
dialog. Before clicking Edit, use standard Windows keyboard controls to highlight (select) multiple points
(e.g. hold down Ctrl key and click desired points).

Note: Edit is also on the Point Manager toolbar and the Manager menu, if any point is selected.
The “gang” edit feature is useful for making the same change in multiple (selected) proxy points. For
example, as shown in Figure 1-54, you can change “Tuning” (point’s associated tuning policy) in multiple
points at the same time (versus editing this individually).
NiagaraAX-3.7-3.8

Drivers Guide
1–40

Chapter 1 – Driver architecture About the Point Manager
November 5, 2013 About Point Discover, Add and Match (Learn Process)
Figure 1-54 Example “gang edit” in Edit dialog in Point Manager

When you have the Edit dialog open with multiple points, you can also click on a specific one to make
individual edits (e.g. Name, or any other editable property), during the same dialog session where you
made “gang” property edits. When you click OK, all the changes are applied to the proxy points as made
during your Edit session. For more details, see “About gang edits.”

Note: When you have multiple points selected in the Edit dialog, properties that must be unique (such as Name)
are automatically unavailable (dimmed). However, note that some properties that typically should be
unique (often address properties) may still be available for “gang edit,” as this rule is not automatically
enforced. Typically, when editing these properties, you should verify only a single point component (row) is
highlighted in the table.

About Point Discover, Add and Match (Learn Process)
Online “point learns” are possible in some driver networks, for example the NiagaraNetwork, Bacnet-
Network, LonNetwork, and NdioNetwork. Whenever available, this method is the easiest way to
accurately add proxy points to the station database.
Any proxy point learn in NiagaraAX is a two-step process using the Point Manager, where you:
1. Under a selected device component, use its (Points device extension) Point Manager view to

Discover data items as point candidates for inclusion in the station database.
2. Select and Add from those candidates, creating proxy points under the device’s Points container. (If

you already used New to add points, you can also Match to those existing points).
Note: The Point Manager reinforces this process by providing two separate panes in the view whenever you enter

“Learn Mode.” See “About Learn toggle” on page 1-18.

Discover
The Discover button is available in the Point Manager only if the driver supports online discovery. When
you click Discover, the Point Manager view splits into two panes (Learn Mode), and at the same time
typically launches a discovery “job” (Figure 1-55).

Note: Under a LonNetwork, Point Manager has a Learn Mode, but no point Discover. All possible data items
were already discovered when the parent device was discovered and added. Here, enter Learn Mode by
toggling (see “About Learn toggle” on page 1-18).
NiagaraAX-3.7-3.8

Drivers Guide
1–41

About the Point Manager Chapter 1 – Driver architecture
About Point Discover, Add and Match (Learn Process) November 5, 2013
Figure 1-55 Discover splits Point Manager view

Note: Under a NiagaraNetwork (only), a Niagara Point Manager discover produces an intermediate dialog: the
Bql Query Builder. You use it to browse the remote station and specify what items to select from as
discovered proxy point candidates. For details, see “About the Bql Query Builder” on page 2-21.
In Learn Mode, the two panes in the Point Manager operate as follows:
• Discovered (top pane)

Lists data items discovered on the driver’s network, as proxy point candidates. For any data item
found that already exists in the station database, it will appear “ghosted” (listed faintly). Note items
listed may be “expandable”—see “Discovered selection notes” on page 1-42.
A job “progress bar” is also included on top of the Discovered pane.
Note: A Cancel button is available during a discovery job. If needed, use it to stop discovery.

• Database (bottom pane)
Lists proxy points and point folders that are currently in the station database.

Note: As necessary, drag the border between the two panes to resize. Also (at any time), toggle between the two-
pane Learn Mode and the single-pane (Database) view by clicking the Learn Mode tool in the toolbar
(Figure 1-24 on page 18), or using the Learn Mode command in the Manager menu.
Discovered selection notes Often, data items listed in the Point Manager’s discovered pane are
expandable, having one or more related items, each individually selectable. Expandable items are
indicated by a leading plus (+), which you click to expand (a toggle control).
Figure 1-56 shows an example item (Lonworks nvoUnitStatus) expanded to reveal individual numeric-
type elements, each selectable as a separate proxy point.
NiagaraAX-3.7-3.8

Drivers Guide
1–42

Chapter 1 – Driver architecture About the Point Manager
November 5, 2013 About Point Discover, Add and Match (Learn Process)
Figure 1-56 Expand discovered data items to see all point candidates

Here, if you selected only the top “mode” element to add, you would have one proxy EnumPoint to
monitor the enumerated unit status (auto, heat, cool, etc), but would not have any of the related numeric-
type items proxied as control points.
Depending on the driver/device type, expandable discovered items represent individual properties or
other “structured” data. Some examples:
• BacnetDevice—Each top item is typically the “present value” property of the BACnet object (most

commonly selected). Expand the item to see other properties of the object.
• NiagaraStation—Using Bql Query Filter defaults (Config, control, ControlPoint), each top item

is equivalent to the “Out” slot of the Niagara component (and most commonly selected). Expand the
item to see other slots in the component (including Out).

• LonDevice—Each top item is typically the first element (field) in a structured SNVT (multi-field data
structure), as used in that particular network variable (nv or nci). To access other data fields in the
SNVT’s structure, you must expand that item.

For specific details, refer to the “Point discovery notes” section in a particular driver document.

Add
The Point Manager's Add button is available in Learn Mode when you have one or more data items
selected (highlighted) in the top discovered pane. When you click Add, an Add dialog appears that allows
you to edit properties before the proxy point(s) are created in the station (Figure 1-57).

Note: Whenever you select one or more items in the top discovered pane, the toolbar also has an available Add
tool (“plus” symbol), and the Manager menu has an Add command. Also, you can simply double-click a
discovered item to bring it up in the Add dialog.
NiagaraAX-3.7-3.8

Drivers Guide
1–43

About the Point Manager Chapter 1 – Driver architecture
About Point Discover, Add and Match (Learn Process) November 5, 2013
Figure 1-57 Add dialog from Add button in Point Manager

The Add dialog is nearly identical to the point Edit dialog, but allows you to edit Type as well as other
properties.
Often, you may wish to change Type from the pre-selected one, at least between read-only points and the
equivalent writable control point within that data category. For example, if adding a proxy point for the
present value (default) property for a BACnet Binary Output object, you may wish it to be a read-only
BooleanPoint point rather than the default BooleanWritable. As shown in Figure 1-58, you can do this in
the Add dialog before it is added to the station database, (but not later using the point Edit feature).

Figure 1-58 Change Type as needed in point Add dialog

Note: In most cases, alternate point Types include StringPoint, and possibly others. Generally speaking, there are
few practical applications in changing the data category of a proxy point type (e.g. from Boolean to Enum
or Sting), however, this may be an option. Note that if working under a NiagaraNetwork, only read-only
proxy points are available.
Address-related properties in the Add point dialog already have acceptable values for operation
(otherwise, the data item would not have been discovered). It is possible you change only Name and
possibly Type, unless you know other settings you wish to change now. You can always Edit these
properties in the proxy point(s) after you click OK and add them to your station.

Match
Match is a feature that may be useful when you have an application with proxy points you wish to reuse,
or if you have programmed offline using the New point feature.
NiagaraAX-3.7-3.8

Drivers Guide
1–44

Chapter 1 – Driver architecture About the Point Manager
November 5, 2013 About other Points views
• In the first case (application for reuse), you could have some number of proxy points included in an
application that you have saved and now recopied under the target Points container. Often, address-
related properties in the copied proxy points are incorrect. However, you can use the Point Manag-
er’s Learn Mode and step through each proxy point in the copied application, and use the Match fea-
ture to “sync” with the intended (and discovered) data item.

• In the second case (offline programming) where a connection to the actual device network is un-
available, you can manually add New devices and New proxy points, and begin station engineering
of a driver network. Typically, most component creations under a driver network are possible (in-
cluding all levels) using the New command in the various “manager” views (Device Manager, Point
Manager, other device extension managers). Or, you can add saved applications (from the device lev-
el on down) and edit as necessary. Then, when online with the driver network later, you could use
Match to “sync” to existing components (device-level, proxy points, and so forth).

The Match button in the Point Manager becomes available when in Learn Mode, and you have:
1. Selected one point candidate in the top (Discovered) pane.
2. Selected one existing proxy point in the bottom (Database) pane.

Note: In this case, the toolbar also has an available Match tool, and the Manager menu has a Match command.
When you click Match, the Match dialog appears, as shown in Figure 1-59.

Figure 1-59 Match dialog example in Point Manager

Note: Match is strictly a “one-to-one” function for “discovered-to-database”—note that it is unavailable any time
you have multiple items selected either in either the top Discovered pane or bottom Database pane.
The Match point dialog is nearly identical to the single-point Edit dialog, and typically provides the
“discovered” point address values. Often, most properties in the Match dialog have acceptable address
values required for operation (otherwise, the item would not have been discovered). You can always Edit
the proxy point after you click OK and add it to your station.

About other Points views
Although you initially use the Point Manager (default) view of a device’s Points extension (and/or child
point folders), typically other views are needed when engineering a network. You can use the view
selector in the locator bar, or in the Nav tree right-click Points (and/or child point folders) and select one
of the View menu options.

Note: Remember that the Point Manager view provides access only to proxy points, and edit features apply only
to proxy extension properties.
Commonly used Points views include:
• Wire sheet

Shows all proxy points, plus any kitControl and schedule components, simple control points, and so
on, as well as links between them. Typically, you use this view to engineer control logic.
NiagaraAX-3.7-3.8

Drivers Guide
1–45

About Histories extension views Chapter 1 – Driver architecture
History Import Manager November 5, 2013
• Property sheet
Also includes all proxy points, plus any kitControl and schedule components, simple control points,
and so on. As needed, you can use this view to expand down to any level to access and edit properties.
For example, you can access an alarm extension under a proxy point.

• Slot sheet
Also includes all proxy points, plus any kitControl and schedule components, simple control points,
and so on. As needed, you can use this view to edit config flags from defaults (say, for security
schemes), edit config facets, and add name maps.

• Px view (New View)
(Optional) A custom graphical view that you define by creating a new Px file or using an existing Px
file. When created, this view becomes the default view for the device’s Points extension (or if created
for a points folder, its default view).

About Histories extension views
For an overview of a device Histories extension, see “About the Histories extension” on page 1-34.
Standard views available on a device’s Histories extension include:
• History Import Manager
• Device Histories View (AX-3.5 and later)
Additional views may be available, depending on driver. The Histories extension of a NiagaraStation has
a History Export Manager view. See “Niagara histories notes” on page 2-29.

History Import Manager
The History Import Manager is the default view for a device’s Histories extension. Like other managers,
it is a table-based view (Figure 1-60). Here, each row is a history import descriptor. Each descriptor
specifies how log data is imported (pulled) from the device into the station as a history.

Figure 1-60 History Import Manager under a BacnetDevice (Trend Logs)

You use this view to create, edit, and delete history import descriptors. Each import descriptor you add
results in the creation of a local Niagara history—regardless if the source log data is a BACnet Trend Log,
Niagara history, or other type of data log (depending on driver type, and parent device’s component type).
This view provides a status summary for collecting imported histories. You can also use it to issue manual
“Archive” commands to one or more history descriptors. This causes an immediate import request to pull
logged data from the remote device.

Note: Only history import descriptors appear in the History Import Manager view—any other components that
may also reside under Histories do not appear. For example, you do not see the default “Retry Trigger”
component (see “About the Retry Trigger” on page 1-34). However, you can use the Histories property sheet
to access these items.
At the bottom of the view, the “New” button lets you manually create new import descriptors in the
station. An “Edit” button lets you edit one or more import descriptors. Buttons “Discover,” “Add” and
“Match” are also available, (these work similarly as in the Point Manager). An “Archive” button is
available to manually import (pull data) into one or more selected histories.
NiagaraAX-3.7-3.8

Drivers Guide
1–46

Chapter 1 – Driver architecture About Histories extension views
November 5, 2013 History Import Manager
Starting in AX-3.5, the History Import Manager in some drivers provides a “New Folder”
button, to add folders to organize history import (and export) descriptors. Each such folder provides its
own set of history manager views. See the section “Niagara History Import Manager” on page 2-30 for
details on this, as well as other history import information specific to the niagaraDriver.
For more common details about a History Import Manager, see:
• History Import New
• History Import Edit
• About History Import Discover, Add and Match (Learn Process)

History Import New
Button New exists in a device’s History Import view, but is typically used only if:
• Using “system tags” to import remote histories, such as in the Niagara History Import Man-

ager, versus online discovery.
• Engineering offline—most devices with a Histories extension support online discovery (a File-

Device is one exception). If offline, Match may be used later (when online with the device).
Note: A “New” tool is also on the History Import Manager toolbar, and in the Manager menu.

History Import Edit
In the History Import Manager, you can Edit any import descriptor in the station database by simply
double-clicking it.
Edit The Edit dialog appears with the import descriptor listed (Figure 1-61).

Figure 1-61 Edit dialog in Bacnet History Import Manager (single history)

This dialog shows configuration properties of the history import descriptor, plus Name (equivalent to the
right-click Rename command on the descriptor). To access all properties, (including all status properties)
go to its property sheet.
For related property details, see “BACnet Trend Log notes” in the BACnet Guide, or if a Niagara History
Import descriptor, see “Niagara History Import properties” on page 2-31.
The following related topics also apply:
• History descriptor “gang” edits
• “Manager table features” on page 1-21
History descriptor “gang” edits The Edit button in the History Import (or Export) Manager allows you
to edit one or more descriptors in a single dialog. Before clicking Edit, use standard Windows keyboard
controls to highlight (select) multiple descriptors (e.g. hold down Ctrl key and click desired descriptors).

Note: Edit is also on the History Import (or Export) Manager toolbar and the Manager menu, if any descriptor
is selected.
The “gang” edit feature is useful for making identical changes in multiple (selected) descriptors. For
example, you can change “Execution Time” (when data is pulled into imported history) in multiple
descriptors at the same time (versus editing individually).
NiagaraAX-3.7-3.8

Drivers Guide
1–47

About Histories extension views Chapter 1 – Driver architecture
History Import Manager November 5, 2013
When you have the Edit dialog open with multiple descriptors, you can also click on select ones to make
individual edits (e.g. Execution, Time of Day), during the same dialog session where you made “gang”
edits. When you click OK, all the changes are applied to the descriptors as made during your Edit session.

Note: When you have multiple descriptors selected in the Edit dialog, properties that currently have different
values are automatically unavailable (dimmed). Only a property that currently has the same value (across
all selected descriptors) is available for gang edit.

About History Import Discover, Add and Match (Learn Process)
Unless working offline, you can use the learn process to import histories in the station. As with other
NiagaraAX learns, this is a two-step process in the History Import Manager, where you:
1. Under a selected device component, use its (Histories extension) Histories Import Manager view to

Discover log data (histories) as candidates for inclusion in the station as histories.
2. Select and Add from those histories, creating history descriptors under the device’s Histories

container.
Note: The Histories Import Manager reinforces this process by providing two separate panes in the view whenever

you enter “Learn Mode.” See “About Learn toggle” on page 1-18.
Discover When you click Discover, the Histories Import Manager splits into two panes (Learn Mode):
discovered items in the top pane, and existing import descriptors bottom pane (Figure 1-62).

Note: If under a BacnetDevice, a “Bacnet Trend Logs Discover” job is started, with a progress bar at top. If
BACnet Trend Log objects are found, they are listed in the discovered pane.

Figure 1-62 Discover splits History Import Manager (Bacnet History Import Manager shown)

Note: Under a NiagaraNetwork (only), the discovered pane shows the collapsed tree structure of all Niagara
histories of that selected NiagaraStation. Click to expand and select histories for import. See “Discovered
selection notes” on page 2-31 for more details.
In Learn Mode, the two panes in the Histories Import Manager operate as follows:
• Discovered (top pane)

Lists histories (Niagara) or Trend Logs (Bacnet) found in the device, as history descriptor candidates.
Any item that already exists as a history in the station is “ghosted” (faintly listed).
If a BacnetDevice, a job “progress bar” is also included on top of the Discovered pane.
Note: A Cancel button is available during a discovery job. If needed, use it to stop discovery.

• Database (bottom pane)
Lists history descriptors currently in the station database (each has an associated history).

Note: As necessary, drag the border between the two panes to resize. Also (at any time), toggle between the two-
pane Learn Mode and the single-pane (Database) view by clicking the Learn Mode tool in the toolbar
(Figure 1-24 on page 18), or using the Learn Mode command in the Manager menu.
Add The Add button is available in Learn Mode when you have one or more items selected (highlighted)
in the top discovered pane. When you click Add, a dialog appears that allows you to edit properties before
the history descriptor(s) are created in the station.

Note: Whenever you select one or more items in the top discovered pane, the toolbar also has an available Add
tool (“plus” symbol), and the Manager menu has an Add command. Also, you can simply double-click a
discovered item to bring it up in the Add dialog.
NiagaraAX-3.7-3.8

Drivers Guide
1–48

Chapter 1 – Driver architecture About Schedules extension views
November 5, 2013 About the Device Histories View
The Add dialog is identical to the history import descriptor Edit dialog. For details on properties of a
Niagara HistoryImport descriptor, see “Niagara History Import properties” on page 2-31.
Match Match, as an online function, is available if you have one history selected in the top (discovered)
pane and one history import descriptor selected in the bottom (database) pane. However, usage of Match
when importing histories from a device (NiagaraStation, BacnetDevice) is generally not recommended.
Instead, use the Discover and Add method to import histories.

About the Device Histories View
Starting in AX-3.5, a Device Histories View is available on the Histories extension of any
device that supports the import of histories (for example, BacnetDevice, NiagaraStation, and others), as
well as receiving exported histories.

Figure 1-63 Device Histories View on the Histories (Trend Logs) extension of a BacnetDevice component

This view displays a filtered list of “history shortcuts” for histories imported or exported from this device,
where shortcuts are automatically created by the view. If you double-click on a shortcut in the view, the
default view of that local Niagara history displays. Right-click for a menu to select other history views.

Note: The shortcut icon in the Device Histories view is a visual reminder that the view is displaying a shortcut,
not the actual history.
In addition to this automatically-populated “convenience view”, you can add other history shortcuts
anywhere under a device component, using a History Shortcuts component copied from the
histories palette. This may also be useful for imported/exported histories of a NiagaraStation, when
engineering a Supervisor station. For related details, see “About history nav shortcuts” in the User Guide.

About Schedules extension views
For a Schedules device extension overview, see “About the Schedules extension” on page 1-36.
Special views on a device’s Schedules extension may include:
• Schedule Import Manager
• Schedule Export Manager

Note: Other standard views of a Schedules extension are commonly used. For example, the wire sheet may be
used when linking imported schedules to other control logic in the station.

Schedule Import Manager
The Schedule Import Manager is the default view for a device’s Schedules extension. Like other managers,
it is a table-based view (Figure 1-64). Each row corresponds to an imported Niagara schedule (read-only).
Configuration for each includes its name and whether it is enabled.
NiagaraAX-3.7-3.8

Drivers Guide
1–49

Schedule Import Manager Chapter 1 – Driver architecture
Schedule Import New November 5, 2013
Figure 1-64 Schedule Import Manager under a NiagaraStation

When building a network in the station, you use this view to create, edit, and delete imported Niagara
schedules. In the case of a Niagara network (only), each schedule that you import results in the creation
of a remote “schedule export descriptor” in that remote Niagara station.
Following station configuration, this view provides a status summary for collecting imported schedules.
You can also use it to issue manual “Import” commands to one or more schedules. This causes an
immediate import request to pull schedule configuration data from the remote device.

Note: Only imported schedules appear in the Schedule Import Manager—any other components that may also
reside under Schedules do not appear. For example, you do not see the default “Retry Trigger” component
(see “About the Retry Trigger” on page 1-34), or if a NiagaraStation, schedule export descriptors. However,
the Nav tree and other views on Schedules provide you access to these items.
At the bottom of the view, the button “New” lets you manually create new imported schedules in the
station. An “Edit” button lets you edit a few properties of one or more imported schedules. Buttons
“Discover,” “Add” and “Match” are also available, (these work similarly as in the Point Manager). An
“Import” button is available to manually import (pull data) into one or more selected imported schedules.
Finally, depending on driver, additional buttons may be available.
For more details, see:
• Schedule Import New
• Schedule Import Edit
• About Schedule Import Discover, Add and Match (Learn Process)

Schedule Import New
Button New exists in a device’s Schedule Import Manager, but is used only if engineering offline (all
devices with a Schedules extension support online discovery). If used, Match may be used later (when
online with the device).

Note: A “New” tool is also on the Schedules Import Manager toolbar, and in the Manager menu.

Schedule Import Edit
In the Schedule Import Manager, you can Edit selected properties of a schedule import extension in the
station database by simply double-clicking it.

Edit
The Edit dialog appears with the imported schedule import descriptor listed (Figure 1-65).
NiagaraAX-3.7-3.8

Drivers Guide
1–50

Chapter 1 – Driver architecture Schedule Import Manager
November 5, 2013 Schedule Import properties
Figure 1-65 Edit dialog in Schedule Import Manager (Bacnet)

Note: The Edit dialog shows some properties of the schedule’s ScheduleImportExt, plus Name—equivalent to the
right-click Rename command on the parent schedule component). To access all properties of the schedule
(including all status properties) go to its property sheet, or to see the imported schedule events, go to its
Scheduler view. Or, in the Nav tree you can simply double-click the schedule for its Scheduler view.
The following related topics also apply:
• Schedule Import properties
• Schedule Import or Export “gang” edits
• Manager table features

Schedule Import properties
Properties of imported schedules available in the Edit or Add dialog of the Schedule Import Manager are
as follows:
• Name

Name for the imported Niagara schedule component. If discovered, will match the name of the
source schedule. Must be unique among other components in same container.
Note: Editing name does not affect name of the source schedule, nor the name of the corresponding
schedule export descriptor (if source is a Niagara schedule).

• Supervisor Id
(NiagaraStation only) Unique slot path of source Niagara schedule in that station.

• Object Id
(BacnetDevice only) Combination of BACnet object type (schedule or calendar) and instance num-
ber (unique within that object type in that device).

• Enabled
Default is true. If set to false, the imported schedule is disabled.
Note: While disabled, the schedule’s Out slot has status disabled. Any downstream logic linked to
Out no longer processes it. Refer to the section “About “isValid” status check” in the User Guide.

• Execution Time
(BacnetDevice only) Specifies how event-configuration refresh (import) occurs with source sched-
ule, using a “pull” request method. Options are Daily, Interval, or Manual (default).
If Manual, some properties below are not available, as noted:
• Time of Day (Daily)

Configurable to any daily time. Default is 2:00am.
• Randomization (Daily)

When the next execution time calculates, a random amount of time between zero milliseconds
and this interval is added to the Time of Day. May prevent “server flood” issues if too many
schedule imports execute at the same time. Default is zero (no randomization).

• Days of Week (Daily and Interval)
Select (check) days of week for import execution. Default is all days of week.

• Interval (Interval)
Specifies repeating interval for import execution. Default is every 15 minutes.

• Time of Day (Interval)
Specifies start and end times for interval. Default is 24-hours (start 12:00am, end 11:59pm).
NiagaraAX-3.7-3.8

Drivers Guide
1–51

Schedule Import Manager Chapter 1 – Driver architecture
Schedule Import or Export “gang” edits November 5, 2013
• Last Trigger
Timestamp of when last interval or daily import occurred.

• Next Trigger
Timestamp of when the next interval or daily import is configured to occur.

Schedule Import or Export “gang” edits
The Edit button in the Schedule Import (or Export) Manager allows you to edit one or more items in a
single dialog. Before clicking Edit, use standard Windows keyboard controls to highlight (select) multiple
items (e.g. hold down Ctrl key and click desired schedules).

Note: Edit is also on the Schedule Import (or Export) Manager toolbar and the Manager menu, if any item in the
database is selected.
The “gang” edit feature is useful for making identical changes in multiple (selected) items. For example,
as shown in Figure 1-66 when using Edit in the Niagara Schedule Export Manager, you can change the
“Execution Time, Interval” in multiple schedule export descriptors at the same time (versus editing
individually). For more details, see “About gang edits.”

Figure 1-66 Example “gang edit” in Edit dialog of Schedule Export Manager

About Schedule Import Discover, Add and Match (Learn Process)
Unless working offline, you can use the learn process to import schedules in the station. As with other
NiagaraAX learns, this is a two-step process in the Schedule Import Manager, where you:
1. Under a selected device component, use its (Schedules extension) Schedule Import Manager view

to Discover schedules as candidates for inclusion in the station as Niagara schedules.
2. Select and Add from those candidates, creating imported schedules under the device’s Schedules

container.
Note: The Schedule Import Manager reinforces this process by providing two separate panes in the view whenever

you enter “Learn Mode.” See “About Learn toggle” on page 1-18.

Discover
When you click Discover, the Schedule Import Manager splits into two panes (Learn Mode): discovered
items in top pane, and existing imported schedules in bottom pane (Figure 1-67).
A schedule discovery job (either Niagara or Bacnet) is started, with a progress bar at top.
• If Niagara schedules are found in the remote station, they are listed in the discovered pane.
• If BACnet Schedule and/or Calendar objects are found, they are listed in the discovered pane.

Note: A Cancel button is available during a discovery job. If needed, use it to stop discovery.
NiagaraAX-3.7-3.8

Drivers Guide
1–52

Chapter 1 – Driver architecture Schedule Export Manager
November 5, 2013 About Schedule Import Discover, Add and Match (Learn Process)
Figure 1-67 Discover splits Schedules Import Manager

In Learn Mode, the two panes in the Schedule Import Manager operate as follows:
• Discovered (top pane)

Lists schedule components (Niagara) or Schedule and/or Calendar objects (Bacnet) found in the de-
vice, as candidates for imported schedules. Any item that already exists as a schedule in the station
is “ghosted” (faintly listed).

• Database (bottom pane)
Lists schedules currently imported in the station database (contained in Schedules container).

Note: As necessary, drag the border between the two panes to resize. Also (at any time), toggle between the two-
pane Learn Mode and the single-pane (Database) view by clicking the Learn Mode tool in the toolbar
(Figure 1-24 on page 18), or using the Learn Mode command in the Manager menu.

Add
The Add button is available in Learn Mode when you have one or more items selected (highlighted) in
the top discovered pane. When you click Add, a dialog allows you to edit properties before the schedule
is created in the station. The Add dialog and Edit dialog are identical.

Note: Whenever you select one or more items in the top discovered pane, the toolbar also has an available Add
tool (“plus” symbol), and the Manager menu has an Add command. Also, you can simply double-click a
discovered item to bring it up in the Add dialog.
For details on properties, see “Schedule Import properties” on page 1-51.

Match
Match, as an online function, is available if you have one schedule selected in the top (discovered) pane
and one schedule selected in the bottom (database) pane. However, usage of Match when importing
schedules from a device (NiagaraStation, BacnetDevice) is generally not recommended. Instead, use the
Discover and Add method to import schedules.

Schedule Export Manager
The Schedules extension of a NiagaraStation, ObixClient/R2ObixClient, or BacnetDevice has an
available Export Manager view. It allows management of schedule components in the local station made
available to that remote device.
Like other managers, the Schedule Export Manager is a table-based view (Figure 1-68). Each row repre-
sents a schedule export descriptor. Each descriptor specifies how/when configuration for a local schedule
is “pushed” to either:
• An imported schedule component in the designated NiagaraStation.
• An existing BACnet Schedule object or Calendar object in the designated BacnetDevice, or existing

schedule in the designated oBIX server.
NiagaraAX-3.7-3.8

Drivers Guide
1–53

Schedule Export Manager Chapter 1 – Driver architecture
About Schedule Import Discover, Add and Match (Learn Process) November 5, 2013
Figure 1-68 Schedule Export Manager under a NiagaraStation

Note: A Schedule Export Manager works differently in NiagaraNetworks and BacnetNetworks/ObixNetworks.
• For NiagaraStation, you do not create export descriptors using this view—there is no “Learn Mode,”

Discover, Add, or New. Instead, each schedule export descriptor is automatically created upon the
remote Niagara station “importing” a local schedule component. For more details, see “Station
Schedules import/export notes” on page 2-28.

• For a BacnetDevice or ObixClient, you do use Learn Mode to discover BACnet Schedule/Calendar
objects or oBIX schedules in the device. Then, you select and add any as schedule export descrip-
tor(s). In each export descriptor, you must specify the station’s local schedule component that “ex-
ports” (writes) its event configuration to that remote schedule object. For more details, see the
NiagaraAX BACnet Guide or NiagaraAX oBIX Guide.

After configuration, this view provides a status summary for exporting local schedules. You can also use
it to issue manual “Export” commands to one or more schedules. This causes an export “push” of
schedule configuration into the remote device.

Note: Only schedule export descriptors appear in the Schedule Export Manager view—any other components
that may also reside under Schedules do not appear. For example, you do not see imported schedules or the
default “Retry Trigger” component (see “About the Retry Trigger” on page 1-34). However, the Nav tree and
other views on Schedules provide you access to these items.
NiagaraAX-3.7-3.8

Drivers Guide
1–54

2CHAPTER

Niagara Network

About the Niagara Network
Currently, by default every NiagaraAX station has a Niagara Network under its Drivers container. The
Niagara Network is where data is modeled that originates from other stations. Generally, this is done
using the same driver architecture used by other (non-Niagara) drivers. See “About Network archi-
tecture” on page 1-2.
A Niagara Network has the following unique differences:
• All proxy points under a NiagaraStation are “read only” types, namely one of the following:

• BooleanPoint
• EnumPoint
• NumericPoint
• StringPoint
However, note that a Niagara proxy point inherits any actions from the originating (remote) point
or object. For more details, see “Niagara proxy point notes” on page 2-24.

• Connections between stations occur as client and server sessions using the Fox protocol. The re-
questing station is the client, and target (responding) station is the server. A Workbench connection
to a station operates identically, where Workbench is the client, and station is server. Client authen-
tication (performed by the server) is required in all Fox connections.

Note: Starting in AX-3.7, the Fox protocol can run over an SSL encrypted connection following certificate-based
server authentication. This secure Fox SSL (or Foxs) is noted and mentioned in various subsections of this
document update. For complete details, refer to the NiagaraAX SSL Connectivity Guide.
For more details specific to a Niagara Network, see the following main sections:
• NiagaraNetwork component notes
• Niagara Station Manager notes
• NiagaraStation component notes
• About the Users extension
• Niagara Point Manager notes
• Niagara proxy point notes
• NiagaraStation Alarms notes
• Station Schedules import/export notes
• About Niagara virtual components

NiagaraNetwork component notes
In addition to common network components (see “Common network components” on page 1-5), the
Niagara Network contains components specific to Niagara, namely:
• Local Station

A container of read-only “Sys Def” properties that reflect what information would be “sync’ed up” to
a remote Supervisor station (if the local station was defined as a subordinate). Sys Def is potentially
of use to developers. For details, “About Sys Def components” on page 2-51.

• Sys Def Provider
A container for “Sys Def” child components, of type “ProviderStations”, which are typically hidden
slots (by default). The API interacts with this component to query about the “Sys Def” hierarchy, and
persists this definition. Sys Def is chiefly of interest to NiagaraAX developers working with the API.
For details, “About Sys Def components” on page 2-51.
NiagaraAX-3.7-3.8

Drivers Guide
2–1

NiagaraNetwork component notes Chapter 2 – Niagara Network
Niagara Tuning Policy notes November 5, 2013
• Fox Service
A container for Fox protocol settings affecting client connections made to the local station, such as
from Workbench or from another station. Such connections appear locally as “server connections.”
For details, see “About the Fox Service” on page 2-2.

• History Policies
A container for “rules” that specify how remotely-generated histories should be changed when these
histories are pushed into the station (that is, exported from remote stations). Also contains a poll
scheduler for “on demand” polling of histories. For details, see “About History Policies” on page 2-7.

• Workers
A container with a configurable property “Max Threads”. This property allows tuning for large Nia-
gara networks (many NiagaraStation components), and is the only visible part of a “shared thread
pool scheme” for large-job scalablilty. In current releases, station work from a single station was lim-
ited to one thread, and the former default value of 50 was changed to a “max” value. This allows the
local station’s thread pool to grow uncapped while alleviating a former thread starving issue.
Very large Supervisors with many stations may benefit from Niagara thread pool adjustments made
via entries in the host’s system.properties file. Consult your support channel for details.

In addition, tuning policies are simplified in a Niagara Network, as compared to “polling type” drivers.
See the next “Niagara Tuning Policy notes” for more information.

Niagara Tuning Policy notes
Note that Tuning Policies for a NiagaraNetwork have only 3 properties, as follows:
• Stale Time

• If set to a non-zero value, a subscribed Niagara proxy point becomes “stale” (status stale) if the
configured Max Update Time expires without an update from the server (source station). This
stale timer is reset upon each subscription update.

• If set to zero (default), the stale timer is disabled, and a subscribed point becomes stale only
while the source (server) point is also stale.

Note: Whenever a source point of a Niagara proxy point has a stale status, for example a Bacnet
proxy point, the Niagara proxy point for it will also have a stale status, regardless of this setting.
Stale time is “client side,” whereas the other two “update time” properties affect “server side” opera-
tion of the subscription. For example, when a client (Supervisor) station creates subscriptions to a
server station (JACE with a field bus), say to update Niagara proxy point values on a Px page, sub-
scriptions are set up with the server to observe rules in the Min and Max Update Time values.

• Min Update Time
The minimum amount of time between updates sent from the server to the client. It is used to throt-
tle data changing at a rate faster than minUpdateTime. Default value is 1 second.

• Max Update Time
Used by the server to resend the values to the client for subscribed points, if values have not been
sent for other reasons (such as a change of value or status). Default value is 15 minutes.

Note: Relative to tuning policies in other networks, the importance of NiagaraNetwork tuning policies are
typically secondary, and then only applicable for a station that has proxy points under its Niagar-
aNetwork. In typical applications, this means the Supervisor station only.
As a general rule, if configuring the Stale Time in a Niagara Tuning Policy, it is recommended to be greater
than the Max Update Time by a factor of three.

About the Fox Service
The NiagaraNetwork’s Fox Service holds configuration for the local station’s Fox settings. (This varies
from most other services, which are found instead under the station’s ServiceContainer.)

Figure 2-1 FoxService in property sheet of NiagaraNetwork
NiagaraAX-3.7-3.8

Drivers Guide
2–2

Chapter 2 – Niagara Network NiagaraNetwork component notes
November 5, 2013 About the Fox Service
Included are properties for the TCP port number assigned to the Fox server, authentication method used,
and various timeout/trace settings. If the host platform is configured for SSL (recommended if AX-3.7 or
later), often you change a few related properties from defaults. See Fox Service properties for more
details.
Authentication is required when establishing any Fox connection to/from the station:
• If opening a station in Workbench, you must enter a valid station username and password for it in

the station login dialog (otherwise it does not open).
• If accessing a station in a browser as a user, where you also must enter valid user credentials (log in).
• If adding a NiagaraStation to a station’s NiagaraNetwork, you must configure username and pass-

word properties under its Client Connection slot (otherwise it remains “down”). Often, you enter the
username and password of a specific “service-type” user account in that station. You also specify the
software port used by that station’s Fox server.
Note: Often in a multi-station job, in each station you create a user specifically for station-to-station
communications, typically with “admin write” privileges. This is the “service-type” account that you
reference when you edit a NiagaraStation’s Client Connection properties, entering its username and
password. For related details, refer to the section “Multi-station security notes” in the User Guide.

The Fox Service also has a Server Connections container slot with a default ServerConnectionsSummary
view. Client connections to the station’s Fox server are dynamically modeled as “SessionN” child compo-
nents. The summary view allows you to see all current connections, and if necessary, perform a right-
click Force Disconnect action on one or more connected users.

Fox Service properties
Figure 2-2 shows the Fox Service expanded in the NiagaraNetwork property sheet of an AX-3.7u1 or later
station.

Figure 2-2 Fox Service properties in property sheet of an AX-3.7 NiagaraNetwork

Fox Service properties are described as follows:
• Port

Specifies the TCP port used by Fox server (default is 1911).
• Fox Enabled

Default (before AX-3.8) is true. Must be true for Fox communications to occur on the port above.
Note: If station communications are needed between any other NiagaraAX host that is not
configured or capable of AX-3.7 or later SSL (such as any JACE-2), set this at true. Note that in AX-
3.8, a “new station” using defaults has this property set to false. See “FoxService defaults (new
station) changed in AX-3.8” on page 2-6.
NiagaraAX-3.7-3.8

Drivers Guide
2–3

NiagaraNetwork component notes Chapter 2 – Niagara Network
About the Fox Service November 5, 2013
• Foxs Port
Specifies the TCP port used by Foxs (secure socket-layer) server, where default is 4911.
Note: This and other Foxs properties below apply only if the station’s host is configured and licensed
for SSL/TLS, including installed certificate(s).

• Foxs Enabled
Default (before AX-3.8) is false. Must be true for Foxs communications to occur on the port above.
Note: In AX-3.8, a “new station” using defaults has this property set to true. See “FoxService
defaults (new station) changed in AX-3.8” on page 2-6.

• Foxs Only
Default (before AX-3.8) is false. If true, and Fox Enabled and Foxs Enabled are both true, Fox connec-
tion attempts are redirected as Foxs connections. Such a configuration is different from setting Fox En-
abled false and Foxs true. In that case, only Foxs connection attempts work; Fox connection attempts
are ignored.
Note: If station communications are needed between any other NiagaraAX host that is not
configured or capable of AX-3.7 or later SSL (such as a JACE-2), set this at false. Note in AX-3.8, a
“new station” using defaults has this property set to true. See “FoxService defaults (new station)
changed in AX-3.8” on page 2-6.

• Foxs Min Protocol
Specifies which standard protocol the Foxs server supports for client connections, where the default
is SSLv3+TLSv1 (both, the default). Other choices are SSLv3 (only) or TLSv1 (only).

• Foxs Certificate
The “alias” for the server certificate in the host platform’s “key store” to use for any Foxs connection.
The default is the “tridium” self-signed certificate, which is automatically created when SSL is first
loaded (by presence of certain modules and proper host licensing). If other certificates are in the host
platform’s key store, you can use the drop-down control to select another one instead.

• Authentication Policy
These policy options apply to how password authentication is handled by the default NiagaraAX
User Service or any other service when establishing a client connection using the Fox protocol.
Property choices (when using AX-3.7u1) are as follows:
• Digest

This option uses password hashing. This is the recommended setting when using the default
User Service.

• Basic
This option does not use encryption, therefor the user password is passed in clear text. Typical-
ly, Basic is used only if using LDAP.

Note: Prior to AX-3.7u1 (in AX-3.7), the “Digest” choice was “Digest MD5”, which equates to “legacy
encryption”. This was strengthened to SCRAM-SHA (Salted Challenge Response Authentication
Mechanism) in AX-3.7u1 and later. Any station upgraded from AX-3.7 will automatically upgrade
from “Digest MD5” to “Digest”. This also relates to a new FoxService property, “Legacy Authenti-
cation”, described below.
Additionally, a third “Transactional” choice for Authentication Policy (available in prior AX-3.7) is
no longer available, as products that were designed to use it were discontinued.

• Legacy Authentication
(AX-3.7u1 or later only) Applies to password authentication when establishing a connection with a
remote Fox client (either another station or Workbench). Choices are as follows:
• Strict

(Recommended, and default) Remote client must be able to handle passwords using SCRAM-
SHA, requiring it to be running AX-3.7u1 or later. Clients running earlier “pre-2013” Niagar-
aAX releases are considered “legacy clients”, and will be unable to connect.

• Relaxed Until (date)
Allows a legacy client to connect to this station using Basic authentication, but only until the
specified date. After that date, this setting behaves the same as if set to Strict.

• Always Relaxed
Always allows a legacy client to connect to this station using Basic authentication. Be especially
careful if setting to this value—see the Note and Caution below!

Note: Both “Relaxed” choices are intended for temporary usage only during a system upgrade to one
of the “security update” releases. For example, after upgrading a Supervisor, you could set its Legacy
Authentication to relaxed only until all its subordinate JACEs have also been upgraded. This would
allow those stations to continue to communicate to the Supervisor until upgraded. Strict is the most
secure option. After a system-wide upgrade, set this to Strict in the FoxService of all stations!
NiagaraAX-3.7-3.8

Drivers Guide
2–4

Chapter 2 – Niagara Network NiagaraNetwork component notes
November 5, 2013 About the Fox Service
For related details, refer to “Upgrade considerations” in NiagaraAX 2013 Security Updates.

Caution Unless set to “Strict”, either “Relaxed” option is effectively the same as setting the FoxService property
Authentication Policy to “Basic” for any legacy connection attempt, as this is the only “common ground”
authentication between a legacy Fox client (Workbench or another station) and this update release station.
Thus, passwords for client connections to this station are passed in clear text (if a legacy client). Obviously,
this is not a desired operating state. For this reason, you should seldom (if ever) set the Legacy Authentication
property to “Always Relaxed”.

• Request Timeout
Time to wait for a response before assuming a connection is dead (default is 1minute).

• Socket Option Timeout
Time to wait on a socket read before assuming the connection is dead (default is 1minute).

• Socket Tcp No Delay
Used to disable “Nagle’s algorithm”, found to cause issues with delayed acknowledgements that oc-
curred in TCP socket communications between Fox clients and servers. The default (and typically
recommended) value is true, disabling Nagle’s algorithm.
Note: On the Workbench side, there is a line in the system.properties file you can enter to
adjust this setting: “niagara.fox.tcpNoDelay=true”.

• Keep Alive Interval
Interval between keep alive messages (default is 5 seconds). The keep alive should be well below the
request timeout and socket option timeout.

• Max Server Sessions
Maximum number of Fox/Foxs server connections before client connections error with busy. De-
fault is 100.

• Multicast Enabled
Default is true. Allows UDP multicasting initiated by the station, necessary for a discovery from this
station. Note this is different than Workbench UDP mulitcast support, which can be optionally dis-
abled via an entry in the Workbench host’s system.properties file.

• Enable Announcement
Either true (default) or false. Enables support of UDP multicast announcement messages received by
the station, in support of learn/discover.

• Multicast Time To Live
Number of hops to make before a multicast message expires (default is 4).

• Server Connections
Provides status information about current Workbench client connections to the local station (does
not reflect station-to-station Fox connections).

• Trace Session States
Either true or false (default). Debug usage for tracing session state changes.

• Trace Read Frame
Either true or false (default). Debug usage for dumping frames being read from the wire.

• Trace Write Frame
Either true or false (default). Debug usage for dumping frames being written to the wire.

• Trace Multicast
Either true or false (default). Debug usage for tracing multicast messaging.

• Tunneling Enabled
If enabled, allows the station to perform as a Fox “tunnel” (i.e. proxy server) through which Work-
bench sessions can be established to other Niagara hosts, typically unreachable otherwise. A special
tunnel ORD syntax is used from the client Workbench to reach target stations through the Fox tun-
nel. Usage requires the proxy server (typically the Supervisor host) to be licensed for Fox tunneling.
For more details, see “About Fox Tunneling” in the engineering notes document Fox Tunneling and
HTTP Tunneling. Note this property does not affect platform tunneling, introduced in AX-3.5.

• Only Tunnel Known Stations
An added security option that affects Fox tunneling, HTTP tunneling, and platform tunneling. Ap-
plies only if the station is configured as a tunnel (proxy server).
• If left at the default (false) value, a tunnel connection is permitted to any target IP address given

in the tunnel ORD, or in the case of platform tunneling, to any “Tunnel to” IP address entered
in the Workbench “Open Platform” dialog.

• If set to true, Fox, HTTP, and platform tunneling is permitted only to a station that exists in the
proxy server’s NiagaraNetwork, where tunnel ORD (Fox) or URL (HTTP) syntax uses the target
station’s name instead of IP address. For platform tunneling, the target “Tunnel to” in the
NiagaraAX-3.7-3.8

Drivers Guide
2–5

NiagaraNetwork component notes Chapter 2 – Niagara Network
About the Fox Service November 5, 2013
Workbench “Open Platform” dialog also requires the station name.
For example, going through 10.10.8.9 to reach target station “demoStation” at 10.10.5.4
– instead of (Fox) tunnel at ip:10.10.8.9|fox:/10.10.5.4
– now (Fox) tunnel at ip:10.10.8.9|fox:/demoStation
or
– instead of (HTTP) tunnel at http://10.10.8.9/tunnel/10.10.5.4
– now (HTTP) tunnel at http://10.10.8.9/tunnel/demoStation
or
– instead of platform tunnel at “Host” = 10.10.8.9, “Tunnel to” = 10.10.5.4
– now platform tunnel at “Host” = 10.10.8.9, “Tunnel to” = demoStation

Again, note that if this property is set to true, that the target NiagaraStation name must be used in
the Fox tunnel ORD, HTTP URL, or Workbench “Open Platform” dialog—and not IP address.

FoxService defaults (new station) changed in AX-3.8
To encourage stronger security, any new station made using defaults from the New Station wizard in
AX-3.8 Workbench is created with both its FoxService and WebService configured for “SSL only”,
or more accurately, with selected properties set as shown in Figure 2-3.

Figure 2-3 FoxService and WebService “New station” defaults in AX-3.8

As shown above when using the New Station Wizard, if needed you can change the default “Foxs
Port” and “Https Port” values from defaults (4911 and 443, respectively). Or, you can simply clear the
default “Use secure connections” checkbox.
If you do the latter, the dialog changes to let you specify the (non-SSL) “Fox Port” and “Http Port” from
defaults if needed (1911 and 80, respectively). Then the new station created has all Boolean properties
above (circled in Figure 2-3) reversed for “non-SSL” usage: Fox Enabled=true, Foxs Enabled=false, and
Foxs Only=false; in the WebService: Http Enabled=true, Https Enabled=false, Https Only=false.
Essentially, this is how the New Station wizard works in AX-3.7u1 and prior releases.
In some cases, such as when making a station for a JACE-2/4/5 series controller, which does not support
Fox SSL or Foxs (even if AX-3.7 or later), it makes sense to clear the “Use secure connections” option in
the New Station wizard. Alternatively, you can simply edit the properties shown in Figure 2-3 as
needed after the station is created, with its config.bog file opened in Workbench (offline).
For related details, see the sections “New Station wizard” and “WebService” in the NiagaraAX User
Guide. For more details on SSL in NiagaraAX, refer to the NiagaraAX SSL Connectivity Guide.
NiagaraAX-3.7-3.8

Drivers Guide
2–6

Chapter 2 – Niagara Network NiagaraNetwork component notes
November 5, 2013 About History Policies
About History Policies
The NiagaraNetwork’s “History Policies” (History Network Ext) holds an “On Demand Poll
Scheduler” that affects imported histories, if set up for “on demand polling”. See “Default history policies”.
History Policies also functions as the container for “Config Rules” that are used when remote histories
are “exported” into the local station. Unlike imported histories, which let you define (and adjust later, if
needed) the “capacity” and “full policy” settings in each HistoryImport descriptor, histories that are
exported into the station have no associated component—only the history itself. The capacity and “full
policy” for each history is set only at creation time, using the local history policies.

Note: You export histories into the station working under a remote station—meaning, from a view of the Histories
device extension under the NiagaraStation that represents this (local) station. See “Niagara History Export
Manager” on page 2-33.
For an example scenario showing histories in two JACE stations that are exported to a Supervisor station,
and how history policies apply, see Figure 2-4 on page 8.
Additional details are in the following sections:
• Default history policies (including “On Demand Poll Scheduler”)
• Config Rules (for histories exported into the local station)
• Example config rules

Default history policies
The following items are under a NiagaraNetwork’s History Policies:
• On Demand Poll Scheduler

Contains a set of standard poll component parameters which are listed and described in the section
“Poll Service properties” on page 1-11. These parameters affect the operation of the “On Demand”
polling for histories so enabled. For related details, see “On demand properties in history import de-
scriptors” on page 2-32, and the NiagaraAX User Guide section “About On Demand history views”.

• Default Rule
This property has parameters—with wildcard matches to “all” stations and history names, specifying
“unlimited” capacity and a “roll” fullPolicy. This means that any history that is exported into the sta-
tion (from any remote station) is archived using a local history configured with unlimited capacity.
Given the vast storage capacity of a supervisor host PC, the default “one rule” setting may be accept-
able on the target of most exported histories (supervisor station). However, if for some reason you
are exporting histories to a JACE station, you should definitely change the “Default Rule” of the His-
tory Policies under its NiagaraNetwork to specify smaller capacities. Even for a supervisor station,
you may wish to change the default rule, and/or add additional optional config rules, as needed.

Config Rules
 When a history is exported to the station (from another station), these rules are evaluated to set the local
(archived) history’s config properties “capacity” and “fullPolicy.” The first matching rule is used. The
“Default Rule” is always at top, and cannot be deleted or renamed.

Note: Rule priority is set by order—as the “Default Rule” is always first, it is highest priority. If you create other
rules (in Workbench, right-click a rule, then click “Duplicate”), you can edit, rename, and reorder as
needed.
Each config rule under the network’s History Policies has the following configuration properties:
• Device Pattern

String matching to device names, meaning name of NiagaraStation(s) that are exporting histories.
Default value is a wildcard (“*”), meaning all station names are matched.

• History Name Pattern
String matching to history names of histories being exported. Again, default value is a wildcard (“*”),
meaning all named histories are matched.
Note: Both device pattern and history name pattern must apply for the rule to be used—otherwise
the next rule down (in order) in History Policies is evaluated.

• capacity
The capacity setting to use when creating the local history, if matched by device and history names.
Either “unlimited,” or “Record Count,” with a finite record specified.

• fullPolicy
Applies if capacity is not “unlimited,” and specifies if collection continues when the capacity record
limit is reached (“roll”) or collection stops (“stop”).
NiagaraAX-3.7-3.8

Drivers Guide
2–7

NiagaraNetwork component notes Chapter 2 – Niagara Network
About History Policies November 5, 2013
Figure 2-4 History Policies in a supervisor station

As shown in Figure 2-4, the Supervisor’s History Policies “Config Rules” determine the capacity and
fullPolicy settings for each history upon export from the JACE stations “WestWing403” and
“EastWing403”. Rules are matched to remote station (device) names and history names, which determine
the corresponding capacity and full policy values to apply upon history creation. If a history does not
match any rule, it is created using the same capacity and full policy as in the source history. For an
example related to this scenario, see “Example config rules”.

Example config rules
As shown in the three-station scenario of Figure 2-4, histories in two JACE stations are exported to the
“Supervisor” station. As shown in Figure 2-5, the receiving supervisor station has 2 additional config
rules under its History Policies of its NiagaraNetwork.
NiagaraAX-3.7-3.8

Drivers Guide
2–8

Chapter 2 – Niagara Network Niagara Station Manager notes
November 5, 2013 About History Policies
Figure 2-5 Example history policies config rules (supervisor station)

In this example, the highest-priority “Default Rule” matches all (any) stations exporting, with a history
name pattern of “Audit*”—this matches any “AuditHistoryLog”. Capacity is set to unlimited, as all
history records are wanted for archive.
The next two rules are applied to histories exported (by any stations), as follows:
• MetersRule — This rule applies to any station, for any history named beginning with “Meter”

(“Meter*”). Any such history is archived using unlimited capacity, as all records are wanted.
• EastWins — This rule applies only to stations named beginning with “East” (“East*”), for any histo-

ry. Such a history is archived using a capacity of 100,000 and a “roll” full policy.
Following this example (with exported histories in the JACE stations, as shown in Figure 2-4), the
histories are created in station “Supervisor” as follows:
• WestWing403

Histories are exported using following capacity and fullPolicy (from config rule):
• AuditHistoryLog: unlimited, roll (from Default Rule)
• LogHistory: 500 records, roll (no rule matched, using source history config, as in JACE)
• Meter1: unlimited, roll (from “MetersRule”)
• ZoneTemp1: 500 records, roll (no rule matched, using source history config, as in JACE)
• Meter2: unlimited, roll (from “Meters Rule”)
• ZoneTemp2: 500 records, roll (no rule matched, using source history config, as in JACE)

• EastWing403
Histories are exported using following capacity and fullPolicy (from config rule):
• AuditHistoryLog: unlimited, roll (from “Default Rule”)
• LogHistory: 100,000 records, roll (from “EastWins” rule)
• Meter4: unlimited, roll (from MetersRule)
• ZoneTemp1: 100,000 records, roll (from “EastWins” rule)
• Meter3: unlimited, roll (from Meters Rule)
• ZoneTemp2: 100,000 records, roll (from “EastWins” rule)

Again, note that the rules are processed in priority order. In this example, if the two optional rules were
reordered (“EastWins” above “MeterRule”) before the JACE histories were exported, results would differ.
“Meter” histories from EastWing403 would have a 100,000 record capacity instead.

Niagara Station Manager notes
The Station Manager is the default view for the Niagara Network. It operates like the Device Manager for
most drivers that have online “device discovery” capability. For general information, see “About the
Device Manager” on page 1-14.
When using the Station Manager, the following notes apply:
• Station Learn and Discover notes
• Station Add notes
NiagaraAX-3.7-3.8

Drivers Guide
2–9

Niagara Station Manager notes Chapter 2 – Niagara Network
Station Learn and Discover notes November 5, 2013
Station Learn and Discover notes
The following sections describe things specific about learn and discover in the NiagaraNetwork:
• Discover (Fox) uses UDP multicasting
• SSL ports (AX-3.7 and later)
• IP address versus hostname

Discover (Fox) uses UDP multicasting
When performing a NiagaraNetwork discover from a Supervisor or an engineering workstation PC, your
Windows firewall needs exceptions for UDP port(s) as well as TCP port(s), as UDP multicasting is used
by Fox in discovery. Otherwise (with only a TCP port opened), your discovery may come up empty.
Therefore, if using only the “standard” port (1911) for station (Fox) communications, your firewall needs
two exceptions:
• TCP port 1911
• UDP port 1911 (needed for a Discover from your NiagaraNetwork)
If a Supervisor host using the “standard” port for platform connections (3011), you might also add an
exception for this port too (TCP port 3011)—or for whatever TCP port is used by the platform daemon.
Note that UDP multicasting is not used in platform communications.
If using “non-standard” ports for station (Fox) connections, note similar firewall exceptions may be
needed for those TCP and UDP ports.
SSL ports (AX-3.7 and later) Starting in AX-3.7, secure socket layer (SSL or TLS) connections are
supported for Niagara station (Fox) connections, as well as for Niagara platform connections and web
browser (HTTP) connections to stations—providing Niagara hosts are properly licensed and configured.
Note in this case a station’s Fox service can be configured to allow both regular (unsecured) Fox commu-
nications as well as secured (Foxs) communications, or only secured (Foxs) communications.
Different ports are used by Foxs than by Fox. By default, Foxs uses TCP port 4911 (where multicasting
uses UDP port 4911). This is mentioned because firewall adjustments may be needed to support Niagara
station discovery in AX-3.7 and later, depending on job configuration.
For related details, see “About the Fox Service” on page 2-2 and “Discovery notes when stations use secure
Fox (Foxs)” on page 2-10. For complete details on SSL in Niagara, refer to the NiagaraAX SSL Connec-
tivity Guide.

Discovery notes when stations use secure Fox (Foxs)
Starting in AX-3.7, when performing a NiagaraNetwork discover and one or more remote stations are
configured with Foxs (secure Fox), the network’s Station Manager view recognizes this (Figure 2-6).

Figure 2-6 Station discovery recognizes Foxs (secure Fox) connections

As shown above, such discovered stations show a icon by Station Name and show “foxs” for Scheme.
Note that it is possible for a station to be listed twice—once with this “foxs” scheme and another with the
regular “fox” scheme (and icon without padlock). However, typically you choose to add the “foxs” one.

When you double-click such a station for the Add dialog (or click to select, then click the Add button)
the Add dialog will show the port used by that station for Foxs, for example 4911 (Figure 2-7).
NiagaraAX-3.7-3.8

Drivers Guide
2–10

Chapter 2 – Niagara Network Niagara Station Manager notes
November 5, 2013 Station Learn and Discover notes
Figure 2-7 Add dialog for NiagaraStation using Foxs (secure Fox)

In addition, the “Use Foxs” property is true by default. After entering the station username and password
(used for client connection to it), and clicking OK, the station is added to the database pane in the
Station Manager view. The status of the NiagaraStation is ok, providing a “trusted root” or “allowed
host exception” is in the local station’s platform (for validation of that host’s server certificate).

Figure 2-8 NiagaraStation added for station using Foxs (secure Fox)

Again, such a station shows a icon in the database pane. Note that some jobs may include a mix of
JACE types, some of which can support AX-3.7 or later SSL (JACE-6 series, JACE-7 series, any Win32-
based JACE models), while other JACE types do not (JACE-2 series, or JACE-4 series, JACE-5 series).
Stations running on the latter types lack the ability for a Foxs connection.

Note: When configuring any AX-3.7 or later station using SSL (for example a Supervisor station) that requires
station communications between a JACE that is not configured for (or does not support) 3.7/3.8 SSL, you
must set its FoxService property “Foxs Only” at a false value. Otherwise, the remote JACE will be unable
to make a client connection back to the station. For related details, see “Fox Service properties” on page 2-3.
For more details on adding a discovered NiagaraStation, see “Station Add notes” on page 2-12.

IP address versus hostname
By default, a station discover uses IP address (vs. host name). Typically, this is the recommended method.
However, if Niagara hosts are installed on a network using DNS, you can toggle the discovery method to
use host name instead. Do this in the table options menu (click upper right small control) of the Station
Manager, as shown in Figure 2-9. You can also select other columns for display, and sort on any column.
See “Manager table features” on page 1-21 for more details.
NiagaraAX-3.7-3.8

Drivers Guide
2–11

Niagara Station Manager notes Chapter 2 – Niagara Network
Station Add notes November 5, 2013
Figure 2-9 Station Manager table options menu

Depending on the chosen discovery method, discovered stations appear listed with either an IP address
or a DNS name in the Address column. By default, discovered stations list showing an IP address. If a
station uses a Fox port other than 1911 (default), address includes the port number appended, for
example: 192.168.1.112.1912.

Station Add notes
When you add a NiagaraStation to the database, the Add dialog includes its Fox port, along with fields
for station username and password (required for client connection) as shown in Figure 2-10.

Note: After you add a station, in the Station Manager’s database pane just double-click it to bring up the Edit
dialog, which provides access to the same properties in the Add dialog. If needed, you can access all
(station) client connection properties from the NiagaraStation component’s property sheet (“Client
Connection” slot, along with status properties).

Figure 2-10 Add dialog for NiagaraStation

Note: Starting in AX-3.7, a “Use Foxs” property is present when adding a NiagaraStation, by default set to false—
say if manually adding (Add button). In this case, set this to true only if the remote host is properly
configured for SSL, including the FoxService of the NiagaraNetwork on its station (you must know the port
it uses). If using the Discover feature in the Station Manager, any discovered stations using Foxs
appears differently, and addition is simplifed. See “Discovery notes when stations use secure Fox (Foxs)” on
page 2-10. For complete SSL details, refer to the NiagaraAX SSL Connectivity Guide.
Typically, you enter a user name and password for a specific “service account” user previously made in
the remote station. By recommendation, this should be a user that was created especially for station-to-
station access, typically with admin write privileges, and not otherwise used for normal (login) access of
that station. Additionally, this user should uniquely named for each project, and have a strong password.
Refer to the section “Multi-station security notes” in the User Guide for related details.
• The “Virtuals Enabled” property determines whether virtual components can be accessed in this sta-

tion, by any user with permissions on its “Niagara Virtual Gateway”. For related details, see “About
Niagara virtual components” on page 2-38 and “Security and Niagara virtuals” on page 2-45.

• When working in a Supervisor station configured for Niagara provisioning, additional “platform”
NiagaraAX-3.7-3.8

Drivers Guide
2–12

Chapter 2 – Niagara Network Niagara Station Manager notes
November 5, 2013 Station Add notes
properties are in the Add (or Edit) dialog, to specify the platform daemon credentials and port the
provisioning code should use to connect to the remote JACE platform, to run provisioning jobs.
Figure 2-11 shows these properties near the bottom of the Add dialog.

Figure 2-11 NiagaraStation Add dialog in Supervisor station’s NiagaraNetwork (provisioning-configured)

Briefly, these “platform related” properties in the Add/Edit dialog are described as follows:
• Platform User — User account for the station’s platform, the same used as when making a plat-

form connection to it using Workbench.
• Platform Password — Password for this user account.
• Secure Platform — (new starting in AX-3.7) A Boolean that is false by default. Set to true only

if the JACE is currently configured to support a secure (SSL) platform connection.
• Platform Port — Port this JACE’s platform daemon monitors for a platform connection, with

the default value of 3011 (“standard” port for a “regular”, or unsecure platform connection). If
using a non-standard platform port, or a secure (SSL) platform connection, you edit this to
match that port number. Note the “standard” port for platform SSL is 5011, but this may be
configured differently in the JACE.

For more details, refer to the document NiagaraAX Provisioning Guide for Niagara Networks.
Note: Adding a NiagaraStation automatically creates a reciprocal NiagaraStation in the remote station. See the

section “Reciprocal NiagaraStation component”.

Reciprocal NiagaraStation component
When you add a station under the Niagara Network, that remote station automatically adds a “recip-
rocal” NiagaraStation component under its own Niagara Network, representing the original station.
However, its “Enabled” property is false, with a “disabled” status (looks grayed out as in Figure 2-12).

Figure 2-12 Example reciprocal NiagaraStation (representing Supervisor) created in JACE station

This provides a visual clue for you to edit its Client Connection properties Username and
Password to valid credentials for an appropriate user in the reciprocal station, and also to set the Enabled
property of the NiagaraStation from false to true (to allow operation).

Note: As shown in Figure 2-12, sometimes a reciprocal NiagaraStation may get added using “hostname” for
Address, rather than its preferred IP address. It is recommended that you edit the NiagaraStation’s Address
back to IP format, from the NiagaraStation’s property sheet. Otherwise, the station may remain “down”
after you enable it.
NiagaraAX-3.7-3.8

Drivers Guide
2–13

NiagaraStation component notes Chapter 2 – Niagara Network
About station status properties November 5, 2013
NiagaraStation component notes
This section explains items unique to NiagaraStation components versus other device components. Note
that NiagaraStations each contain the standard set of device extensions (see “Types of device extensions”
on page 1-26).
• About station status properties
• About client connection properties
• About server connection properties
• About station “provisioning” extensions

Note: The following additional NiagaraStation items are found in later NiagaraAX releases
• NiagaraStations also have a “Users” device extension. See “About the Users extension” on page 2-

15.
• NiagaraStations also have a “Virtuals” (gateway) slot, and an associated “Virtuals Enabled” prop-

erty. See “About Niagara virtual components” for an overview, as well as sections “About the Niagara
Virtual Device Ext” on page 2-40 and “Security and Niagara virtuals” on page 2-45.

About station status properties
Station status properties are typical of most device status properties. See “Device status properties” on
page 1-22. If a NiagaraStation has a down status, typically the “Health” container’s “Last Fail Cause”
property value provides a clue why.

About client connection properties
Note: In 2013 “update” releases of NiagaraAX (including AX-3.7u1), the password of a NiagaraStation’s Client

Connection is encrypted in a “non-portable” manner, as any other stored client passwords (for example,
password in the OutgoingAccount under the EmailService). This means that you cannot simply save the
station database (config.bog), and use it on another host with these client passwords still functional.
However, note this does not apply to a AX-3.8 station, where client passwords in a copied station
(config.bog file) are portable. For details, refer to the NiagaraAX 2013 Security Updates document.
Client connection properties specifiy the Fox port used for station and Workbench connections, as well
as the user name and password used for station-to-station connections.

Figure 2-13 Client connection container expanded in NiagaraStation property sheet

Figure 2-13 shows the Client Connection container expanded in a NiagaraStation’s property sheet. Many
properties are status types, that contain either real-time or historical information.

Right-click actions on the Client Connection container let you Manual Connect or Manual
Disconnect to this remote station.

About server connection properties
Server connection properties are status properties that provide either real-time or historical information.
Figure 2-14 shows the Server Connection container expanded in a NiagaraStation’s property sheet.
NiagaraAX-3.7-3.8

Drivers Guide
2–14

Chapter 2 – Niagara Network About the Users extension
November 5, 2013 About station “provisioning” extensions
Figure 2-14 Server connection container expanded in NiagaraStation property sheet

 A right-click action on the Server Connection provides a Force Disconnect command.

About station “provisioning” extensions
Any Supervisor station that is configured for “provisioning” has NiagaraStation components that each
contain provisioning device extensions. For more details, see “Types of provisioning extensions” in the
document Provisioning for Niagara Networks.
Note that provisioning extensions do not appear in the Station Manager, but do appear in the Nav tree.

About the Users extension
Any NiagaraStation has a “Users” device extension. This device extension is currently unique to the
Niagara driver. It can be used in multi-station jobs where “centralized management” of station users is
needed. For an overview of this user security feature, refer to the section “Network users” in the User
Guide.
Note there is no special view (apart from property sheet) on the Users device extension, nor is it a
container for other components. Instead, its properties specify the “sync” operation for “network users”
in the proxied station, relative to the current station.
For more details, see the following subsections:
• About Users extension properties
• Example Sync In and Out values
• About Users sync strategy
• Users device extension configuration notes

Figure 2-15 Users device extension of NiagaraStation

About Users extension properties
Properties include the following:
• Sync In Enabled

Default is false. Set to true if the proxied NiagaraStation “sends” users to current station. Otherwise
leave at false.
NiagaraAX-3.7-3.8

Drivers Guide
2–15

About the Users extension Chapter 2 – Niagara Network
Example Sync In and Out values November 5, 2013
• Sync Out Enabled
Default is false. Set to true if the proxied NiagaraStation “receives” users from current station. Oth-
erwise leave at false.
Note: You cannot set both sync properties to true, or else a fault will occur. Also, note that if setting
one of these to true, the “reciprocal” property must also be set to “true” in the remote (proxied) station,
in the Users extension of the NiagaraStation that represents the current station. See “Example Sync
In and Out values” on page 2-16.

• Status
Either (ok} or {fault} as status of Users device extension.

• Fault Cause
If Users extension is in fault, provides the reason. Note you can see a fault when first enabling a Sync
In or Sync Out property, until you enable the reciprocal Sync In or Sync Out property in the remote
station.

• Sync Strategy
As one of the following:
• Prototype Required - (Default) A network user is not added or modified on this proxied station

unless that remote station has a matching (identically-named) User Prototype, as referenced in
the source User's “Prototype Name” property.

• Use Default Prototype - A network user always added or modified. If the remote station has a
User Prototype named the same as the User's “Prototype Name”, that user prototype is used,
otherwise the “Default Prototype” in the receiving station is used.

• Sync Required
A read-only boolean that indicates if pending user changes require a sync to become effective. Or-
dinarily false unless user changes have occurred, and the sync delay time has not expired.

• Sync Delay
Default is 30 seconds. Applies within a “sending user” station only. Specifies a configurable delay
time that counts down following a change to a network User. Resets to full delay time upon each suc-
cessive change. Following the last user change, if the delay time is met, network user changes (sent
to the proxied station) are synchronized. This can be set uniquely among proxied stations if needed.

• Sync Retry
Default is 5 minutes. Applies within a “sending user” station only. Specifies a configurable repeat
time for previously unsuccessful user synchronization attempts (sent to the proxied station). Peri-
odically, user synchronization will be attempted at this frequency until a successful sync is recorded.

• Last Sync Attempt
Read-only timestamp of when user synchronization to/from this station was last attempted.

• Last Sync Success
Read-only timestamp of when user synchronization to/from this station was evaluated as successful.

Example Sync In and Out values
Typically, with a Supervisor as the sole “user sending” station, and multiple JACE stations where each is
a “user receiving” station, Sync In and Sync Out property configuration of the Users device extension of
NiagaraStations is done in the different station databases as follows:
WebSup (Supervisor station):
NiagaraAX-3.7-3.8

Drivers Guide
2–16

Chapter 2 – Niagara Network About the Users extension
November 5, 2013 About Users sync strategy
JstationA (JACE station, typical of others):

Note it also possible to have a “multi-tier” network user sync setup, for example where there is a single
“master” Supervisor host and several “subordinate” Supervisor hosts, each with multiple subordinate
JACE stations. In the NiagaraNetwork configuration of each subordinate Supervisor station, it would be
enabled to “Sync In” to the single NiagaraStation that proxies the master Supervisor. In other NiagaraSt-
ations that proxy remote JACEs, their Users extension is enabled to “Sync Out”. In this regard, each subor-
dinate Supervisor station could be considered both “user receiving” and “user sending”.
MasterSup (“Master Supervisor” station):

subWebSupA (“Subordinate Supervisor” station A):

subWebSupB ("Subordinate Supervisor" station B):

About Users sync strategy
By default, the “sync strategy” for network users (in the Users device extension of a NiagaraStation) is
configured for the “Prototype Required” method. This can be useful to reduce the number of distributed
network users, whenever a source User is configured to have a non-default “Prototype Name”. Only user-
NiagaraAX-3.7-3.8

Drivers Guide
2–17

About the User Sync Manager Chapter 2 – Niagara Network
Users device extension configuration notes November 5, 2013
receiving stations that have a matching-named User Prototype will replicate that user, using the 3 “local
override” properties of that local prototype. In addition, this method allows greater variations for
defining different schemes for permissions, navigation, and Web profile types among groups of users.
However, you can simplify things by configuring sync strategy for “Use Default Prototype”. This will result
in more replicated network users created, as a user-receiving station will simply use its Default Prototype
for a received User (if it does not have a matching-named User Prototype).
See the section “Sync process description” on page 2-19 for details on how the user synchronization
feature works. For related details on the “UserService side” of network users, refer to the section “About
User prototypes” in the User Guide.

Users device extension configuration notes
When setting up the NiagaraNetwork portion of user synchronization between stations in Workbench
(in each Users device extension), first open up all stations in Workbench so you can expand the Niagar-
aNetwork in each station—both Supervisor and JACEs stations. Remember that Sync In and Sync Out is
set up in an opposite fashion on reciprocal stations.
The easiest way to do this, particularly on the Supervisor station, is using the User Sync Manager
view. There, you typically select all (JACE) stations in this view to have a “Sync Out Enabled” of true. See
the next section “About the User Sync Manager” for more details.

Update mismatch with Users device extension fault
When upgrading a system to a 2013 security “update” level (typically AX-3.7u1 or later), stations running
on JACEs not yet upgraded to an update release level will not be able to sync network users from an
upgraded Supervisor (or other upgraded station). Instead, the Users device extensions of the NiagaraSt-
ations will be in fault, with a fault cause of “one-way password hashing support mismatch”.

Figure 2-16 Upgrade mismatch results in Users device extension fault

However, once a JACE is upgraded to a 2013 update level (typically AX-3.7u1 or later), network user
operation with an upgraded Supervisor station will continue as normal, including sync operation.

About the User Sync Manager
Any station's NiagaraNetwork has an available User Sync Manager view. Select it by right-clicking
the NiagaraNetwork for its Views menu, or by using the view selector from any NiagaraNetwork view, as
shown in Figure 2-17.
This view reflects the “NiagaraNetwork” side setup for enabling “network users.” For an overview of this
feature, refer to the section “Network users” in the User Guide.

Figure 2-17 User Sync Manager is available view on NiagaraNetwork
NiagaraAX-3.7-3.8

Drivers Guide
2–18

Chapter 2 – Niagara Network Niagara Discover enhancements
November 5, 2013 Sync process description
For each NiagaraStation in the network, the User Sync Manager shows the current status and config-
uration property values of its Users device extension. The example above, with its configuration of “Sync
In Enabled” and “Sync Out Enabled” properties, is representative of a NiagaraNetwork in a Supervisor
station, where all child stations are subordinate (typically JACE) stations.
From this view you can select one or more rows (stations) to edit properties, as shown in Figure 2-18
below, or manually request a sync of selected stations.

Figure 2-18 Edit dialog for one or more selected station's Users extension

Sync process description
User-sending station (Supervisor) side
1. All Users device extensions with Sync Out Enabled=true receive notification that a user event has

occurred. This results in setting Sync Required=true in each Users device extension.
2. A synchronization is scheduled for the remote station. The Sync Delay property determines how

long to wait between a user event and a synchronization. Each event resets the delay. That allows
multiple changes to be made without necessarily requiring multiple synchronization operations.

3. After the Sync Delay has passed, the Supervisor initiates the synchronization process with the
subordinate station.

4. When complete, Sync Required=false and sync timestamps are updated.

User-receiving station (e.g. JACE) side
1. Subordinate checks Sync In Enabled of its proxy for the Supervisor station. If false, the

synchronization process is aborted.
2. Subordinate coordinates with Supervisor to determine which users are out of sync.
3. Subordinate receives list of out-of-sync user records from Supervisor.
4. For each user:

• Find a matching prototype among User Prototypes. A prototype is either matched by name or
if the Sync Strategy is “Use Default Prototype”, the default prototype is used. If no matching
prototype, ignore user.

• On the incoming user, overwrite the “local override properties” (properties: Permissions, Nav
File, Web Profile) from the prototype.

• Add the new user or update an existing user.
5. When complete, Sync Required=false and sync timestamps are updated.

Note:For related details, refer to the section “About User prototypes” in the User Guide.

Niagara Discover enhancements
The Discover feature in manager views for Niagara proxy points, histories, and schedules, was enhanced
starting in AX-3.5, such that discovery is essentially performed by the station you have opened in
Workbench. Previously, such a discovery initiated a Fox connection directly between Workbench and the
target remote station—you may have noticed another Fox station (connection) node in the Nav tree.
Typically, you perform operations like this from an opened Supervisor station.
This discovery enhancement solves the following possible issues:
• Firewalls allow station-to-station connections, but block Workbench-to-remote station connec-
NiagaraAX-3.7-3.8

Drivers Guide
2–19

Niagara Point Manager notes Chapter 2 – Niagara Network
Niagara point Discover notes November 5, 2013
tions.
• Branding restrictions, for example where “appliances” allow a station-to-station connection, but

prevent direct Workbench-to-remote station connection.
Note: In addition, this change lets you perform discovery of Niagara proxy points, histories, and schedules using

browser access, that is, “Web Workbench”. Prior to AX-3.5, an error message resulted if this was attempted.
Note the following about these discovery enhancements:
• No related changes are visible in the various manager views, such as Niagara Point Manager,

Niagara History Import Manager, Niagara Schedule Import Manager, and so on.
• Access to discoveries in the endpoint (target) station requires station login credentials. If that station

has an account with the same credentials as the account you used to open the current (Supervisor)
station, the discovery process starts immediately, without login.
If those login credentials fail, the Discover presents a login dialog. Again, you enter the login creden-
tials for that endpoint (typically JACE) station.

Niagara Point Manager notes
The Niagara Point Manager is the default view for the Points device extension (NiagaraPointDevi-
ceExt) under a NiagaraStation. It operates similar to the Point Manager for most drivers that have online
“proxy point discovery” capability. For general information, see “About the Point Manager” on page 1-37.
When using the Niagara Point Manager, the following notes apply:
• Niagara point Discover notes
• About the Bql Query Builder

Niagara point Discover notes
Note: Niagara proxy point discovery was enhanced starting in AX-3.5 to permit operations that were previously

blocked or unavailable. For details, see “Niagara Discover enhancements” on page 2-19.
Niagara point discovery launches the Bql Query Builder, where you specify the root level of
component hierarchy in the remote station to begin the discover.

Figure 2-19 Discover in Niagara Point Manger uses Bql Query Builder

Component type filters are available in that dialog too—for details, see “About the Bql Query Builder” on
page 2-21.

Point Discover notes if Fox tunneling (AX-3.4 system)
Starting in AX-3.4, the Niagara Point Manager was enhanced with an option for point discovery
to a tunnel-accessible only station, using a “Tunnel Discovery Mode”. Special indication of this mode
being active is provided by a banner at the top of the Point Manager, as shown in Figure 2-20.
NiagaraAX-3.7-3.8

Drivers Guide
2–20

Chapter 2 – Niagara Network Niagara Point Manager notes
November 5, 2013 About the Bql Query Builder
Figure 2-20 Tunnel Discovery Mode available, showing indication banner

Note: This feature is not required when connecting to an AX-3.5 or later station and doing point discoveries (and
other discoveries). For related details, see “Niagara Discover enhancements” on page 2-19.
However, if working with an AX-3.4 station (even if using a more recent Workbench), you may need to use
this feature for Point discovery for stations accessible only via Fox tunneling. Otherwise, Workbench needs
a direct Fox connection for point discovery, that is, be on same LAN.
In this case, you can toggle into this “Tunnel Discovery Mode” to perform a Niagara point discovery.
You enable/disable this feature using a pull-down toggle option on the bottom Discover button, also
available on the Manager menu and toolbar.

Figure 2-21 Toggle Tunnel Discovery Mode using menu, toolbar, or Discover button pull-down

For related details, see “About Fox Tunneling” in the engineering notes document Fox Tunneling and
HTTP Tunneling.

About the Bql Query Builder
The Bql Query Builder is the initial dialog you use in the Niagara Point Manager when you
“Discover” proxy points in a station under the Niagara Network. You also use it in discovers in other
managers, for example, the Bacnet Export Manager.
This dialog provides extensive Find and Match filters, plus other controls, which are briefly discussed in
the following sections:
• About Bql Query Find filters
• About Bql Query Match filters
• About Bql Query Save, Load, and Edit
Note that the default point Discover for a NiagaraStation produces a Bql Query Builder dialog with a Find
of (all) “Config,” type “Control Point,” and Match of “All,” as shown in Figure 2-22. While this may be
usable, typically you narrow this range, and run multiple point discovers, as needed.

Figure 2-22 Default Bql Query Builder from NiagaraStation point Discover
NiagaraAX-3.7-3.8

Drivers Guide
2–21

Niagara Point Manager notes Chapter 2 – Niagara Network
About the Bql Query Builder November 5, 2013
About Bql Query Find filters
By default, the Find filter preselects all control points in the target NiagaraStation (Config). Often, you
may wish to narrow this range. For example, you may wish to find Boolean proxy points only under a
specific driver network (during this particular Discover sequence).
To do this, simply click the Find icon (magnifying glass) which produces the Choose Root dialog, as
shown in Figure 2-23.

Figure 2-23 Choose Root dialog

As needed, expand Config to select the root component of interest and click OK (or simply double-click
the component of interest). The proxy point Find is now limited to that area of the station.
To change the type of component, click the “Of type” drop-down and make a selection (Figure 2-24).

Figure 2-24 Select component type

The proxy point Find is now limited to that class of component.
Note: A basic understanding of the NiagaraAX component class structure is helpful when making type selections.

For example, selection of Boolean Point (as shown in Figure 2-24) includes all components that “subclass”
from the simple BooleanPoint. Included are all BooleanWritables, as well as many kitControl
components (Logic components, as one example in this case).
If you select type “Component,” you have a “full-width find.” This means that all components are included—
this includes everything listed in the “Of type” drop-down, plus extensions and many other items (including
kitControl objects not subclassed from Control Points, for example, “NumericConst,” “DegreeDays,” and
“LeadLagRuntime,” as a few examples).

About Bql Query Match filters
Use the Match filter when you wish to further limit proxy point candidates. For example, you may wish
to filter on object names (this translates to displayNames).
To see the match dialog options, click the plus (“+”) icon in the far right corner of the Bql Query Builder
dialog, and use Match entry fields as needed (Figure 2-25).
NiagaraAX-3.7-3.8

Drivers Guide
2–22

Chapter 2 – Niagara Network Niagara Point Manager notes
November 5, 2013 About the Bql Query Builder
Figure 2-25 Expand Match to see fields, use entry fields as needed

In the Figure 2-25 example above, the Match filter is set to: displayName, like, “Fan*”. This point
discover returns components (within the Find parameters) that are named beginning with “Fan”.
This match would include all components named “Fan”, “FanAhu1”, “Fan21”, “Fantastic”, and so on.
However, components named “FAN” or “FAN21” would not be included (case-sensitivity), nor would
components named “AhuFan” or “BFan” be included—no leading wildcard (“*”) was used.

Note: You can click the Match plus (“+”) icon multiple times to add multiple match lines, and configure each
match line differently, as needed. Click the minus “–” icon to remove a match line.
If you have multiple match lines, note the drop-down selection beside Match (“All”, “Any”) becomes
important, and works as follows:
• All — Works as “AND” logic, where a match must occur as specified on every match line.
• Any — Works as “OR” logic, where a match must occur as specified on any match line.

About Bql Query Save, Load, and Edit
Save the setup of any Bql query by simply clicking the Save query icon (diskette). This produces a
Save Query dialog in which you give the query a unique name (Figure 2-26).

Figure 2-26 Save and name Bql Query

Saving a query allows you to recall it later to either use directly, or to modify further as a “starting point”
for another query. You can save as many Bql queries as you need. You can also edit a saved query
(meaning rename it or reorder it in your list of saved queries).

Note: Saved queries are unique to your Workbench instance, and not to any particular station.
To recall a saved query, click the Load saved query icon (folder), and make a selection, as shown in
Figure 2-27.
NiagaraAX-3.7-3.8

Drivers Guide
2–23

Niagara proxy point notes Chapter 2 – Niagara Network
About the Bql Query Builder November 5, 2013
Figure 2-27 Load saved Bql Query

This loads that query into the Bql Query Builder dialog, where Find and Match entries automatically
change to reflect how that query was constructed.
To edit saved queries, click the Edit saved query icon (note pad). This produces a Save Query
dialog in which you can rename and/or reorder the queries in the list (Figure 2-28).

Figure 2-28 Edit saved Bql Queries

Note: If you are interested in the Baja Query Language (BQL), you can learn about queries within the Edit dialog.
Make the dialog window wider, and study the syntax of a saved queries. For detailed information about
queries, see “BQL” in the Niagara Developer Guide.

Niagara proxy point notes
Note: An alternative to Niagara proxy points exists for a Supervisor—see “About Niagara virtual components”

on page 2-38.
Niagara proxy points are always read-only types (BooleanPoint, EnumPoint, NumericPoint, and String-
Point). No other types are available. However, if the source component is a writable point type, any
actions (commands) for that component are available in the Niagara proxy point, as shown in Figure 2-29.

Figure 2-29 Niagara proxy point for writable point includes actions
NiagaraAX-3.7-3.8

Drivers Guide
2–24

Chapter 2 – Niagara Network Niagara proxy point notes
November 5, 2013 Best practices for Niagara proxy points
Other concepts about Niagara proxy points are explained in the following sections:
• Best practices for Niagara proxy points
• Proxy of a proxy, other candidates
• Link control and Niagara proxy points

Best practices for Niagara proxy points
• Are they even needed for Px views?
• Avoid point extensions under Niagara proxy points
• Avoid links to proxy point actions
• When a Niagara proxy point is required

Are they even needed for Px views?
The typical “large scale” usage of Niagara proxy points has historically been in a Supervisor station, such
that real-time values could be modeled and thus displayed centrally in Px views on the Supervisor. Prior
to AX-3.4, and especially AX-3.5, it was not uncommon for a such a station to have several hundred, or
even thousands, of Niagara proxy points—with data originating within various remote JACE stations.
However, with the introduction of “export tags” in AX-3.5, as well as the enhanced, writable “Niagara
virtual components”, such usage for proxy points in a Supervisor should diminish, for these reasons:
• If a Supervisor needs to serve up PxPages that already exist in a JACE station, simple use of “Px-

ViewTag” export tags in that JACE station can automatically replicate all needed components on the
Supervisor—including all necessary Niagara virtual points. Niagara proxy points are not needed.
For further details, refer to the document NiagaraAX Export tags.

• If engineering PxPages that exist only on the Supervisor, and real-time values and access to right-
click actions are needed from subordinate JACE stations (that would previously require Niagara
proxy points), consider using Niagara virtuals instead. In some cases, virtual components offer tech-
niques previously hard to do when using proxy points, such as providing a user edit access in a graph-
ic of items like alarm limits. See “About Niagara virtual components” on page 2-38.

Avoid point extensions under Niagara proxy points
Although there are no “rules” against it, adding history extensions or alarm extensions to Niagara proxy
points may be considered unwise, as even momentary communications issues between a JACE station
and its Supervisor can result in loss of (otherwise recorded) history records or alarm conditions.
Therefore, the following recommendations apply to configuring Niagara proxy points:
• Instead of adding a history extension to a Niagara proxy point in the Supervisor station, add it in-

stead to the source point in the remote station. Then, either import such histories into the Supervi-
sor (or, from the JACE station side, export them to the Supervisor).
For related details, see “Niagara History Import Manager” on page 2-30, “Niagara History Export
Manager” on page 2-33, and “About History Policies” on page 2-7.

• Instead of adding an alarm extension to a Niagara proxy point in the Supervisor station, add it in-
stead to the source point in the remote station. Then, configure alarm routing from the JACE station
into the Supervisor. For related details, see “NiagaraStation Alarms notes” on page 2-27.

Note that routines for interstation history archiving (import) and alarm routing routines have integral
“retry” mechanisms, such that temporary loss of station communications typically does not result in loss
of history data or alarm events. Instead, that data safely resides on the JACE until communications can
be re-established.

Avoid links to proxy point actions
Although currently the wiresheet and Link Editor allows you to link to action slots on Niagara proxy
points, this has been found to result in issuses, as such links can be lost, typically upon a station restart.
Unlike property slots, actions can be dynamically refreshed (rebuilt). If such an action was a link target,
that link record is gone. An example scenario is in a Supervisor station, where a “master” Numer-
icWritable component’s set action has been linked to the set action of multiple Niagara proxy points
(where each in turn represents a setpoint of some data item proxied in a driver’s network).
Future NiagaraAX releases may prevent linking to proxy point actions in the Link Editor and wiresheet.
Until then, avoid links to actions of proxy points.
Equivalent link control may be possible by creating Niagara proxy points in each JACE station (of source
items in the Supervisor station), and then linking properties of those proxy points to other driver’s proxy
points in that JACE station. For related details, see “Link control and Niagara proxy points” on page 2-26.
NiagaraAX-3.7-3.8

Drivers Guide
2–25

Niagara proxy point notes Chapter 2 – Niagara Network
Proxy of a proxy, other candidates November 5, 2013
When a Niagara proxy point is required
A Niagara proxy point is required whenever you need to use its data value in local station control logic,
that is, as the source of a link. For example, you may have a local “Average” math component that is
averaging temperature values sourced from three different stations, using Niagara proxy points. Niagara
virtual components cannot be used in this way, because they do not “persist”—they exist only during
active subscriptions (typically from users accessing PxPages).
Sometimes, this type of Niagara proxy point usage may be needed in JACE stations that need to directly
share (and process) selected data items for control reasons. For a related topic, see “Link control and
Niagara proxy points” on page 2-26.

Proxy of a proxy, other candidates
Often, the (remote) source component of a Niagara proxy point is itself a proxy point, typically under the
Points extension of device in a field bus driver network (Lonworks, Bacnet, and so on). Or, if the remote
station is in a JACE with its own I/O, the source component may be an Ndio or Nrio proxy point.
Another possibility is for the (remote) source component to be a specific slot of a point extension under
a point, for example, the Total property of a NumericTotalizerExt. In other cases, the (remote) source
component may be a kitControl type, such as one of the Math or Logic types, or one of the other more
complicated types (for example, a LoopPoint or DegreeDays object).
Regardless of the source component, you model all remote Niagara data with proxy points by selecting
from the “atomic” model of the four read-only point types.

Link control and Niagara proxy points
Because Niagara proxy points have no inputs, you cannot link into them from local station logic (even if
the remote source component is a writable type). If you need this “inter-station link control,” you must
make another Niagara proxy point (in the remote station) that proxies whatever local source component
you need for the link.
Consider a Niagara proxy point for a BooleanWritable that controls a fan. You wish to provide link control
from a local And object, controlling at priority level 7. Figure 2-30 shows these objects.

Figure 2-30 Local object cannot link into Niagara proxy point

In the example above, you cannot link into the Niagara proxy point “BFanBO_1.”
So in the other (remote) station, you must make a Niagara proxy point for the And object, then link its
output to the source point for “BFanBO_1.” Figure 2-31 shows the wire sheet views with these objects.

Figure 2-31 Source control object now a Niagara proxy point in remote station
NiagaraAX-3.7-3.8

Drivers Guide
2–26

Chapter 2 – Niagara Network NiagaraStation Alarms notes
November 5, 2013 Prepend and Append alarm routing notes
In a typical Supervisor station (serving primarily Px views), usually not much direct link control is
needed, so this seldom applies. In addition, the schedule import/export mechanism allows for central
scheduling control using local (imported) schedule components.
However, if you are engineering applications between JACE stations that require link control, or do have
a use case where the Supervisor needs to globally write a value into the link logic in JACE stations, please
understand you must always use Niagara proxy points in this fashion.

Note: Avoid linking to action slots on Niagara proxy points, as such links can be lost. For more details, see the
“Best practices for Niagara proxy points” section “Avoid links to proxy point actions” on page 2-25.

NiagaraStation Alarms notes
To configure alarms in one station to be received in another station, you must add a StationRe-
cipient in the AlarmService container of the “sending” (source) station. You then link whatever Alarm-
Class components are needed to that StationRecipient. For related details, refer to the sections “About
the station recipient” and “About alarm class” in the User Guide.
It is not necessary to use the same AlarmClass components in the two stations (although that is one
approach). In the receiving station (often, the Supervisor), if desired you can configure all alarms from a
remote station to route to a single local AlarmClass. Or, you can also use a “prepend” or “append” scheme
to route to different (but associated) AlarmClasses, where all schemes work based on the names of
AlarmClasses. See “Prepend and Append alarm routing notes” for details.
Specify the alarm routing in the Alarms extension under the NiagaraStation that represents the remote
JACE. See “Alarms extension properties” on page 1-35.

Note: In the receiving station’s AlarmService, if you want the remotely-generated alarms to appear in any alarm
consoles, be sure to link associated AlarmClass components to the necessary AlarmConsole components.

Prepend and Append alarm routing notes
The “Alarm Class” property of a NiagaraStation’s Alarms extension offers two options: “Prepend” and
“Append”, with an associated text field for a text string. The typical application if for a Supervisor station
that has many stations under its NiagaraNetwork, each using a “replicated” station database, meaning
that each JACE station has identically-named AlarmClass components, along with other identical
characteristics.
Consider a large “chain store” job where each JACE is installed at one retail store/building. Each JACE
station has AlarmClasses named “tempAlarm”, “humAlarm”, “runAlarm”, “accessAlarm”, and so on. In the
Supervisor station, you want separate alarm classes (and routing) for individual stores, so you create
AlarmClass components named “storeA_tempAlarm”, “storeB_tempAlarm”, and so forth.
Now in the Supervisor’s NiagaraNetwork, under each NiagaraStation’s Alarms extension, you could set
the “Alarm Class” property to “Prepend” adding the store identifier (“storeA”_”, “storeB_”, etc.), as used
when creating and naming AlarmClass components. See Figure 2-32 for an example property sheet.

Figure 2-32 Example use of Prepend text in Alarm Class property of NiagaraStation Alarms extension

When a store alarm comes to this Supervisor, the “prepend text” is added to the originating AlarmClass
in the JACE station, such that routing looks for that named AlarmClass, e.g. “storeB_humAlarm” or
“storeW_runAlarm”. This allows you to maintain the original alarm class mapping (at the “store station
level”) as well as segregate “by stores” at the Supervisor level.

Note: This feature does not automatically create “virtual” alarm classes in the Supervisor; you still have to
manually create all AlarmClass components needed. Also, check that AlarmClass component naming
matches whatever “Prepend” or “Append” scheme is configured under the NiagaraStations in the Super-
visor’s NiagaraNetwork.
NiagaraAX-3.7-3.8

Drivers Guide
2–27

Station Schedules import/export notes Chapter 2 – Niagara Network
Niagara schedule import/export default configuration November 5, 2013
Station Schedules import/export notes
Note: Niagara schedule discovery was enhanced to permit operations that were previously blocked or

unavailable. For details, see “Niagara Discover enhancements” on page 2-19.
You configure sharing of NiagaraAX schedule components between stations from the “receiving side”
station using the Niagara Schedule Import Manager. After you import each schedule component, a
corresponding “schedule export descriptor” is automatically created in the “sending side” station. If
necessary, you can review and adjust these export descriptors using the Niagara Schedule Export Edit
dialog.
Under a NiagaraStation device, the Schedule Export Manager works uniquely from other drivers, so it is
explained in more detail in the following sections.
• Niagara schedule import/export default configuration
• Schedule Export Edit
• Also see “Schedule Import or Export “gang” edits” on page 1-52

Niagara schedule import/export default configuration
By default, when you import a schedule under a NiagaraStation using the Schedule Import Manager, the
import/export setup is initially configured on both sides as follows:
• Receiving (slave) side:

Niagara schedule component with a ScheduleImportExt configured with “Execution Time” of Man-
ual. The source schedule’s configuration is imported (“pulled”) only once, upon creation. If desired,
you can manually Import it again.

• Sending (master) side:
Corresponding schedule export descriptor with an “Execution Time” of Interval, at 5 minute rate.
You can adjust this in the export descriptor using Schedule Export Edit.
To review all properties of a schedule export descriptor, including status properties, you can view
its property sheet—in the Nav tree under Schedules, simply double-click its Export icon.
Note: Default configuration does not mean the same schedule configuration is continuously
exported (“pushed”) to the remote schedule at this rate. Instead, the export descriptor keeps a “Subor-
dinate Version” timestamp from the last export. If a configuration change occurs, the export descriptor
compares the subordinate version time against the configured interval, and if necessary exports the
schedule to the remote station.

The default “master push” configuration is the most efficient (and recommended) way to keep imported
schedules synchronized. However, if the stations are installed on a network configured such that this
method is not allowed (perhaps firewall issues), you can configure things in reverse. This means config-
uring receiving side ScheduleImportExts with “Interval” execution times (to periodically “re-pull”
schedule configuration), and set corresponding schedule export descriptors to be disabled.

Schedule Export Edit
In the Schedule Export Manager, you adjust any schedule export descriptor(s) shown by selecting
(highlighting) it and clicking the Edit button at the bottom of the view (or on the toolbar).

Note: Unlike in other Manager views, a double-click on a descriptor is not the same as Edit. Instead, double-click
provides the Scheduler view for that exported schedule component. This can be useful to review and if
necessary, make changes to its configuration. For related details, refer to the section “Schedule component
views” in the User Guide.

Edit
The Edit dialog appears with the schedule export descriptor listed (Figure 2-33).
NiagaraAX-3.7-3.8

Drivers Guide
2–28

Chapter 2 – Niagara Network Niagara histories notes
November 5, 2013 Schedule Export Edit
Figure 2-33 Edit dialog in Schedule Export Manager

Note: The Edit dialog shows some configuration properties of the schedule export descriptor.
To access all properties, (including all status properties) go to its property sheet. Note that if you double-
click the Nav tree icon for an export descriptor, its property sheet displays.
The following related topics also apply:
• Niagara Schedule Export properties
• Niagara schedule import/export default configuration
• Also see “Manager table features” on page 1-21

Niagara Schedule Export properties
Properties in the Edit dialog of a schedule export descriptor are:
• Enabled

By default true. While set to false (export descriptor disabled), export connections are not attempted
to update the remote (imported) schedule.

• Execution Time
Determines when an export update is made to the remote (imported) schedule, providing that a con-
figuration change occurred in the local schedule that requires synchronization (export). For more de-
tails, see “Niagara schedule import/export default configuration” on page 2-28.Options are either
Daily, Interval (default), or Manual. If Manual, the following properties are unavailable:
• Time of Day (Daily)

Configurable to any daily time. Default is 2:00am.
• Randomization (Daily)

When the next execution time calculates, a random amount of time between zero milliseconds
and this interval is added to the Time of Day. May prevent “server flood” issues if too many
schedule exports are executed at the same time. Default is zero (no randomization).

• Days of Week (Daily and Interval)
Select (check) days of week for archive execution. Default is all days of week.

• Interval (Interval)
Specifies repeating interval for export execution. Default is every 15 minutes.

• Time of Day (Interval)
Specifies start and end times for interval. Default is 24-hours (start 12:00am, end 11:59pm).

Niagara histories notes
Creating Niagara history import and history export descriptors is how you save a Niagara history to a
different location (station) from where it originated. In a typical application, this is considered archiving.
For example, an originating history (with a limited record count) may be in a JACE station. If imported to
a supervisor station, its history import descriptor can be configured such that the imported history in the
supervisor has “unlimited” record capacity. The JACE history can run collecting only the last 500 records,
while the imported history in the supervisor will collect all (unlimited) records.

This section explains items unique to working with histories under a NiagaraNetwork.

This includes the Niagara History Export Manager view on a NiagaraStation’s Histories device
extension, as well as Niagara history features starting in AX-3.5. See the following main sections for
details:
• NiagaraStation Histories features
• Niagara History Import Manager
• Niagara History Export Manager
• On demand properties in history import descriptors
NiagaraAX-3.7-3.8

Drivers Guide
2–29

NiagaraStation Histories features Chapter 2 – Niagara Network
Schedule Export Edit November 5, 2013
NiagaraStation Histories features
Note: Niagara history discovery was enhanced to permit operations that were previously blocked or unavailable.

For details, see “Niagara Discover enhancements” on page 2-19.
Niagara history features that affect NiagaraNetwork configuration include:
• Starting in AX-3.5, it is possible to use components known as “export tags” in a JACE station, that

upon a “Join” command, will automatically add pre-configured Niagara HistoryImport descriptors
in a remote Supervisor station, and import those JACE histories. This is one of many functions pro-
vided by export tags. For complete details, see the document NiagaraAX Export Tags.

• Starting in AX-3.5, you can create special folders under the Histories extension of a NiagaraSta-
tion, using a “New Folder” button in the Niagara History Import Manager or History Export Man-
ager, to better organize history import and export descriptors. Each folder provides manager views.

• Starting in AX-3.5, a “Device Histories View” is on a NiagaraStation’s Histories extension,
which provides shortcuts to histories. Although not unique to the NiagaraNetwork, this feature may
be useful, especially in a Supervisor station. See “About the Device Histories View” on page 1-49.

• “On demand” polling is also available for both local histories and imported histories. On any history
enabled for this, a system user can now poll for live data when viewing its history chart or history
table view, by clicking the “Live Updates” toggle button (play icon). Refer to the NiagaraAX User
Guide section “About On Demand history views” for related details.

• You can also import/export histories based upon text “system tag” patterns, versus explicit History
Ids (i.e. “Discover” in the History Import (or Export) Manager, then selecting specific histories to
add). This utilizes a “System Tags” property in history extensions. Refer to the NiagaraAX User
Guide section “Configure history extensions” for related details.

The last two features above have associated properties in Niagara history import and history export
descriptors, with values available in the corresponding manager views (Niagara History Import Manager,
Niagara History Export Manager). In addition, the “on demand” polling feature has an associated “On
Demand Poll Scheduler” component under the NiagaraNetwork’s history network extension (History
Policies).

Niagara History Import Manager
The Niagara History Import Manager is the default view on a NiagaraStation’s Histories extension
(Figure 2-34). It offers standard features as described in “History Import Manager” on page 1-46.

Figure 2-34 History Import Manager under a NiagaraStation

Note: A “New Folder” button is available in this view for adding “archive folders”, to help organize history
import (or export) descriptors. Each folder has its own history manager views.
The following sections provide more details unique to Niagara history imports:
• Discovered selection notes
• Niagara History Import properties
• On demand properties in history import descriptors
• Using System Tags to import Niagara histories
NiagaraAX-3.7-3.8

Drivers Guide
2–30

Chapter 2 – Niagara Network Niagara History Import Manager
November 5, 2013 Discovered selection notes
Discovered selection notes
In the Niagara History Import Manager, discovered histories of a NiagaraStation are under an
expandable tree structure, organized by station name (Figure 2-35).

Figure 2-35 Expand Niagara stations to see all Niagara histories

Histories under the same station name as the parent NiagaraStation (device) component are local
histories for that station. Histories under any other stations represent histories currently imported into
(or exported to) that station.
For example, discovered histories in Figure 2-35 for NiagaraStation subJACE_A include local histories
(expanded, top); another “imported” history from remote station subJACE_B is shown below.

Note: From any NiagaraStation, you can import both its “local” histories and already-imported histories, as
needed. However, unless circumstances warrant a “relay archive method,” it may be best to import histories
directly from the source station whenever possible.

Niagara History Import properties

Figure 2-36 Edit dialog for Niagara HistoryImport descriptor

Properties of Niagara History Import descriptors available in the Edit or Add dialog are as follows:
• Name

Name for the history import descriptor component. If discovered, typically left at default.
Note: Editing name does not affect name of the resulting history (imported into station).

• History Id
This property specifies the history name in the local station’s history space, using two parts: “/<sta-
tionName>” and “/<historyName>”. If learned, station name is “^” (see note below) and history
NiagaraAX-3.7-3.8

Drivers Guide
2–31

Niagara History Import Manager Chapter 2 – Niagara Network
On demand properties in history import descriptors November 5, 2013
name reflects the source history name. Typically, you leave both fields at default values, or edit the
second (<historyName>) field only.
Note: The “^” character is basically a shorthand character to refer to the device name of the parent
container (NiagaraStation component). This may be useful if you have multiple JACEs with histories
named the same. You can create and configure a single History Import Descriptor and then duplicate
and paste it under the other stations without having to go in and change the station name each time.
Note for a Niagara System History Import descriptor, the History Id property is not applicable.

• Execution Time
Either Daily (default), Interval, or Manual. If Manual, properties below are not available:
• Time of Day (Daily)

Configurable to any daily time. Default is 2:00am.
• Randomization (Daily)

When the next execution time calculates, a random amount of time between zero milliseconds
and this interval is added to the Time of Day. May prevent “server flood” issues if too many his-
tory archives are executed at the same time. Default is zero (no randomization).

• Days of Week (Daily and Interval)
Select (check) days of week for archive execution. Default is all days of week.

• Interval (Interval)
Specifies repeating interval for archive execution. Default is every 15 minutes.

• Time of Day (Interval)
Specifies start and end times for interval. Default is 24-hours (start 12:00am, end 11:59pm).

• Enabled
Default is true. If set to false, does not execute import of history data.

• Capacity
Specifies local storage capacity for imported history, either as Unlimited or Record Count.
If set to Record Count, the following property is available:
• records

Number of records (samples) to locally store. Default is 500.
• Full Policy

Either Roll (default) or Stop. Applies only if capacity is set to record count
• If Roll, upon record count, oldest records become overwritten by newest records.
• If Stop, upon record count, importing stops (until history records are locally deleted).

• On Demand Poll Enabled
Either true (default) or false. See the next section “On demand properties in history import descrip-
tors” for more details on this property and the related poll frequency property.

• On Demand Poll Frequency
Either “Fast”, “Normal”, or “Slow”.

• System Tag Patterns
Specifies one or more text strings matched against text values in “System Tags” properties of remote
history extensions, where matching text patterns result in histories imported into the local history
space. For more details, see “Using System Tags to import Niagara histories” on page 2-32.

On demand properties in history import descriptors
When using the Niagara History Import Manager to import remote histories, there are two properties in
a NiagaraHistoryImport descriptor related to “On demand” polling:
• On Demand Poll Enabled

Either true (default) or false.
• If true, a system user will be able to use the “Live Updates” (play) button in history views to poll

for live data for the associated imported history(ies).
• If false, this button will not be available in history views for the associated imported history(ies).

• On Demand Poll Frequency
Either “Fast”, “Normal”, or “Slow”, which references the “On Demand Poll Scheduler” rates under
the NiagaraNetwork’s “History Policies” container slot. See “About History Policies” on page 2-7 for
related details.

Using System Tags to import Niagara histories
“System Tags” support is available in the Niagara History Import Manager. This provides an alternate way
to import histories from remote NiagaraStations, using “Niagara system history import descriptors”. This
allows you to import many histories at once, instead of individually importing histories “one at a time.”
NiagaraAX-3.7-3.8

Drivers Guide
2–32

Chapter 2 – Niagara Network Niagara History Export Manager
November 5, 2013 Using System Tags to import Niagara histories
For this to work, remote history extensions (for histories to be imported) must be configured with
“System Tags” property values. Refer to the NiagaraAX User Guide section “Configure history exten-
sions” for related details.
Instead of using the import manager’s “Learn Mode” (Discover) to add history import descriptors, you
manually add new descriptors in the Niagara History Import Manager, by selecting NiagaraSystem-
HistoryImport in the “Type” drop-down control of the New popup dialog, as shown in Figure 2-37.

Figure 2-37 Add New Niagara System History Import descriptors for System Tags feature

In the resulting New dialog for the system history export descriptors, you enter one or more “System
Tags” as a text pattern, as shown in Figure 2-38.

Figure 2-38 Enter “System Tags Pattern” text to match remote history extensions’ “System Tags” values

You can enter multiple System Tags in this “System Tag Patterns” property, using a semicolon (;) as
delimiter between System Tags. In addition, you can use an asterisk (*) as a “wildcard” when entering
System Tag values. In the Figure 2-38 example, the System Tag Patterns value is:

AHU*;Ltg1;Ltg3;Ltg5

In this example, remote points with history extensions configured with System Tags property values
including an entry beginning with “AHU” and/or “Ltg1”, “Ltg2”, or “Ltg3” will be imported after this is
added and executed. For example, history extensions with a System Tags property value of “AHU1”,
AHU_1”, “AHU 1”, “AHU2”, and so will be included, as well as those including “Ltg1”, “Ltg3” and “Ltg5”, but
ones with a System Tags value of only “Ahu1”, “Ltg2”, or “Ltg 1” will not.
Note that other properties like Execution Time, Capacity, Full Policy, and On Demand Poll Enabled apply
to the associated imported histories, and operate the same as for regular HistoryImport descriptors. See
“Niagara History Import properties” on page 2-31 for further details.

Niagara History Export Manager
A History Export Manager view is available (only) on a NiagaraStation’s Histories extension, apart from
“database device” components in some RdbmsNetwork drivers (see the Rdbms Driver Guide for details).

Note: If using the Bacnet driver, Niagara histories in the local station can also be “exposed” to all networked
BACnet devices as BACnet “Trend Log objects”. However, this is done using a different view under the Local
Device component in the BacnetNetwork. See the BACnet Guide for more details.
Like other managers, the Niagara History Export Manager is a table-based view (Figure 2-39).
NiagaraAX-3.7-3.8

Drivers Guide
2–33

Niagara History Export Manager Chapter 2 – Niagara Network
Niagara History Export New November 5, 2013
Figure 2-39 History Export Manager under a NiagaraStation

Each row typically represents a history export descriptor. Each descriptor specifies how data from a local
history is exported (“pushed”) from the station to a selected NiagaraStation, where it appears as a history.

Note: A “New Folder” button is available in this view for adding “archive folders”, to help organize history
export (or import) descriptors. Each folder has its own history manager views.
You use this view to create, edit, and delete history export descriptors. Each export descriptor you add
results in the creation of a Niagara history on that remote station.
Following station configuration, this view provides a status summary for exporting local histories. You
can also use it to issue manual “Archive” commands to one or more history descriptors. This causes an
export “push” of history data into the selected histories at the remote Niagara station.

Note: Only history export descriptors appear in the History Export Manager view—any other components that
may also reside under Histories do not appear. For example, you do not see the default “Retry Trigger”
component (see “About the Retry Trigger” on page 1-34), or history import descriptors. However, you can
use the Histories property sheet or the Nav tree to access these items.
The “capacity” and “fullPolicy” configuration for each “exported” history (as created on the remote station),
is determined by that target station’s NiagaraNetwork component’s “History Policies.” Before exporting any
histories, you should review and adjust these policies as needed. For more details, see “About History
Policies” on page 2-7.
At the bottom of the view, the button “New” lets you manually create new export descriptors in the
station. An “Edit” button lets you edit one or more export descriptors. Buttons “Discover,” “Add” and
“Match” are also available, (these work similarly as in the Point Manager). An “Archive” button is
available to manually export (push data) into one or more selected histories.
For more details, see:
• Niagara History Export New
• Niagara History Export Edit
• About History Export Discover and Match (Learn Process)
• Using System Tags to export Niagara histories

Niagara History Export New
Button New exists in a NiagaraStation’s History Export Manager view, but is typically used only if:
• Using “system tags” to export local histories to the target remote NiagaraStation, versus using online

discovery and selecting individual histories. For more details, see “Using System Tags to export
Niagara histories” on page 2-37.

• Engineering offline. If offline, Match may be used later (when online with the device).
Note: A New tool is also on the Niagara History Export Manager toolbar, and in the Manager menu.

Niagara History Export Edit
In the Niagara History Export Manager, you can Edit any history export descriptor (or system history
export descriptor) in the station database by simply double-clicking it.
NiagaraAX-3.7-3.8

Drivers Guide
2–34

Chapter 2 – Niagara Network Niagara History Export Manager
November 5, 2013 Niagara History Export properties
Edit
The Edit dialog appears with the export descriptor listed (Figure 2-40).

Figure 2-40 Edit dialog in History Export Manager (single history)

Note: The Edit dialog shows configuration properties of the history export descriptor, plus Name (equivalent to
the right-click Rename command on the descriptor). To access all properties, (including all status
properties) go to its property sheet.
The following section explains Niagara History Export properties:

Niagara History Export properties
Properties of Niagara history export descriptors available in the Edit or Add dialog are as follows:
• Name

Name for history export descriptor component. Typically left at default. Begins with “Local_” for
any history originating from the local station. Or if adding a NiagaraSystemHistoryExport, defaults
to “NiagaraSystemHistoryExport” (appending numerals as needed to keep unique).
Note: Editing name does not affect name of resulting history (exported into remote station).

• History Id
For a NiagaraHistoryExport descriptor, this property specifies the history name to be created in the
remote station’s history space, using two parts: “/<stationName>” and “/<historyName>”. Histories
originating in the local station show a “^” (shorthand for local station name), and history name re-
flects the source history name. Typically, you leave both fields at default values.
Note: For a NiagaraSystemHistoryExport descriptor, the History Id property is not applicable.

• Execution Time
Either Daily (default), Interval, or Manual. If Manual, properties below are not available:
• Time of Day (Daily)

Configurable to any daily time. Default is 2:00am.
• Randomization (Daily)

When the next execution time calculates, a random amount of time between zero milliseconds
and this interval is added to the Time of Day. May prevent “server flood” issues if too many his-
tory archives are executed at the same time. Default is zero (no randomization).

• Days of Week (Daily and Interval)
Select (check) days of week for archive execution. Default is all days of week.

• Interval (Interval)
Specifies repeating interval for archive execution. Default is every 15 minutes.

• Time of Day (Interval)
Specifies start and end times for interval. Default is 24-hours (start 12:00am, end 11:59pm).

• Enabled
Default is true. If set to false, history data is not exported.

• System Tag Patterns
(Modifiable only for a NiagaraSystemHistoryExport descriptor) Specifies one or more text strings
matched against text values in “System Tags” properties of local history extensions, where matching
text patterns result in histories exported into the remote history space. For more details, see “Using
System Tags to export Niagara histories” on page 2-37.

Note: The capacity and full policy of any exported history (created on the remote station) is determined by rules
under that station’s NiagaraNetwork “History Policies,” and is set at creation time only. For details, see
“About History Policies” on page 2-7.
NiagaraAX-3.7-3.8

Drivers Guide
2–35

Niagara History Export Manager Chapter 2 – Niagara Network
About History Export Discover and Match (Learn Process) November 5, 2013
About History Export Discover and Match (Learn Process)
Unless working offline, you can use the learn process to export histories in the station. As with other
NiagaraAX learns, this is a two-step process in the Niagara History Export Manager, where you:
1. Under a selected NiagaraStation, use its (Histories extension) Niagara Histories Export Manager

view to Discover (local) station histories as candidates for export to that station as histories.
2. Select and Add from those histories, creating history export descriptors under the station’s Histories

container.
Note: The Histories Export Manager reinforces this process by providing two separate panes in the view whenever

you enter “Learn Mode.” See “About Learn toggle” on page 1-18.

Discover
When you click Discover, the Histories Export Manager splits into two panes, or Learn Mode (Figure 2-
41). The top discovered pane is a collapsed tree structure of all Niagara histories of the local station. Click
to expand and select histories for export. See “Discovered selection notes” on page 2-37 for more details.

Figure 2-41 Discover splits Niagara History Export Manager

In Learn Mode, the two panes in the Histories Export Manager operate as follows:
• Discovered (top pane)

Lists all histories in the local station (station you are engineering).
• Database (bottom pane)

Lists history export descriptors and history system export descriptors currently in the station data-
base.
• Each NiagaraHistoryExport descriptor has a “one-to-one” associated history, exported to that

remote station.
• Each NiagaraSystemHistoryExport descriptor may, and often does, result in many associated

exported histories in the remote station. Note in the database pane you can spot these export
descriptors by the blank History Id value, as well as a text value in the “System Tag Patterns”
column.

Note: As necessary, drag the border between the two panes to resize. Also (at any time), toggle between the two-
pane Learn Mode and the single-pane (Database) view by clicking the Learn Mode tool in the toolbar, or
using the Learn Mode command in the Manager menu.
Add The Add button is available in Learn Mode when you have one or more items selected (highlighted)
in the top discovered pane. When you click Add, a dialog appears that allows you to edit properties before
the history export descriptor(s) are created in the station.
The Add dialog is identical to the history export descriptor Edit dialog. For details on properties, see
“Niagara History Export properties” on page 2-35.
NiagaraAX-3.7-3.8

Drivers Guide
2–36

Chapter 2 – Niagara Network Niagara History Export Manager
November 5, 2013 Discovered selection notes
Discovered selection notes
In the Niagara History Export Manager, discovered local histories are under an expandable tree
structure, organized by station name (see Figure 2-41 on page 36). Histories under the same station name
as the local station are originated in that local station. Histories under any other station nodes represent
histories currently imported (or exported) into the local station.
For example, discovered histories in Figure 2-41 for local station “subJACE_B” include locally-originated
histories (at top); any other histories originating from other stations would be under a different
expandable node (not shown).

Note: To any NiagaraStation, you can export both a station’s “locally-originated” histories as well as already-
imported histories, as needed. However, unless circumstances warrant a “relay archive method,” it may be
best to export only “locally-originated” histories.

Using System Tags to export Niagara histories
In the Niagara History Export Manager you can use “NiagaraSystemHistoryExport” descriptors to export
locally-sourced histories. This allows you to export many histories at once, instead of individually
exporting them “one at a time.” For this to work, local history extensions (for histories to be exported)
must be configured with “System Tags” property values. Refer to the NiagaraAX User Guide section
“Configure history extensions” for related details.
Instead of using the export manager’s “Learn Mode” (Discover) to add history export descriptors, you
manually add new descriptors in the Niagara History Export Manager, by selecting NiagaraSystem-
HistoryExport in the “Type” drop-down control of the New popup dialog, as shown in Figure 2-42.

Figure 2-42 Add New Niagara System History Export descriptors for System Tags feature

In the resulting New dialog for the system history export descriptors, you enter one or more “System
Tags” as a text pattern, as shown in Figure 2-43.

Figure 2-43 Enter “System Tags Pattern” text to match local history extensions’ “System Tags” values

You can enter multiple System Tags in this “System Tag Patterns” property, using a semicolon (;) as
delimiter between System Tags. In addition, you can use an asterisk (*) as a “wildcard” when entering
System Tag values. In the Figure 2-43 example, the System Tag Patterns value is:

Lon;Occ*

In this example, any local points with history extensions configured with System Tags property values of
“Lon” and/or a value beginning with “Occ” will be exported after this is added and executed.
For example, history extensions with a System Tags property value of “Lon”, “Occupancy” or “OccUnocc”
will be included, but ones with a System Tags value of only “OcUnoc” or “Lon1” will not. Note that the
Execution Time property values apply to all associated exports, and operate the same as for regular
NiagaraHistoryExport descriptors. See “Niagara History Export properties” on page 2-35.
NiagaraAX-3.7-3.8

Drivers Guide
2–37

About Niagara virtual components Chapter 2 – Niagara Network
Niagara virtuals background November 5, 2013
About Niagara virtual components
Niagara virtuals provide an attractive alternative to creating Niagara proxy points when engineering a
Supervisor station—especially for general Px page presentation. With enhancements starting in AX-3.5
and continued in AX-3.7, it is expected that this feature should dramatically reduce the general need for
Niagara proxy points. Niagara virtuals are also an integral part in the “PxViewTag” export tag process—
although in that case the creation of them is basically “automatic”.
Prior to Niagara virtuals, accessing any real-time data that originates in another NiagaraAX station
required creating Niagara proxy points, under the Points extension of an associated NiagaraStation
component. The usual “large scale” application for Niagara proxy points was in a Supervisor station,
where values in remote JACE stations could be modeled, then be graphically presented on Px pages
hosted by the Supervisor. A station in a JACE may also have a few Niagara proxy points, typically in cases
where remote data is required within its control logic. However, Niagara proxy points have historically
been synonymous with a Supervisor. For more details on Niagara proxy points, see “Niagara proxy point
notes” on page 2-24.

Niagara virtuals background
Starting in AX-3.4, Baja virtual components were implemented in the niagaraDriver. This allowed a
Supervisor station access to Niagara virtual components (or simply “Niagara virtuals”), via a “Virtual
gateway” under each NiagaraStation in its NiagaraNetwork. These dynamically-created Niagara virtual
components provided monitor access to the entire component structure of each remote JACE station—
without the overhead (or engineering necessity) of Niagara proxy points.
In AX-3.5, enhancements were made to Niagara virtuals. Most notable was that Niagara virtuals now
provided write access to most properties. In addition, point status was improved for virtuals of control
points (typical usage in proxy points among various driver types).

Niagara virtuals in AX-3.7
Starting in AX-3.7, more enhancements were made to Niagara virtuals, where the former “Virtual
gateway” (Virtual) component of a NiagaraStation is now a “NiagaraVirtualDeviceExt”, sourced from a
separate niagaraVirtual module. Figure 2-44 shows example virtual components under the Virtual
device extension of a NiagaraStation.

Figure 2-44 Expanded VirtualDeviceExt of a NiagaraStation in a Supervisor station’s NiagaraNetwork
NiagaraAX-3.7-3.8

Drivers Guide
2–38

Chapter 2 – Niagara Network About Niagara virtual components
November 5, 2013 Licensing and application overview
In AX-3.7, the basic operation of Niagara virtuals remains unchanged from AX-3.6 and AX-3.5. As shown
in Figure 2-44, a small “virtual” ghost () is superimposed in the lower right over the “normal” icon for
each Niagara virtual component representing any component type—a visual reminder that you are
looking into the “virtual component space” representing that station.
However, the AX-3.7 and later virtual architecture provides the following benefits:
• “Niagara virtuals to Niagara virtuals” are now supported. For example, in an “n-tiered” system, a top-

tiered Supervisor station can map Niagara virtuals in a NiagaraStation in its NiagaraNetwork, which
in turn has mapped those Niagara virtuals in a lower-tiered NiagaraStation in its NiagaraNetwork,
and so on.

• “Niagara virtuals to other virtual gateways” are also supported. Currently this applies to the BACnet
driver, where each BacnetDevice has its own “Virtual” gateway that provides access to virtual com-
ponents that represent BACnet objects. Now you can map those Bacnet virtual components as Nia-
gara virtual components in that NiagaraStation. This saves having to create Bacnet proxy points in
JACE stations for Px access at the Supervisor.

• “Shorter virtual ord slot paths” now result, instead of the longer virtual ord syntax previously used
(which included encoded data on the target slot’s facets and config flags). Shorter slot paths were
necessary for the “virtuals to virtuals” feature. They also allow easy editing of slot paths, if necessary.
Simplified ords are facilitated by a “Virtual Cache” mechanism, which stores the extra data removed
from virtual slot paths. This virtual cache operates transparently, yet has a component interface and
Workbench view for advanced users who want to inspect or remove cached items. For related de-
tails, see “Ords for Niagara virtual components” on page 2-42 and “Niagara virtuals cache (Virtual
Policies)” on page 2-42.

The following sections provide more details about Niagara virtual components:
• Licensing and application overview
• About the Niagara Virtual Device Ext
• Security and Niagara virtuals
• Views on Niagara virtuals
• Actions on Niagara virtuals
• Niagara virtuals in Px views
• Spy page diagnostics for Niagara virtual components
• Localization support for Niagara virtuals

Licensing and application overview
Details on licensing, advantages, and limitations of Niagara virtual components are in these sections:
• Licensing
• Advantages
• Limitations

Niagara virtual component licensing
Virtual components under a NiagaraNetwork are a standard licensed feature of any Supervisor. In the
Supervisor host's license, the boolean "virtual" attribute in the niagaraDriver feature line enables this:

<feature name="niagaraDriver" expiration="never" device.limit="none"
history.limit="none" point.limit="none" schedule.limit="none" virtual="true"
parts="AX-DEMO"/>

This option may not be licensed in most JACE hosts, nor needs to be—unless a JACE’s station is the
“middle tier” of a “Niagara virtual to Niagara virtual” mapping back to an AX-3.7 or later Supervisor. In
this case, the JACE’s niagaraDriver feature requires the "virtual" option, and it must run AX-3.7 or later.
Note an AX-3.7 Supervisor can effectively access “Niagara virtuals of Bacnet virtuals” in a AX-3.7 JACE
station, without the JACE requiring its niagaraDriver license feature to have this "virtual" option.
An AX-3.7 Supervisor can also access Niagara virtuals of most components in AX-3.6 and AX-3.5
stations; however, no “Niagara virtuals of virtuals” (Bacnet virtuals or Niagara virtuals) are possible.

Niagara virtual component advantages
Use of Niagara virtuals in a Supervisor provides the same “on demand subscription” of remote realtime
data on Px pages as does proxy points, including right-click popup menus to issues actions. However, the
Supervisor station overhead from scores of persisted Niagara proxy points is gone—instead the only
persisted items are simply the ORDs to virtuals within Px widgets. This results in fewer resources
consumed, along with faster startup of the Supervisor station
NiagaraAX-3.7-3.8

Drivers Guide
2–39

About Niagara virtual components Chapter 2 – Niagara Network
About the Niagara Virtual Device Ext November 5, 2013
Additionally, Niagara virtuals provide a possible savings in engineering time—as point “discovery” and
creation using the Bql Query Builder is not needed. Instead, Niagara virtual components expand under a
NiagaraStation’s “Virtual” gateway to reflect the entire component tree of that station. So, you can simply
drag and drop virtuals onto Px pages and select appropriate settings in the popup “Make Widget” dialogs.
Further, writable Niagara virtuals provide user access to almost any property in a PxPage graphic, for
both display and adjustment purposes. For example, to expose the high alarm limit for point, you simply
expand its alarm extension to reveal child containers, drag the “Offnormal Algorithm” virtual onto the Px
page, and in the Make Widget popup dialog, select the ORD to the “High Limit” property. Any
beforehand creation of a Niagara proxy point for this is not needed.
For related details, see “Niagara virtuals in Px views” on page 2-47.

Niagara virtual component limitations
Because Niagara virtual components are not persisted in the Supervisor’s station database, links to and
from Niagara virtuals are not supported. Therefore, values from remote stations needed within station
logic require Niagara proxy points. A simple example is a Math “Average” object that averages zone
temperatures originating in different JACE stations. Each input to the Math object would require a
Niagara proxy point of the relevant (remote station) data source.
Point extensions under Niagara virtuals are also not supported, for example alarm and history exten-
sions—although from a “best practices” perspective, such extensions are often misplaced in Niagara
proxy points. For further details on this, see “Best practices for Niagara proxy points” on page 2-25.
For related details, see “About the Niagara Virtual Device Ext” on page 2-40 and “Views on Niagara
virtuals” on page 2-46.

About the Niagara Virtual Device Ext
Note: Prior to AX-3.7, this component was the “NiagaraVirtualGateway”, with all child virtual components

sourced from the niagaraDriver module. Starting in AX-3.7, the virtual gateway architecture changed
such that a separate niagaraVirtual module is used. Note that Niagara virtuals operation is essentially
unchanged, except for improvements. For related details, see “Niagara virtuals in AX-3.7” on page 2-38.
Every NiagaraStation component in a station’s NiagaraNetwork has a frozen NiagaraVirtualDeviceExt
(Virtual) slot, at the same level as other device extension slots (Points, Schedules, etc.).

Figure 2-45 NiagaraVirtualDeviceExt expanded in Supervisor station

Successfully accessing components under this Virtual device extension (gateway) dynamically adds them
as Niagara virtual components (or Niagara “virtuals”) while they are subscribed, but they exist only in
memory—they are not persisted in the station database like proxy points.
The following sections provide more details on a Niagara Virtual Device Ext:
• Niagara Virtual gateway requirements
• Gateway memory cache and Refresh action
• Ords for Niagara virtual components
NiagaraAX-3.7-3.8

Drivers Guide
2–40

Chapter 2 – Niagara Network About Niagara virtual components
November 5, 2013 About the Niagara Virtual Device Ext
Niagara Virtual gateway requirements
Note: Any Virtual gateway provides virtual component access only if the following are all true:

• The local station’s host is so licensed. Typically, licensing applies mainly to a Supervisor host—for
further details see “Niagara virtual component licensing” on page 2-39.
Therefore, in most JACE stations, any NiagaraStation’s Virtual gateway is non-functional.

• The parent NiagaraStation component is enabled, and its property “Virtuals Enabled” is set to
true. By default, this property is set to false, for station security reasons—see “Security and Niagara
virtuals” on page 2-45 for more details.

The property sheet of a Niagara Virtual device extension (gateway) has a “Virtual Info” slot that provides
a number of status properties, including a “Last Failure Cause” property, as shown in Figure 2-46.

Figure 2-46 Virtual Info properties of Niagara Virtual Gateway

In the Figure 2-46 example, the Virtual gateway has a fault status, because even though the station’s
“Virtuals Enabled” property is true, the (JACE) host running this station is not licensed for Niagara
virtuals. In this typical case, note the last failure cause is “Niagara Virtual Components are not licensed”.
In a Supervisor station, this specific failure cause would not appear. However, a Niagara Virtual gateway
in a Supervisor station may still be disabled, or even in fault (say, if the remote station is running an earlier
release than AX-3.4). In any case, the failure cause property provides fault details.

Gateway memory cache and Refresh action
As a Baja virtual gateway, the Niagara Virtual device extension (gateway) only loads what is needed or
“activated” as virtual components in the memory space of the station. For a general overview of how this
works, see “Gateway activation” on page 1-24.
Activation of a Niagara Virtual gateway results in some number of “client virtual subscriptions” to those
components exposed, when any of the following occurs:
• a Virtual device extension is expanded in the Workbench Nav tree
• a Virtual device extension is expanded in its Workbench property sheet
• a Px page (with widgets bound to virtuals under that Virtual device extension) is being viewed
By default, viewing activated components places them in a memory “cache” for some minimum number
of seconds, where they remain as long as being active (viewed). After some maximum time of inactivity,
virtual components may be automatically deleted from this cache. By default, inactive cache life is around
1 minute. In most cases default settings are fine, however, associated cache settings for Niagara virtual
components can be adjusted by changing entries in the host’s (Supervisor’s)
!\lib\system.properties file. Note this file includes self-doc comments about these settings.
Starting in AX-3.7, the cache of frequently-accessed virtual components is also stored persistently in one
or more files under the station’s folder, by default. These “niagara virtual archive” (.nva) files are under
the station’s default niagaraDriver_nVirtual subfolder, as cache1.nva, cache2.nva, and so
on. They are typically created upon station shutdown, and provide faster Px page loading. For related
details, see “Niagara virtuals cache (Virtual Policies)” on page 2-42.
NiagaraAX-3.7-3.8

Drivers Guide
2–41

About Niagara virtual components Chapter 2 – Niagara Network
Ords for Niagara virtual components November 5, 2013
Refresh action Note that if engineering a job while configuration changes are still being made in a
remote station (modeled by a NiagaraStation in the local NiagaraNetwork), it may be necessary to use the
right-click Refresh action on the Virtual device extension, as shown being done in Figure 2-47.

Figure 2-47 Refresh action on Niagara Virtual gateway

As a general rule, a Refresh action is typically needed when the Nav tree contents for Niagara virtuals
under a station are “not as expected.”

Ords for Niagara virtual components
Starting in AX-3.7, Niagara virtual components use a “simplified”, shorter ord syntax, where an example
ord may look similar to:

station:|slot:/Drivers/NiagaraNetwork/J202_Test/virtual|virtual:/Logic/
RTUsAvgRA/out

Formerly, ords for Niagara virtuals included encoded data about facets and config flags of the target slot.
Now this “extra information” is stored in a “virtual cache” of the parent NiagaraNetwork’s “Virtual
Policies” container. For related details, see “Niagara virtuals cache (Virtual Policies)” on page 2-42.
Note that because “virtual of virtuals” are now supported, the ord for a Niagara virtual may include the
slot path of two or more virtual gateways. For example:

station:|slot:/Drivers/NiagaraNetwork/J7_Bnet_36/virtual|virtual:/Drivers/
BacnetNetwork/J4_R2c_99/virtual/virtual/binaryInput_3/
presentValue|slot:value

includes a slot path through the “Bacnet virtual gateway” of BacnetDevice “J4_R2c_99” to the
Present_Value property of a BACnet Binary Input object.

Niagara virtuals cache (Virtual Policies)
Starting in AX-3.7, the NiagaraNetwork in any station has a “Virtual Policies” container slot (Figure 2-54).

Figure 2-48 Example Virtual Policies container expanded in Supervisor station to show “Cache” child

For a Supervisor’s NiagaraNetwork, or for any station’s NiagaraNetwork that uses Niagara virtuals, this
provides access to cached data on virtual components. For any other station (typically most JACE
stations), the Virtual Policies container is unused.
From the NiagaraNetwork’s property sheet, expand this container to see the available configuration
properties and contained “Cache”. Typically, default property values are appropriate—for more details see
“Virtual Policies (Cache) properties” on page 2-44.

Double-click the Cache component for its default Niagara Virtual Cache View.
NiagaraAX-3.7-3.8

Drivers Guide
2–42

Chapter 2 – Niagara Network About Niagara virtual components
November 5, 2013 Niagara virtuals cache (Virtual Policies)
Figure 2-49 Niagara Virtual Cache View of NiagaraNetwork’s cache (with station select drop-down)

As shown in Figure 2-49, this tabular view lists cached virtual ords, with a “station select” control at the
top. Click row(s) to select, where bottom buttons let you “Select All”, or “Remove” any selected.
Double-click a row for a popup dialog showing details on data in the virtual cache (Figure 2-50).

Figure 2-50 Double-click row in Niagara Virtual Cache View for cached details on virtual component

As shown, cached data includes a target’s slot ord along with information on its facets and slot flags.
In the case where a recent facets or slot flag change has been made to the target of a virtual component,
but is not properly reflected in Px access of it, you can check it here. If necessary, you can then remove it
from the virtual cache, so it can properly update and be added back in the cache upon next access.
The ““Select All” is available too, which can be used “NiagaraStation-wide” to remove all cached
data. In addition, note the Cache component has a right-click “Clear” action, accessible on the Niagar-
aNetwork’s property sheet (Figure 2-51).

Figure 2-51 Clear action on Virtual Policies > Cache component, from NiagaraNetwork property sheet

Clear removes cached data for virtual components across all NiagaraStations in the NiagaraNetwork.
NiagaraAX-3.7-3.8

Drivers Guide
2–43

About Niagara virtual components Chapter 2 – Niagara Network
Niagara virtuals cache (Virtual Policies) November 5, 2013
Virtual Policies (Cache) properties
Note: In most cases it is recommended you leave configuration properties at defaults, as shown in Figure 2-52.

Figure 2-52 Virtual Policies expanded in NiagaraNetwork property sheet

Properties and slots of the Niagara Virtual Cache Policy are as follows:
• Cache Type

Cache type has two fields as drop-down choices, with currently the first fixed at niagaraVirtual,
and the second as either:
• DefaultNiagaraVirtualCache — (default), so that ords and associated data from ac-

cessing virtual components is cached in memory. Also see “Gateway memory cache and Refresh
action” on page 2-41.

• NullCache — Nothing is cached. In this case, virtual component access results in more net-
work traffic and graphics will be slower to load.

• Cache
Cache is the component representation of virtual cache data, with the default “Niagara Virtual
Cache View” (see Figure 2-49 on page 43). Configuration properties include:
• Persist Cache — (default is true) where some slot data for virtual components is stored

persistently in cacheN.nva file(s) in the specified “Cache Directory”. Typically these file(s)
are created upon station shutdown. If set to false, the virtual cache is not persisted.

• Cache Directory — The file ord to the folder in which cacheN.nva file(s) are created
when “Persist Cache” is true. The default ord is file:^niagaraDriver_nVirtual

Note persisted virtual cache files can also be examined in Workbench by double-clicking for a “Nva File
View”, as shown in Figure 2-53.

Figure 2-53 Workbench provides a default “Nva File View” for persisted Niagara virtual cache files.

In the example station shown above there is only one virtual cache file. However, a large Supervisor
station will typically have multiple virtual cache files.
NiagaraAX-3.7-3.8

Drivers Guide
2–44

Chapter 2 – Niagara Network About Niagara virtual components
November 5, 2013 Security and Niagara virtuals
Security and Niagara virtuals
Along with a Virtual device extension, each NiagaraStation has an associated Boolean property, “Virtuals
Enabled”, found near the bottom of any NiagaraStation’s property sheet (Figure 2-54).

Figure 2-54 “Virtuals Enabled” is false by default

This property must be true before Niagara virtual components for this station can be accessed. However,
it defaults to false as a security measure, as when initially enabled, all components in the remote station
will be accessible to any user with permissions on this NiagaraStation’s Virtual gateway.
For example, any user with admin-level permissions on the gateway will be able to view all Users in the
remote station’s UserService, simply by expanding the property sheet of the virtual component for the
UserService. Or, such a user will be able to expand the station’s PlatformServices virtual component, and
have access to critical properties or child services (including an action to restart station/reboot host)!
Therefore, before enabling any Niagara Virtual gateway, it is recommended to restrict user access to it,
(assign it to a restricted category). Then, on Niagara virtual components under that gateway, assign
appropriate category(ies)—before re-assigning less restrictive category(ies) to the parent gateway.

Note: Persisted category assignments for individual virtual components is an important feature. Originally, only
the persisted parent virtual gateway component could be assigned to one or more categories—with all child
virtual components inheriting those categories. Now with this feature, categories assigned to active virtual
components are safely maintained even after virtuals are removed from the station’s memory cache.
Assign categories to Niagara virtual components using “normal component” methods, that is either by
• with the Virtual gateway expanded, right-click any child virtual to go to its Category Sheet view, or:
• using the Category Browser view of the local station’s CategoryService, expanding the Niagara Vir-

tual gateway under any NiagaraStation in the NiagaraNetwork (see Figure 2-55).

Figure 2-55 Assigning categories to Niagara virtual components using the Category Browser

Be careful to Save after making any needed category changes to the Niagara Virtual gateway or virtual
components. For more information about station security and categories, refer to the sections “About
Security” and “CategoryService” in the NiagaraAX User Guide.
NiagaraAX-3.7-3.8

Drivers Guide
2–45

About Niagara virtual components Chapter 2 – Niagara Network
Views on Niagara virtuals November 5, 2013
Views on Niagara virtuals
Niagara virtual components provide a subset of the views as normal components, where the default
Property Sheet view and Category Sheet view (for security) provide the most utility—see
“Security and Niagara virtuals” on page 2-45. Special “manager” views on virtuals are not available.
Because of the transient (non-persisted) nature of virtuals, the other common types of views on Niagara
virtuals can be summarized as follows:
• Wire Sheet — not available, as links to/from any virtual components are not supported.
• Slot Sheet — available, but little practical application—as any changes made to slots (config flags,

new slot, etc) are not persisted.
• Link Sheet — not available, as links to/from any virtual components are not supported.

Note: Creating a Px view directly on a Niagara virtual or the Niagara Virtual gateway (using “New View” from
the right-click Workbench menu), is not supported/available. However, you can create such Px views on
other persisted components in the station, for example on Folder or IconFolder components, and then add
Px widgets with Niagara virtual component bindings. See “Niagara virtuals in Px views” on page 2-47.
Property sheet access of any Niagara virtual provides a “Virtual Info” slot at the top of the view, see the
section “About Virtual Info”.

About Virtual Info
In addition to the “Virtual Info” properties available on a Niagara Virtual device extension, each child
Niagara virtual has a “Virtual Info” container with five read-only status properties (Figure 2-56).

Figure 2-56 Virtual Info properties on any Niagara virtual component

Virtual Info properties are in addition to the properties of the target source component, and include:
• Virtual Status

For any Niagara virtual component, this is status of that virtual—not to be confused with whatever
status the source (remote station) component may currently have. This status always appears on
property sheets with a “vStatus” descriptor.
For example, a virtual for a proxy point may have an “ok” virtual status, yet show an “Out” with a
status of “down”. Virtual status may initially show with a status of “stale,” before changing to “ok”.

• Type Specification
Reflects the moduleName:componentType used for representing the Niagara virtual, for example in
the property sheet view for that component.

• Slot ORD
The complete slot path to the remote source component (relative to that station’s slot hierarchy),
where the leading “root” portion is station:|slot:

• Last Failure Cause
The last unsuccessful attempt (if any) to activate this virtual component is explained in this text
string property. May be blank if no previous unsuccessful attempt has occurred.
Note: Where a “Niagara virtual to virtual” path is used, a past unsuccessful attempt may include
information about the comm error, for example:
Station Err: (J7_Bnet_36 -> J202_TestW) {down}

• Gateway
The “handle” ord of the virtual gateway within the station’s virtual component space.

Note that additional “spy” page information for Niagara virtuals is also available for any station. For more
details, see “Spy page diagnostics for Niagara virtual components” on page 2-49.”
NiagaraAX-3.7-3.8

Drivers Guide
2–46

Chapter 2 – Niagara Network About Niagara virtual components
November 5, 2013 Actions on Niagara virtuals
Actions on Niagara virtuals
If a station user has invoke permissions on Niagara virtual components, they provide the same right-click
actions as if interfacing directly with the source component. As shown in Figure 2-57, this applies
whether from the Workbench Nav tree, property sheet, or a Px page with binding to that virtual.

Figure 2-57 Right click actions of source component available through Niagara virtual

Consider this when assigning categories to Niagara virtuals. Users with invoke (I) permissions (at
operator or admin levels) on those categories will have access to those associated actions. See “Security
and Niagara virtuals” on page 2-45 for related information.

Niagara virtuals in Px views
The primary application of Niagara virtual components is for building Px views. Workbench allows you
to “drag and drop” Niagara virtuals onto Px pages. Figure 2-58 shows a “drag and drop” of a Niagara
virtual for a control point, showing the top portion of the Make Widget popup dialog for a bound Label.

Figure 2-58 Drag and drop of Niagara virtual onto Px page produces Make Widget dialog

Px binding notes for Niagara virtuals
A properly added bound label (to a Niagara virtual) can provide the same Px access as if bound to Niagara
proxy point. Other Px widget selections, such as a field editor (property selection) are also supported.
In general, it is recommended that you make Px bindings to a specific property of a Niagara virtual, rather
than a whole virtual component. This can improve both performance and graphical rendering (for
example, if a Bound Label, this technique can also allow the “Status” (Color) option to work).
NiagaraAX-3.7-3.8

Drivers Guide
2–47

About Niagara virtual components Chapter 2 – Niagara Network
Niagara virtuals in Px views November 5, 2013
Figure 2-59 Double-click ORD field at top of Make Widget dialog if making Bound Label, to select property

In Figure 2-59, note the selection of a specific property of the Niagara virtual, via the Select Ord popup
dialog. In this example, the selected component is expanded, and the property “Out” is selected.
To do this, double-click in the top field (Ord) of the Make Widget dialog after dropping the Niagara
virtual. This produces the Select Ord dialog, where you then expand the selected virtual to select its
desired property (as shown being done in the Figure 2-59 example). Double-click to select and close.
If only the value or status is wanted for display in a bound label, you could further expand the Out
property in the Select Ord dialog, and select either Value or Status.

Note: You must further select “Value” or “Status” of a selected “Out” property in the case of a selected “virtual to
virtual”. Otherwise, the Px value displayed is likely to be: vStatus {ok} (instead of the end target value).
Alternatively, you can edit the BoundLabel Px widget’s BFormat (text) property value from the default: %.%
to instead: %value% or %status% or %value% %status%.
For example, consider the Figure 2-60 Px example of two groups of 3 bound labels. each bound to a
Niagara virtual representing a control point.

Figure 2-60 Example Bound Labels on Px page using different property depth

• In the top group, as each bound label was added the “Out” property of that Niagara virtual compo-
nent was selected in the Select Ord dialog.

• In the bottom group, as each bound label was added the “Out” property of that virtual component
was expanded in the Select Ord dialog, and only the “Value” portion selected. Note that status
information does not appear in these real-time values, and the “Status” (Color) option does not work.
NiagaraAX-3.7-3.8

Drivers Guide
2–48

Chapter 2 – Niagara Network About Niagara virtual components
November 5, 2013 Spy page diagnostics for Niagara virtual components
In the two preceding examples, the BFormat text formatting (Format Text or “text” property), was left at
a default %.% value. If needed, support for additional text formatting is also available Bound Labels. For
example, to add leading (or trailing) static text around the %scripted% portion, after adding the widget.
However (and again), it is more efficient to specify a particular property of a Niagara virtual (initially, in
the Select Ord dialog before widget creation). That is, instead of adding a Px widget bound to the root
of a Niagara virtual component, and then specifying a particular %propertyName% in its text formatting.
In the case of doing the latter, note that all properties of the target Niagara virtual become loaded from
viewing the Px page, not just the single property specified by the text formatting. You can use “spy”
troubleshooting pages to observe this behavior as applied to Niagara virtual components. See the next
section, “Spy page diagnostics for Niagara virtual components”.

Px usage of Niagara virtuals for write adjustments
Niagara virtuals have writable properties. This lets you expose properties that may need adjustment onto
PxPages, using standard “drag and drop” techniques. Figure 2-61 shows such an example, for an alarm
limit for a proxy point’s alarm extension.

Figure 2-61 Example use of writable Niagara virtual in PxPage

If users have proper permissions on such Niagara virtuals, they can make configuration changes that are
written to the (actual) source component.
Note the “class types” for Niagara virtuals include a Niagara virtual type for each of the eight NiagaraAX
“control points”, that is a NiagaraVirtualNumericPoint, NiagaraVirtualNumericWritable,
NiagaraVirtualBooleanPoint, and so on. This results in better overall handling of point status in
Niagara virtuals on PxPages. This also helped in development of the “export tags” feature for Supervisor
auto-configuration, first introduced in AX-3.5. Starting in AX-3.7, these eight class types are sourced
from the niagaraVirtual module, along with most other Niagara virtual component types and views.

Spy page diagnostics for Niagara virtual components
“Spy page” support was extended to help troubleshoot/diagnose usage of Niagara virtual components.
Typical spy usage for Niagara virtuals is against the Supervisor station, which may include many Px views
with many bindings to various Niagara virtual components.

Note: Spy page usage is generally considered an advanced activity, and this section may not apply to all users.
However, details here may help diagnose issues in Niagara virtual component setup or maintenance.
A Supervisor station is considered a “Niagara Virtuals client” to the various remote JACE stations, which
are “Niagara Virtuals servers”. Therefore, in a Supervisor’s spy pages for its NiagaraNetwork, you typically
expect large counts for client Niagara Virtual connections under its various stations.
Figure 2-62 shows a spy session in Workbench launched against a open Supervisor station (right-click,
select Spy, then in the Spy Viewer, niagaraNetwork, stations.
NiagaraAX-3.7-3.8

Drivers Guide
2–49

About Niagara virtual components Chapter 2 – Niagara Network
Spy page diagnostics for Niagara virtual components November 5, 2013
Figure 2-62 Starting spy to look at Supervisor’s usage of Niagara virtual components

This produces a stations list, as shown in Figure 2-63.

Figure 2-63 Continuing spy to look at Supervisor’s usage of Niagara virtuals to one remote station

As shown in Figure 2-63, in the stations list table, under the “Niagara Virtuals Client” column, you can
see a count of active Niagara virtual components for each station in the Supervisor’s NiagaraNetwork. If
you click on a link in that count column, you see a page of the Niagara Virtual components, by name,
including a “Virtual Prop Count” column that lists the number of associated properties for each one
(ideally 1 property maximum for each one, for performance reasons).
Finally, as shown near the bottom of Figure 2-63, if you click a specific Niagara Virtual (by Name link),
you see its “Virtual Info” properties, as well as subscription statistics on however many of its properties
are currently subscribed (or attempted for subscription).
NiagaraAX-3.7-3.8

Drivers Guide
2–50

Chapter 2 – Niagara Network About Sys Def components
November 5, 2013 Localization support for Niagara virtuals
Note: There is also a “Points/Virtual Server” column near the right side of the spy:/niagaraNetwork/stations page
(at top of Figure 2-63). That column lists the count of active (remote) client subscriptions to components in
the station. In a typical Supervisor station, this count will be 0 for each station in its NiagaraNetwork.
However, you can open a spy session to any selected JACE station and observe this count, as well as subse-
quent links in a similar manner as shown in the preceding figures. Investigation on the “JACE” station side
may also be helpful in resolving issues.

Localization support for Niagara virtuals
Localization (non-English translation support) for Niagara virtual components is provided for items that
appear in the Workbench Nav tree as well as in property sheet views. This is done by using/editing
lexicons for the modules niagaraDriver and niagaraVirtual, as well as for other modules in use by
the Supervisor station.
Matching lexicon files should also be installed in JACE hosts running subordinate JACEs.

About Sys Def components
Every NiagaraNetwork has a number of “Sys Def” components, both at the network level and at each
child NiagaraStation level. Currently, there is no direct, standard, application for these “system definition”
components—they exist mainly for use by NiagaraAX developers.
Sys Def facilitates an API interface to define the organization of stations in a Niagara system in a known
hierarchy, and allows synchronization of basic information “up” that hierarchy. Developer usage may be
especially useful in large “enterprise class” NiagaraAX installations that use “tiered” Supervisors.
At the time of this document, Sys Def components have no special Workbench views, apart from the
standard set of views (property sheet, slot sheet, and so on).
For limited basic information, see the following subsections:
• About the Niagara Sys Def Device Ext
• About network level Sys Def components

About the Niagara Sys Def Device Ext
Any NiagaraStation has a Sys Def device extension (NiagaraSysDefDeviceExt), with two child
components, as shown in Figure 2-64.

Figure 2-64 NiagaraStation’s Sys Def Device Ext property sheet

By default, the Sys Def device extension is Enabled.
Child components of the Sys Def device extension are:
• Role Manager
• Sync Task

About the Role Manager
The Role Manager of a Niagara Sys Def Device Ext reflects two configuration properties, as well as several
read-only status properties (Figure 2-65).
NiagaraAX-3.7-3.8

Drivers Guide
2–51

About Sys Def components Chapter 2 – Niagara Network
About network level Sys Def components November 5, 2013
Figure 2-65 Sys Def Device Ext’s Role Manager property sheet

The key configuration property, Desired Role, defines the relationship of the remote station (repre-
sented by the parent NiagaraStation) to the local station, as either:
• Peer — (default) a “peer” relationship exists.
• Supervisor — the remote station represented by this NiagaraStation is this station’s Supervisor.
• Subordinate — the remote station represented by this NiagaraStation is this station’s subordinate

(typically a JACE station).

About the Sync Task
The Sync Task of a Niagara Sys Def Device Ext reflects two configuration properties, as well as several
read-only status properties (Figure 2-66).

Figure 2-66 Sys Def Device Ext’s Sync Task property sheet

This component propagates changes to Sys Def components between stations that are in a “Supervisor/
subordinate” relationship.

About network level Sys Def components
The property sheet of any NiagaraNetwork has two Sys Def-related container components, as shown
in Figure 2-67.

Figure 2-67 Sys Def components in NiagaraNetwork property sheet

These network level components are:
• Local Station (LocalSysDefStation)
• Sys Def Provider (Bog Provider)

About the Sys Def Local Station
The Local Station reflects a collection of (read-only) “Sys Def” properties, as shown in Figure 2-68.
NiagaraAX-3.7-3.8

Drivers Guide
2–52

Chapter 2 – Niagara Network About Sys Def components
November 5, 2013 About network level Sys Def components
Figure 2-68 Sys Def “Local Station” expanded in property sheet

These properties would be “sync’ed up” to a remote Supervisor station (if the local station was defined as
its subordinate).

About the Sys Def Provider
The Sys Def Provider (BogProvider) is the API handler for queries about the “Sys Def” hierarchy, for any
remote stations configured as subordinates. It persists these definitions with child “ProviderStations” in
the local station’s bog file (as the default storage method).

Figure 2-69 Sys Def “Sys Def Provider” (default) expanded in NiagaraStation property sheet

As shown in Figure 2-69, by default the property sheet of a NiagaraNetwork’s Sys Def Provider
shows only two status properties: Status and Fault Cause. However, if you go to its slot sheet you may
see additional child “ProviderStation” components.

Figure 2-70 Sys Def Provider slot sheet, clearing “Hidden” config flag of ProviderStation

To see child properties of a ProviderStation, you can clear the “Hidden” config flag, as shown being done
in Figure 2-70. In turn, the slot sheet of that component also has more hidden properties. Note a child
ProviderStation for the local station is also included under any Sys Def Provider (BogProvider).

Note: An alternative configuration of ProviderStation persistence is possible, using an Orion database instead
of station bog storage. That topic is outside the scope of this document.
NiagaraAX-3.7-3.8

Drivers Guide
2–53

About the Files extension Chapter 2 – Niagara Network
About the Niagara File Manager November 5, 2013
Using the hierarchical definitions in the “Role Manager” components of Sys Def device extensions in
NiagaraStations (in the NiagaraNetwork of various distributed stations), Sys Def information can be
automatically “sync’ed upwards” from the lowest subordinate level stations to “intermediate level”
stations. Such stations would be defined as the Supervisor to some stations, but as a subordinate to
another station. In this way, “master” Supervisors could have the latest Sys Def information about many
more stations than the ones represented locally. This information could be useful in system queries.
Sys Def information includes various connection-type property values, what different services the station
is running, and a number of other items,

About the Files extension
Every NiagaraStation has a “Files” device extension (NiagaraFileDeviceExt). It can be used in
jobs where files need to be transferred automatically from one station to another, for example, reports
from a JACE station to a Supervisor station. Or, a JACE station may import file(s) periodically from a
Supervisor station, for some specific reason.
This file import feature is also used in some of the “export tags” functions (for Supervisor auto-configu-
ration) first introduced in AX-3.5. Niagara file import descriptors are automatically created on the Super-
visor, for example, when using export tags of type “PxViewTag” in subordinate JACE stations. A separate
export tag “FileImportTag” is also available. For details, refer to the NiagaraAX Export Tags document.
The Files device extension has no configuration properties apart from a Retry Trigger container,
(see “About the Retry Trigger” on page 1-34), and otherwise contains child “file import descriptors”
that you add using the default view, the Niagara File Manager.
For more details, see the following subsections:
• About the Niagara File Manager
• Add or Edit dialog for NiagaraFileImports
• About Niagara FileImport properties

About the Niagara File Manager
The Niagara File Manager is the default view of a NiagaraStation’s Files device extension.

Figure 2-71 Niagara File Manager view of a NiagaraStation’s Files device extension

Figure 2-71 shows the view in “learn mode” after a Discover was issued, with files found on the remote
station in the top pane, and existing file import descriptors in the lower pane.
Click to select either an entire directory of files to import (as shown selected/highlighted in Figure 2-71),
or select a single file to import. If a selected directory, its entire contents are imported upon execution—
this means all contained files, plus any subdirectories and their contained files.

Note: Hold down the Ctrl key while clicking in the Discovered pane to make multiple selections. Each will have a
separate “Files” property to review/edit in the resulting Add dialog for the Niagara file import descriptor.
With one or more rows in the Discovered pane selected, click the Add button. The Add dialog appears.
See Add or Edit dialog for NiagaraFileImports.
NiagaraAX-3.7-3.8

Drivers Guide
2–54

Chapter 2 – Niagara Network About the Files extension
November 5, 2013 Add or Edit dialog for NiagaraFileImports
Add or Edit dialog for NiagaraFileImports
An example Add dialog in the Niagara File Manager is shown in Figure 2-72

Figure 2-72 Add dialog for Niagara FileImport in the Niagara File Manager

Properties of file import descriptors available in the Add (or Edit) dialog are as follows:
• Name

Name for file import descriptor component. Often left at default, i.e. “NiagaraFileImport” (ap-
pending numerals if needed to keep unique). Editing name does not affect names of imported file(s).

• Execution Time
Either Daily (default), Interval, or Manual. If Manual, properties below are not available:
• Time of Day (Daily)

Configurable to any daily time. Default is 2:00am.
• Randomization (Daily)

When the next execution time calculates, a random amount of time between zero milliseconds
and this interval is added to the Time of Day. May prevent “server flood” issues if too many file
imports are executed at the same time. Default is zero (no randomization).

• Days of Week (Daily and Interval)
Select (check) days of week for import execution. Default is all days of week.

• Interval (Interval)
Specifies repeating interval for import execution. Default is every minute.

• Time of Day (Interval)
Specifies start and end times for interval. Default is 24-hours (start 12:00am, end 11:59pm).

• Enabled
Default is true. If set to false, file import does not occur.

• File Overwrite Policy
The File Overwrite Policy property determines how existing files are overwritten upon any execu-
tion, with two choices available:
• Checksum

(Default) Checksums for all files are compared for differences. Any files found with differences
are re-imported, overwriting the existing files.

• Last Modified
Date/timestamps for all files are compared. Any remote files found with more recent date/
timestamps are re-imported, overwriting the existing files.

• Files
Specifies the selected “Remote file” (or directory) and the “Local file” (or directory), as a pair.
Note: Click the . (add) icon, if needed, for additional pairs, or the (delete) icon to remove a pair.
Both fields in any pair should begin with “file:^”, denoting the root of the station’s file space.
The two Files fields are:
• Local file

File path for directory or file to be written in the local station’s file space.
If adding from a Discover, this matches the initially selected “Remote File” value. If local direc-
tories used in the file path do not exist, they are created upon import execution.
To change, you can click one of the right-side controls, either:
– if a single file, the folder control for the File Chooser dialog.
NiagaraAX-3.7-3.8

Drivers Guide
2–55

About the Files extension Chapter 2 – Niagara Network
About Niagara FileImport properties November 5, 2013
– if a directory, the adjacent drop-down control, then choose Directory Ord
Chooser from the menu for the Directory Chooser dialog.

Or, you may simply edit the file path text, say to add a folder named for the remote station
somewhere within the file path.
For example, from file:^billReports to file:^billReports/subJACE_C

• Remote File
File path for directory or file to be imported from the remote station’s file space. This reflects
the selected directory or file for that Add. You typically do not edit this value.
Note: If a selected directory, the entire contents (all contained files, plus subdirectories and
files) are imported upon execution. If already existing, the File Overwrite Policy must be met
before each write.

Additional properties for any file import descriptor are on its property sheet. For details, see “About
Niagara FileImport properties”.

About Niagara FileImport properties
All properties for any Niagara FileImport descriptor include the following:
• Status

Read-only status of the file import descriptor, typically “ok”, unless “disabled” (Enabled=false). A
“fault” status may sometimes occur—if so, the reason will be in the Fault Cause property.

• State
Current state of the file import, as either Idle, Pending, or In Progress.

• Enabled
Default is true. If set to false, file import does not occur.

• Execution Time
Either Daily (default), Interval, or Manual.

• Last Attempt
Date/timestamp of the last attempted file import.

• Last Success
Date/timestamp of the last successful file import.

• Last Failure
Date/timestamp of the last failed file import.

• Fault Cause
Typically blank, unless the last import attempt failed. In that case, it provides the reason why the im-
port failed. For example, if the original source file was removed or renamed, it may read similar to:
java.lang.Exception: Could not find Remote File: file:^images/tridiumLogo1.gif

• Files
Specifies a file import target (Local)/source (Remote)“pair” using two fields. Click the . (add) icon,
if needed, for additional pairs, or the (delete) icon to remove a pair.
For details on this and the next property, see “Add or Edit dialog for NiagaraFileImports”.

• File Overwrite Policy
The File Overwrite Policy property determines the criteria used for overwriting existing files upon
any execution, with two choices: Checksum (default) or Last Modified.
NiagaraAX-3.7-3.8

Drivers Guide
2–56

3CHAPTER

Field Bus Integrations
For purposes here, a field bus integration is any NiagaraAX driver besides the niagaraDriver (Niagara
Network). All Niagara AX drivers resemble each other in basic architecture, including the Niagara
Network. For more details, see “About Network architecture” on page 1-2, and “About the Niagara
Network” on page 2-1.
Field bus integrations such as BACnet, LON, Modbus, as well as various “legacy” drivers (typically serial-
connected) each have unique characteristics and features. This section provides a collection of topics that
apply to some of these drivers.
The following main sections are included:
• Port and protocol variations
• Learn versus New devices and points
• Serial tunneling

Port and protocol variations
With one exception, each field bus driver (network) associates with only one physical communications
port on the host platform, and uses a specific communications protocol. The exception is the BACnet
driver (BacnetNetwork), where multiple ports (Ethernet, RS-485 for MS/TP) and protocol variants
(BACnet-Ethernet, BACnet-IP, BACnet-MS/TP) may be used. See the Bacnet Guide for details.
Generally, field bus drivers can be categorized as one of the following:
• Ethernet-connected driver
• Serial-connected driver
• Special-port driver

Ethernet-connected driver
Many field bus drivers are Ethernet (port) connected, typically using some TCP/IP protocol for transport.
For example, the Modbus TCP driver (ModbusTcpNetwork) uses the Modbus TCP protocol—essentially
the Modbus protocol “wrapped” in TCP/IP. The SNMP driver (SnmpNetwork) uses SNMP, an appli-
cation-layer protocol within the TCP/IP protocol suite. These and other Ethernet-connected drivers
operate from a single Ethernet port without difficulty, due to the high bandwidth and efficiencies of IEEE
802 network (and TCP/IP) standards.
In addition to JACE platform usage, Ethernet-connected drivers are available for the Supervisor (PC)
platform as well, for “direct device integrations.” These are specially-licensed versions of the Supervisor
(by default, a Supervisor is licensed only for JACE device communications, via the NiagaraNetwork).

Serial-connected driver
Serial-connected drivers use a specific serial port on the host (JACE) platform. For example, the Modbus
serial driver (ModbusAsyncNetwork) requires association with a specific COMn port on the JACE, which
you do from the property sheet of this network component (Figure 3-1).

Note: Only one network can be assigned to any one serial port (COMn) of the host JACE platform. That driver
network essentially “owns” that communications port.
NiagaraAX-3.7-3.8

Drivers Guide
3–1

Learn versus New devices and points Chapter 3 – Field Bus Integrations
Special-port driver November 5, 2013
Figure 3-1 Serial port configuration for a serial-based driver

Slots under the “Serial Port Config” (SerialHelper) must be set to match the communications parameters
of other devices on the attached network. Note that in this ModbusAsync example, you also select either
the Modbus ASCII or Modbus RTU protocol (the driver supports either one, which you set according to
the type of networked Modbus devices).
Often, serial-connected drivers support “legacy type” device networks. In this case, the “serial tunneling”
feature may be useful to run vendor-specific legacy Windows applications to do device configuration and
maintenance (all from an IP station connection). See “Serial tunneling” on page 3-2.

Special-port driver
JACE controllers may include one or more special-use ports, for example one or more Echelon (LON)
FTT-10 ports. Usage of such a port requires a specific driver. In this example, the Lonworks driver (each
LonNetwork) associates with a specific LONn port, which is configured under that network component.
For details, see the Lonworks Guide.
Other special-use ports may appear as the evolution of JACE products continue.

Learn versus New devices and points
Many, if not most, field bus drivers provide the ability to “learn” devices and data points while connected
to that particular field bus. Exceptions include drivers where the field bus protocol does not provide the
ability for this, for example, any of the Modbus drivers.
For specific learn procedures, see the “Quick Start” section in the various driver documents.

Serial tunneling
A NiagaraAX station running one or more serial-based drivers can provide “tunneling” access to its
connected devices. This allows you to use a vendor’s Windows serial-based application (via the serial
tunnel client) to perform device-specific operations. Examples include application downloads or other
device configuration.
The tunneling client is separate from NiagaraAX Workbench—meaning that you can install it on various
PCs, as needed. The key advantage is that serial tunneling requires only a standard IP connection (to the
station), yet provides access as if the client PC was attached to the target serial network via a physical
COM port, for example RS-232.

Note: No special licensing is required to use tunneling features in NiagaraAX.
The following sections provide more details:
• Serial tunnel overview
• Client side (PC application)
• Station side (TunnelService)
• Serial tunneling usage notes
NiagaraAX-3.7-3.8

Drivers Guide
3-2

Chapter 3 – Field Bus Integrations Serial tunneling
November 5, 2013 Serial tunnel overview
Serial tunnel overview
As shown in Figure 3-2, tunneling in NiagaraAX uses a client-server architecture.

Figure 3-2 Serial tunnel architecture

Serial tunneling uses the following components:
• Client (PC application) side

The NiagaraAX Serial Tunnel client installs on most Windows-based PCs (independent of
Niagara Workbench). It provides a “Niagara AX Serial Tunneling” client via a “virtual” COMn port.
For details, see “Client side (PC application)” on page 3-3.

• Server (station) side
The host JACE must have the “tunnel” module installed to support serial tunneling. In addition, its
station must be configured with a TunnelService and a child SerialTunnel component. For
details, see “Station side (TunnelService)” on page 3-7.

Note: A LonTunnel (“lontunnel” module) is also available, and uses the same basic architecture—as a child
under a station’s TunnelService. The LonTunnel allows a Lonworks application tunneling to connected
LON devices on a JACE’s FTT-10 network. For details, see “Lon tunneling” in the Lonworks Guide.
Note client tunnel connections (serial or Lon) to a station’s TunnelService use basic authentication (creden-
tials not encrypted), so security considerations apply. See “Best security practices for tunneling” on page 3-8.

Client side (PC application)
The serial tunnel client is a self-installing executable found in the root of the NiagaraAX distribution CD.
There are three different versions of the executable, as shown in Figure 3-3 below.

Figure 3-3 Serial Tunnel Client installation file is in NiagaraAX CD root

Depending on your client PC’s Windows operating system, select to install from one of the following:
• Windows XP: Install_Serial_Tunnel.exe
• Windows 7 or Windows Vista (32-bit): InstallVserialAx2.exe
• Windows 7 or Windows Vista (64-bit): InstallVserialAx2_64bit.exe
See the following additional sections for more details:
• Installing the serial tunnel client
• Serial tunnel client configuration
• Serial tunnel client installation details

Installing the serial tunnel client

To install the serial tunnel client on a Windows machine
To install the serial tunnel client, at the Windows PC do the following:

Step 1 Access the appropriate installation executable, as found in the root of the NiagaraAX CD (Figure 3-3).
• Windows XP: Install_Serial_Tunnel.exe
• Windows 7 or Windows Vista (32-bit): InstallVserialAx2.exe
NiagaraAX-3.7-3.8

Drivers Guide
3-3

Serial tunneling Chapter 3 – Field Bus Integrations
Client side (PC application) November 5, 2013
• Windows 7 or Windows Vista (64-bit): InstallVserialAx2_64bit.exe
Step 2 Double-click this file to launch the installation.

Click Yes to install, where other popup appears, as shown above.
Click Yes again to configure.

Step 3 In the Niagara AX Serial Tunnel dialog, enter any known data, or accept defaults.
• In the Windows XP serial tunnel client dialog, you select a serial port (COMn), as shown in Figure 3-4.

Figure 3-4 Example Windows XP serial tunnel client configuration defaults

Do not duplicate any existing serial (COMn) port already used by Windows. You can always reconfig-
ure again, by returning via the Windows XP Control Panel. If left “interactive” all remaining
fields in this dialog are editable each time you specify this COM port from the serial application that
you are tunneling (this popup dialog reappears each time).

• In the Windows 7 / Vista serial tunnel client dialog, an unused port (COMn) is already selected, as
shown in Figure 3-4

Figure 3-5 Example Windows7/Vista serial tunnel client configuration defaults

If left ‘interactive”, you can configure the remaining fields in this dialog each time you specify this
COM port from your serial application you are tunneling (this popup dialog reappears each time).

See “Serial tunnel client configuration” on page 3-5 for details on all fields in this dialog. Parameters work
essentially the same whether you have the Windows XP driver or (either) Windows 7/Vista driver.

Step 4 Click OK to finish the install.

The “Installation Finished” dialog appears—click OK again. See “Serial tunnel client installation details”
on page 3-5 for a listing of installed components.
NiagaraAX-3.7-3.8

Drivers Guide
3-4

Chapter 3 – Field Bus Integrations Serial tunneling
November 5, 2013 Client side (PC application)
Serial tunnel client configuration
By default after installation you see the serial tunnel configuration dialog each time you specify its named
Serial Port (COMn) from your serial application. In the case of the Windows XP driver, you can also access
this dialog by selecting “NiagaraAX Serial Tunneling Client” from the Windows XP Control Panel.
As shown for an example session in Figure 3-6, all tunnel client fields require a valid entry.

Figure 3-6 Serial tunnel client session example

Fields in this dialog are described as follows:
• Serial Port

The “virtual” COM port provided by this tunnel client. This should not conflict with any existing
COM port assignment, as known to Windows, for a physical serial port (e.g. COM1).
When you tunnel from a serial-based Windows application, you specify this “virtual” COM port.

• Host Address
The IP address (or hostname) of the tunnel server, meaning the target JACE running a station with
a serial-based network, TunnelService, and SerialTunnel.

• Tunnel Name
The COMn device name (identifier) of the JACE’s driver network to access. This will vary depending
on the configuration of the network and its corresponding SerialTunnel.

• User Name
User in the target JACE station, where this station user must have admin write permissions for the
station’s TunnelService and child SerialTunnel(s).

Caution The TunnelService uses “basic authentication” for login on any client connection (serial tunnel or Lon
tunnel), so we recommend you create a special user in the station to use (only) for all serial or Lon tunnel
access. For configuration details, see “Best security practices for tunneling” on page 3-8.

• Password
Password for this station user.
Note: The password is not encrypted when passed to the station (see Caution above).

• Interactive (checkbox)
If checked, this dialog reappears each time a serial-based application first opens this “virtual” COM
port. If cleared, this dialog displays only if an open fails to establish a connection to the tunnel server
(as stored from last entry). Typically, you leave Interactive checked (regardless of driver version).
• In the case of the Windows XP driver, when this dialog appears interactively, the Serial

Port setting is read-only. To change it, you must access the Serial Tunneling applet from the
Windows XP Control Panel.

• In the case of either Windows 7/Vista driver, the Serial Port setting is always read only. How-
ever, a second “No Retry” checkbox becomes available if you clear “Interactive”.

Serial tunnel client installation details
Depending which type of serial tunnel client you installed, the driver’s Windows interface, files installed,
and method of uninstalling vary.
• Windows XP serial tunnel client details
• Windows 7 / Vista serial tunnel client details
Windows XP serial tunnel client details The Windows XP serial tunnel client installs as a Windows
service (NiagaraAX Serial Tunnel), and has a Control Panel applet available (Figure 3-7).
NiagaraAX-3.7-3.8

Drivers Guide
3-5

Serial tunneling Chapter 3 – Field Bus Integrations
Client side (PC application) November 5, 2013
Figure 3-7 Windows XP control panel applet for NiagaraAX serial tunnel client

The following files are installed, with services referenced in the Windows registry:
• Control Panel

<WINDOWS_SYSTEM_DIR>\vserax.cpl
• Network Tunnel Service

<WINDOWS_SYSTEM_DIR>\vserax.exe
Service name: vseraxSvc (vserax dependency)

• Serial Driver Service
<WINDOWS_SYSTEM_DIR>\drivers\vseraxx.sys
Service name: vserax

• Uninstaller
<WINDOWS_SYSTEM_DIR>\vseraxun.exe

If necessary, uninstall the serial tunnel client driver using the “Add or Remove Programs” entry from the
Windows XP Control Panel.

Note: If uninstalling, and the uninstall appears to fail, try reinstalling the tunnel client, and then uninstall again.
Windows 7 / Vista serial tunnel client details The serial tunnel client for Windows 7/Vista installs as a
“virtual” serial COM port (no separate Windows service or Control Panel applet). You can this port listed
in the Windows Device Manager under Ports (Figure 3-8).

Figure 3-8 Windows 7 / Vista “virtual” COM port for the NiagaraAX serial tunnel client

From the Windows Device Manager, you can right-click this virtual COM port to see its
Properties, or if necessary, to Uninstall the driver. From its Properties dialog, the “Driver” tab and
“Driver Details” button provides a popup dialog that lists the various files installed (Figure 3-9).

Figure 3-9 Driver file details for NiagaraAX serial tunnel client (Windows 7 / Vista)

The file shown highlighted (vseraxConfig.exe) produces the tunnel client’s configuration dialog.
NiagaraAX-3.7-3.8

Drivers Guide
3-6

Chapter 3 – Field Bus Integrations Serial tunneling
November 5, 2013 Station side (TunnelService)
Station side (TunnelService)
To be a serial “tunnel server,” a JACE must have the tunnel module installed, and its station must have a
TunnelService (under its Services folder), as well as a child SerialTunnel component.
The following sections provide more details on the “station side” of serial tunneling:
• Configuring the serial tunnel server
• Best security practices for tunneling
• About serial tunnel connections

Configuring the serial tunnel server

To configure the station for serial tunneling
To configure the station for serial tunneling, do the following:

Step 1 In the palette side bar, open the tunnel palette.
Step 2 Open the JACE station and expand its Services folder.

• If no TunnelService exists, paste one from the palette into the Services folder.
• If a TunnelService does exist, go to next step.

Note: Only one TunnelService is needed in a station’s services, and it can hold multiple tunnel components
(SerialTunnel and LonTunnel). The TunnelService in the (serial) tunnel module is identical to the
TunnelService in the lontunnel module.

Step 3 From the palette, paste a SerialTunnel under the station’s TunnelService.
The station should now have a TunnelService and a child SerialTunnel component.

Step 4 In the SerialTunnel’s property sheet, expand the “Serial Port Config container” (Figure 3-10).

Figure 3-10 TunnelService with child SerialTunnel (copied from tunnel palette)

Here, type in the COMn “Port Name” used by the target driver network, and specify other parameters as
defined in the network’s configuration. Port Name should be similar to COM1 or COM2, and so on.
See SerialHelper on page 11 for details on various properties.

Note: If the JACE has multiple serial-type driver networks (and corresponding COM ports), you can copy the
same number of SerialTunnel components under the TunnelService. You can then associate each Serial-
Tunnel with a particular network (by its COMn port name), and set the other parameters accordingly.

Step 5 Save the TunnelService configuration when done.
A station user requires admin write permissions for the SerialTunnel(s) to allow tunnel client access.

Note: Clients that access the TunnelService (both SerialTunnel and LonTunnel) use “basic authentication” for
login access. So in either of these client connections, the user credentials passed to the station are not
encrypted—a potential security issue! See “Best security practices for tunneling” on page 3-8.
Also, consider disabling the TunnelService (set its Enabled property to false) whenever it is not needed.
NiagaraAX-3.7-3.8

Drivers Guide
3-7

Serial tunneling Chapter 3 – Field Bus Integrations
Station side (TunnelService) November 5, 2013
Best security practices for tunneling
Although convenient, serial or Lon tunneling access to a station presents a potential security issue, as a
station’s TunnelService uses “basic authentication” for client access to the station. This differs from
normal user access (via FoxService and/or WebService), typically using much stronger authentication.
As a workaround, we strongly recommend that you assign the station’s TunnelService to a special
category not assigned to any other component in the station, and create a special user that has admin write
permissions on only that single category (unlike any other user). That should be the only user used to make
tunnel client connections. See “To configure for safer tunneling access”.

To configure for safer tunneling access
Step 1 In the station’s CategoryService, set up a Category unassigned to any other component.

Assign the station’s TunnelService to that category, as shown above.
Step 2 In the station’s UserService, create a new user that has permissions only on that one category.

Assign this new user admin write permissions to that one category, and Save that user.
Step 3 From any client to the TunnelService (serial tunnel or Lon tunnel), only use this special user account.

This workaround provides full tunneling capability, but minimizes the security risk in case the credentials
for this special user become compromised.
NiagaraAX-3.7-3.8

Drivers Guide
3-8

Chapter 3 – Field Bus Integrations Serial tunneling
November 5, 2013 Serial tunneling usage notes
About serial tunnel connections
Under any SerialTunnel, only one tunnel connection is supported at any one time—if a tunnel connection
is active and another tunnel client (PC) attempts to connect, that remote user sees a popup dialog saying
that the “Desired tunnel is busy.”
In the station (tunnel server), any active tunnel connection results in a TunnelConnection child
component, named as the remote (client’s) IP address or hostname, with a “#1” suffix (Figure 3-11).

Figure 3-11 TunnelConnection is dynamically created/removed

In the Figure 3-11 example, the remote host that is currently serial tunneling is “192.168.1.31.” When
a tunnel connection is terminated, this Tunnel Connection component is removed.
In addition to its statistical properties, a TunnelConnection has an available Disconnect action. This
disconnects the active tunnel connection, removing the parent TunnelConnection component. A popup
dialog “Connection closed by remote host” is seen on the client tunnel side.

Serial tunneling usage notes
Serial tunneling may not work with all vendor’s serial-connected Windows applications. Also, serial
tunneling is not supported for BACnet MS/TP usage—however, BACnet router functionality provided by
a station running a BacnetNetwork with multiple network ports (e.g. IpPort, MstpPort) provides IP
access to MS/TP connected devices.
When initiating a connection through the serial tunnel, client-side usage is transparent except for the
“virtual COMn” port used, and if “Interactive” is left enabled (typical) the resulting serial tunnel configu-
ration dialog right before the connection is attempted. Figure 3-12 shows an example serial connection
being initiated from the Windows Hyperterminal application. Tunneling client messages may appear if
the connection fails.

Figure 3-12 Example Windows XP serial application (Hyperterminal) initiating tunnel connection
NiagaraAX-3.7-3.8

Drivers Guide
3-9

Serial tunneling Chapter 3 – Field Bus Integrations
Serial tunneling usage notes November 5, 2013
Speed of the tunnel connection may be slower that a direct serial connection, due to the overhead of
wrapping and unwrapping messages in Niagara Fox and TCP/IP protocols.

Tunneling client messages
When using a tunnel client, the specified user must be “authenticated” by the station before a connection
is granted (established). If the user is not found, or if the entered password is incorrect, a popup message
may appear on the client PC (Figure 3-13). Note the User Name and Password are both case-sensitive.

Figure 3-13 Authentication issue

Caution As previously cautioned, note that “basic authentication” is used in any client connection to the station’s
TunnelService, with possible security consequences. See “Best security practices for tunneling” on page 3-8.

Currently, only one tunnel connection is allowed per SerialTunnel. If another client application attempts
a connection to that tunnel, a popup message may appear on that PC (Figure 3-14).

Figure 3-14 Tunnel busy
NiagaraAX-3.7-3.8

Drivers Guide
3-10

4CHAPTER

Plugin Guides
There are many ways to view plugins (views). One way is directly in the tree. In addition, you can right-
click on an item and select one of its views. Plugins provide views of components.
In Workbench, access the following summary descriptions on any plugin by selecting Help > On View
(F1) from the menu, or pressing F1 while the view is open.

Types of modules with plugins
Following, is a list of modules with driver-related plugins (views):
• Plugins in driver module
• Plugins in niagaraDriver module
• Plugins in niagaraVirtual module

Plugins in driver module
• driver-DelimitedFileImportManager
• driver-DeviceManager
• driver-DriverManager
• driver-FileDeviceManager
• driver-HistoryExportManager
• driver-HistoryImportManager
• driver-PointManager

driver-DelimitedFileImportManager
 The Delimited File Import Manager view is the default view on the Histories
extension (FileHistoryDeviceExt) of a FileDevice (in a FileNetwork). See Figure 5-1 on page 4.

 This manager view is similar to other driver’s history import managers—see “History Import Manager”
on page 1-46. However, there is no “Discover” feature to add history file import descriptors (types
ExcelCsvFileImport and DelimitedFileImport). Instead, you use the History Import New function to add
history file import descriptors, as each is simply to reference a local delimited-type text file (such as a CSV
type).
Like other manager views, the Delimited File Import Manager view is a table-based view, where you
create (New) history file import descriptors, or double-click existing import descriptors to make History
Import Edits. For details, see the next section “Delimited File Import Manager usage notes”.
Delimited File Import Manager usage notes The following notes apply specifically to using the
DelimitedFileImportManager view, the view most used within a FileNetwork (outside of property sheets
for created history file import descriptors).
• When adding a new descriptor, select the ExcelCsvFileImport type over the DelimitedFileImport

type whenever the source file is a CSV type that was created using Microsoft Excel. This provides
more support for importing “complex” CSV-formatted data—for example, including data that in-
corporates comma usage(s) within data fields.

• Add a single descriptor referencing a File that is patterned like other delimited files you wish to im-
port, then adjust configuration properties of that descriptor until it executes (imports a history)
properly—without a fault status. Note the Timestamp Format property may take some tweaking.
Then, duplicate that working import descriptor, (and before executing) change its File reference,
History Id, and whatever other properties you wish to keep unique. This saves engineering time.
For related details, see “Properties of history file import descriptors” on page 5-2.
NiagaraAX-3.7-3.8

Drivers Guide
4–1

Plugins in niagaraDriver module Chapter 4 – Plugin Guides

November 5, 2013
driver-DeviceManager
 The Device Manager plugin allows you to create and manage devices. The DeviceManager is a view
on a network component in a station. For details, see “About the Device Manager” on page 1-14.

driver-DriverManager
The Driver Manager plugin allows you to add and view drivers. It is available on the DriverCon-
tainer. For more details, see “About the Driver Manager” on page 1-4.

driver-FileDeviceManager
The File Device Manager is the default view on a FileNetwork. For general information, see “About
the Device Manager” on page 1-14. See the section “driver-FileNetwork” on page 5-4 for more details

about a File Network. Also, note that the view used most often under a File Network is the DelimitedFile-
ImportManager view of the Histories extension of a FileDevice.

driver-HistoryExportManager
History Export Manager provides a view of NiagaraHistoryDeviceExt. To see the view, right-click on
a NiagaraHistoryDeviceExt in a Station and select Views > History Export Manager. For

details, see “Niagara History Export Manager” on page 2-33.

driver-HistoryImportManager
History Import Manager provides a view of NiagaraHistoryDeviceExt. To see the view, right-click
on a NiagaraHistoryDeviceExt in a Station and select Views > HistoryImportManager. For

details, see “History Import Manager” on page 1-46.

driver-PointManager
Point Manager provides an overview of the proxy points mapped into the PointDeviceExt. In a
NiagaraNetwork, PointManager is a view on the NiagaraPointDeviceExt of a NiagaraStation. To see

the PointManager, right-click on a Points device extension and select Views > Point Manager. For
details, see “About the Point Manager” on page 1-37.

Plugins in niagaraDriver module
• NiagaraFileManager
• NiagaraHistoryExportManager
• NiagaraHistoryImportManager
• NiagaraPointManager
• NiagaraScheduleExportManager
• NiagaraScheduleImportManager
• ServerConnectionsSummary
• StationManager
• UserSyncManager

niagaraDriver-NiagaraFileManager
 Niagara File Manager is the default view of a NiagaraStation’s “Files” device extension
(NiagaraFileDeviceExt). To see the view, double-click on this extension, or right-click and select

Views > Niagara File Manager. For details, “About the Niagara File Manager” on page 2-54.

niagaraDriver-NiagaraHistoryExportManager
 Niagara History Export Manager provides a view of NiagaraHistoryDeviceExt. To see the view,
right-click on a NiagaraHistoryDeviceExt in a Station and select Views > Niagara History

Export Manager. For more details, see “Niagara History Export Manager” on page 2-33.

niagaraDriver-NiagaraHistoryImportManager
 Niagara History Import Manager provides a view of NiagaraHistoryDeviceExt. To see the view,
Right-click on a NiagaraHistoryDeviceExt in a Station and select Views > Niagara History

Import Manager. For more details, see “History Import Manager” on page 1-46.

niagaraDriver-Niagara PointManager
 Niagara Point Manager provides access to the proxy points mapped into the PointDeviceExt. The
Niagara PointManager is a view on the NiagaraPointDeviceExt in a Station in a NiagaraNetwork. For

general information, see “About the Point Manager” on page 1-37. For specific details, see “Niagara Point
Manager notes” on page 2-20.
NiagaraAX-3.7-3.8

Drivers Guide
4-2

Chapter 4 – Plugin Guides Plugins in niagaraVirtual module
November 5, 2013
niagaraDriver-NiagaraScheduleExportManager
 The Niagara Schedule Export Manager is used to manage schedules exported from a
NiagaraStation. For more details, see “Schedule Export Manager” on page 1-53, and also “Station

Schedules import/export notes” on page 2-28.

niagaraDriver-NiagaraScheduleImportManager
 The Niagara Schedule Import Manager is used to manage schedules imported from a
NiagaraStation. For more details, see “Schedule Import Manager” on page 1-49, and also “Station

Schedules import/export notes” on page 2-28.

niagaraDriver-ServerConnectionsSummary
 The Server Connections Summary is the default view of the ServerConnections slot in the
Niagara Fox Service, under the NiagaraNetwork. It provides a table listing current client connections

to the station’s Fox server (station-to-station connections are not included).
Note: The main usage of this view is to perform a Force Disconnect action (right-click access) on any Fox

server session shown. In some station maintenance scenarios, this may be helpful.
Included in connections summary table are the following columns:
• Address

IP address of the Fox client connected to the station, along with its remote TCP port.
• User

Station user account used for authentication.
• Connection Time

Timestamp of when the Fox connection occurred.
• Application

Client software used to access the station (for example, Niagara Workbench 3.0.76).
From the table, to see more details on any Fox server session, double-click an entry. The view changes to
show the property sheet of that SessionN, with status slots of historical information, including connect
and disconnect entries.
Access the Server Connections Summary from the property sheet of the NiagaraNetwork. Expand
the Fox Service, then click the Server Connections slot.

niagaraDriver-StationManager
 The Station Manager view on the NiagaraNetwork allows you to manage and access NiagaraS-
tations. For more details, see “Niagara Station Manager notes” on page 2-9.

niagaraDriver-UserSyncManager
 The User Sync Manager view on the NiagaraNetwork allows you to manage the Users device
extension properties for all NiagaraStations in the network. For more details, see “About the User

Sync Manager” on page 2-18.

Plugins in niagaraVirtual module
• Niagara Virtual Cache View
• Nva File View

niagaraVirtual-NiagaraVirtualCacheView
 Niagara Virtual Cache View is the default view on the “Cache” component child of the
“Virtual Policies” container of a NiagaraNetwork. For more details, see “Niagara virtuals cache

(Virtual Policies)” on page 2-42.

niagaraVirtual-Nva File View
 Nva File View is a view of a station’s “Niagara virtual archive” cache file (e.g. cache1.nva)
when accessed from Workbench. For related details, see “Virtual Policies (Cache) properties” on

page 2-44.
NiagaraAX-3.7-3.8

Drivers Guide
4-3

Plugins in niagaraVirtual module Chapter 4 – Plugin Guides

November 5, 2013
NiagaraAX-3.7-3.8

Drivers Guide
4-4

5CHAPTER

Component Guides
These Component Guides provides summary information on components commonly used in drivers.

Component Reference Summary
Summary information is provided on components in the following modules:
• driver
• fox
• niagaraDriver
• serial
• tunnel

Components in driver module
• ArchiveFolder
• ConfigRule
• DelimitedFileImport
• DriverContainer
• ExcelCsvFileImport
• FileDevice
• FileHistoryDeviceExt
• FileHistoryWorker
• FileNetwork
• HistoryNetworkExt
• PingMonitor
• SendTimer
• SendTimes
• TuningPolicy
• TuningPolicyMap

driver-ArchiveFolder
 ArchiveFolder is a folder available to hold and organize history “import descriptors” and/or “export
descriptors”. You can add such folders using the New Folder button in the History Import

Manager view or History Export Manager view of the “Histories” extension of a device
component (NiagaraStation, FileDevice, various “rdbmsDatabase” components). Each ArchiveFolder has
its own manager view (default parent view, such as History Import Manager).

driver-ConfigRule
ConfigRule is used to determine the configuration overrides for histories when they are exported to
the station. By default, the parent container HistoryNetworkExt (History Policies) contains only a

single ConfigRule, named “Default Rule.” Default settings are to configure “all” histories exported to the
station as “unlimited” capacity.
For more details, see “Config Rules” on page 2-7 and “About History Policies” on page 2-7.
NiagaraAX-3.7-3.8

Drivers Guide
5–1

Components in driver module Chapter 5 – Component Guides

November 5, 2013
driver-DelimitedFileImport
 DelimitedFileImport is a history file import descriptor used to create a Niagara history based upon
data in a (local) delimited text file, such as comma-separated-values (CSV) or tab-delimited values

(delimiter to use is configurable). These import descriptors reside under the HistoryNetworkExt
(Histories extension) of a FileDevice in a FileNetwork. You use the Delimited File Import Manager
view of the Histories extension to add history file import descriptors.

Note: This import descriptor is similar to the ExcelCsvFileImport descriptor, but uses a “dumb” string tokenizer
to parse each line of the specified file, and separates table columns based solely on the specified delimiter.
Only “non-complex” CSV files should be imported using it, or any “non-CSV” delimited file (such as tab-
delimited, for example). For any CSV file created by Microsoft Excel, use the ExcelCsvFileImport descriptor
instead.
This import descriptor has properties “common” among all history import descriptors, such as Name,
History Id, and so on. See “History Import Manager” on page 1-46. For other configuration properties,
see “Properties of history file import descriptors” on page 5-2.

driver-DriverContainer
 DriverContainer is used by convention to store all DeviceNetworks in a station database. The
DriverManager is its primary view. See “About the Driver Manager” on page 1-4.

driver-ExcelCsvFileImport
 ExcelCsvFileImport is a history file import descriptor used to create a Niagara history based upon
data in any (local) comma-separated-values (CSV) text file created by Microsoft Excel. These history

file import descriptors reside under the HistoryNetworkExt (Histories extension) of a FileDevice in a
FileNetwork. You use the DelimitedFileImportManager view of the Histories extension to add history file
import descriptors.

Note: This import descriptor is similar to the DelimitedFileImport descriptor, but assumes CSV data specifically
created by Microsoft Excel (it lacks the “Delimiter” property). This allows complex CSV-delimited data to
be successfully imported, using the special rules of Excel CSV generated files. For any other type of delimited
data (for example, tab-delimited or “pipe-delimited”), use the DelimitedFileImport descriptor instead.
This import descriptor has properties “common” among all history import descriptors, such as Name,
History Id, and so on. See “History Import Manager” on page 1-46. See the next section “Properties of
history file import descriptors” for other configuration properties.
Properties of history file import descriptors History file import descriptors (DelimitedFileImport,
ExcelCsvFileImport) have the following set of configuration properties, which appear in the New and
Edit dialogs for the descriptors:
• Value Facets

Lets you specify the units with which to display values imported from the delimited file. On the im-
port descriptor’s property sheet, this is property is found under “Config Overrides”.

• Time Zone
Lets you specify the time zone for the imported history. On the import descriptor’s property sheet,
this is property is found under “Config Overrides”.

• File
(Important) Identifies the local delimited file to import, using standard “ord” file syntax. Typically,
you simply click the folder icon to open the File Chooser, and navigate as needed to click-select
an absolute file ord path to the file.
Of, if the parent FileDevice has a non-null “Base Ord” property (specifying a directory), you can type
in a file name or file path relative to that directory, using the following ord syntax:
file:fileName or filePath/toFileName

• Full Import On Execute
Default is disabled. If set to enabled, the entire history is re-filled afresh upon each import. If left at
default, only new data is appended to the history upon every import.

• Row Start
Along with Row End, lets you specify the start and end rows (lines) in the file to use for importing.
Note that both properties are zero-based, meaning that a Row Start of 1 means that it skips the first
line (usually column headers), and begins importing on the second line.

• Row End
See Row Start, above. Row End is optional, and defaults to go to the end of the file (none).

• Delimiter
(appears only if a DelimitedFileImport descriptor) Specifies the text character used in the file to sep-
arate columns. For any ExcelCsvFileImport descriptor, a comma (“,”) is used by default.
NiagaraAX-3.7-3.8

Drivers Guide
5–2

Chapter 5 – Component Guides Components in driver module
November 5, 2013
• Timestamp Column Index
(Required, zero-based) Left-to-right index of the column in the file used to import the timestamp.
For example: if first column, this value is “0”; if second column, this value is “1”; and so on.

• Timestamp Format
(Required) String that specifies how timestamps are formatted in the file. A drop-down control lets
you select among several common formats—after selection, you can further edit if necessary (may
be necessary if you execute, and the descriptor is in fault). For timestamp format details and exam-
ples, see http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

• Value Column Index
(Required, zero-based) Left-to-right index of the column in the file used to import the value. For ex-
ample: if the second column, this value is “1”; if the fifth column, this value is “4”; and so on.

• Value Format
Specifies the value type, meaning the type of history record to create, as one of the following:
• Numeric Type — (default) for a numeric type history.
• String Type — for a string type history.
• Boolean Type — for a boolean (two-state) type history.

• Status Column Index
(Usage optional). The left-to-right index (zero-based) of the column in the file used to import the
status, if available. Note that the imported status value must match the Niagara “status bits” imple-
mentation in encoded-integer format, using the following decimal equivalent values (either singly,
or in the case of non-zero values in combinations):
• 0 - ok
• 1 - disabled
• 2 - fault
• 4 - down
• 8 - alarm
• 16 - stale
• 32 - overridden
• 64 - null
• 128 - unackedAlarm

• Identifier Column Index
(Usage optional). The left-to-right index (zero-based) of the column in the file used to filter rows for
inclusion, in combination with the Identifier Pattern property value (below). Default value is None
(no row filtering).

• Identifier Pattern
(Usage optional). Specifies the text string in the Identifier Column (above) that is searched for in all
rows, where any row with the matching text string is imported. Note that wildcard (“*”) characters
are supported. Default if value is * (everything matched).

driver-FileDevice
 FileDevice is the “device level” container to import local delimited-type files (such as CSV) as
Niagara histories. It resides under the FileNetwork. It has common device properties (see “Device

status properties” on page 1-22) and Health and Alarm Source Info slots.
The FileDevice’s only device extension, and most important child slot, is the FileHistoryDeviceExt
(Histories), under which you add file import descriptors. The sole configuration property of impor-
tance is “Base Ord”, where you can select a specific local directory (use drop-down control beside folder
icon, choose Directory Chooser). This allows you to enter relative file ord values in the “File”
property of history file import descriptors (under its child Histories extension). Otherwise (using the
default “null” Base Ord), you specify absolute “File” ord values in child descriptors. For related details, see
“Properties of history file import descriptors”.

Note: Typically, a FileNetwork is configured with only a single FileDevice, with a default “null” value Base Ord
property. However, if you wish to impose some logical grouping, you can create multiple FileDevices, and
use the Base Ord scheme (with different directory ords) to separate import descriptors by source.

Note: Unlike many fieldbus drivers, there is no “frozen” LocalFileDevice in a FileNetwork—any FileDevice named
“LocalFileDevice” is simply a standard FileDevice component.

driver-FileHistoryDeviceExt
 FileHistoryDeviceExt is the driver module implementation of HistoryDeviceExt, and is the only
device extension under a FileDevice. The default view is the DelimitedFileImportManager view,

which you use to add new (or edit existing) file import descriptors. Each descriptor adds a Niagara history
in the local history space.
NiagaraAX-3.7-3.8

Drivers Guide
5–3

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Components in driver module Chapter 5 – Component Guides

November 5, 2013
driver-FileHistoryWorker
 FileHistoryWorker manages the queue and thread processing for history file import descriptors. It
is a frozen slot of the FileDevice, and requires no configuration.

driver-FileNetwork
 FileNetwork is available in the driver module, and acts as the “network level” container for one or
more FileDevice components. The FileDeviceManager is its primary view.

The purpose of a FileNetwork is to import data from local delimited-type files (such as CSV), as Niagara
histories. Often, a FileNetwork contains only a single FileDevice. Unlike in true “field bus” networks, the
standard NiagaraAX driver architecture (network: device: device extensions) provides no “real hardware”
equivalency, this is simply a modeling “convention.”
Figure 5-1 shows the architecture of a FileNetwork in the Nav tree, where the active (and most used) view
is the DelimitedFileImportManager view of the Histories extension (FileHistoryDeviceExt) of the
FileDevice.

Figure 5-1 FileNetwork architecture uses standard “device” modeling

Note that a FileDevice has none of the other “standard” device extensions (Points, Schedules, or
Alarms). See “Usage notes” for more details on a File Network.
Usage notes The following notes apply to using a FileNetwork.
• The FileNetwork requires special licensing in the host’s Tridium license—requiring the feature

“fileDriver”. This feature may also contain a “history.limit=n” attribute, which defines the
number of files that can be imported as histories (number of history file import descriptors). With-
out proper licensing, the FileNetwork and child components will have a fault status, and files will
not import as Niagara histories.

• Specific requirements must be met by each delimited text file for successful import, namely:
• It must have a single “timestamp” column that contains both date and time. Note this means if

a delimited file has two columns: one for date and another for time, you must perform external
“upstream” processing (outside of Niagara) to combine into a single column, before importing.

• It must have a single column that contains the “value” required in the imported history. Note
that when configuring the history file import descriptor, you specify the “Value Format” as one
of several types (Numeric, String, Boolean). “Value Facets” are also available in the descriptor.

• Optionally, it may also have a single column to use as “Status” in the history—however, this col-
umn must contain integer data (only) with values enumerated based upon Niagara “status bits”
values. See “Properties of history file import descriptors” on page 5-2 for related details.
Note the status import feature may be used mainly with data that first originated from a Niagara
history (that was exported to CSV), then subsequently “manipulated” outside of Niagara.
NiagaraAX-3.7-3.8

Drivers Guide
5–4

Chapter 5 – Component Guides Components in fox module
November 5, 2013
• Typically, FileNetwork usage applies more to a Supervisor (PC) host versus a JACE host, as it is more
likely to contain text-delimited files needed for import as Niagara histories. In particular, it may be
used with a Supervisor serving “Energy Services” reports to remote clients.

driver-HistoryNetworkExt
HistoryNetworkExt (History Policies) provides two network-level functions for histories, as follows:
•For history imports, it contains an “On Demand Poll Scheduler”, which has configurable poll rates
used in “on demand polling” of imported histories, if so configured.

• For history exports, it acts a container for one or more “config rules”, which specify how the config-
uration of the local history (archive) is set when the history is “pushed” (exported) into the station.
Configuration rules are applied only when the history is created, that is, when first archived to the
station. Changing a rule has no effect on existing histories.

For more details, see “About History Policies” on page 2-7.

driver-HistoryPollScheduler
HistoryPollScheduler (On Demand Poll Scheduler) contains properties that specify the
available network-level polling rates for imported histories, used in “on demand” polling of an

imported history. Such polling can be triggered when the “Live Updates” button in a history chart or
history table view is toggled active. For more details, see “Default history policies” on page 2-7.

driver-PingMonitor
 The PingMonitor periodically calls “ping” on all the “pingables” to monitor network and device
health. PingMonitor provides built-in support to generate alarms when pingables are down. The

PingMonitor is available in the property sheet of most networks as “Monitor.” See “About Monitor” on
page 1-7 for more details.

driver-SendTimer
 This class file provides support for max and min send time on components implementing the
TimedWrites interface. The sendTimer will identify a SendTimes object in the parent path. The first

SendTimes encounter walking up from the immediate parent will be used. If no SendTimes object is
found then calls to newChange() will result in an single immediate call to sendWrite() on the parent. The
SendTimer is available in the driver Module.

driver-SendTimes
 This class file provides the means to configure max and min send times for components imple-
menting the TimedWrites interface and containing SendTimer object. The SendTimes is available in

the driver Module.

driver-TuningPolicy
 Contains a collection of properties typically used in the driver network’s evaluation of both write
requests (e.g. to writable proxy points) as well as the acceptable “freshness” of read requests. Also, can

associate with one of 3 Poll Rates in the network’s Poll Service.
You can create multiple TuningPolicies under a driver’s TuningPolicyMap. You can then assign one or
more proxy points to a specific TuningPolicy. See“About Tuning Policies” on page 1-8 for more details.

driver-TuningPolicyMap
 Container for one or more TuningPolicy(ies), found in the property sheet of most network compo-
nents. You can create multiple TuningPolicies under a network’s TuningPolicyMap. You can then

assign one or more proxy points to a specific TuningPolicy. See“About Tuning Policies” on page 1-8 for
more details.

Components in fox module
• FoxClientConnection
• FoxFileService
• FoxServerConnection
• FoxService
• FoxSession

fox-FoxClientConnection
 FoxClientConnection (Client Connection) encapsulates a FoxSession connection initiated by
this VM. It is used as the client connection in a station VM by a NiagaraStation, and in Workbench

by FoxSession. In the Client Connection container under a NiagaraStation, you must setup the
properties Address, Port, Username, and Password in order to access a remote station.
NiagaraAX-3.7-3.8

Drivers Guide
5–5

Components in niagaraDriver module Chapter 5 – Component Guides

November 5, 2013
Actions You can manually force/test a connection using Manual Connect and Manual
Disconnect actions.

fox-FoxFileSpace
 FoxFileSpace maps "File:" remotely.

fox-FoxServerConnection
 FoxServerConnection encapsulates a Fox (client) session connection to the station’s Fox server. It

represents user access (vs. access from another station). Child slots provide the connection state as well
as various historical data about last connect and disconnect activity.
Actions Available Action is Force Disconnect.

fox-FoxService
 FoxService is the Baja component wrapper for the FoxServer daemon. It is commonly used within
a NiagaraNetwork, but can be used stand alone to provide basic Fox accessibility.

fox-FoxSession
 FoxSession represents a Workbench (client) session to a station running on a NiagaraAX host
(server), using a Fox connection on a particular port—in other words, a station connection. You see

this as an expandable icon in Workbench’s Nav tree, following by the station’s (name), for any station
opened in Workbench.

Starting in AX-3.7, a secure Fox station connection (SSL or TLS) is also possible from Workbench, in
which case the station connection icon shows a small padlock, like the above.

Also starting in AX-3.7, Workbench provides a right-click Session Info command on any active
station connection, which produces a popup dialog with details on the current Fox station connection.
This is in addition to other right-click commands previously available, such as Disconnect, Close, Spy,
Save Station, Backup Station, and so on.

fox-ServerConnections
 ServerConnections is the container slot to store the current server-side FoxServerConnections from

non-station clients. The primary view is the ServerConnectionsSummary. The ServerConnections is
available in the fox module.

Components in niagaraDriver module
• BogProvider (Sys Def Provider)
• CyclicThreadPoolWorker
• LocalSysDefStation
• NiagaraAlarmDeviceExt
• NiagaraFileDeviceExt
• NiagaraFileImport
• NiagaraFoxService
• NiagaraHistoryDeviceExt
• NiagaraHistoryExport
• NiagaraHistoryImport
• NiagaraNetwork
• NiagaraPointDeviceExt
• NiagaraPointFolder
• NiagaraProxyExt
• NiagaraScheduleDeviceExt
• NiagaraScheduleImportExt
• NiagaraStation
• NiagaraStationFolder
• NiagaraSysDefDeviceExt
• NiagaraSystemHistoryExport
• NiagaraSystemHistoryImport
• NiagaraTuningPolicy
• NiagaraTuningPolicyMap
• NiagaraUserDeviceExt
• NiagaraVirtualDeviceExt
• ProviderStation
NiagaraAX-3.7-3.8

Drivers Guide
5–6

Chapter 5 – Component Guides Components in niagaraDriver module
November 5, 2013
• RoleManager
• SyncTask

niagaraDriver-BogProvider
 BogProvider (“Sys Def Provider”) is child container property in a NiagaraNetwork. The API
interacts with this component to query about the “Sys Def” hierarchy, and persists this definition.

Storage includes two options to store all Sys Def nodes: either BOG, i.e. the station .bog, as the default
(using child ProviderStation components), or Orion (in Orion database). Sys Def is chiefly of interest to
NiagaraAX developers working with the API.

niagaraDriver-CyclicThreadPoolWorker
 The CyclicThreadPoolWorker (Workers) slot of a NiagaraNetwork allows “shared thread pool
size” tuning for large networks via a Max Threads property. By default, the value of this property is

“max” (maximum). If necessary, this can be adjusted. See “NiagaraNetwork component notes” on page 2-
1 for further details.

niagaraDriver-LocalSysDefStation
 LocalSysDefStation (“Local Station”) is child container property in a NiagaraStation. It reflects
common “Sys Def” properties for the local station, which would be “sync’ed up” to a remote Super-

visor station (if the local station was defined as its subordinate). Sys Def is chiefly of interest to developers
extending the API.

niagaraDriver-NiagaraAlarmDeviceExt
 A NiagaraStation’s NiagaraAlarmDeviceExt (Alarms extension) specifies how alarms from that
station are mapped into the current station’s own alarm subsystem, plus provide status properties

related to alarm sharing. For more details, see “About the Alarms extension” on page 1-35.

niagaraDriver-NiagaraFileDeviceExt
A NiagaraFileDeviceExt (“Files”) is included among the collection of device extensions under any
NiagaraStation component. This device extension allows the station to import files, and folders of

files, from the associated remote station. The default view is the Niagara File Manager, in which you
create NiagaraFileImport descriptors, to discover, add, and edit parameters specifying which files and
folders are to be imported. For more details, “About the Files extension” on page 2-54.

niagaraDriver-NiagaraFileImport
NiagaraFileImport is an “import descriptor” that specifies a file or folder of files (including all
subfolders and files) that are to be imported to the local station, sourced from the remote parent

NiagaraStation. Included are properties for execution time and overwrite policies. For more details,
“About Niagara FileImport properties” on page 2-56.

niagaraDriver-NiagaraFoxService
 NiagaraFoxService (Fox Service) is a container slot of a NiagaraNetwork, and is a specialization of
FoxService that knows how to map server connections to the NiagaraStation serverConnection slot.

NiagaraFoxService typically includes ServerConnections. For more details, see “About the Fox Service”
on page 2-2.

niagaraDriver-NiagaraHistoryDeviceExt
 NiagaraHistoryDeviceExt is the Niagara implementation of HistoryDeviceExt. For more details, see
“About the Histories extension” on page 1-34 and “About Histories extension views” on page 1-46.

niagaraDriver-NiagaraHistoryExport
 NiagaraHistoryExport defines the export parameters for a local Niagara history, including
collection (“push”) times, current status, and remote history Id. NiagaraHistoryExports reside under

the History extension of a NiagaraStation in the NiagaraNetwork. For more details, see “Niagara History
Export properties” on page 2-35.

niagaraDriver-NiagaraHistoryImport
 NiagaraHistoryImport defines the local import parameters for a remote Niagara history, including
collection (“pull”) times, current status, local history Id, and config overrides. NiagaraHistoryIm-

ports reside under the History extension of a NiagaraStation in the NiagaraNetwork. For more details,
see “Niagara History Import properties” on page 2-31.

niagaraDriver-NiagaraNetwork
 NiagaraNetwork models NiagaraAX devices (NiagaraStations) that the current station can commu-
nicate with. The primary view is the StationManager. The NiagaraNetwork includes the NiagaraFox-

Service. For more details, see “About the Niagara Network” on page 2-1.
NiagaraAX-3.7-3.8

Drivers Guide
5–7

Components in niagaraDriver module Chapter 5 – Component Guides

November 5, 2013
niagaraDriver-NiagaraPointDeviceExt
 NiagaraPointDeviceExt is the Niagara implementation of PointDeviceExt. The primary view is the
PointManager. For general information, see “About the Points extension” on page 1-27, and for

specific details see “About the Bql Query Builder” on page 2-21 and “Niagara proxy point notes” on page
2-24.

niagaraDriver-NiagaraPointFolder
 NiagaraPointFolder is the Niagara implementation of a folder under a NiagaraStation’s Points

extension. You add such folders using the New Folder button in the PointManager view of the Points
extension. Each NiagaraPointFolder has its own PointManager view.

niagaraDriver-NiagaraProxyExt
 NiagaraProxyExt is the Niagara implementation of BProxyExt. For more details see “About proxy
points” on page 1-27 and “Niagara proxy point notes” on page 2-24.

niagaraDriver-NiagaraScheduleDeviceExt
 NiagaraScheduleDeviceExt is the Niagara implementation of a Schedules device extension. For
general information, see “About the Schedules extension” on page 1-36, and for more specific details

see “Station Schedules import/export notes” on page 2-28.

niagaraDriver-NiagaraScheduleImportExt
 NiagaraScheduleImport defines the local import parameters for a remote Niagara schedule. For
more details, see “Station Schedules import/export notes” on page 2-28.

niagaraDriver-NiagaraStation
 NiagaraStation models a platform running a Niagara station via a “regular” (unsecured) Fox
connection, including a a JACE, SoftJACE, or Supervisor.
 NiagaraStation (with padlock on icon) models a platform running a Niagara station via a secure (SSL
or TLS) Foxs connection, including a including a JACE, SoftJACE, or Supervisor. Applies only if the

remote host is running AX-3.7 or later, is licensed for SSL (feature “crypto”), and is configured for Foxs.
In either case, the NiagaraStation name must map to Station.stationName. For more details, see “Niaga-
raStation component notes” on page 2-14.
For details related to a Foxs connection, see “Discovery notes when stations use secure Fox (Foxs)” on
page 2-10, and also “About the Fox Service” on page 2-2.
Ping Perform a ping test of the device.

niagaraDriver-NiagaraStationFolder
 NiagaraStationFolder is the Niagara implementation of a folder under a NiagaraNetwork. You add
such folders using the New Folder button in the StationManager view of the Niagara network. Each

NiagaraStationFolder has its own StationManager view. Station folders can be useful in very large
systems to organize NiagaraStation components.

niagaraDriver-NiagaraSysDefDeviceExt
 NiagaraSysDefDeviceExt (Sys Def) is included among the collection of device extensions under
any NiagaraStation component, and is chiefly of interest to developers. This Sys Def extension has

two child container properties, “RoleManager” and “SyncTask”, each with a collection of related
properties. Together with the NiagaraNetwork’s “Sys Def Provider” (BogProvider) component, the API
helps define the organization of stations in a NiagaraNetwork in a known hierarchy, and allows synchro-
nization of basic information up that hierarchy.
For more details, “About Sys Def components” on page 2-51.

niagaraDriver-NiagaraSystemHistoryExport
 NiagaraSystemHistoryExport defines the “system tags” text patterns used to export local Niagara
histories into the target NiagaraStation, in addition to other export parameters including collection

(“push”) times and current status. Along with NiagaraHistoryExport descriptors, NiagaraSystemHisto-
ryExport descriptors reside under the History extension of a NiagaraStation in the NiagaraNetwork.
However, SystemHistoryExport descriptors utilize “System Tags” properties of local history extensions,
instead of unique history IDs.
For more details, see “Niagara History Export properties” on page 2-35 and “Using System Tags to export
Niagara histories” on page 2-37.
NiagaraAX-3.7-3.8

Drivers Guide
5–8

Chapter 5 – Component Guides Components in niagaraVirtual module
November 5, 2013
niagaraDriver-NiagaraSystemHistoryImport
 NiagaraSystemHistoryImport defines the “system tags” text patterns used to import remote
Niagara histories from the target NiagaraStation, in addition to local import parameters, including

collection (“pull”) times, current status, local history Id, and config overrides. Along with NiagaraHisto-
ryImport descriptors, NiagaraSystem HistoryImport descriptors reside under the History extension of a
NiagaraStation in the NiagaraNetwork. However, SystemHistoryImport descriptors utilize “System
Tags” properties of remote history extensions, instead of unique history IDs.
For more details, see “Niagara History Import properties” on page 2-31 and “Using System Tags to import
Niagara histories” on page 2-32.

niagaraDriver-NiagaraTuningPolicy
 Contains properties used in the NiagaraNetwork’s handling of both write requests (e.g. to writable
proxy points) as well as the acceptable “freshness” of read requests of Niagara proxy points.

You can create multiple tuning policies under the NiagaraNetwork’s NiagaraTuningPolicyMap. You can
then assign one or more proxy points to a specific policy. See“About Tuning Policies” on page 1-8 for
general information, and “Niagara Tuning Policy notes” on page 2-2 for specific details.

niagaraDriver-NiagaraTuningPolicyMap
 Container for one or more NiagaraTuningPolicy(ies), found in the NiagaraNetwork’s property sheet.
If needed, you can create multiple tuning policies. You can then assign one or more Niagara proxy

points to a specific policy.

niagaraDriver-NiagaraUserDeviceExt
 The NiagaraUserDeviceExt (Users) container of a NiagaraStation holds properties that enable/
configure network user synchronization “in” and “out” of this station, in relation to the station with

its NiagaraNetwork. There is no special view (apart from property sheet) on this Users device extension,
nor is it a container for other components.
For more details, see “About the Users extension” on page 2-15.

niagaraDriver-NiagaraVirtualDeviceExt
 The NiagaraVirtualDeviceExt (Virtual) is the Niagara driver implementation of the Baja virtual
gateway in a AX-3.7 or later station. A virtual gateway is a component that resides under the station’s

component space (Config), and acts as a gateway to the station’s “virtual component space.” Note other
object spaces are Files and History. For a general explanation about Baja virtual components, refer to
“About virtual component spaces” on page 1-24.
For details on the Niagara Virtual Gateway, see “About the Niagara Virtual Device Ext” on page 2-40.

niagaraDriver-ProviderStation
 ProviderStation (“stationName”) is a child container under the BogProvider (“Sys Def Provider”)
container in a NiagaraStation. Each reflects common “Sys Def” properties for the named station,

which have been “sync’ed up” from remote subordinate stations (note that one ProviderStation mirrors
the LocalSysDefStation). Note these components may be hidden, by default, as well as some of their child
properties. Sys Def is chiefly of interest to developers extending the API.

niagaraDriver-RoleManager
 RoleManager is child container under a NiagaraStation’s “Sys Def” device extension (NiagaraSys-
DefDeviceExt) that specifies and synchronize the relationship of the remote station to the local

station. The “Sys Def” feature, introduced in AX-3.5, is chiefly of interest to developers extending the API.

niagaraDriver-SyncTask
 SyncTask is child container under a NiagaraStation’s “Sys Def” device extension (NiagaraSys-
DefDeviceExt) that propagates changes to Sys Def components between stations that are in a

“master/subordinate” relationship. The “Sys Def” feature, introduced in AX-3.5, is chiefly of interest to
developers extending the API.

Components in niagaraVirtual module
• NiagaraVirtualBooleanPoint
• NiagaraVirtualBooleanPoint
• NiagaraVirtualCache
• NiagaraVirtualCache
• NiagaraVirtualComponent
• NiagaraVirtualDeviceExt
NiagaraAX-3.7-3.8

Drivers Guide
5–9

Components in niagaraVirtual module Chapter 5 – Component Guides

November 5, 2013
• NiagaraVirtualEnumPoint
• NiagaraVirtualEnumWritable
• NiagaraVirtualNumericPoint
• NiagaraVirtualNumericWritable
• NiagaraVirtualStringPoint
• NiagaraVirtualStringWritable

niagaraVirtual-NiagaraVirtualBooleanPoint
 NiagaraVirtualBooleanPoint is the Niagara driver implementation of a virtual BooleanPoint. They
are among the eight type-specific “Niagara virtual” components. For more details, see “About

Niagara virtual components” on page 2-38.

niagaraVirtual-NiagaraVirtualBooleanWritable
 NiagaraVirtualBooleanWritable is the Niagara driver implementation of a virtual BooleanWritable.
They are among the eight type-specific “Niagara virtual” components. For more details, see “About

Niagara virtual components” on page 2-38.

niagaraVirtual-NiagaraVirtualCache
 NiagaraVirtualCache (Cache) is the component representation of a NiagaraNetwork’s virtual

component cache. It provides a default Niagara Virtual Cache View to examine persisted cached
data (in file or files specified in the virtual Cache Policy). For more details, see “Niagara virtuals cache
(Virtual Policies)” on page 2-42.

niagaraVirtual-NiagaraVirtualCachePolicy
 NiagaraVirtualCachePolicy (Cache Policy) is the container for a NiagaraNetwork’s cache of virtual
components, holding configuration properties as well as a component representing the Cache. For

more details, see “Niagara virtuals cache (Virtual Policies)” on page 2-42.

niagaraVirtual-NiagaraVirtualComponent
 NiagaraVirtualComponents (or simply Niagara “virtuals”) are the Niagara driver implementation of
Baja Virtual components. They reside under the NiagaraVirtualDeviceExt (“Virtual” slot) of each

NiagaraStation. Typically, note that Niagara virtuals are possible only in an Supervisor station’s Niagar-
aNetwork (the niagaraDriver feature in the host’s license must have “virtual” attribute set to true). In this
scenario, if the “Virtuals Enabled” property of a NiagaraStation is set to true, the entire component
structure of that station can be dynamically modeled using Niagara virtuals.

Note that the Workbench icon for each Niagara virtual has a small “ghost” () superimposed in the lower
right over the “normal” icon for that type—a visual reminder that you are looking into the “virtual
component space” that represents that station.
For more details, see “About Niagara virtual components” on page 2-38.

niagaraVirtual-NiagaraVirtualDeviceExt
 The NiagaraVirtualDeviceExt (Virtual) is the Niagara driver implementation of the Baja virtual
gateway in a AX-3.7 or later station. A virtual gateway is a component that resides under the station’s

component space (Config), and acts as a gateway to the station’s “virtual component space.” Note other
object spaces are Files and History. For a general explanation about Baja virtual components, refer to
“About virtual component spaces” on page 1-24.
For details on this Niagara Virtual gateway, see “About the Niagara Virtual Device Ext” on page 2-40.

niagaraVirtual-NiagaraVirtualEnumPoint
 NiagaraVirtualEnumPoint is the Niagara driver implementation of a virtual EnumPoint. They are
among the eight type-specific “Niagara virtual” components. For more details, see “About Niagara

virtual components” on page 2-38.

niagaraVirtual-NiagaraVirtualEnumWritable
 NiagaraVirtualEnumWritable is the Niagara driver implementation of a virtual EnumWritable. They
are among the eight type-specific “Niagara virtual” components. For more details, see “About

Niagara virtual components” on page 2-38.

niagaraVirtual-NiagaraVirtualNumericPoint
 NiagaraVirtualNumericPoint is the Niagara driver implementation of a virtual NumericPoint. They
are among the eight type-specific “Niagara virtual” components. For more details, see “About

Niagara virtual components” on page 2-38.
NiagaraAX-3.7-3.8

Drivers Guide
5–10

Chapter 5 – Component Guides Components in serial module
November 5, 2013
niagaraVirtual-NiagaraVirtualNumericWritable
 NiagaraVirtualNumericWritable is the Niagara driver implementation of a virtual Numer-
icWritable. They are among the eight type-specific “Niagara virtual” components. For more details,

see “About Niagara virtual components” on page 2-38.

niagaraVirtual-NiagaraVirtualStringPoint
 NiagaraVirtualStringPoint is the Niagara driver implementation of a virtual StringPoint. They are
among the eight type-specific “Niagara virtual” components. For more details, see “About Niagara

virtual components” on page 2-38.

niagaraVirtual-NiagaraVirtualStringWritable
 NiagaraVirtualStringWritable is the Niagara driver implementation of a virtual StringWritable.
They are among the eight type-specific “Niagara virtual” components. For more details, see “About

Niagara virtual components” on page 2-38.

Components in serial module
• SerialHelper

serial-SerialHelper
 Container slot that handles the serial port configuration of any serial-based driver (found under the
driver’s Network-level component as “Serial Port Config”).

Note: Also found under any SerialTunnel (in station’s TunnelService) to support a tunneling connection to the
same type of network. In this case, configure it the same as the SerialHelper of the associated driver
network.
SerialHelper contains the following properties:
• Status

Read-only status of the serial port, where it can be fault if a problem was detected, down if the serial
port is not properly configured, or ok otherwise.

• Port Name
String for the serial port, as known to the host platform. For example, COM1 or COM4.

• Baud Rate
Baud rate used in serial communications. Select from enumerated drop-down selections, from
Baud50 through Baud115200. Default value is Baud9600.

• Data Bits
Data bits used in serial communications. Select from enumerated drop-down selections, from Data
Bits8 through Data Bits5. Default value is Data Bits8.

• Stop Bits
Number of stop bits used, as either Stop Bit1 (default) or Stop Bit2.

• Parity
Parity to use, as either None, Odd, Even, Mark, or Space. Default value is None.

• Flow Control Mode
Flow control to use, as either RtsCtsOnInput, RtsCtsOnOutput, XonXoffOnInput, XonXof-
fOnOutput, or none (all checkboxes cleared). Default value is none.

Components in tunnel module
• TunnelService
• SerialTunnel
• TunnelConnection

tunnel-TunnelService
 Station server for “application tunneling,” where remote PCs with a NiagaraAX Tunnel Client
installed can use a legacy or vendor-specific PC application to access devices connected to one or

more driver networks. A tunnel connection allows the remote client application to operate as it were
directly attached to the driver network (via a “virtual” PC port).
A client PC tunnels using an IP (LAN/WAN) connection, which is granted only after authentication as a
station user (with admin write permissions for the particular child tunnel component accessed).
Currently, the following types of child tunnels are supported:
• SerialTunnel
• LonTunnel
NiagaraAX-3.7-3.8

Drivers Guide
5–11

Components in tunnel module Chapter 5 – Component Guides

November 5, 2013
In any station, only one TunnelService is recommended. It can hold the required number of child tunnels,
as needed.
The TunnelService contains the following properties:
• Enabled

Boolean that must be true to support any tunnel server operations.
• Server Port

Software port monitored for incoming client tunnel connections. Default port is 9973.
• Status

TunnelService status, which should be ok (no special licensing required).
• Connections

Number of active tunnel connections, which ranges from 0 (no active) to the number of child tunnel
components.

tunnel-SerialTunnel
. SerialTunnel is the “server side” component used to support tunneling of Windows serial-
connected PC applications to devices reachable in a station’s driver network. Typically, serial

tunneling is used with a “legacy” vendor-specific PC program to access RS-232 connected devices
attached to a JACE controller.
You can add one or more SerialTunnels under a station’s TunnelService. Each SerialTunnel associates
with one specific driver network (and corresponding JACE serial port). See “Serial tunneling” on page 3-
2 for more details.
Properties of the SerialTunnel are described as follows:
• Enabled

Boolean slot that must be enabled (true) to permit tunneling.
• Connections

Read-only slot to indicate the number of tunnel connections, as either 0 (none) or 1 (maximum).
• Status

Read-only status of the serial tunnel, typically ok (unless fault for no supporting COM port).
• Identifier

Read-only “reflection” of the entered Port Name slot in the Serial Port Config container (below),
used as the “Tunnel Name” when configuring the client-side Serial Tunneling dialog.

• Serial Port Config (container)
Holds configuration of the JACE serial port as used by the specific driver network. See SerialHelper
on page 11 for slot descriptions.

In addition, a SerialTunnel has an available (right-click) action:
• Disconnect All

Disconnects any active connection through this SerialTunnel (maximum of 1), causing removal of
the “TunnelConnection” below it. On the remote (serial tunnel client) side, a popup message “Con-
nection closed by remote host” is seen.
Note: Any TunnelConnection component also has its own “Disconnect” action, which effectively
performs the same function.

tunnel-TunnelConnection
. TunnelConnection is a dynamically-added component under a tunnel component (such as a Serial-
Tunnel) that reflects read-only information about this current tunnel connection.

Properties of a TunnelConnection (any tunnel type) are as follows:
• Established

Date-timestamp of when this tunnel connection was first established.
• User Name

User in the station that is currently tunneling.
• Remote Host

Windows hostname or IP address of the remote tunneling client.
• Protocol Version

Version of the (remote) NiagaraAX tunneling client application being used.
• Last Read

Date-timestamp of when the last read of a station item occurred over the tunnel connection.
• Last Write

Date-timestamp of when the last write to a station item occurred over the tunnel connection.
In addition, a TunnelConnection has an available (right-click) action:
NiagaraAX-3.7-3.8

Drivers Guide
5–12

Chapter 5 – Component Guides Components in tunnel module
November 5, 2013
• Disconnect
Disconnects the active tunnel connection, removing the parent TunnelConnection component.
This causes a popup “Connection closed by remote host” to be seen on the client tunnel side.
Note: A SerialTunnel component also has its own “Disconnect All” action, which effectively performs
the same function.
NiagaraAX-3.7-3.8

Drivers Guide
5–13

Components in tunnel module Chapter 5 – Component Guides

November 5, 2013
NiagaraAX-3.7-3.8

Drivers Guide
5–14

	Preface
	Document Change Log

	Driver architecture
	What are networks?
	Where are networks located?

	About Network architecture
	Network component hierarchy
	About network components
	About device components
	About device extensions

	About the Driver Manager
	Driver Manager New and Edit
	New
	Edit

	Common network components
	Network status properties
	Status
	Enabled
	Health

	About network Alarm Source Info
	About Monitor
	Monitor properties
	Monitor considerations by driver

	About Tuning Policies
	Tuning Policy properties
	Tuning Policy considerations by driver

	About poll components
	Poll scheduler operation
	Poll Service properties

	Using poll statistics in tuning poll rates
	Busy Time - How busy is too busy?
	Tuning poll rates

	Additional network components
	About communication components
	About driver-specific properties

	About the Device Manager
	Device New Folder and New
	New Folder
	New

	All Descendants
	Device Edit
	Edit
	Device “gang” edits

	About Device Discover, Add and Match (Learn Process)
	About Learn toggle
	Discover
	Add

	Match (Device)
	Manager table features
	Table options menu
	Column resorting

	Common device components
	Device status properties
	Status
	Enabled
	Health

	Device Alarm Source Info
	Device address properties
	Poll Frequency

	Driver-specific device slots

	Virtual gateway and components
	About virtual component spaces
	About virtual gateways
	Gateway activation

	Application and limitations of virtual components
	Virtual components in Px views
	Virtual ord syntax

	Types of device extensions
	About the Points extension
	About proxy points
	Location of proxy points
	How proxy points are made
	Proxy points versus simple control points

	ProxyExt properties
	Proxy point status
	Effect of facets on proxy points

	About the Histories extension
	About the Retry Trigger

	About the Alarms extension
	Alarms extension properties

	About the Schedules extension
	About the Point Manager
	Points New Folder and New
	New Folder
	New

	Point Edit
	Edit
	Proxy point “gang” edits

	About Point Discover, Add and Match (Learn Process)
	Discover
	Add
	Match

	About other Points views

	About Histories extension views
	History Import Manager
	History Import New
	History Import Edit
	About History Import Discover, Add and Match (Learn Process)

	About the Device Histories View

	About Schedules extension views
	Schedule Import Manager
	Schedule Import New
	Schedule Import Edit
	Edit

	Schedule Import properties
	Schedule Import or Export “gang” edits
	About Schedule Import Discover, Add and Match (Learn Process)
	Discover
	Add
	Match

	Schedule Export Manager

	Niagara Network
	About the Niagara Network
	NiagaraNetwork component notes
	Niagara Tuning Policy notes
	About the Fox Service
	Fox Service properties
	FoxService defaults (new station) changed in AX-3.8

	About History Policies
	Default history policies
	Config Rules
	Example config rules

	Niagara Station Manager notes
	Station Learn and Discover notes
	Discover (Fox) uses UDP multicasting
	Discovery notes when stations use secure Fox (Foxs)
	IP address versus hostname

	Station Add notes
	Reciprocal NiagaraStation component

	NiagaraStation component notes
	About station status properties
	About client connection properties
	About server connection properties
	About station “provisioning” extensions

	About the Users extension
	About Users extension properties
	Example Sync In and Out values
	About Users sync strategy
	Users device extension configuration notes
	Update mismatch with Users device extension fault

	About the User Sync Manager
	Sync process description
	User-sending station (Supervisor) side
	User-receiving station (e.g. JACE) side

	Niagara Discover enhancements
	Niagara Point Manager notes
	Niagara point Discover notes
	Point Discover notes if Fox tunneling (AX-3.4 system)

	About the Bql Query Builder
	About Bql Query Find filters
	About Bql Query Match filters
	About Bql Query Save, Load, and Edit

	Niagara proxy point notes
	Best practices for Niagara proxy points
	Are they even needed for Px views?
	Avoid point extensions under Niagara proxy points
	Avoid links to proxy point actions
	When a Niagara proxy point is required

	Proxy of a proxy, other candidates
	Link control and Niagara proxy points

	NiagaraStation Alarms notes
	Prepend and Append alarm routing notes

	Station Schedules import/export notes
	Niagara schedule import/export default configuration
	Schedule Export Edit
	Edit
	Niagara Schedule Export properties

	Niagara histories notes
	NiagaraStation Histories features
	Niagara History Import Manager
	Discovered selection notes
	Niagara History Import properties
	On demand properties in history import descriptors
	Using System Tags to import Niagara histories

	Niagara History Export Manager
	Niagara History Export New
	Niagara History Export Edit
	Edit

	Niagara History Export properties
	About History Export Discover and Match (Learn Process)
	Discover

	Discovered selection notes
	Using System Tags to export Niagara histories

	About Niagara virtual components
	Niagara virtuals background
	Niagara virtuals in AX-3.7
	Licensing and application overview
	Niagara virtual component licensing
	Niagara virtual component advantages
	Niagara virtual component limitations

	About the Niagara Virtual Device Ext
	Niagara Virtual gateway requirements
	Gateway memory cache and Refresh action

	Ords for Niagara virtual components
	Niagara virtuals cache (Virtual Policies)
	Virtual Policies (Cache) properties

	Security and Niagara virtuals
	Views on Niagara virtuals
	About Virtual Info

	Actions on Niagara virtuals
	Niagara virtuals in Px views
	Px binding notes for Niagara virtuals
	Px usage of Niagara virtuals for write adjustments

	Spy page diagnostics for Niagara virtual components
	Localization support for Niagara virtuals

	About Sys Def components
	About the Niagara Sys Def Device Ext
	About the Role Manager
	About the Sync Task

	About network level Sys Def components
	About the Sys Def Local Station
	About the Sys Def Provider

	About the Files extension
	About the Niagara File Manager
	Add or Edit dialog for NiagaraFileImports
	About Niagara FileImport properties

	Field Bus Integrations
	Port and protocol variations
	Ethernet-connected driver
	Serial-connected driver
	Special-port driver

	Learn versus New devices and points
	Serial tunneling
	Serial tunnel overview
	Client side (PC application)
	Installing the serial tunnel client
	To install the serial tunnel client on a Windows machine
	Serial tunnel client configuration
	Serial tunnel client installation details

	Station side (TunnelService)
	Configuring the serial tunnel server
	To configure the station for serial tunneling
	Best security practices for tunneling
	To configure for safer tunneling access
	About serial tunnel connections

	Serial tunneling usage notes
	Tunneling client messages

	Plugin Guides
	Types of modules with plugins
	Plugins in driver module
	Plugins in niagaraDriver module
	Plugins in niagaraVirtual module

	Component Guides
	Component Reference Summary
	Components in driver module
	Components in fox module
	Components in niagaraDriver module
	Components in niagaraVirtual module
	Components in serial module
	Components in tunnel module

