
Engineering Notes

December 14, 2015

Technical Document

EEnnggiinneeeerriinngg NNootteess
TTrriiddiiuumm,, IInncc..
3951 Westerre Parkway, Suite 350
Richmond, Virginia 23233
U.S.A.

CCoonnffiiddeennttiiaalliittyy

The information contained in this document is confidential information of Tridium, Inc., a Delaware corpora-
tion (“Tridium”). Such information and the software described herein, is furnished under a license agreement
and may be used only in accordance with that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and, except as permitted under the below copyright notice, is not to be released to, or re-
produced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for
damages of any kind, including without limitation consequential damages, arising from the application of the
information contained herein. Information and specifications published here are current as of the date of this
publication and are subject to change without notice. The latest product specifications can be found by con-
tacting our corporate headquarters, Richmond, Virginia.

TTrraaddeemmaarrkk nnoottiiccee

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Con-
ditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL
Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON, Lon-
Mark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara
Framework, NiagaraAX Framework, and Sedona Framework are registered trademarks, and Workbench,
WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services men-
tioned in this publication that is known to be trademarks, registered trademarks, or service marks are the
property of their respective owners.

CCooppyyrriigghhtt aanndd ppaatteenntt nnoottiiccee

This document may be copied by parties who are authorized to distribute Tridium products in connection
with distribution of those products, subject to the contracts that authorize such distribution. It may not oth-
erwise, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form without prior written consent from Tridium, Inc.

Copyright © 2015 Tridium, Inc. All rights reserved.

The product(s) described herein may be covered by one or more U.S. or foreign patents of Tridium.

CCoonntteennttss
About this guide ...7

Document change log ..7
Related documentation ..7

Chapter 1 Niagara Display Names ..9

Automatic display names ..11
Display name storage ...12
Manually setting display names...14

Set a component display name ...14
Set display names from slot sheets..14

Using the Batch Editor for display names...16
Using the Batch Editor to change existing display names16
Using the Batch Editor to add display names19
Using the Batch Editor to change slot flags......................................22
Troubleshooting batch edited display names...................................24

Chapter 2 Niagara Batch Editor ..25

Batch Editor Interface...25
Batch Editor quick reference...27

Open the Batch Editor..30
Clear the Batch Editor Object field..31

Notes about using the Batch Editor...31
Troubleshooting tips and examples...32

Hide action slot on BooleanWritables..32
Set the offnormal high limit on alarm extensions35
Increase history record count..37

Chapter 3 Niagara R2 to NiagaraAX via oBIX ...41

R2 to AX oBIX Overview ...41
Requirements...41
Engineering summary...42

R2 station engineering..43
Pre-integration R2 station changes..43
Add ObixService ..43
Other possible R2 station configuration changes46
Other possible R2 host changes ..47

AxSupervisor engineering...47
ObixNetwork and R2ObixClient devices ...47
R2ObixClient Points ...49
About Obix proxy points ..53
R2ObixClient Histories (logs and archives).......................................57
R2ObixClient Alarms ..60
R2ObixClient R2 Schedule exports..63

Chapter 4 Sample Reports Using BQL and Bound Tables67

Creating The Report Px Page..67

December 15, 2015 3

Contents Engineering Notes

Report Pane Versus Canvas Pane ..67
Using Bound Tables and Bound Labels ..67

Example Reports..68
Point Status Report ..68
Schedule Report...71
Tenant Override Report..74
Weekly Electrical Demand Report ...76

Chapter 5 Scientific Notation Support ..79

E Notation Format ...79
Example Number Expressions ..79

Example 1: Maximum and Minimum Numbers79
Example 2: Numbers Displaying in a Graphic Display (Px

Page) ..80
Example 3: Numbers Displaying in a Property Sheet View................80

Chapter 6 BQL Expression component ...81

Component features ..81
What the component is not...81
Syntax ...82

Supported operators..82
Commas ..83
Long statements ..83

Create a BQL Expression component ..83
To create a BQL Expression component ..83
Mathematical expressions...84
Logical expressions ..85
Component instances...85
More examples ..85

Handling null..89
Troubleshooting...89
Frequently-asked questions ..90

Chapter 7 Conversion Links ..91

Conversion link usage...91
Typical conversion link usage ..91
Data transformation via conversion link ...92

Supported conversion link types ...93
Converter components...94
Converter properties..95
Conversion link "From" notes ...96

Links from string ..96
Links from boolean...97
Links from double, float, long, integer ...97
Links from statusBoolean..98
Links from statusNumeric ...98
Links from statusEnum..99
Links from statusString ...99

4 December 15, 2015

Engineering Notes Contents

Links from time .. 100
Links from absTime .. 100
Links from relTime.. 100

Chapter 8 JACE Hardware Scan Service ...101
Hardware scan benefits .. 101

Currently supported platforms.. 102
Adding the HardwareScanService ... 103
Hardware Scan Service View notes.. 104

Text in image notes .. 104
Option card notes .. 104
Callout to table notes ... 105
Px usage of Hardware Scan Service View....................................... 106

HardwareScanService properties .. 107
Lexicon customizing of HardwareScanService.. 107
Px customization .. 108

Px widget usage in platHwScan module .. 108
Example customized Px view for Hardware Scan Service 109

Chapter 9 Formats (BFormat) ...111
BFormat default values... 111
Example scenarios.. 112

BFormat example: naming points.. 112
BFormat example: naming histories .. 114
BFormat Px Widget examples... 115
BFormat: WeatherService example ... 116

BFormat errors... 117

Chapter 10 bacnetUtil Component Usage ..119
BACnet and Niagara 4.. 119

Broadcast message management.. 119
BACnet Ethernet on Windows using WinPcap................................ 120

BACnet troubleshooting... 121
Diagnosing network problems with metrics 121
Setting up a wiretap ... 125
Overriding a device .. 128

Reference .. 129
Properties.. 129
Components .. 132

December 15, 2015 5

Contents Engineering Notes

6 December 15, 2015

AAbboouutt tthhiiss gguuiiddee
This document serves as a collection of Niagara topics that may be helpful to both Systems Integrators and
Engineers.

Topics in this document should be relevant to many users of Niagara 4 even though most were written ini-
tially for NiagaraAX

Each individual “Engineering Notes” topic is included as a separate chapter in the print or PDF rendering of
this Guide.

DDooccuummeenntt cchhaannggee lloogg

Updated, December 14, 2015. Appended usage notes for BACnet in N4 and use of bacnetUtil components.

Initial release publication, August 19, 2015.

RReellaatteedd ddooccuummeennttaattiioonn

Related information is available in the following documents.

• Getting Started with Niagara

• Niagara 4 Platform Guide

December 15, 2015 7

Engineering Notes

8 December 15, 2015

December 15, 2015 9

CChhaapptteerr 11 NNiiaaggaarraa DDiissppllaayy NNaammeess

Topics covered in this chapter
♦ Automatic display names
♦ Display name storage
♦Manually setting display names
♦ Using the Batch Editor for display names

Display names provide an optional method to label components, slots, and histories in a station to increase
human readability.

Display names are an available feature on components, component slots, and histories in a station. For a
component, display name differs from name, in that the name must always follow certain rules, and is in-
cluded as a portion of the ord for that component. Component name rules allow only alphanumeric charac-
ters (a-z, A-Z, 0–9), and underscores (_), where name must begin with an alpha (a-z, A-Z) character.

FFiigguurree 11 Component created with illegal character(s) in name has an escaped name

If you add a component with a name that breaks such rules, for example, a name with a space character, hy-
phen, or name that begins with a numeral, the component’s name is created with “escaped characters”, and
your typed entry is used as the display name. As shown in the preceding figure, the escaped name is visible
on the slot sheet of the component’s parent. Each escaped character begins with a dollar sign ($) followed
by the hexadecimal ASCII code for that character, for example “$2d” for a hyphen, or “$20” for a space
character.

Chapter 1 Niagara Display Names Engineering Notes

NNOOTTEE::

Using illegal characters when naming components is considered a poor practice, as escaped names make
ords longer and more obscure. Such ords can also cause confusion in other areas of the system. You should
assign component names using “CamelCase” and/or underscore(s) instead of spaces or other punctuation–
as shown above for “OA_Temp”. Then as needed, explicitly set a display name for components.

FFiigguurree 22 Example edit of a component to set a display name

As shown in the preceding figure, you can do this from the Workbench Nav tree, by right-clicking the com-
ponent for the SSeett DDiissppllaayy NNaammee command.

Slots of many components such as control points include “frozen” properties and actions, where each has a
default name. If needed, go to the slot sheet of the component and edit these names, resulting in explicit
display names. This is commonly done to customize names of point actions.

FFiigguurree 33 Example edit of an action slot on DiscreteTotalizerExt

10 December 15, 2015

Engineering Notes Chapter 1 Niagara Display Names

For example, instead of “Reset Elapsed Active Time” as an action for a DiscreteTotalizerExt of a Boolean-
Writable point, you might edit it to “Reset Runtime”, as shown in the preceding figure.

Starting in AX-3.6, histories also support display names. In the Workbench Nav tree, simply right-click a his-
tory for the SSeett DDiissppllaayy NNaammee command.

FFiigguurree 44 Example edit of history to assign a display name (right-click history)

Note if you assign a display name to a history, its original history ID is not affected. The display name is sim-
ply used when displaying the history in various views into the system.

AAuuttoommaattiicc ddiissppllaayy nnaammeess

Niagara automatically renders display names for most frozen slots, without requiring a displayNames slot
on the parent component. You can see this from the slot sheet of a parent component.

When you look at the slot sheet of a component, note that slots for most frozen properties and actions, as
well as any frozen child components, use a similar naming pattern. This pattern begins with a lowercase let-
ter and uses “camelCase” (no spaces). If the name includes multiple words, a capital letter begins each new
word.

December 15, 2015 11

Chapter 1 Niagara Display Names Engineering Notes

FFiigguurree 55 Automatic display names for frozen slots vs. explicit display names

For example, as shown in the preceding figure of the slot sheet of a writable control point, see slot names
in1— in16 for properties and emergencyOverride and override for actions. Display names appear for
these on property sheets and action menus, such as IInn11, IInn1166 ,EEmmeerrggeennccyy OOvveerrrriiddee, and OOvveerrrriiddee.

Note in this example, the set action has been given an explicit display name: Change Setpoint. Looking at
the slot sheet, it is apparent this is the only slot with an explicit display name, as it is the only display name in
bboolldd tteexxtt.

NNOOTTEE:: If using the ProgramService BBaattcchh EEddiittoorr to edit or add display names, it is important to enter the
BNameMap “key” values using the actual names for slots, and not the automatic display names. For exam-
ple, enter “override” versus “Override”, or “auto” versus “Auto”.

DDiissppllaayy nnaammee ssttoorraaggee

Display names of components and slots are stored on the parent of a component or slot.

Explicitly-assigned display names are stored in the display “name map” of the parent component. This ap-
plies whether you manually assigned a display name, or used the Batch Editor for adding/editing display
names.

ddiissppllaayyNNaammeess sslloott

The “displayNames” slot on the parent component uses the data type baja:NameMap. This slot is created
upon the first explicit display name given to a child slot. If the displayNames slot already exists, any new
explicit display name is appended to its BNameMap value.

From the slot sheet of a parent, all child slots that have been explicitly-assigned a display name appear with
a bboolldd Display Name value.

CCoonnffiigg ffllaaggss

Often by default, the displayNames slot of a component has config flags set to “rho”, meaning it is read-
only, hidden (from property sheet), and operator-level.

12 December 15, 2015

Engineering Notes Chapter 1 Niagara Display Names

FFiigguurree 66 Default config flags for displayNames slot of a component or container

When using the BBaattcchh EEddiittoorr to edit display names, you often need to change config flags on display-
Names slots. You can do this either from slot sheets of components, or in a batch method via the Batch
Editor.

NNaammeeMMaapp vvaalluuee

After “unhiding” a displayNames slot from the slot sheet, you can see its NameMap value on the property
sheet—or at least a portion of this value (the property field size is fixed, so typically some of the NameMap
value is obscured).

FFiigguurree 77 Example “Name Map” value of displayNames slot of parent with 3 entries

In the preceding figure, the property sheet shows a portion of the NameMap value in the unhidden dis-
playNames slot.

BBNNaammeeMMaapp ssyynnttaaxx

The Baja NameMap value of the displayNames slot uses a “key=value” pair syntax, as follows:

{slotFirst=displayValue1;slotNext=displayValue2;slotLast=displayValue3;}

December 15, 2015 13

Chapter 1 Niagara Display Names Engineering Notes

If manually-assigning display names, this syntax is unimportant—as it is always incorporated. However, if us-
ing the BBaattcchh EEddiittoorr to edit or add displayNames slots, then you must follow this syntax exactly. Note
even if only one child slot is assigned a display name, a semi-colon is required at the end of the value string.
For example:

{slot=displayValue;}

{OA_Temp=Outside Temp;}

Note if the NameMap value contains multiple key-value pairs, it makes no difference in the order that they
are listed.

MMaannuuaallllyy sseettttiinngg ddiissppllaayy nnaammeess

This section provides instructions for manually setting display names for individual components and slots
while working in Workbench.

Typically, it is best to set explicit display names for components before replicating them in a station—other-
wise, you may need to repeat this task for each one.

There are two basic ways to manually set explicit display names:

• Set a component display name, page 14

• Set display names from slot sheets, page 14

SSeett aa ccoommppoonneenntt ddiissppllaayy nnaammee

You can quickly set a display name for a component.

PPrreerreeqquuiissiitteess:: Station opened in Workbench.

Set the display name for a component in the Nav tree or in a property sheet

Step 1 In the Nav tree, expand the station’s CCoonnffiigg node to find the component, or locate the component
in a property sheet.

Step 2 Right-click the component, and select SSeett DDiissppllaayy NNaammee from the popup menu.

Step 3 In the SSeett nneeww DDiissppllaayy NNaammee popup dialog, type the desired name to display for the component,
and click OOKK.

The display name is added to the parent container’s displayNames slot. When the property sheet or Nav
tree is refreshed, the component should now display with the name you entered.

NNOOTTEE::

Unless the parent container’s displayNames slot was originally added using the BBaattcchh EEddiittoorr, this slot may
have config flags set as “rho” (Readonly, Hidden, Operator). If you want to use the BBaattcchh EEddiittoorr to make fu-
ture changes, you need to clear the “Readonly” config flag from this slot. If needed, you can do this from the
slot sheet or by using the Batch Editor.

SSeett ddiissppllaayy nnaammeess ffrroomm sslloott sshheeeettss

From the slot sheet of a component you can set explicit display names for its slots, often done for action
slots of a control point. And, from the slot sheet of a container component you can conveniently set display
names for its child components (slots).

PPrreerreeqquuiissiitteess:: Station opened in Workbench.

Set display names for slots of a control point or a container from slot sheet

Step 1 In the Nav tree, expand the station’s CCoonnffiigg node to find the container component or control
point, or locate it in a property sheet or wire sheet.

Step 2 Right-click the component, and select VViieewwss→→SSlloott SShheeeett from the popup menu.

14 December 15, 2015

Engineering Notes Chapter 1 Niagara Display Names

Step 3 In the slot sheet, double-click a slot to name.

Step 4 In the SSeett nneeww DDiissppllaayy NNaammee popup dialog, type the desired name to display for the child compo-
nent (or slot, such as an action), and click OOKK.

Step 5 Repeat (double-click) other slots to name, as needed.

Each named slot now displays in bboolldd on the slot sheet. The display name is added to the NameMap value
of the displayNames slot. Depending on context, after refreshing the Nav tree or view or accessing the ac-
tion, the item should now display with the name you entered.

The figure below shows the slot sheet of a control point where the first item (action slot “override”) is being
given a display name.

FFiigguurree 88 Example first edit of slot display name for a control point slot (action)

As shown in the preceding figure, note the Display Name value now appears in bboolldd text, and a new dis-
playNames slot has been added to the slot sheet. You can continue to set display names for other slots in
this point, for example one more is shown in the following figure.

December 15, 2015 15

Chapter 1 Niagara Display Names Engineering Notes

FFiigguurree 99 Second display name added, as shown in bolded Display Name text

As shown in the preceding figure, setting multiple display names does not add additional displayNames
slots on the component—all the display names are held in the NameMap value of the one displayNames
slot.

NNOOTTEE::

Unless the displayNames slot was originally added using the BBaattcchh EEddiittoorr, this slot often has config flags
set as “rho” (Readonly, Hidden, Operator). You can still add and re-edit display names from the slot sheet,
or on components use the right-click SSeett tthhee DDiissppllaayy NNaammee command.

However, note to allow Batch Editor changes to display names, you need to clear the “Readonly” config flag
from displayNames slots. If needed, do this either working in individual slot sheets, or else in batch mode
via the Batch Editor.

UUssiinngg tthhee BBaattcchh EEddiittoorr ffoorr ddiissppllaayy nnaammeess

The BBaattcchh EEddiittoorr view of a station’s ProgramService provides a way for you to edit or add explicit display
names in a batch process.

CCAAUUTTIIOONN::

Before using the BBaattcchh EEddiittoorr, always save and backup the station. It is easy to make errors using the Batch
Editor, and there is no undo. Therefore in a worst-case scenario, you can always reinstall the saved station.

The following topics describe using the Batch Editor to batch edit or add display names:

• Using the Batch Editor to change existing display names, page 16

• Using the Batch Editor to add display names, page 19

• Using the Batch Editor to change slot flags, page 22

• Troubleshooting batch edited display names, page 24

UUssiinngg tthhee BBaattcchh EEddiittoorr ttoo cchhaannggee eexxiissttiinngg ddiissppllaayy nnaammeess

The BBaattcchh EEddiittoorr view of the station’s ProgramService allows you to change existing display names of slots
in control points or even container components.

PPrreerreeqquuiissiitteess::

The station must be running and opened in Workbench, with the programmodule installed on the Niagar-
aAX host. The PPrrooggrraammSSeerrvviiccee should be in the station’s SSeerrvviicceess folder.

CCAAUUTTIIOONN:: Before using the BBaattcchh EEddiittoorr, always save and backup the station. It is easy to make errors us-
ing the Batch Editor, and there is no undo. Therefore in a worst-case scenario, you can always reinstall the
saved station from your backup.

Batch Editor changes to any component’s displayNames slot are not possible if that slot has the “Readonly”
flag set. If necessary, clear the “Readonly” flag from the displayNames slot of any component you wish to
edit using the Batch Editor. You can do this either from each individual slot sheet, or else by using the Batch
Editor. See ., page 22

16 December 15, 2015

Engineering Notes Chapter 1 Niagara Display Names

Step 1 In Workbench with the station opened, access the BBaattcchh EEddiittoorr (in the Nav tree, expand the Con-
fig, Services node and double-click PPrrooggrraammSSeerrvviiccee).

Step 2 Use the FFiinndd OObbjjeeccttss function and/or drag and drop components with an existing display name
that you wish to change to an identical value. Note all components listed in the view will be
changed in an identical manner.

Step 3 Click EEddiitt SSlloott to bring up the popup EEddiitt SSlloott dialog.

Step 4 In the EEddiitt SSlloott dialog, click the PPrrooppeerrttyy field control and select ddiissppllaayyNNaammeess from the drop-
down list.

At least one of the components listed in the Batch Editor must have the “Readonly” flag cleared on
its displayNames slot; otherwise displayNames is not available in the list of properties.

The EEddiitt SSlloott dialog populates the NNeeww VVaalluuee field with the value of the displayNames slot for
the first component listed in the Batch Editor.

NNOOTTEE:: This does not mean all components listed in the Batch Editor list have identically configured
display names. Although if you clicked OOKK now, the Batch Editor would attempt to make this
happen.

Step 5 Edit the NNeeww VVaalluuee field in the EEddiitt SSlloott dialog with the display name value(s) you wish to set in all
components listed in the Batch Editor. Use the proper BNameMap syntax.

You must enter the semi-colon (;) at the end of each value string, which is required even if entering
only one key-value pair. Note that the field editor does not stretch to display all of the text.

Step 6 With the NNeeww VVaalluuee field edited to the desired value(s), click OOKK.

A BBaattcchhEEddiittoorr RReessuullttss popup replaces the EEddiitt SSlloott dialog. It lists the edit slot results for each
component listed in the Batch Editor.

Step 7 Click OOKK to close the BBaattcchhEEddiittoorr RReessuullttss dialog and return to the Batch Editor view.

Example batch edit of existing display names

In this example, numeric points named “OccCoolStpt” under the station’s LonNetwork are given a display
name change.

1. The FFiinndd OObbjjeeccttss function in the BBaattcchh EEddiittoorr is used to find the target components.

2. The EEddiitt SSlloott button is clicked, and the EEddiitt SSlloott popup dialog appears.

December 15, 2015 17

Chapter 1 Niagara Display Names Engineering Notes

The ddiissppllaayyNNaammeess slot is selected in the PPrrooppeerrttyy field. Note if all components listed in the BBaattcchh EEddii--
ttoorr have the “Readonly” flag set on their displayNames slot, the PPrrooppeerrttyy field is not available in the
drop-down list, as shown in the preceding figure.

However, if at least one of the components listed has the “Readonly” flag cleared on its displayNames
slot, this slot is available, as shown in the following figure.

The NNeeww VVaalluuee field in the EEddiitt SSlloott dialog initially reflects the current displayNames slot value in the
first component listed in the Batch Editor.

In this case, the value is {override=Override Occ Cool Setpt;}

3. The changed value is typed into the NNeeww VVaalluuee field.

18 December 15, 2015

Engineering Notes Chapter 1 Niagara Display Names

Note the field editor does not stretch to display all of the text entered. In this case the new value (to be
written to all components listed in the Batch Editor) is:

{override=Override Occ Cool Setpt;set=Change Occ Cool Stpt;}

4. The OOKK button is clicked in the EEddiitt SSlloott dialog, which is replaced by the BBaattcchhEEddiittoorr RReessuullttss popup
showing the edit slot results.

In this example with six components originally listed in the Batch Editor, only three components have re-
sult lines. This indicates that the other three (missing) components did not have a displayNames slot.
Of the three components acted upon by the Batch Editor, two actually had the slot edit performed, while
one component was skipped because its displayNames slot had its “Readonly” config flag set.

UUssiinngg tthhee BBaattcchh EEddiittoorr ttoo aadddd ddiissppllaayy nnaammeess

The BBaattcchh EEddiittoorr view of the station’s PPrrooggrraammSSeerrvviiccee allows you to add display names for slots in control
points or even child components of container components.

PPrreerreeqquuiissiitteess::

The station must be running and opened in Workbench, with the program module installed on the Niagar-
aAX host. The PPrrooggrraammSSeerrvviiccee should be in the station’s SSeerrvviicceess folder.

CCAAUUTTIIOONN:: Before using the BBaattcchh EEddiittoorr, always save and backup the station. It is easy to make errors us-
ing the Batch Editor, and there is no undo. Therefore in a worst-case scenario, you can always reinstall the
saved station from your backup.

Typically, you add the displayNames slot to components without any display names already assigned. This
adds the slot and assigns the display name value(s) in one operation. If a listed component already has a
displayNames slot, its value is typically overwritten by the new value in this task, unless you had first
cleared the “SSeett iiff eexxiissttss” checkbox.

NNOOTTEE:: Any displayNames slot added by the BBaattcchh EEddiittoorr is created without any config flags set. This
varies from the displayNames slot created as a result of the manual SSeett tthhee DDiissppllaayy NNaammee command (on
component or from slot sheet).

Step 1 In Workbench with the station opened, access the BBaattcchh EEddiittoorr (in the Nav tree, expand the CCoonn--
ffiigg, SSeerrvviicceess node and double-click PPrrooggrraammSSeerrvviiccee).

December 15, 2015 19

Chapter 1 Niagara Display Names Engineering Notes

Step 2 Use the FFiinndd OObbjjeeccttss function and/or drag and drop components for which you want to add dis-
play names to child slots. Note all components listed in the view will be changed in an identical
manner.

Step 3 Click AAdddd SSlloott to bring up the popup AAdddd SSlloott dialog.

Step 4 In the AAdddd SSlloott dialog, type displayNames in the NNeeww NNaammee field.

Step 5 In the NNeeww TTyyppee field, ensure baja is selected on the left side, and click the right side drop-down
control and select NNaammeeMMaapp.

Step 6 For the checkbox SSeett iiff eexxiissttss :

• Leave checked (the default) if components that already have a ddiissppllaayyNNaammeess slot should have
their current value overwritten with this new value.

• Clear (uncheck) if components that already have a ddiissppllaayyNNaammeess slot should retain their cur-
rent value. In this case, the BBaattcchh EEddiittoorr does not alter such components.

Step 7 In the NNeeww VVaalluuee field, type in the display name key-value pair(s) using the NameMap formatting
{slotName1=displayValue;slotName2=displayValue;} (and so on).

NNOOTTEE::

Ensure the value string includes the beginning and ending braces ({ and }), and that each slot key-
value pair ends with a semi-colon (;)—even if only a single key-value pair. Also note that the slot
name (key) portion is case-sensitive and so much match the actual slot name; for example emer-
gencyAuto instead of Emergency Auto.

Step 8 When finished in the AAdddd SSlloott dialog, click OOKK.

A BBaattcchhEEddiittoorr RReessuullttss popup dialog replaces the AAdddd SSlloott dialog. It lists the add slot results for
each component listed in the Batch Editor (if the ““SSeett iiff eexxiissttss” option was set); otherwise it lists
the results only for those components listed that were previously without a displayNames slot.

Step 9 Click OOKK to close the BBaattcchhEEddiittoorr RReessuullttss dialog and return to the Batch Editor view.

Example batch edit to add display names

In this example, numeric points named “OccCoolStpt” under the station’s LLoonnNNeettwwoorrkk are given a dis-
playNames slot.

1. The FFiinndd OObbjjeeccttss function in the BBaattcchh EEddiittoorr is used to find the target components.

20 December 15, 2015

Engineering Notes Chapter 1 Niagara Display Names

2. The AAdddd SSlloott button is clicked, and the AAdddd SSlloott popup dialog appears.

3. In the NNeeww NNaammee field, displayNames is entered.

NNOOTTEE:: It must be entered exactly like this—plural.

NNaammeeMMaapp is selected from the baja type drop-down list.

The checkbox SSeett iiff eexxiissttss is left set.

4. In the NNeeww VVaalluuee field, the displayNames name map value is typed in.

In this case, the value is {override=Override Occ Cool Setpt;set=Change Occ Cool Stpt;auto=
Release Occ Cool SP Override;}. Note the field editor does not stretch to display all of the text
entered.

December 15, 2015 21

Chapter 1 Niagara Display Names Engineering Notes

5. The OOKK button is clicked in the AAdddd SSlloott popup, which is replaced by the BBaattcchhEEddiittoorr RReessuullttss popup
showing the edit slot results.

In this example with 6 components originally listed in the BBaattcchh EEddiittoorr, 3 components have [SET] result
and 3 have [ADD] result lines.

• [SET] indicates the component already had a displayNames slot. The new value overwrote the ex-
isting value.

• [ADD] indicates the component had no displayNames slot. The slot was added with the new value.

UUssiinngg tthhee BBaattcchh EEddiittoorr ttoo cchhaannggee sslloott ffllaaggss

The BBaattcchh EEddiittoorr lets you batch edit config flags for the displayNames slot in multiple components. Often
this is useful when using the Batch Editor to edit or add display names.

PPrreerreeqquuiissiitteess::

The station must be running and opened in Workbench, with the programmodule installed on the Niagar-
aAX host. The PPrrooggrraammSSeerrvviiccee must be in the station’s SSeerrvviicceess folder.

CCAAUUTTIIOONN:: Before using the BBaattcchh EEddiittoorr, always save and backup the station. It is easy to make errors us-
ing the Batch Editor, and there is no undo. Therefore in a worst-case scenario, you can always reinstall the
saved station from your backup.

The Batch Editor allows you to change a config flag in a selected slot in multiple components. In the context
of display names, this can be useful applied to the displayNames slot of any component that has one or
more child slots with display names assigned.

For example:

• To clear (remove) the “Readonly” flag on displayNames slots, to allow batch editing.

• To set the “Hidden” flag on batch-added displayNames slots, to prevent ddiissppllaayyNNaammeess from appear-
ing on a property sheets.

Optionally, you could also set the “Operator” flag, to allow future operator-level edits of display names,
and set the “Readonly” flag (if you are finished batch editing them).

NNOOTTEE:: Any displayNames slot added by the BBaattcchh EEddiittoorr is created without any config flags set, un-
like the displayNames slot created from an initial (manual) ““SSeett tthhee DDiissppllaayy NNaammee” command.

Step 1 In Workbench, look at the slot sheet of components like the ones you wish to change config flags
on their displayNames slot. Note which letters may appear in the FFllaaggss column for the dis-
playNames slot.

Typical letters are r (Readonly), h (Hidden), o (Operator). For example rhomeans all of these con-
fig flags are set, whereas only hmeans just the Hidden flag is set. No letters means all config flags
are cleared (removed).

Step 2 Access the BBaattcchh EEddiittoorr (in the Nav tree, expand the Config, Services node and double-click
PPrrooggrraammSSeerrvviiccee).

22 December 15, 2015

Engineering Notes Chapter 1 Niagara Display Names

Step 3 Use the FFiinndd OObbjjeeccttss function and/or drag and drop components with an existing displayNames
slot that you wish to change a config flag. Note all components listed in the view will be changed in
an identical manner.

Step 4 Click EEddiitt SSlloott FFllaaggss to bring up the popup EEddiitt SSlloott FFllaaggss dialog.

Step 5 In the EEddiitt SSlloott FFllaaggss dialog:

a. Leave the checkbox cleared for SSeett ffllaaggss ffoorr oobbjjeecctt’’ss sslloott wwiitthhiinn iittss ppaarreenntt.

b. In the SSlloott field select ddiissppllaayyNNaammeess

c. In the FFllaagg field select the appropriate flag. For example, Readonly (to remove) or Hidden (to
set).

d. Click the SSeett FFllaagg or RReemmoovvee FFllaagg control to select.

e. Click OOKK to issue the command.

A BBaattcchhEEddiittoorr RReessuullttss popup replaces the EEddiitt SSlloott FFllaaggss popup. It lists the results of the config
flag batch edit.

Step 6 Click OOKK to close the results popup and return to the Batch Editor.

Example batch edit clearing of “Readonly” config flag on points

In this example, several points originally had action display names manually changed from their slot sheet.
As a result, their displayNames slot has config flags set for “Readonly”, “Hidden”, and “Operator” (rho).
In order to use the Batch Editor to further edit display names for the slots of these points, the “Readonly”
config flag must be cleared (removed).

1. The points are dragged into the BBaattcchh EEddiittoorr and the EEddiitt SSlloott FFllaaggss button is clicked.

In the EEddiitt SSlloott FFllaaggss popup, displayNames is selected in the SSlloott field, and in FFllaagg field the Re-
adonly entry is selected. The RReemmoovvee FFllaagg control is selected.

2. The OOKK button is clicked, and the EEddiitt SSlloott FFllaaggss popup is replaced by the BBaattcchhEEddiittoorr RReessuullttss popup,
showing the edit slot flag results.

December 15, 2015 23

Chapter 1 Niagara Display Names Engineering Notes

In this example, the BBaattcchhEEddiittoorr RReessuullttss popup shows the batch edit removed the Readonly flag for
all eight of the points in the Batch Editor.

TTrroouubblleesshhoooottiinngg bbaattcchh eeddiitteedd ddiissppllaayy nnaammeess

Using the BBaattcchh EEddiittoorr for adjusting display names can save time; however, it easy to overlook some things
that prevent success. This section lists some common pitfalls and recommendations when using this method.

KKeeyy ccoonncceeppttss

Keep in mind the following when using the Batch Editor:

• The Batch Editor runs against all listed objects in the view when you select an action, whether or not any
appear selected (highlighted). Therefore, be sure to select and remove any unwanted objects in the view
before running any action.

• Display names are stored on the parent of the target slot or component.

• The “BNameMap” value of the parent’s displayNames slot (if present) contains all explicitly assigned dis-
play names for child slots or components. Editing from the Batch Editor replaces this entire value with
your new value—it does not “append” to any existing value.

• If batch editing display names that were originally manually set, the corresponding displayNames slot
is likely to have its “Readonly” config flag set. This prevents any batch edit operation on it. In this case,
use the Batch Editor to edit slot flags on the displayNames slot (clear the “Readonly” flag).

CCoommmmoonn ppiittffaallllss

The following are some common pitfalls when using the Batch Editor against display names:

• Added displayNames values appear to be added without errors; however the target slots do not appear
to have the display name values.

This can happen when “automatic display name” values are entered in BNameMap “key value” pairs, in-
stead of actual slot names. For example, entering:{Set=Change Setpoint;} instead of {set=Change
Setpoint;}. In this case a batch edit would run without errors, and a displayNames slot would be cre-
ated. However, none of the set slots would have their display name value bolded (changed).

For related details, see BNameMap syntax, page 13.

• Omitting the ending semi-colon after each BNameMap “key-value” pair of a displayNames slot. This is re-
quired even if only one pair (display name) is entered.

• Entering the slot to be added in the Batch Editor as displayName instead of displayNames. Niagara
looks specifically for a displayNames slot, and if misspelled, display names are not affected.

24 December 15, 2015

December 15, 2015 25

CChhaapptteerr 22 NNiiaaggaarraa BBaattcchh EEddiittoorr

Topics covered in this chapter
♦ Batch Editor Interface
♦ Batch Editor quick reference
♦ Notes about using the Batch Editor
♦ Troubleshooting tips and examples

The Batch Editor performs specified operations on all selected items (objects). To select items, you drag and
drop (or copy and paste) them into the Batch Editor’s Object field. Or you can use the Bql Query Builder.

For example, if your installation has 150 points configured to go offnormal when a property exceeds a given
limit, you could use the Batch Editor to change the limit on all objects at once. Otherwise, you would have to
change the limit on each object’s property sheet individually.

The Batch Editor requires the ProgramService in your Services container. If you don’t have this service, copy
it from the program palette.

BBaattcchh EEddiittoorr IInntteerrffaaccee

This topic describes the main areas and dialog boxes associated with the Batch Editor interface.

MMaaiinn wwiinnddooww

The main Batch Editor view is shown below and described in the following table.

FFiigguurree 1100 Batch Editor tour

NNaammee DDeessccrriippttiioonn

11.. FFoouunndd oobbjjeeccttss The Batch Editor operates on all found objects. You can drag and drop (or copy
and paste) single or selected objects onto the Object field, or use the Bql
Query Builder to populate the field.

22.. OObbjjeecctt ffiieelldd Displays each object including its path.

Chapter 2 Niagara Batch Editor Engineering Notes

NNaammee DDeessccrriippttiioonn

33.. PPooppuupp mmeennuu Right-clicking the Object field displays this menu, which provides the same
functionality as the control buttons.

44.. TToooollbbaarr Provides the same functions as the control buttons and right-click menu.

55.. CCoonnttrrooll bbuuttttoonnss Control buttons open dialog boxes or views that allow you to edit the selected
items in the Found objects area.

The following topics provide more details about the FFoouunndd OObbjjeeccttss area and the BBqqll QQuueerryy BBuuiillddeerr.

FFoouunndd OObbjjeeccttss aarreeaa

There are three ways to populate the Object field in the Batch Editor main window.

• Drag and drop points (items) from the nav tree.

• Copy and paste points (items) from the nav tree.

• Click FFiinndd OObbjjeeccttss and use the Bql Query Builder.

FFiigguurree 1111 Bql Query Builder

– The ‘In:’ field allows you to define where to start searching in the nav tree.

– The ‘Of Type’ field lets you filter your search by type of component.

– The Match field works with the plus () to filter objects using search criteria.

For more information about how to use the Bql Query Builder, see “About the Bql Query Builder” in the Ni-
agara Drivers Guide.

BBaattcchh EEddiittoorr OObbjjeecctt ffiieelldd

There are two ways to remove items from the Batch Editor Object field.

• To clear selected items, hold down Ctrl and click to select items, then click the toolbar icon () or use the
right-click menu (CClleeaarr SSeelleecctteedd IItteemmss).

• To remove all items, click the CClleeaarr AAllll control button at the bottom of the view.

26 December 15, 2015

Engineering Notes Chapter 2 Niagara Batch Editor

FFiigguurree 1122 Clearing selected items from the Object field

BBaattcchh EEddiittoorr qquuiicckk rreeffeerreennccee

The Batch Editor performs the specified operation on all selected items (objects). To select items, you drag
and drop (or copy and paste) them into the Batch Editor’s Object field. Or you can use the Bql Query
Builder.

For example, if your installation has 150 points configured to go “offnormal” when a property exceeds a giv-
en limit, you could use the Batch Editor to change the limit on all objects at once. Otherwise, you would have
to change the limit on each object’s property sheet individually.

The Batch Editor requires the ProgramService in your Services container. If you don’t have this service, copy
it from the program palette.

The following reference table describe ways to work with the Batch Editor.

Dialog Box or View Description

NNaavv ttrreeee

Add Objects directly to the BBqqll QQuueerryy BBuuiillddeerr view
using the workbench nav tree.

• Drag and drop points (items) from the nav
tree.

• Click FFiinndd OObbjjeeccttss and use the BBqqll QQuueerryy
BBuuiillddeerr.

BBqqll QQuueerryy BBuuiillddeerr

Add objects using the BBqqll QQuueerryy BBuuiillddeerr.

1. Click FFiinndd OObbjjeeccttss and use the Bql Query
Builder.

2. The ‘In:’ field allows you to define where to
start searching in the nav tree. The ‘Of Type’
field lets you filter your search by type of
component. The Match field works with the
plus () to filter objects using search criteria.
For more information about how to use the
Bql Query Builder, see “About the Bql Query
Builder” in the NiagaraAX Drivers Guide.

Add columns of information to the Object field using
the popup menu and the SSeelleecctt CCoolluummnnss dialog box.

1. Populate the Object field with items to edit.
You must have at least one item in the Object
field.

December 15, 2015 27

Chapter 2 Niagara Batch Editor Engineering Notes

Dialog Box or View Description

The Batch Editor lets you add different kinds
of slots (objects) to the Object field. To avoid
errors, make sure all objects are of the same
type.

2. Click the Select Columns icon () or right-click
the field and click Select Columns.

The Select Columns dialog box appears.

3. Click to mark the columns in the list, and click
OOKK

The image shows the right-click pop-up menu
(on the left), the Select Columns dialog box
overlaid by how the columns appear in the
Object field.

RReennaammee dialog box RReennaammee provides a find and replace feature.

The Object field shows numeric points that have
had their display names changed to add an
underscore before the letters “Tank.”

AAdddd SSlloott dialog box The AAdddd SSlloott feature lets you add the speci-
fied slot to all components in the Object field.

• The values that appear in the New Value field
depend on the selected slot type.

• In the example above, a new slot named Lo-
calTime is being added and configured. The
new slot is defined as a CurrentTime compo-
nent from the kitControl module. The Facets
and Update Time properties in the New Value
field box are configurable.

• The ‘Set if exists’ check box allows you to
change values for components that already
have a LocalTime slot. If the check box is not
selected, the CurrentTime properties are not
changed for previously existing LocalTime
slots.

EEddiitt SSlloott dialog box EEddiitt SSlloott can be used to edit any slot
property.

In the example shown here, the value of the fac-
ets property is being changed from units=gal
(gallons) to units=L (Liters). The Object field
shows the changed property in the facets
column.

28 December 15, 2015

Engineering Notes Chapter 2 Niagara Batch Editor

Dialog Box or View Description

RReennaammee SSlloott dialog box RReennaammee SSlloott provides a find and replace
feature.

RReemmoovvee SSlloott dialog box RReemmoovvee SSlloott makes it possible to remove all
slots with the selected property.

NNOOTTEE:: There is no undo. Make sure you want to
remove multiple slots before clicking OK.

December 15, 2015 29

Chapter 2 Niagara Batch Editor Engineering Notes

Dialog Box or View Description

EEddiitt SSlloott FFllaaggss dialog box You can batch edit slot flags. The following list
describes the fields and properties of the EEddiitt
SSlloott FFllaaggss dialog box.

• Set flags for object’s slot within its parent

This option sets flags for child objects.

• Slot

This drop-down list identifies the type of slot.

• Flag

This drop-down list identifies which flag to
change.

• Action

This option identifies which action to take:

– Set Flag or Remove Flag.

BBaattcchh EEddiittoorr RReessuullttss dialog box The BBaattcchhEEddiittoorr RReessuullttss dialog reports the ac-
tion taken on each object.

At the beginning of each row, the operation ap-
pears in square brackets, for example, [SET].
The object ORD comes next followed by an ar-
row (->) and an indication of what changed or
why no change occurred.

OOppeenn tthhee BBaattcchh EEddiittoorr

To open the Batch Editor view, open the Batch Editor view from the Program Service, as described in this
topic.

Step 1 Save and back up the station.

CCAAUUTTIIOONN:: There is no undo. Should you make a mistake, it is always easier to reload a config.bog
than to reconfigure the station.

Step 2 Do one of the following:

• Double-click the ProgramService container in the nav tree (Config\Services\ProgramService), or

• Right-click PPrrooggrraammSSeerrvviiccee→→→→VViieewwss→→BBaattcchh EEddiittoorr

FFiigguurree 1133 Accessing the Batch Editor

An empty Object field appears.

30 December 15, 2015

Engineering Notes Chapter 2 Niagara Batch Editor

Empty Batch Editor Objects field

CClleeaarr tthhee BBaattcchh EEddiittoorr OObbjjeecctt ffiieelldd

There are two ways to remove items from the Batch Editor Object field.

• To clear selected items, hold down Ctrl and click to select items, then click the toolbar icon () or use the
right-click menu (CClleeaarr SSeelleecctteedd IItteemmss).

• To remove all items, click the CClleeaarr AAllll control button at the bottom of the view.

FFiigguurree 1144 Clearing selected items from the Object field

NNootteess aabboouutt uussiinngg tthhee BBaattcchh EEddiittoorr

Following is a list of notes and recommended best practices related to using the Batch Editor.

• The operations run on the entire contents of the window—whether selected or not. You can highlight in-
dividual items for the purpose of selectively clearing them from the Object field, but you cannot highlight
individual items for batch processing.

• To run a batch edit you may click the buttons below the Object field, use the toolbar at the top of the
window, or right-click a blank area of the field and use the pop-up menu.

• You can populate the Object field by finding objects, dragging and dropping them from the nav tree, and
copying and pasting them from the nav tree.

• Each find objects, drag and drop or copy and paste operation adds to the currently-selected objects. The
Batch Editor does not automatically clear items from the Objects field.

December 15, 2015 31

Chapter 2 Niagara Batch Editor Engineering Notes

• The Batch Editor runs on the items found in the current station with the ProgramService used to launch
the editor. Attempting to operate on objects left over from a previous station typically causes a “not
found” error.

• You will find that some slots cannot be renamed or removed, unless the objects also exist on the current
station. These slots appear as “frozen” on the property sheet.

• Always back up the station before you start batch editing slots.

TTIIPP::

• Edit a single object first. You can easily drag and drop it onto the Object field and test the change. Make
sure you are happy with the results before you find the other objects and change them.

• Resources in workbench:

– Use the slot sheet to view object names and flags.

– Use the Bajadoc to locate the name of the precise component to change.

TTrroouubblleesshhoooottiinngg ttiippss aanndd eexxaammpplleess

Following, are some solutions for a few common situations and several examples of using the Batch Editor.

TTrroouubblleesshhoooottiinngg ttiippss

• If some items update while others generate errors in the BatchEditor Results box, make sure you are edit-
ing like items.

• The Batch Editor will let you populate the Object field with all types of slots, but you may not want to run
a batch edit on all of them.

• A good practice is to click Clear All before starting a batch edit session.

NNOOTTEE:: You cannot batch edit frozen slots

EExxaammpplleess

The following tasks topics are examples of how you can use the Batch Editor.

HHiiddee aaccttiioonn sslloott oonn BBoooolleeaannWWrriittaabblleess

The ability to batch edit slots is the primary use of the Batch Editor. For NiagaraAX-3.6 and later systems
(Workbench and JACE controllers), you can also edit slot flags (Config Flags). For example, you can set or
clear the “Operator” flag on slots, or set or clear the “Hidden” flag on slots.

PPrreerreeqquuiissiitteess::

In this example, we will hide the emergencyActive slot on a number of BooleanWritable components. Step
numbers correspond to the numbers in the graphics.

Step 1 To locate the components to edit, we’ll use the Bql Query Builder (Click FFiinndd OObbjjeeccttss to display
the Bql Query Builder) and narrow the search by drilling down in the nav tree.

32 December 15, 2015

Engineering Notes Chapter 2 Niagara Batch Editor

FFiigguurree 1155 Narrowing the search

Step 2 To further narrow the search we’ll select the module and component by choosing (Custom Type)
from the ‘Of Type:’ drop-down list.

This opens two additional lists: one for the module and the other for the component.

Step 3 Knowing that a BooleanWriteable is in the control module, we choose control from the drop-down
list.

FFiigguurree 1166 Choosing component type

Step 4 Next we choose the component type from the component drop-down list and click OOKK.

December 15, 2015 33

Chapter 2 Niagara Batch Editor Engineering Notes

NNOOTTEE:: To find the module and component type, refer to the ‘Type’ column on the slot sheet. The
module and component type are displayed in the format: module:component.

Step 5 Finally, we click EEddiitt SSlloott FFllaaggss, set Slot to emergencyActive, set Flag to Hidden, set action to
Set Flag and click OOKK.

FFiigguurree 1177 Edit Slot Flags dialog box

All the slot flags change and the Batch Editor displays the results.

FFiigguurree 1188 BatchEditor Results

Step 6 To confirm the change, check the slot sheet for one of a changed component.

FFiigguurree 1199 Fragment of a slot sheet showing the change

In the image above, “h” in the Flags column indicates that the hidden flag for slot emergencyActive
has been set.

34 December 15, 2015

Engineering Notes Chapter 2 Niagara Batch Editor

SSeett tthhee ooffffnnoorrmmaall hhiigghh lliimmiitt oonn aallaarrmm eexxtteennssiioonnss

In this example, we will change the temperature high limit from 100° to 95°. We’ll also demonstrate how to
use the right-click pop-up menu to selectively clear items that you don’t want to include in the change.

Step 1 In the Batch Editor Bql Query Builder (double-lick ProgramService and click FFiinndd OObbjjeeccttss) con-
figure ‘Of Type’, (Custom Type) as follows.

FFiigguurree 2200 Bql Query Builder configured to locate OffnormalAlgorithm

The OffnormalAlgorithm is the component used to define the conditions that trigger an alarm.

Step 2 In this step we select and clear from the Object field the objects we do not want to change.

FFiigguurree 2211 Selected objects to be removed

The quickest way to clear items from the Object field is to click the Clear Selected Items icon in
the toolbar. If you’re using the pop-up menu, right-click in the blank area of the Object field other-
wise you may inadvertently deselect an object.

Step 3 Click EEddiitt SSlloott and choose the highLimit property from the Property drop-down menu.

December 15, 2015 35

Chapter 2 Niagara Batch Editor Engineering Notes

FFiigguurree 2222 Choosing the property to edit

Step 4 Set the New Value field to 95 and click OOKK.

FFiigguurree 2233 Setting the property

The Batch Editor changes the objects. This may take a few seconds. Then it displays the results.

FFiigguurree 2244 Results

Step 5 To close the BatchEditor Results, click OOKK.

Step 6 Check the property sheet for one of the points to ensure that the change was made.

36 December 15, 2015

Engineering Notes Chapter 2 Niagara Batch Editor

FFiigguurree 2255 Property sheet

IInnccrreeaassee hhiissttoorryy rreeccoorrdd ccoouunntt

In this example we will expand the capacity of the history databases that currently hold 500 records to allow
them to hold 600 records. First we will do a wide search for all historyConfig containers, starting from the
Config folder in the nav tree. Then, we will clear the containers configured to hold less than 500 records.
And finally, we will change the capacity property on the remaining historyConfig containers.

Step 1 Using the Bql Query Builder, search for all historyConfig container slots.

FFiigguurree 2266 Bql Query Builder

Step 2 Expand the window slightly so you can see an additional column.

Step 3 To add a capacity column to the Object field, click the Select Columns icon () in the toolbar.

December 15, 2015 37

Chapter 2 Niagara Batch Editor Engineering Notes

FFiigguurree 2277 Adding the capacity column

Step 4 To clear the historyConfig slots configured to hold less than 500 records, click the Clear Selected
Items icon in the toolbar.

FFiigguurree 2288 Highlighted historyConfig container slots to be cleared

Step 5 Click EEddiitt SSlloott, change the capacity property to 600 records and click OOKK.

38 December 15, 2015

Engineering Notes Chapter 2 Niagara Batch Editor

FFiigguurree 2299 Capacity changed to 600 records

The results indicate the change was made and the capacity column changes to reflect the change.

FFiigguurree 3300 Capacities changed

December 15, 2015 39

Chapter 2 Niagara Batch Editor Engineering Notes

40 December 15, 2015

December 15, 2015 41

CChhaapptteerr 33 NNiiaaggaarraa RR22 ttoo NNiiaaggaarraaAAXX vviiaa
ooBBIIXX

Topics covered in this chapter
♦ R2 to AX oBIX Overview
♦ R2 station engineering
♦ AxSupervisor engineering

This document provides information on integrating Niagara R2 stations into a NiagaraAX system using oBIX
technology, and assumes that you are knowledgeable about the Niagara engineering used in both system
types (often abbreviated simply “R2” and “AX”). Other reference details about Niagara oBIX implementa-
tions can be found in the NiagaraAX oBIX Guide and the Niagara Release 2 oBIX User Guide, as well as the
comprehensive public specification documents found at OASIS (at the time of this document) at the follow-
ing URL:
http://www.oasis-open.org/committees/download.php/21462/obix-1.0-cs-01.zip.

NNOOTTEE:: It is recommended that you first read the other Niagara / NiagaraAX oBIX documents to become fa-
miliar with oBIX terms like “lobby,” as well as the general operation of the two oBIX drivers.

RR22 ttoo AAXX ooBBIIXX OOvveerrvviieeww

In NiagaraAX-3.1 and later, an AX station can use the obixDriver for client-side oBIX access of remote R2 sta-
tions to mix R2 and AX data together. In the most-anticipated scenario, an AxSupervisor will be added to a
job that already has R2 JACEs and an R2 Web Supervisor, along with additional AX JACEs. A possible even-
tual goal of the AxSupervisor is to replace the R2 Web Supervisor. This document focuses on the AxSupervi-
sor, and notes areas where R2 to AX “switchover” has limitations, or may require additional engineering.

FFiigguurree 3311 AxSupervisor access to R2 stations and AX JACEs is using different network types

RReeqquuiirreemmeennttss

• Each R2 host (JACE, Web Supervisor) should be running Niagara 2.301.522 or later, have the obix module
2.301.527c.beta or later installed, and has its license enabled for the “obix” feature. Your JDE (Work-
Place Pro) should also be at 2.301.522 or later.

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

Optionally, each R2 host can also have an “obixInternal.properties” file in its nre\lib folder. This helps
when doing Obix proxy point discovers from the AX client side, in coordination with an AX feature to
hide rarely accessed (internal) properties. See “About Discover “Include” options” on page 2-10 for re-
lated details.

• The AxSupervisor host must be running NiagaraAX 3.1.31 or later, have the installed modules:

– obix 3.3.22 or later

– obixDriver 3.3.28.2 or later

The AxSupervisor also requires the “obixDriver” feature in its license. Any AX JACE that needs di-
rect Obix client access to any R2 JACE also has the same requirements.

LLooaaddiinngg eeffffeeccttss ooff ooBBIIXX iinntteeggrraattiioonn

Please be aware that oBIX creates an additional load on R2 stations. Tests indicate the following:

• A VxWorks (JACE) R2 station with 40 percent idle time and 500,000 resources consumed can accommo-
date 1000 AX Obix proxies in a watch.

• A VxWorks (JACE) R2 station with 30 percent idle time and 500,000 resources consumed can accommo-
date 500 AX Obix proxies in a watch.

Inspect idle time by pointing a browser to: http://ipAddress:3011/system/spy

Determine resource count by pointing a browser to: http://ipAddress/prism/resources

Please note that the above results depend on how the AX client is reading the values, that is, is it polling all
of the points all of the time, or only some, etc. “Your results may vary.” In addition, the watch interval (ad-
justed on the AX client side) plays a role in the loading of an R2 station.

For related details, see “Pre-integration R2 station changes” on page 2-3, and “Client polling timing” on
page 2-15.

EEnnggiinneeeerriinngg ssuummmmaarryy

Most engineering is expected to occur in the AxSupervisor station where:

• All data from remote R2 stations is modeled under the Drivers/ObixNetwork, using the basic familiar AX
driver architecture (e.g. network/devices/Points/proxyPoints). See “AX station engineering summary”.

• All data from remote AX JACEs is modeled under the Drivers/NiagaraNetwork, as for any AxSupervisor.
Refer to “About the Niagara Network” in the NiagaraAX Drivers Guide for more details.

RR22 ssttaattiioonn eennggiinneeeerriinngg ssuummmmaarryy

Make pre-integration changes to the R2 station(s), if necessary. Then from the tridiumx/obix jar, add the
ObixService to the Services container of any R2 station to be integrated.

Use of the other R2 “export” objects in the tridiumx/obix jar is optional, and may not apply. Depending on
other integration features into AX, other station configuration changes may be necessary regarding slaved
Schedule objects, and the station’s LogService and/or NotificationService.

For more details, see “R2 station engineering”.

NNOOTTEE:: See the Niagara Release 2 oBIX User Guide for details on copying the obixInternal.properties file to
remote R2 JACEs, as well as other R2-specific topics.

AAXX ssttaattiioonn eennggiinneeeerriinngg ssuummmmaarryy

Add an ObixNetwork in the AxSupervisor’s Drivers container, either using the New command in the Driver
Manager view, or by opening the obixDriver palette and copying/dragging the network. Then, under this
network you manually add one R2ObixClient device component for each R2 host (station) to be included.

42 December 15, 2015

http://ipAddress:3011/system/spy
http://ipAddress/prism/resources

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

Once you configure an R2ObixClient with a few settings, it can connect (attach) to the host R2 oBIX server.
Then you can “learn” an object space tree for that station, which has an expandable root node named the
“lobby” (an oBIX term). The root lobby node appears in the Discovered pane of the manager view for each
of the device’s extensions, notably Points, Alarms, Histories, and Schedules (all default device extensions).

For more details, see “AxSupervisor engineering” on page 2-7.

RR22 ssttaattiioonn eennggiinneeeerriinngg

The following sections apply to R2 station and host engineering:

• Pre-integration R2 station changes

• Add ObixService

• R2 ObixExport objects

• Other possible R2 host changes

PPrree--iinntteeggrraattiioonn RR22 ssttaattiioonn cchhaannggeess

Before beginning an oBIX integration, consider R2 station changes that can improve performance. The fol-
lowing changes apply:

• Reducing R2 station resource count

• Reducing R2 swid lengths

RReedduucciinngg RR22 ssttaattiioonn rreessoouurrccee ccoouunntt

Typically, the reason for integrating an R2 JACE in an AxSupervisor is to provide access to it via AX PxPages
on the AxSupervisor. With this goal in mind, in many cases the R2 station’s resource count can be reduced by
removing its GxPages and associated Gx objects. For a heavily loaded R2 station, reducing its station size
may be the only way of accommodating the R2 oBIX server.

RReedduucciinngg RR22 sswwiidd lleennggtthhss

The depth of the R2 tree is of importance in relation to the performance of the Ax Client. Obviously, more
data being transmitted from the R2 Server to the Ax Client increases the time between updates. Application
developers typically would like to keep re-engineering of the R2 station database to a minimum. However,
simple name changes to shorten R2 swids (system wide identifiers) can result in a large benefit.

EExxaammppllee

Original swid:

/AcmeBuildingOneFirstFloor/LonTrunk/AirHandlingUnit1/VariableAirVolumeUnits/
Boxes/Room101/Room101VA

Shortened swid:

/Acme1stFlr/LT/AHU1/VAVs/Boxes/Rm101/Rm101

In addition to increasing the performance of the data transfer, reducing the length of a swid reduces the
amount of memory required to serve up the data. This topic reflects a tendency to sometimes “over-engi-
neer” a station database by creating unnecessarily deep hierarchies. Of course some hierarchy is necessary,
but more is not necessarily better...

AAdddd OObbiixxSSeerrvviiccee

For each R2 station to be integrated, you open it in the JDE, open the Local Library and expand the tri-
diumx/oobbiixx jar, and copy and paste the OObbiixxSSeerrvviiccee into the station’s Services container. No further con-
figuration of that service is needed; however, you must restart that station for it to become an “oBIX

December 15, 2015 43

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

server.” R2 object data from the station is then immediately available from an AX station running the Obix
driver.

Note you can quickly verify if an R2 station is operating as an oBIX server. Simply open a web browser con-
nection to that station, using the syntax

http://<host>[:port]/obix

where <host> is IP address or hostname, and [:port] is optional (if omitted, assumed as 80).

For example: http://192.168.1.94/obix for a typically-configured station at that IP address,

or http://192.168.1.75:85/obix for a station running on httpPort 85 on a host at that IP address.

As shown, after you login with station credentials you see an HTML representation of the station’s oBIX lob-
by, including hyperlinks to traverse into the object tree structure.

FFiigguurree 3322 Example browser connection to confirm R2 station oBIX server operation

Note R2 oBIX is server only. Client access of remote oBIX servers is unavailable—no R2 “shadow objects” ex-
ist to get remote oBIX data (e.g. from an AX station). This simplifies engineering on the R2 side.

NNOOTTEE:: For this reason, the AxSupervisor station’s “EExxppoorrttss” folder under its ObixNetwork is not used
when integrating Niagara R2 stations as ObixClients. However, AX to R2 schedule exports are possible using
a different method.

RR22 OObbiixxEExxppoorrtt oobbjjeeccttss

NNOOTTEE:: Use of these objects is entirely optional. Many R2 to AX oBIX integrations have not used them, as
standard AX Obix proxy points for these specific R2 object types provide “right click command access”,
along with value and status. Use is necessary only to permit an “interstation control link”, from AX to the R2
station.

The three “export” objects in the tridiumx/obix jar are available if you want to allow “link control” writes
from AX to R2 objects, for example to the “priorityArray” input of an AnalogOutput, BinaryOutput, or Multi-
stateOutput object. In this case, you copy one of objects from the R2 tridiumx/obix jar and paste it into the
station, linking its output into the priorityArray input of the R2 object being controlled.

If controlling an AnalogOutput, BinaryOutput, or MultistateOutput, another link is also required—from the
statusOutput of the controlled object back to the “feedbackValue” input (fIn) of the export object.

FFiigguurree 3333 Example ObixAnalogExport object copied into station for linking into AnalogOutput object

44 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

Figure 2-3 shows an example of both links, where an ObixAnalogExport object controls an AnalogOutput
(“Damper1”).

FFiigguurree 3344 ObixBinaryExport object copied into station for linking into BinaryOutput (BO) object

Figure 2-4 shows a similarly-linked ObixBinaryExport object used for linking into a BinaryOutput object,
“BO_Load1”.

You can also use an export object to link to a “status” type input of an R2 object, for example an input on a
Math object (“FloatStatusType”, using an ObixAnalogExport) or on a Logic object (“BooleanStatusType”, us-
ing an ObixBinaryExport object). In this case, you simply link the statusOutput (sOut) of the export object in-
to the statusInput of the R2 object, and need not link the “feedbackValue” input of the export object.

FFiigguurree 3355 ObixAnalogExport object copied into station for use as “statusInput” type value

Figure 2-5 shows an example where an ObixAnalogExport object is used for setpoint control of an R2 Loop
object, linked into the Loop’s “sInSet” input.

For any R2 export object you use, you must set up several Config properties, described in the next section,
“R2 Obix Export object properties”. Then in the AX station, you can “discover” this object within station’s
ObixClient “lobby,” and add a writable Obix proxy point for it. This allows you to link other AX station logic
into the proxy point, as well as invoke actions on that same point.

RR22 OObbiixx EExxppoorrtt oobbjjeecctt pprrooppeerrttiieess

All three of the R2 Obix export object have these common properties, as found on tabs in their property
sheet:

SSttaattuuss

On the Status tab of an Obix export object, find these read-only properties

• lastWrite — The last value written by the oBIX Client.

• lastWriteTimestamp — The time of the last client write.

CCoonnffiigg

On the Config tab of an Obix export object, specify these values accordingly:

• priority — The priority to be used for writing values at the prioritizedOutput (defaults to 16).

• units (if ObixAnalogExport), or

December 15, 2015 45

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

activeInactiveText (if ObixBinaryExport), or

stateText (if ObixMultistateExport) — In any type of export object, set units, etc. to mirror the units for
the linked input on the controlled R2 object.

NNOOTTEE:: An ObixAnalogExport object has these additional Config properties, described below (see Fig-
ure below). Use of these “limit” type properties is optional.

– highLimit — The maximum value that can be written by the oBIX client.

– lowLimit — The minimum value that can be written by the oBIX client.

– limitEnabled — If set to true, high and low limits are enforced on client writes (default is false).

FFiigguurree 3366 Config properties for ObixAnalogExport, including “limit” type properties

Any “outside of limit” value that a client attempts write to the R2 object input is rejected, and the last “in-
limit” value is retained. For related details on the AX side, see “AnalogExport Limit Notes” on page 2-14.

EEnnggiinneeeerriinngg

On the Engineering tab of an ObixExport object, find these read-only properties

• feedbackValue — If linked, the value returned for client read requests on this object.

• prioritizedOutput — Value being written on this “pOut” output.

• statusOutput — Value being written on this “sOut” output.

OOtthheerr ppoossssiibbllee RR22 ssttaattiioonn ccoonnffiigguurraattiioonn cchhaannggeess

Apart from adding the ObixService and possible use of Obix “export” objects (all copied from the tridiumx/
obix jar), the following additional configuration changes may be necessary in R2 stations, depending on the
intended transition of an R2 Web Supervisor to AxSupervisor.

46 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

NNOOTTEE:: Before making any of the changes below, please read the related AX sections in this document to
understand current limitations. Currently, there is no known utility to “convert” the existing application data-
base (appdb) of an R2 Web Supervisor into a format that can be “merged” into the existing AxSupervisors
collection of histories and alarm database.

• If mastering R2 Schedule objects from an AxSupervisor (or another AX JACE), and they are currently
“slaved” to another R2 Schedule, you need to first unlink those slaved R2 Schedules (remove external-
Subscription at “slaveIn” input). For more information on engineering for the “AX side,” see “AxSupervi-
sor engineering” on page 2-7.

• Depending on how log archiving is to continue for any R2 JACE station, you may wish to change the set-
up of the station’s LogService, with the following Config tab properties:

– archiveMode — from “archive_remote” to “archive_local”.

– archiveAddress — uncheck Supervisor entry

• Depending on alarm/alert management is to continue for any R2 station, you may wish to change the set-
up of the station’s NotificationService, with the following Config tab properties:

– alarmArchiveAddress — uncheck Supervisor entry

– archiveMode — from “archiveRemote” to “archive_local” (if a JACE-4/5, “archive_local_no_SQL”).

OOtthheerr ppoossssiibbllee RR22 hhoosstt cchhaannggeess

After the oBIX integration, when connecting to an R2 host with the NiagaraAX client, if you receive errors
similar to:

HTTP Error 503:Service Unavailable

this indicates that all available web service threads on the R2 host are currently being used.

Typically, you can fix this by editing an entry in the system.properties file on the R2 host:

webServer.threadPoolSize=n

The value of this thread pool defaults to 15 in an R2 JACE, but can safely be increased to 30.

AAxxSSuuppeerrvviissoorr eennggiinneeeerriinngg

The following sections describe Niagara Supervisor engineering topics that relate to integrating R2 stations:

• ObixNetwork and R2ObixClient devices

• R2ObixClient Points

• R2ObixClient Histories (logs and archives)

• R2ObixClient Alarms

• R2ObixClient R2 Schedule exports

OObbiixxNNeettwwoorrkk aanndd RR22OObbiixxCClliieenntt ddeevviicceess

In the AxSupervisor you add a single ObixNetwork under Drivers, then manually add R2ObixClient devices,
where each represents an R2 station. For each new R2ObixClient, you enter a few properties in the NNeeww dia-
log, shown with non-working default values below.

December 15, 2015 47

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

FFiigguurree 3377 Add R2ObixClients using New button in Obix Client Manager view of ObixNetwork

NNOOTTEE:: As shown above, there are two types of “client device” choices: ObixClient and R2ObixClient. Al-
ways select R2ObixClient for any R2 station, as it provides additional capabilities.

Also, note the general “client/server” naming in NiagaraAX follows a “convention” used in some other driv-
ers, for example the OPC driver and Modbus drivers, where a “client” device actually represents a server de-
vice (here, an oBIX server), and associated NiagaraAX components are named “client” because a client
connection is used to retrieve data.

Set properties in the New dialog as follows:

• Name

The AX name for the device component—by convention, enter the R2 station name. It must be unique
among other child devices, and if using history ID defaults, also recommended to be unique from any Ni-
agaraStation names (under the station’s NiagaraNetwork, for remote AX stations).

• Lobby

The URI to the root of the R2 station’s oBIX server object tree (lobby), using syntax:

http://<host>[:port]/obix

where <host> is IP address or hostname, and [:port] is optional (if omitted, assumed as 80).

For example: http://192.168.1.94/obix for a typically-configured station at that IP address, or
http://192.168.1.75:85/obix for a station running on httpPort 85 on a host at that IP address.

• Auth User

Enter user name in that R2 station, typically with all admin-level privileges for most security groups.

NNOOTTEE:: On the NiagaraAX client side, if you attempt object writes without this user having the necessary
security rights for those objects (for example a command, or modify a property), it results in an "HTTP Er-
ror 401:Access Denied" error.

• Auth Pass

Enter password for that user account in the R2 station.

• Enabled

Defaults to true (must be true to attempt communications and operate).

After entering data and clicking OK, the device is added to the database, and the “State” column value for
the new row quickly changes from “Detached” to “Attaching”, and finally to “Attached”, as shown above.

48 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

FFiigguurree 3388 Entering new ObixClient and subsequent State change to Attached

NNOOTTEE:: (Troubleshooting) If after entering the R2ObixClient it remains Detached, review its Lobby syntax, in-
cluding IP address of the R2 JACE (open a command prompt window and issue a Ping command to that IP
address). Also, verify the R2 station user credentials for Auth User and Auth Pass are correct. Note also that
you should be able to open a browser connection to the R2 station using the URI entered for Lobby, and
after entering user credentials, see its oBIX lobby.

RR22OObbiixxCClliieenntt PPooiinnttss

The Points extension of the R2ObixClient device is where most AX engineering is anticipated—double-click
the PPooiinnttss icon of an R2ObixClient to see the Obix Point Manager. Then click DDiissccoovveerr.

In the discovered pane of the Obix Point Manager, expand the root “lobby” to see the tree organization, as
shown below. Items of practical interest for proxy points are under the “ccoonnffiigg” branch.

FFiigguurree 3399 Top-level lobby structure in R2 station

Expand the “config” branch of the lobby to find proxy point candidates. The config hierarchy reflects the R2
station’s object hierarchy, including a row for each object property, and expandable rows for child objects.
The highest-level config node is the Station object. So when you first expand config, at the top are the prop-
erties found on the various tabs of the property sheet for the Station (when using the R2 JDE).

December 15, 2015 49

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

FFiigguurree 4400 ObixPointManager with lobby expanded to show discovered proxy point candidates

NNOOTTEE:: As needed, click on column headers in the Discovered pane to sort as ascending or descending ,
in ASCII character order. For example, if you have the Obix Name column sorted ascending, when you ex-
pand items containers will be at top, and properties at bottom, as shown.

FFiigguurree 4411 Use column header sorts and expand containers as needed to find R2 objects and properties

R2 container objects appear in the discovered lobby as expandable gray rows (Figure 2-11), which you can
add as Obix Point Folders by double-clicking. See “About Discover “Include” options” on page 2-10.

Typical expandable target containers contain R2 “shadow objects” or related objects in the R2 station—
often the same objects that are linked to R2 Gx objects in GxPages for real-time values and commands.

NNOOTTEE:: Although each discovered object is available as a “root” node, you should always expand discovered
objects to specify a property for any proxy point. For related details, see “Specify the property” on page 2-
11.

AAbboouutt DDiissccoovveerr ““IInncclluuddee”” ooppttiioonnss

Starting in the AX-3.2, the Obix R2 points discovery behavior was improved, and new properties were added
to the PPooiinnttss device extension (R2PointsDeviceExt). Improvements made include the following:

• All R2 container-type objects, including types Container, Bundle, PollOnDemand, and PollAlways appear
in the discovered lobby tree as “groups” (gray rows)—you still expand them to see child objects. If you
double-click (to add), an Obix Point Folder is immediately created, without an intervening popup dialog.

50 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

• By default, all R2 Gx objects (GxText, GxFan, and so on) are omitted from the discovered lobby tree,
although GxPage containers still appear. This is controlled by the setting of the property of the Points ex-
tension of the parent R2ObixClient: IInncclluuddee UUii NNooddeess (default value is false). It is recommended to be
left at default.

• By default (if the associated R2 host has the file nre/lib/obixInternal.properties installed), all named prop-
erties of R2 objects are globally omitted from the AX discovered lobby tree, typically those rarely ad-
justed (if ever) during normal R2 configuration. On the AX side, this is controlled by the setting of the
property of the Points extension of the parent R2ObixClient: IInncclluuddee IInntteerrnnaall PPrrooppss (default value is
false). If you need AX access to these properties, set this slot to true.

Note the R2 “shipped” version of obixInternal.properties contains a minimal list of properties—you can
edit this file to add more properties, one per line. Driver-specific properties, such as LON props and so
on, are not included.

If the R2 host does not have the obixInternal.properties file installed, or its station has not been restarted
since that file was installed, the value of the “Include Internal Props” property makes no difference—all
properties are included in any AX point discovery for that R2ObixClient.

Figure 2-12 shows the property sheet for the PPooiinnttss extension of an R2ObixClient, including the default set-
tings for the two “Include” in discovery properties.

FFiigguurree 4422 R2PointsDeviceExt property sheet with Include defaults

SSppeecciiffyy tthhee pprrooppeerrttyy

When creating proxy points under an R2ObixClient, always select the specific property you want to display,
rather than the parent root object (node) itself. For example, expand the entry for a BinaryOutput object
and select its statusOutput property (Figure 2-13).

FFiigguurree 4433 Select property of a discovered R2 object, vs. root (Node) object

December 15, 2015 51

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

Otherwise, if you select the root object rather than a child property, the watch is on the Href for that node.
As a result, the watch returns every property of the object. However, only one “default property” is used by
the R2ObixClient proxy point— all the other returned properties add overhead, reducing throughput.

NNOOTTEE:: Starting in obixDriver builds 3.2.23, 3.3.26, and AX-3.4, proxying any property also provides the pa-
rent R2 object’s commands, by default. These appear as actions on each Obix proxy point. In previous obix-
Driver builds, only “root object” proxy points provided these command actions.

Typical properties selected for proxying/display include “statusOutput”, “prioritizedOutput”, or perhaps
“sOut” or “pOut” (varies according to R2 object type). However, note any property is selectable.

In summary, selecting object properties (rather than their root objects) will have a big impact on perform-
ance of the oBIX integration. Typically, an order of magnitude or two can be gained by specifying a property
for each proxy point, versus specifying the root object.

See the next section “Add notes for R2 Obix proxy points” for additional details.

AAdddd nnootteess ffoorr RR22 OObbiixx pprrooxxyy ppooiinnttss

When adding R2 Obix proxy points from the discovered lobby, and selecting a property (recommended),
note that currently the default NNaammee is the same as the selected R2 property name, such as “statusOutput”,
“prioritizedOutput”, and so on. In addition, Facets show default values. See figure below.

FFiigguurree 4444 Example Add dialog for R2 Obix proxy point

Edit the default Name to a more descriptive value for that R2 object. If needed, you can find the R2 object’s
name inside the shown “Href “value (you may need to click inside that field and press End).

Facets in the AAdddd dialog do not need editing, even though uninitialized values (sometimes “null”) are
shown. Upon adding the proxy point to the station, the units (or activeInactiveText) in the source R2 object
are automatically uploaded and used as the Facets in the proxy point, as shown below.

FFiigguurree 4455 Facets are automatically learned from the R2 object’s units or activeInactiveText

See the next section “About Obix proxy points” for additional details.

52 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

AAbboouutt OObbiixx pprrooxxyy ppooiinnttss

Added Obix proxy points often resemble Niagara proxy points (Niagaraunder Points container of a Niagara
Station in a NiagaraNetwork) in the following ways:

• Most proxy points for R2 objects, including ones for “input writable” ones such as BinaryOutput, Ana-
logOutput, MultistateOutput, Loop, and so forth are proxied as read-only points only—writable AX point
types like BooleanWritable, NumericWritable, etc. are not selectable. This applies to all nodes and prop-
erties that appear in the Discovered table with a “Mode” of “RO” (read only).

However, object commands are available, as actions of the read-only proxy point. See figure below and
also the “Command Notes” topic.

• Some R2 object properties show a discovered “Mode” of “RW”. Most are configuration types such as
alarm limits (e.g. “lowLimit”, “highLimit”), “deadband”, and “notificationClass” as a few examples. If de-
sired, you can proxy such a property as a writable point type, e.g. NumericWritable, BooleanWritable,
etc. This allows you to write the R2 property value from the AX station, either by an invoked action on
the proxy point, or by linking to the proxy point’s input(s).

NNOOTTEE:: By default, right-click actions on a writable Obix proxy point include both

native AX actions for the writable point - to change the value of the specific R2 property

actions for the commands on the parent R2 object - to directly command that object

In some cases, you may wish to hide some action slots, e.g. ones for the parent object’s commands. Or, if
link control (via proxy input) is the only intended method, you may wish to hide all action slots. If hiding
any actions, be sure to hide the “forceUpdate” one.

Typically, “standard” control logic linking from AX to an R2 object requires additional engineering on
both sides.

FFiigguurree 4466 Proxy point for R2 object or property offers actions for commands, even as read-only point

AAbboouutt ffoorrcceeUUppddaattee

By default, every Obix proxy point has an available “forceUpdate” action, an admin-level action that results
in an immediate fetch of the property’s value. If applicable, the forceUpdate also reflects any R2 configura-
tion changes to the parent object’s display-related property (“units”, “activeInactiveText”, etc.).

December 15, 2015 53

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

FFiigguurree 4477 Each Obix proxy point has forceUpdate action available by default

However, sometimes you may wish to hide the forceUpdate action slot, working from the slot sheet view of
the Obix proxy point. This is especially true if the proxy point has R2 object command actions that are “hid-
den,” or have other config flag changes. Otherwise, invoking forceUpdate causes config flag changes to
those actions to be overwritten with defaults. For example, any R2 command actions previously engineered
to be hidden will display, or command actions set to “Operator” will revert to admin level.

NNOOTTEE:: A “global” forceUpdate action is on the PPooiinnttss extension of an R2ObixClient. Although seldom ex-
posed on a PxPage, know that it effectively invokes a forceUpdate to all Obix proxy points for an R2Obix-
Client. Even for just Workbench access, you may wish to hide this action slot (if not already hidden).

CCoommmmaanndd NNootteess

In addition to a proxy point “forceUpdate” action, note by default “normal right-click” commands appear on
the action menu for Obix proxy points—providing the source R2 object has commands. Actions display mir-
roring the configured R2 object’s “commandTags” property strings, where applicable.

If a source R2 control object has “empty” (blank) commandTags properties, note that (by design) corre-
sponding actions do not appear—the same as on the R2 object’s right-click command menu. However, note
that those actions do exist on the slot sheet of the Obix proxy point with the Hidden config flag set, by
default.

Also by default, note that some additional hidden actions may also exist, depending on the source R2 object
type. See “Hidden actions” on page 2-14 for related details.

NNOOTTEE:: Actions for R2 object commands that are operator level (“Cmd, Std”) automatically default with the
Operator config flag set. See the figure below for how these defaults look from the slot sheet of a proxy
point.

FFiigguurree 4488 Obix proxy point from its slot sheet, showing Operator flag set on manual-level actions

54 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

Such “manual” (often level 8) commands on R2 objects include:

• manualSet (AnalogOutput, MultistateOutput)

• manualAuto (AnalogOutput, BinaryOutput, MultistateOutput)

• manualActive, manualInactive (BinaryOutput)

• override, cancel, setOverrideValue (AnalogOverride, MultiStateOverride, BinaryOverride)

Note for a few R2 object types, due to the unique “string” content for command names, operator-level ac-
tions do not have the operator flag automatically set—for example an Obix proxy point for an R2 “Com-
mand” object, or for a BinaryOverride object’s “overrideActive” and “overrideInactive”. If needed, you can
explicitly set the operator flags on these actions.

HHiiddddeenn aaccttiioonnss

Other hidden actions may also exist on the Obix proxy point’s slot sheet, including commands normally ac-
cessible only on the “Command menu” of the JDE (WorkPlace Pro), when that R2 object’s property sheet is
displayed in the JDE for an admin-level user.

Examples of such commands for various control objects include:

• resetAckedTransitions — For all alarm capable objects. Rarely used, it sets any cleared flags in the ob-
ject’s ackedTransitions property.

• resetChangeOfStateCount — For BI, BO, MSI, MSO objects. Zeroes out any accumulated COS value (nu-
merical changeOfStateCount).

• resetActiveTime — For BI, BO, MSI, MSO objects. Zeroes out any accumulated runtime value (numerical
elapsedActiveTime).

• setChangeOfStateAlertLimit — For BI, BO, MSI, MSO objects. To change the numerical COS limit for
generating an alert (changeOfStateAlertLimit).

• resetTotal — For a Totalizer object. Zeroes out any accumulated statusTotal value.

• resetCounter — For an NdioHighSpeedCounterInput object. Zeroes out any accumulated totalOutput
and countOutput.

If needed, you can expose any of these type actions by going to the slot sheet of the Obix proxy point, and
clearing the “Hidden” config flag. These hidden actions appear listed with an “h” in the Flags column. How-
ever, it is anticipated that typically such actions will be left hidden. Note if hiding or unhiding command ac-
tions, you should hide the forceUpdate action too.

LLiinnkk ccoonnttrrooll iinnttoo RR22 oobbjjeeccttss

If you need to link local (AX) station control logic into an R2 object input, do this in a similar way as when
working between two AX stations (NiagaraNetwork). In either case, you need to create an additional object
in the “target input side” i.e. controlled station, and link its output into the object being controlled.

• In a remote AX station, you do this by making a reciprocal Niagara proxy point looking back at the “con-
trolling” (output) point in the local station. See “Link control and Niagara proxy points” in the NiagaraAX
Drivers Guide for details.

• In the case of the R2 station, you copy one of the three types of “export objects” from the R2 tridiumx/
obix jar (ObixAnalogExport, ObixBinaryExport, ObixMultistateExport) and paste it into the station, link-
ing its output into the priorityArray input of the R2 object being controlled. Another link is also required,
from the statusOutput of the controlled object back to the feedbackValue input (fIn) of the export object.
See “R2 ObixExport objects” on page 2-4 for more details.

Then, back in the AX station with the ObixClient, you rediscover the Points (“lobby” object tree), and
add a new proxy point for the “root node” of each added export object, selecting the default writable
point (NumericWritable, BooleanWritable, etc.) for each one.

These Obix proxy points provide the array of priority inputs for link control from the local AX station, as
well as actions to invoke. Note that as with other discovered R2 objects, in addition to the “root node”

December 15, 2015 55

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

they are expandable to select properties to proxy separately. Several config properties may offer utility
to proxy as writable types, for instance the “limit” associated properties of ObixAnalogExport objects,
providing they are “limit enabled.” See the next section “AnalogExport Limit Notes” for related details.

AAnnaallooggEExxppoorrtt LLiimmiitt NNootteess

Note that in the AX station, when invoking an action on an Obix proxy point for any R2 ObixAnalogExport
object that is “limit enabled” (see “R2 Obix Export object properties” on page 2-5) any value invoked that is
outside the high/low limit range results in an “Invalid Argument” popup message, as shown in Figure 2-19.

FFiigguurree 4499 Invalid Argument popup error in AX Workbench if invoking action outside of limit range.

In addition, be aware that if the active (highest priority) value at the inputs of the NumericWritable Obix
proxy point is outside of the limit range established in the corresponding R2 ObixAnalogExport object, this
causes the proxy point to go into a fault state, with an updated “Fault Cause” message similar to:

Write fault: obix.net.ErrException: <err href="/obix/config/almTest/ExportTest/
ObixA_Export/.write"/>

OObbiixxCClliieenntt pprrooxxyy ppooiinntt ttiippss

When creating Obix proxy points for an R2 JACE under the Points extension, the following tips may be
useful:

• As needed, use the column sort features when traversing the lobby tree in the Discovered pane. This can
save scrolling time.

• When creating ObixPointFolders for organizing proxy points (double-clicking R2 container type objects,
or using the NNeeww FFoollddeerr button), be aware of the current database level. Each ObixPointFolder has its
own Obix Point Manager view, seen when you double-click it—note this collapses the lobby tree in the
discovered pane. However, you can simply re-expand the lobby to find and add child Obix proxy points.

• For any R2 object for which you need standard AX alarming, create a root-level proxy point for it, then
add an AX alarm extension to it (for example, an OutOfRangeAlarmExt, duplicating the same alarm and
fault (min/maxPresentValue) limits as in the R2 source object). Or, to avoid limits duplication in AX, you
can add a StatusAlarmExt and simply select the alarm states in the algorithms for OffNormal and Fault.

NNOOTTEE:: Alternatively, you can configure the Alarms device extension under the R2ObixClient to process
R2 native alarms within the AX station’s alarm subsystem. This works best for R2 objects that are already
being proxied in the AX station. For more details, see “R2ObixClient Alarms” on page 2-18.

• Understand the “forceUpdate” action of an Obix proxy point can cause issues in certain cases. For de-
tails, see “About forceUpdate” on page 2-13.

CClliieenntt ppoolllliinngg ttiimmiinngg

As with most drivers, the polling cycle timing is dependent on the number of proxy points currently in the
“Dibs”, “Fast”, “Normal” and “Slow” polls. There are also properties of the R2ObixClient that may need to
be adjusted from default values, in support of the oBIX “watch subscription”.

56 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

WWaattcchh IInntteerrvvaall

An R2ObixClient device’s Watch Interval property controls the polling of the watch, and is found on its
PPooiinnttss extension. The default watch interval value is 2 seconds. Typically on an R2ObixClient device, the
watch interval should be increased to 10 seconds or more, to reduce the load on the R2 platform.

WWaattcchh SSaaffeettyy FFaaccttoorr

The parent R2ObixClient also has two related properties, as follows:

• Watch Safety Factor — Often, you should also increase the watch safety factor (default is 10 seconds).
This specifies the time added to the watch interval to calculate the requested “lease time” of the watch.
Essentially, this is the “COV subscription lifetime” the AX client is requesting from the R2 server. This is
more important if using a shorter watch interval, because the driver calculates two values to use as the re-
quested lease time, choosing the larger of the two:

T1 = watch interval * 2
T2 = watch interval + watch safety factor

For large watch intervals, the requested lease time is inherently big (2x). But the safety factor provides an
independent way to control requested lease time, such that you could make it 3 or 4 times the watch in-
terval, if desired.

• Session Timeout — How long the NiagaraAX client waits on a particular request before giving up. If the
R2 station takes longer than 15 seconds to return the watch once polled, you may need to increase the
session timeout.

NNOOTTEE:: The sessionTimeout slot on an R2ObixClient device is hidden by default. Go to the device’s slot
sheet and remove the hidden flag from the slot. Once visible, you can go to the property sheet of the
R2ObixClient and adjust upward to tune, if needed.

DDeebbuugg nnootteess

Enabling debug on the R2 server can be useful to diagnose initial problems, but should never be used unless
necessary, as it greatly slows the server’s response time to the Ax Client.

If you encounter errors similar to:

HTTP Error 503:Service Unavailable

this indicates the R2 host has run out of webservice threads.

RR22OObbiixxCClliieenntt HHiissttoorriieess ((llooggss aanndd aarrcchhiivveess))

The Histories extension of an R2ObixClient is where you can import data from the R2 station’s log objects,
as well as existing archives from its appdb (if it has the DatabaseService), by adding history import descrip-
tors. The default view of Histories is the ObixHistoryManager (Figure 2-20), where you specify which discov-
ered logs and archives you want to import, using the familiar oBIX “lobby” tree in the Discovered pane.

December 15, 2015 57

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

FFiigguurree 5500 ObixHistoryManager is for importing R2 logs and/or archives into the history space

NNOOTTEE:: The ObixHistoryManager and created history import descriptors operate as they do in the history
import views and descriptors in the NiagaraNetwork and BacnetNetwork. For related details, see the Niag-
araAX Drivers Guide sections “About the Histories extension” and “History Import Manager”.

Each added descriptor (after archived in AX) produces one history in the station’s local history space, organ-
ized by default under a container with the same name as the source R2ObixClient. The following figure
shows an example of how the created histories appear in the AX station’s history space.

FFiigguurree 5511 By default, imported histories under container with name of ObixClient (often, stationName).

Figure 2-22 shows an example add/edit dialog for an ObixHistoryImport descriptor with default values,
where the import descriptor name matches the source R2 Log object name, and the history ID is a combina-
tion of the R2ObixClient’s name / Log object name.

58 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

FFiigguurree 5522 Add/Edit dialog for importing an R2 log or archive by import descriptor

Note that an R2ObixClient histories discover includes an R2 station’s “AuditLogService” and “ErrorLogSer-
vice,” in addition to logs created by Log objects like “AnalogLog, BinaryLog,” and so on. See the next sec-
tion “ObixClient history import notes” for additional notes.

OObbiixxCClliieenntt hhiissttoorryy iimmppoorrtt nnootteess

When importing logs and archives from an R2 station under the Histories extension, note the following:

• After you click DDiissccoovveerr in the OObbiixx HHiissttoorryy MMaannaaggeerr to see the lloobbbbyy, your subsequent initial expan-
sion of the “histories” node in the Discovered pane may take a long time to process, often several mi-
nutes, depending on the number of log objects in the source R2 station, and particularly how many
archives are in a source R2 Web Supervisor station. During this period, the Workbench cursor changes to
an “hourglass,” and other operations must wait. However, after this initial expansion, the discovered his-
tory tree remains cached in memory—at least until you leave the Obix History Manager view.

NNOOTTEE:: In a few cases involving large numbers of logs or archives, after expanding the histories node, the
Workbench connection to the station was found to timeout and drop. Contact Systems Engineering for
assistance in this scenario.

• Note that all log objects and archives appear in the Discover pane after a discover—including log objects
with identical names. However, note by default that they are unique by swid/href because of varying loca-
tions. It is recommended that you sort (click) the “Obix Name” column in the Discover pane to ASCII-sort
discovered logs by name. This will group any identically-named log objects together.

Although the Obix History Import manager allows you to create multiple import descriptors (with default
values) for an identical Obix Name, note that only one can successfully import using the same History Id.
Import descriptors with a duplicate History Id will go into fault upon import attempt. Therefore, by
grouping you can select and edit History Ids appropriately when you add them to the database.

For example, if you had a station named “RN_Hall”, with several logs each named “RmTemp”, you could
edit the second field of the History Id for each descriptor to make each unique, for example “Zn1_
RmTemp”, “Zn2_RmTemp”, and so on. This way, complete History Ids for each would be “RN_Hall/Zn1_
RmTemp”, “RN_Hall/Zn2_RmTemp”, and so forth.

December 15, 2015 59

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

RR22OObbiixxCClliieenntt AAllaarrmmss

The Alarms extension of an R2ObixClient for an R2 station allows you to add “alarm feed” sources, such that
native R2 events (alarms and alerts) in the station can be visible in the AX station’s AlarmService.

FFiigguurree 5533 Obix Alarm Manager view used to add alarm feeds from R2 NotificationClass objects

To configure, double-click the R2ObixClient’s AAllaarrmmss extension, and in the Obix Alarm Manager view, per-
form a DDiissccoovveerr. Expand the sseerrvviicceess node, and then the NNoottiiffiiccaattiioonnSSeerrvviiccee node. As shown above, each
R2 NotificationClass object is represented as a separate alarm feed, in addition to a “global” “ObixService”
alarm feed.

Double-click any feed for the AAdddd dialog. If desired, you can select a non-default local Alarm Class, but other
properties are typically left at default.

NNOOTTEE:: If your AX station has an Alarm Class with the same AX name (as the discovered R2 NotificationClass
node), then all imported R2 alarms using that NotificationClass are automatically routed to that local Alarm
Class—this overrides any Alarm Class specified in the AAdddd dialog.

Click OOKK to add the ObixAlarmImport descriptor(s). These are the only objects added in this view, and they
requires no further configuration.

NNOOTTEE:: Typically, you add all nodes discovered under the NotificationService, but not the node for the single
discovered “ObixService”. This provides the ability for mapping different R2 NotificationClasses to different
AX AlarmClasses, rather than just “lumping” all native R2 alarms from the R2 station into a single feed with
only one designated AX Alarm Class.

See the following subsections for additional R2 alarm import details:

• R2 alarm import operation

• Example R2 alarm imports

• Final notes on imported R2 alarms

RR22 aallaarrmm iimmppoorrtt ooppeerraattiioonn

The first thing to understand about importing R2 native alarms is that they are not oBIX “StatefulAlarms,”
meaning there is no defined “lifecycle” of an alarm event (unlike with the NiagaraAX alarming subsystem).
However, R2 alarms do support the oBIX “AckAlarm” contract, allowing acknowledgment from NiagaraAX.

60 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

Thus, as shown below, all R2 native alarms appear as “normal” (green alarm bell) source state events when
routed to an AX Alarm Console. However, all of the “metadata” about each event, including the alarm state
(normal, offnormal, etc.), exceeded value, and so on, is included in the alarm details of the alarm record.

FFiigguurree 5544 Imported R2 alarms always have “Normal” source state in Alarm Console

Alarms are differentiated by alarm feed sources, which typically correspond to different NotificationClasses
in the source R2 station (unless, for some reason you choose to only add the “ObixService” as a single alarm
feed source). By mapping NotificationClasses to AX Alarm Classes, you can implement similar alarm routing
techniques as used in the R2 station—and perhaps more, given that multiple Alarm Consoles can be added/
linked to classes. See the next section “R2 alarm source determination” for further details.

RR22 aallaarrmm ssoouurrccee ddeetteerrmmiinnaattiioonn

When R2 native alarms from the Obix driver are received in an AX Alarm Console, they display a “Source”
string as follows:

• “R2ObixClientName-obixProxyPointName” (if the proxy point for the source R2 object exists in the sta-
tion database). By convention, this equates to the source R2 station name-proxy point name.

• If the alarm source R2 object is not proxied in the station, then “R2ObixClientName-alarmClassName”.

Therefore, native R2 alarms received that were generated by objects not represented with Obix proxy points
will be grouped under a single row (alarm class) in the Alarm Console, and it will not be immediately appa-
rent about the original source object(s) responsible. To investigate further, you must double-click that row,
then double-click rows again for the final Alarm Details dialog. See “Example R2 alarm imports” on page 2-
19.

NNOOTTEE:: In this case especially, you must be careful about acknowledgement of a single row in the Alarm Con-
sole, as it may represent several different R2 alarm sources—the single acknowledgement will be applied to
all underlying alarms (whether you are aware of them or not).

Be sure to look at the AAcckk SSttaattee column to see how many unacknowledged alarms exist!

EExxaammppllee RR22 aallaarrmm iimmppoorrttss

As previously noted, all imported R2 alarms and alerts from any R2 station appear as “normal” source state
events. Also, it is possible that alarms from different R2 source objects will appear under a single row in the
Alarm Console (if they are not mapped as Obix proxy points). If you double-click to investigate, you see that
they also appear as “normal.” As needed, double-click rows again for the final Alarm Record dialog.See the
following figures.

December 15, 2015 61

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

FFiigguurree 5555 R2 alarms by objects not mapped as proxy points require Alarm Details inspection

Alarm Record details show source R2 object by path in href, along with R2 alarm data

As shown in the figures above, it may be needed to fully expand an imported R2 alarm record to understand
its importance. Note that you can use the table options control in the Alarm Console to “Add An Alarm Data
Column”, such as “fromState” and “toState”—these may be helpful if you anticipate a lot of R2 alarms like
these.

62 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

FFiinnaall nnootteess oonn iimmppoorrtteedd RR22 aallaarrmmss

AAllaarrmm aacckk ddiiffffeerreenncceess bbeettwweeeenn RR22 aanndd AAXX

Be aware of the fundamental difference about “alarm ack permissions” between the AX alarming model and
the R2 alarming model:

• In an AX system, a station user needs “admin write” permissions on the Alarm Class used to route the
alarm in order to acknowledge it, regardless of what permissions (if any) that user may have on the source
component that generated the alarm.

• In an R2 system, a station user needs “command, alarm” permissions on the source object that generated
the alarm in order to acknowledge it, regardless of what permissions (if any) that user may have on any of
the NotificationClass objects.

Keep this in mind when assigning AX user permissions (using categories) to components in the AX station,
noting the difference between accessing actions/properties of Obix proxy points vs. acknowledgement of
alarms originated from those points.

AAllaarrmm hhaannddlliinngg ddiissccoonnttiinnuueedd ffrroomm RR22 WWeebb SSuuppeerrvviissoorr

Although the ability to see and acknowledge native r2 alarm/alert events from AX is included (as previously
described), the source R2 station (JACE) must have its NotificationService config properties set as follows:

• archiveMode=archive_local_no_SQL

• alarmArchiveAddress, checkbox cleared

This prevents continuation of any R2 Web Supervisor handling of the station’s alarm/alert events.

PPoossssiibbiilliittyy ooff iinnaaddvveerrtteenntt aacckknnoowwlleeddggeemmeennttss

Acknowledgement from AX can occur on individual events (within the popup window for that alarm source)
or on all events if AAcckknnoowwlleeddggee is pressed while that row is highlighted in the Alarm Console—regardless
of how many underlying alarms may exist. This may prove problematic in actual job use. Note this especially
applies if many R2 alarm-capable objects are not represented as Obix proxy points in the station.

AAlltteerrnnaattiivvee ttoo iimmppoorrttiinngg nnaattiivvee RR22 aallaarrmmss

If alarming is critical, for the reasons previously noted you may wish to transition all alarming to “native AX”
alarming, instead of using the ObixClient Alarms feature. Do this by creating Obix proxy points for all ob-
jects that require alarming (or runtime/COS count events), and then adding to each point the necessary
alarm extension(s), configuring them in AX. Note that extensions for R2 “alert” type events (runtime, COS
counts) are found in the alarms folder of the kitControl palette.

In this “alarm re-engineering” scenario, you would typically create equivalent AlarmClasses for the Notifica-
tionClass objects used in the R2 station, configured with similar priorities and alarm recipient components.

RR22OObbiixxCClliieenntt RR22 SScchheedduullee eexxppoorrttss

By default, each R2ObixClient has 4 device extensions: Alarms, Histories, Points and Schedules. Expand the
R2ObixClient and double-click SScchheedduulleess (R2ScheduleDeviceExt) for the Obix Schedule Manager view, and
then perform a DDiissccoovveerr. Expand the ccoonnffiigg branch of the lloobbbbyy to locate target Schedules in the R2 sta-
tion. Schedules are added as ObixScheduleExport descriptors, as shown in Figure 2-27.

December 15, 2015 63

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

FFiigguurree 5566 Obix Schedule Manager view of Schedules device extension to designate R2 slave schedules

In the Add/Edit dialog for a schedule export descriptor, assign component values, including a unique name
for the descriptor. In this dialog you must specify which local AX BooleanSchedule will serve as the supervi-
sor (master) schedule for the target R2 schedule. To do this, click the folder icon on the right side of the
Supervisor field, which by default opens the CCoommppoonneenntt CChhoooosseerr (SSeelleecctt OOrrdd dialog) as shown in Figure 2-
28.

FFiigguurree 5577 Add/Edit dialog for ObixScheduleExport descriptor, showing Supervisor

In the SSeelleecctt OOrrdd dialog of the component chooser, select a schedule and then OOKK. The Supervisor field
should now have a valid ord, for example: station:|slot:/Schedules/BooleanSchedule1

Add an export descriptor for each R2 Schedule object in the R2 station that you wish to master from an AX
BooleanSchedule.

64 December 15, 2015

Engineering Notes Chapter 3 Niagara R2 to NiagaraAX via oBIX

NNOOTTEE:: Any target R2 Schedule should not already be “slaved” to an R2 Schedule in another station (typi-
cally in the R2 Web Supervisor station), otherwise the AX schedule supervisor function may not be success-
ful. To remove a Schedule from R2 slaved control, delete the externalSubscription link on its “slaveIn” input.
A station restart on the slaved station (typically JACE) may also be needed.

AAXX SScchheedduullee ttoo RR22 SScchheedduullee ooppeerraattiioonn

Although the AX BooleanSchedule and the R2 Schedule seem to have similar “weekly” schedule event pro-
gramming, they in fact use different “schedule models.” Therefore, AX schedule mastering of an R2 Sched-
ule is implemented by writing the AX schedule’s events to the Special Events in that R2 Schedule.

Note that unlike AX schedule special events (which “intermingle” with weekly events), R2 schedule special
events replace the normal weekly schedule. As shown in below, schedule events that are written to the R2
Schedule from the AX master appear in the “Special Events” tab of the JDE Schedule Editor view, in a block
of around four weeks. Each has a “weekday” name (monday, tuesday, monday2, tuesday2, etc.) seen at the
top of the tab.

FFiigguurree 5588 R2 JDE Scheduler Editor view, Special Events tab, showing received AX schedule events

As a contingency measure, you may consider creating additional Schedule objects in the R2 station, along
with any necessary additional logic, to provide scheduling control in the case that communications with the
AX master station are lost for long periods. Or, continue to maintain the weekly schedule portion of these
Schedule objects, because this is not affected by any schedule downloads from the AxSupervisor.

December 15, 2015 65

Chapter 3 Niagara R2 to NiagaraAX via oBIX Engineering Notes

66 December 15, 2015

December 15, 2015 67

CChhaapptteerr 44 SSaammppllee RReeppoorrttss UUssiinngg BBQQLL
aanndd BBoouunndd TTaabblleess

Topics covered in this chapter
♦ Creating The Report Px Page
♦ Example Reports

Customized report graphics are easily created using both a standard Px page or the newer report Px page
which was introduced in build 3.2.16. Using the report service and the report pane it is possible to produce
more robust interfaces that are easily exported.

The examples presented in this document can be created in older builds with standard Px pages.

CCrreeaattiinngg TThhee RReeppoorrtt PPxx PPaaggee

If using the 3.2.x build, there is a new file type which may be added to the station called ReportPxFile.px.
This is the preferred default template to use when creating a report graphic. When a standard Px file is cre-
ated it contains a scroll pane at the root of the widget tree with a canvas pane inside of the scroll pane. The
default report Px file only includes a report pane at the root of the widget tree. There is no functional differ-
ence between the two pages other than the default panes which are present when the file is created. If using
any previous builds older than 3.2.x, then the report pane component is not available.

RReeppoorrtt PPaannee VVeerrssuuss CCaannvvaass PPaannee

The report pane provides several benefits over using a standard Px page with scroll and canvas panes.

• There are no settings for the report pane size. The report pane is the root of the Px file and auto sizes
based on the content to display.

• The report pane has properties which allow the inclusion of a logo image, the page number and a date
time stamp on each page of an exported report.

• Bound tables in a report pane auto size to display all rows without the need of a scroll bar, where as a
bound table in a standard canvas pane must be sized manually.

• When exporting the report Px to a pdf file the required number of pages automatically generate.

NNOOTTEE:: It is important not to put the report pane inside of a scroll pane or the auto sizing and page gen-
eration will not function correctly.

UUssiinngg BBoouunndd TTaabblleess aanndd BBoouunndd LLaabbeellss

You can create a report Px page using bound labels and bound tables to display real time data. Bound tables
can also be used to display historical data on the reports as well.

A bql query can be entered in the ord field of the bound label binding (see 6-1), as opposed to referencing a
component in the station. Animating the text field allows displaying the results of the bql query. If the bfor-
mat text is configured to '%.%' then it will simply display the value. Additional standard text may be used as
well such as, 'Points With Alarms Disabled (Alarm Inhibit = True): %.%'.

Chapter 4 Sample Reports Using BQL and Bound Tables Engineering Notes

FFiigguurree 5599 Bound label property sheet using bql query in the Ord field

The bql query is entered in the ord field of the bound table to display the list of points or historical data (see
6-2).

FFiigguurree 6600 Bound table property sheet using bql query in Ord field

EExxaammppllee RReeppoorrttss

The following sections provide examples of how to create specific types of reports. Report examples may be
available in both the Px and PDF file formats from Niagara-Central.com or other Tridium support sites.

• Point Status Report

• Schedule Report

• Tenant Override Report

• Weekly Electrical Demand Report

• Point Status Report

PPooiinntt SSttaattuuss RReeppoorrtt

Operators often desire a snap shot report which displays the status of points. In particular emphasis is
placed on points which are in an abnormal state such as overridden, alarm, fault, disabled or which have
alarm functionality disabled.

68 December 15, 2015

Engineering Notes Chapter 4 Sample Reports Using BQL and Bound Tables

• Displaying Points with Alarm Functionality Disabled

Alarm extensions have a boolean property called 'Alarm Inhibit'. When the property value is 'true', proc-
essing of alarm events is prevented. The alarm inhibit status is not displayed in the status of the parent
point because it is not actually a property of the BStatus type.

Using bql the station can be searched for components which are alarm source extensions. The bql query
builder (see 6-3) can be used to create the query or you can simply type the syntax, as shown below.

station:|slot:/|bql:select * from alarm:AlarmSourceExt

FFiigguurree 6611 Bql query builder constructing query for alarm source extensions

– Filtering by Alarm Inhibit Property

This query returns a list of all alarm source extensions in the station regardless of whether the extension
is inhibited or not. To limit the return based on the alarm inhibit property, the query needs to be modified
as below (see 6-4).

station:|slot:/|bql:select * from alarm:AlarmSourceExt where
alarmInhibit.boolean = 'true'

FFiigguurree 6622 Bql query builder constructing query filtered by alarm inhibit property

– Displaying Specific Columns

The filtered query returns a list of alarm source extensions whose alarm inhibit property is set to true, but
the table displays all of the properties for the extension. It is preferable to further filter the results so that
only the desired properties are displayed. The columns which are displayed in the table may be limited
by further modifying the query as below (see 6-5).

station:|slot:/|bql:select parent.name as 'Point Name',parent.out as
'Point Status' from alarm:AlarmSourceExt where alarmInhibit.boolean = 'true'

December 15, 2015 69

Chapter 4 Sample Reports Using BQL and Bound Tables Engineering Notes

FFiigguurree 6633 Bql query builder constructing query to filter the displayed columns

NNOOTTEE:: In the example above, bformat text is used to display information from the parent component of the
alarm source extension. The name or displayName of the parent point and the out slot would likely be useful
information to display. Other columns could be added to display information from the alarm source exten-
sion as well.

• Displaying the Number of Records in a Query

It is also possible to use a bql query to calculate and display the number of records returned in the query.
The original query can be modified as below.

station:|slot:/|bql:select * from alarm:AlarmSourceExt where
alarmInhibit.boolean = 'true'|bql:size

NNOOTTEE:: The bql query builder does not support the '|bql:size' syntax, although it is a valid query. It is nec-
essary to delete this syntax from the query prior to opening the bql query builder.

• Displaying Points Currently In Alarm

Each control point in the station has both a value and a status. The status reflects the current condition or
reliability of the point value. Available statuses are down, alarm, unacknowledged alarm, overridden, dis-
abled, fault and stale.

Using bql the station can be searched for control points where the alarm status flag is true. The bql query
builder (see 6-6) can be used to create the query or you can simply type the syntax below.

station:|slot:/|bql:select name as 'Point Name',out as 'Point Status' from
control:ControlPoint where status.alarm = 'true'

FFiigguurree 6644 Bql query builder constructing query for control points in alarm

• Displaying Points Currently Overridden

Using bql the station can be searched for control points where the overridden status flag is true. The bql
query builder (see 6-7) can be used to create the query or you can simply type the syntax below.

station:|slot:/|bql:select name as 'Point Name',out as 'Point Status' from
control:ControlPoint where status.overridden = 'true'

70 December 15, 2015

Engineering Notes Chapter 4 Sample Reports Using BQL and Bound Tables

FFiigguurree 6655 Bql query builder constructing query for control points currently overridden

SScchheedduullee RReeppoorrtt

Operators often request a print out of all scheduled events including the normal weekly schedules and spe-
cial events. A schedule report can be generated for all of the schedules in a given station by using a bql
query.

• Examining a Typical Schedule

By default the composite schedule component of a standard schedule is hidden. Accessing the slot sheet
of a schedule component allows removing the hidden flag from the composite schedule. Viewing the
composite schedule property sheet (see 6-8) helps to understand how the composite schedule is organ-
ized and how to construct the bql query.

FFiigguurree 6666 Composite schedule property sheet

The main composite schedule consists of a child composite schedule called specialEvents and a week sched-
ule called week. Special events which are added to the schedule and each specific day of the week schedule
are all daily schedule type objects.

Using bql the station can be searched for the daily schedule components. The bql query builder (see 6-9) can
be used to create the query or you can simply type the syntax below.

station:|slot:/|bql:select * from schedule:DailySchedule

December 15, 2015 71

Chapter 4 Sample Reports Using BQL and Bound Tables Engineering Notes

Bql query builder creating query for daily schedule components

This basic query for the daily schedule component returns the slot path, property values and names of the
sub schedule components. This is not very useful information for an operator, so the query will likely need to
be modified to display more specific pertinent information. The property sheet of the daily schedule can be
used to get a better idea of what data might be useful to display in the columns (see 6-10).

DailySchedule property sheet with children components expanded

Each daily schedule consists of two child components. The first component is called 'day' which is a day
schedule and the second component is called 'days' which is an abstract schedule. The abstract schedule de-
fines the event date and the day schedule defines the event times and event value.

• Resolving the Schedule Name

Since the bql query is for the daily schedule components, it is necessary to use BFormat text to derive
the schedule name using the below syntax. The actual schedule component is three levels up the naviga-
tion tree from the daily schedule components.

%parent.parent.parent.displayName%

• Displaying the Event Date

72 December 15, 2015

Engineering Notes Chapter 4 Sample Reports Using BQL and Bound Tables

The days component returns the actual event date if specified or if it is a weekly schedule then it displays
'weekday schedule'.

• Displaying the Event Name

Since the query returns the daily schedules, use 'displayName'.

• Displaying the Event Times

The event times are slots of the time schedule which is a child of the daily schedule components. There
are individual slots for the start and finish times, which may be displayed using the below syntax.

day.time.start (displays the time of the first start event)

day.time.finish (displays the time of the first stop event)

day.time1.start (displays the time of the second start event)

day.time1.finsih (displays the time of the second stop event)

• Filtered Query for Daily Schedules

Using the above concepts a filtered query can be created to display the desired results. The bql query
builder (see 6-11) can be used to create the query or you can simply type the syntax below.

station:|slot:/|bql:select parent.parent.parent.displayName as 'Schedule',days
as 'Event Date',displayName as 'Day Of Week',day.time.start as 'Occ1',day.time.finish
as 'Unocc1',day.time1.start as 'Occ2',day.time1.finish as 'Unocc2' from
schedule:DailySchedule

Each daily schedule consists of two child components. The first component is called 'day' which is a day
schedule and the second component is called 'days' which is an abstract schedule. The abstract schedule
defines the event date and the day schedule defines the event times and event value.

FFiigguurree 6677 Bql query builder creating query for daily schedule components

• Filtering by Special Events

It may also be helpful to filter the results to only display special events, after all people typically know
what the standard schedule events are. The bql query builder (see 6-12) can be used to modify the query
or simply type the syntax below.

station:|slot:/|bql:select parent.parent.parent.displayName as 'Schedule',days as
'Event Date',displayName as 'Day Of Week',day.time.start as 'Occ1',day.time.finish
as 'Unocc1',day.time1.start as 'Occ2',day.time1.finish as 'Unocc2' from
schedule:DailySchedule where parent.name = 'specialEvents'

December 15, 2015 73

Chapter 4 Sample Reports Using BQL and Bound Tables Engineering Notes

FFiigguurree 6688 Figure 12: bql query builder creating query for special events

TTeennaanntt OOvveerrrriiddee RReeppoorrtt

It is often times necessary to generate reports on historical data, which can be equally as important as re-
porting on real time data. Histories in the station may be configured to record information at specified inter-
vals, a change of value or state, or only when certain other conditions exist. There are also standard logs in
the station like the audit log and log history which record operator actions and system errors.

If a tenant has access to override set points or scheduled periods of operation, then it may be a requirement
to document these actions. The standard audit log can be used to track the actions, or additional histories
could be configured to track the actions as well.

• Using the Audit Log

The audit log can be searched for records where a specific set point or component has been overridden.
The audit log record displays the timestamp, operation (added, removed, invoked, changed, etc), target
(path to component), slot name, old value (occupied, unoccupied, 78 deg F, etc), value (the new value),
and the user who performed the operation.

The bql query builder (see 6-13) can be used to create the query or you can simply type the syntax below.

history:/demo/AuditHistory|bql:select *

FFiigguurree 6699 Bql query builder creating query for the audit log

• Filtering by Operation

This basic query returns a list of every record in the audit log and every available data column. Since the
objective is to only display records relating to an overridden point, the query can be modified as below
(see 6-14) to limit the return based on the operation

history:/demo/AuditHistory|bql:select * where operation like 'Invoked'

74 December 15, 2015

Engineering Notes Chapter 4 Sample Reports Using BQL and Bound Tables

FFiigguurree 7700 Figure 14: bql query builder creating query for the audit log filtered by operation

• Filtering by Target Component

The modified query only returns records where the operation is 'invoked'; however, the return is for every
component in the station. The query can be further modified as below to limit the return based on the
(target) component. (see 6-15)

history:/demo/AuditHistory|bql:select * where operation like 'Invoked' and target
like '/Schedule/Suite100AfterHours'

FFiigguurree 7711 Bql query builder creating query for the audit log filtered by operation and target

• Configuring the Displayed Columns

The return could be cleaned up by further modifying the query as below (see 6-16) to limit the displayed
columns.

history:/demo/AuditHistory|bql:select timestamp as 'Timestamp',value as 'Override Value',
userName as 'User Name' where operation like 'Invoked' and target like
'/Schedule/Suite100AfterHours'

FFiigguurree 7722 Creating query for the audit log filtered by operation, target and columns

• Filtering by Specific Actions

The return is now limited to actions which have been invoked on a specific component in the station by
any operator. It may be necessary to further filter the results to a single operator or a specific action. The

December 15, 2015 75

Chapter 4 Sample Reports Using BQL and Bound Tables Engineering Notes

bql query can be modified as below (see 6-17) to limit the return to the specific operation of operator
override to the active state.

history:/demo/AuditHistory|bql:select timestamp as 'Timestamp',value as 'Override Value',
userName as 'User Name' where operation like 'Invoked' and target like
'/Schedule/Suite100AfterHours' and slotName like 'active'

FFiigguurree 7733 Creating query for the audit log filtered by operation, target, columns and slot

• Filtering by Timestamps

The bql query now produces a fairly presentable table which displays the timestamp, value and operator
for each record. The return contains records from any time period in the audit log. Depending on how
many records are maintained in the audit log, this could be a fairly large list. It is likely that the query will
need to be modified as below to limit the return based on desired date ranges.

history:/demo/AuditHistory?period=lastMonth|bql:select timestamp as 'Timestamp',value as
'Override Value',userName as 'User Name' where operation like 'Invoked' and target like
'/Schedule/Suite100AfterHours'

NNOOTTEE:: The bql query builder does not support the '?period=' syntax, although it is a valid query. It is
necessary to delete this syntax from the query prior to opening the bql query builder.

WWeeeekkllyy EElleeccttrriiccaall DDeemmaanndd RReeppoorrtt

Bound tables and charts can be used in a report Px page to display historical information. An example might
be to create a report which displays electrical demand readings for the previous week.

• Creating the History Query

Any history in the station can be queried using bql. The bql query builder can be used to create the query
or you can simply type the syntax below.

history:/demo/BldgKw|bql:select *

FFiigguurree 7744 Creating query for the BldgKw history

• Limiting the Query

76 December 15, 2015

Engineering Notes Chapter 4 Sample Reports Using BQL and Bound Tables

The above bql query will return a table which contains all of the records available in the referenced his-
tory. If the export source object is executed once a week, then it would probably be safe to limit the
query to the previous weeks worth of data. The period syntax can be used to limit the query as below.

history:/demo/BldgKw?period=lastWeek|bql:select *

This will still return a significant amount of data. Assuming that the data is recorded in fifteen minute in-
tervals, this would return 672 records and the pdf file would span seventeen pages. Bql includes a special
function called history rollup. This function can be applied to the previous query to display the same re-
sults using fewer records. Each record in the rollup indicates the number of samples, minimum value,
maximum value, average value and a sum of all samples. The below example uses the history rollup func-
tion with a daily interval which results in only seven records (one for each day of the week) displayed in
the table.

history:/demo/BldgKw?period=lastWeek|bql:historyFunc:HistoryRollup.rollup(baja:RelTime '86400000')

NNOOTTEE:: The history rollup function does not allow specifying which columns are to be displayed. By de-
fault all columns are displayed in the table.

• Using a Chart

In some cases it may be a requirement to display the data in chart form as opposed to using a table. The
chart palette includes two types of chart widgets, the line and bar chart. After adding the line chart widg-
et to the Px file, table chart bindings may be added and configured. The previous query can be used in
the ord field of the table chart binding. Each table chart binding represents one trace on the chart and
must specify which column of the query to display on the Y axis. Multiple table chart bindings can refer-
ence the same query but display different columns such as min, max, avg or sum.

FFiigguurree 7755 Creating table chart queries for the BldgKw history

NNOOTTEE:: The current export mechanism does support using history chart tables or history chart views directly
in the report Px file. Both the history table and chart views allow exporting directly from the specific view.

December 15, 2015 77

Chapter 4 Sample Reports Using BQL and Bound Tables Engineering Notes

78 December 15, 2015

December 15, 2015 79

CChhaapptteerr 55 SScciieennttiiffiicc NNoottaattiioonn SSuuppppoorrtt

Topics covered in this chapter
♦ E Notation Format
♦ Example Number Expressions

Niagara supports the use of very large and very small numbers by using scientific notation. Values equal to
or larger than 9007199254740992 are rendered in scientific notation using "E Notation" format. The follow-
ing sections use examples to describe how NiagaraAX-3.3 displays values in scientific notation:

• E Notation Format

• Example Number Expressions

EE NNoottaattiioonn FFoorrmmaatt

The general format for scientific notation "E Notation" is: nEx

Where:

n = the "coefficient", a number that is greater than 1 and less than 10
E signifies the exponent place, or base 10
x = the exponent (or "power of") 10

NNOOTTEE:: You may enter numbers in property fields as either standard expression or as scientific notation.
How the numbers are displayed depends on the size of the number.

EExxaammppllee NNuummbbeerr EExxpprreessssiioonnss

Three types of scientific notation examples follow:

• Example 1: Maximum and Minimum Numbers

• Example 2: Numbers Displaying in a Graphic Display (Px Page)

• Example 3: Numbers Displaying in a Property Sheet View

EExxaammppllee 11:: MMaaxxiimmuumm aanndd MMiinniimmuumm NNuummbbeerrss

The following table shows a comparison of how numbers display in NiagaraAX-3.3.

Scientific Notation Display Comparison

EExxaammppllee ## NNuummbbeerr UUsseedd:: WWoorrkkbbeenncchh DDiissppllaayyss::

1. 9007199254740991 9007199254740991

2. 9007199254740992 9.007199254740992E15

3. -9007199254740992 -9.007199254740992E15

4. -9007199254740991 -9007199254740991

Note the following about these example numbers:

• In Example 1:

Chapter 5 Scientific Notation Support Engineering Notes

the number used (entered or calculated) is the largest number that displays in standard expression (with-
out scientific notation). If "1" is added to this number, then it is displayed as the number in Example 2.

• In Example 2:

the number used (entered or calculated) is displayed using scientific notation.

• In Example 3

the number used (entered or calculated) is displayed using scientific notation.

• In Example 4

the number used (entered or calculated) is the smallest number that displays in standard expression
(without scientific notation). If "1" is subtracted from this number, then it is displayed as the number in
Example 3.

EExxaammppllee 22:: NNuummbbeerrss DDiissppllaayyiinngg iinn aa GGrraapphhiicc DDiissppllaayy ((PPxx PPaaggee))

The following illustration shows an example of how scientific notation expresses a large number in a graphic
display of a process application.

FFiigguurree 7766 Displaying Large Numbers Using Scientific Notation

Note the following about Example 2:

• Numbers are displayed using both scientific notation and standard expression on a graphic Px page.

• As a source amount of carbon exceeds a certain value, the expression of that value in "grams", "moles",
and "atoms" of carbon changes from standard expression to scientific notation. If the source value is re-
duced, the value expressions can change back to standard notation from scientific notation, as well.

EExxaammppllee 33:: NNuummbbeerrss DDiissppllaayyiinngg iinn aa PPrrooppeerrttyy SShheeeett VViieeww

The following illustration shows an example of how scientific notation expresses a large number in the work-
bench property sheet.

FFiigguurree 7777 Scientific Notation in the Property Sheet View

Note the following about Example 3:

• Property fields display both standard notation and scientific notation, as needed.

• Facet settings for "Precision" do not limit the number of decimal places in the scientific notation expres-
sion. For example, a number that is displayed with a precision of "1" decimal place may display with more
than one decimal place in scientific notation.

80 December 15, 2015

December 15, 2015 81

CChhaapptteerr 66 BBQQLL EExxpprreessssiioonn ccoommppoonneenntt

Topics covered in this chapter
♦ Component features
♦What the component is not
♦ Syntax
♦ Create a BQL Expression component
♦ Handling null
♦ Troubleshooting
♦ Frequently-asked questions

BQL Expression component (Expr), found in the Util folder of the kitControl palette, is a multi-purpose wire
sheet object for mathematical and logical operations that augments the existing math and logic components
already present in the kitControl palette.

Expr can reduce the number of component instances in your station by allowing you to quickly and easily cre-
ate simple logic and math statements. You do not need Java programming knowledge, a Program compo-
nent, or even multiple standard components to do this. Expr does not require compilation.

NNOOTTEE:: This component is available in a station running on a AX-3.6 and later host.

Sections in this document describe the component and how to use it:

CCoommppoonneenntt ffeeaattuurreess

BQL Expression component supports:

• Math and logic operators

• Multiple expressions (delimited by commas) within a single component

• Dynamically-created Expr inputs and output(s) based on the expression(s)

• Automatic link conversion between different data types, for example, Double to StatusNumeric

When configuring the component, you specify all of its input slots to “Execute On Change”, such that the
Expr executes upon any input change. However, the component also allows you to override this behavior by
specifying a time delay between executions. This can be useful to minimize the effects of rapidly changing in-
puts. Other properties provide status and fault cause information.

In addition to the blank Expr component found in the Util folder of the kitControl palette, two example Expr
components: ExprLogic (in the Logic folder), and ExprMath (in the Math folder) each use a single BQL ex-
pression to demonstrate how the component works.

WWhhaatt tthhee ccoommppoonneenntt iiss nnoott

BQL Expression component is not:

• A replacement for the Program component. BQL Expression component does not support //remarks and
//comments.

• A replacement for other BQL statement containers that manipulate data.

• Capable of manipulating data through stored variables.

• Capable of line-by-line programming.

• Capable of handling time functions.

Chapter 6 BQL Expression component Engineering Notes

If your requirements exceed what can be achieved using a BQL Expression component, there may come a
point when you have to consider using a Program component.

SSyynnttaaxx

The standard syntax for an expression is as follows:

input operator ‘output’

where:

input is the name of one or more slots.

operator is a word or symbol.

‘output’ is the slot that contains the result of the expression. (note apostrophes around slot name)

SSuuppppoorrtteedd ooppeerraattoorrss

As Expr uses BQL, all the standard BQL expression syntax is available. For more information on BQL expres-
sions, see the NiagaraAX Developer Guide.

Operators are processed by their precedence, that is “order of operation”, from first (1) to last (6).

1. !, not, -

logical not, numeric negation

2. * , /

multiplication, division

3. +, -

addition, subtraction

4. =, !=, >, >=, < <=, like

comparisons

5. and, or

logical operators

6. as

result operator

You may use parentheses to override the normal precedence as illustrated in the following examples.

FFiigguurree 7788 A change in precedence

In the first expression, multiplication precedes addition. Adding the parentheses changes the precedence so
that addition precedes multiplication.

82 December 15, 2015

Engineering Notes Chapter 6 BQL Expression component

CCoommmmaass

If creating a Expr component with multiple expressions (output slots), use a comma to delimit expression
statements from one another.

FFiigguurree 7799 Example of commas

LLoonngg ssttaatteemmeennttss

When entering an expression, keep typing or enter a CR/LF to wrap a long statement.

FFiigguurree 8800 Example of a CR/LF

The example above consists of two expression statements: the first requires three lines; the second requires
only a few characters.

NNOOTTEE:: Outputs require surrounding apostrophes; inputs do not.

CCrreeaattee aa BBQQLL EExxpprreessssiioonn ccoommppoonneenntt

TToo ccrreeaattee aa BBQQLL EExxpprreessssiioonn ccoommppoonneenntt

Step 1 Design your expression. This step answers the question, “What does Expr need to do?”

For example, say you wish to create a logic component with four Boolean inputs and two Boolean
outputs. One output is an AND function on all inputs, the other output is an OR function on just
two of the inputs.

Step 2 Drag an Expr from the kitControl palette onto your wire sheet and give it a name.

FFiigguurree 8811 kitControl components with BQL Expression (Expr) highlighted

Step 3 Using the slot sheet view of the component, add four Boolean inputs and two Boolean outputs to
the Expr and give them appropriate and unique names.

December 15, 2015 83

Chapter 6 BQL Expression component Engineering Notes

NNOOTTEE:: When adding input slots, set (check) the EExxeeccuuttee OOnn CChhaannggee flag for each one.

FFiigguurree 8822 New slots (out1, out2, in1, in2, in3, in4)

Step 4 Using the property sheet view, configure any execution delay.

The expression will run after this delay, which is useful to throttle rapidly changing properties used
as inputs.

Step 5 Continuing on the property sheet, enter the BQL statements in the Expr field.

FFiigguurree 8833 Example expression statements

All other properties are assumed to be dynamic properties and can be added or removed on the
Expr slot sheet.

Step 6 Click SSaavvee, then the “Up Level” menu bar icon to return to the parent wire sheet. The new Expr
component is visible, but without any “pinned” slots for inputs and outputs.

Although optional, you can pin slots before linking, by right-clicking the component and selecting
PPiinn SSlloottss. This can speed up linking, as otherwise the popup LLiinnkk dialog appears if linking to un-

pinned slots. You can also use the right-click RReeoorrddeerr option to change the top-to-bottom position-
ing of slots.

Step 7 Using the wire sheet view, make links to the slots and test your logic.

FFiigguurree 8844 Example of an expected result

The figure above shows all slots of this example Expr component linked.

MMaatthheemmaattiiccaall eexxpprreessssiioonnss

At the heart of Expr is a BQL expression that processes inputs and outputs. You have, for example, a compo-
nent with three properties: inA, inB and outAdd. To add the two inputs together you would use this
expression:

84 December 15, 2015

Engineering Notes Chapter 6 BQL Expression component

inA + inB as ‘outAdd’

In mathematical terms, this means:

inA + inB = outAdd

In the example, inA and inB must use the executeOnChange slot flags. When inA or inB change, Expr exe-
cutes and updates outAdd.

Expr is not restricted to a limited number of properties. You can add and remove properties via Expr’s slot
sheet. For example, using the above, we could add another two properties called outMult and inC. The ex-
pression would now read:

inA + inB as ‘outAdd’,

inA * inB * inC as ‘outMult’

The comma at the end of the first expression indicates that another expression follows. Use the comma to
create multiple expressions that update multiple outputs.

LLooggiiccaall eexxpprreessssiioonnss

In the following example, two Boolean properties use an AND gate to output a Boolean value.

inBoolA and inBoolB is ‘out’

Again, the inBoolA and inBoolB must use the executeOnChange slot flag.

NNOOTTEE:: From Niagara 3.6 onwards, linking slots with different data types automatically inserts a conversion
link between the two. For example, you may link a StatusNumeric property to a Double property. For more
information, see the Engineering Notes document NiagaraAX Conversion Links.

CCoommppoonneenntt iinnssttaanncceess

The kitControl palette contains multiple instances of the BQL Expression component with different default
configurations.

• Util folder

A blank Expr is its default state.

• Logic folder

Provides Expr with four Boolean inputs and one Boolean output. By default, all inputs are joined using
AND.

• Math folder

Provides Expr with four Double inputs and one Double output. By default, all inputs are mathematically
added together.

NNOOTTEE:: Any of these components can be modified by adding and removing properties using the slot
sheet.

MMoorree eexxaammpplleess

• Two inputs, logical AND

December 15, 2015 85

Chapter 6 BQL Expression component Engineering Notes

• Not two inputs

• Two-input addition

• Divider (two Double) properties

86 December 15, 2015

Engineering Notes Chapter 6 BQL Expression component

• Subtraction

• Expression mixture

• Greater and less than expressions

December 15, 2015 87

Chapter 6 BQL Expression component Engineering Notes

The examples above each result in two outputs.

The last column on the right indicates that the two outputs are different slot types (Double and Boolean).
This is legal.

• Using the “like” expression

• Multiply four Double properties

inA * inB * inC * inD as ‘out’

• Multiply two BStatusNumeric properties to a Double output property.

inA.value * inB.value as ‘out’

• Negate a Double input property (if inA is 5, out becomes -5)

-inA as ‘out’

88 December 15, 2015

Engineering Notes Chapter 6 BQL Expression component

HHaannddlliinngg nnuullll

This section describes expression handling of a “null” input from a linked status type output.

FFiigguurree 8855 The result of a math expression with any null (or nan) input can be nan

In a math expression, if a Double or Float input slot is linked to a source StatusNumeric output with a “null”
value, the input is evaluated as “nan” (not a number). If the expression has a Double or Float slot as output,
the result is also nan, as shown. This also occurs if such an input has a nan.

Note if the input slot is an Integer or Long type, the expression ignores the null value—the last valid value is
used (or if nan input, is processed as value 0). The output is some number. If an input slot is a StatusNumeric
(requires expression syntax inputSlotName.value), a null input is seen but not processed.

In a logic expression, if a Boolean input slot is linked to a source BooleanNumeric output with a “null” value,
the null is ignored by the expression—the last valid value is used. If the input slot is a StatusBoolean type
(again, syntax inputSlotName.value is required), the null is seen but not processed.

The Expr component utilizes the automatic “conversion links” feature introduced in AX-3.6, such that “link
from” behavior between dissimilar data types is followed. For more information, see the Engineering Notes
document NiagaraAX Conversion Links.

In general, if creating an Expr component for use in control logic that may have one or more “null” inputs, it
is recommended that you test it to verify the desired behavior.

NNOOTTEE:: Starting in AX-3.6, changes were also made to the various “status value to simple value” kitControl
Conversion components, to allow the option of specifying an output value when the status input is null. If
needed, you may wish to use one or more of these components “upstream” of the Expr component. For
more details, refer to the NiagaraAX kitControl Guide section “Status value to simple value”.

TTrroouubblleesshhoooottiinngg

If you enter the wrong syntax, or Expr recognizes that you are trying something illegal, it displays status and
fault cause information.

FFiigguurree 8866 Example of a fault

The information fields have the following meanings:

• Status

December 15, 2015 89

Chapter 6 BQL Expression component Engineering Notes

Reports problems with the expression. The expression may be invalid or one of the properties it referen-
ces may not exist.

• Fault Cause

Gives a verbal description of expression errors.

After correcting the fault, click SSaavvee to restart the Expr.

NNOOTTEE:: No compilation is required.

FFrreeqquueennttllyy--aasskkeedd qquueessttiioonnss

How many inputs and outputs does Expr allow?

Expr supports as many inputs and outputs as you need. Two specific instances of Expr, located in the Logic
and Math folders, each support four inputs and a single output.

Frequently Asked Question Answers

Does an Expr need to be compiled before it can be
used on a wire sheet?

No, if you make a change, click Save. No compila-
tion is required.

Can I create more than one expression per
component?

Yes. You may create as many expressions as you
need, delimited by commas.

Can I put comments into an Expr? No. Comments are not allowed in a BQL Expression
component.

Can I used stored variables in an Expr? No. To store variables, use a Program component.

Can Expr handle time functions? No. Time functions require a Program component.

What types of operations does the Expr support? The Expr supports math and logic operators.

90 December 15, 2015

December 15, 2015 91

CChhaapptteerr 77 CCoonnvveerrssiioonn LLiinnkkss

Topics covered in this chapter
♦ Conversion link usage
♦ Supported conversion link types
♦ Converter components
♦ Converter properties
♦ Conversion link "From" notes

Starting in AX-3.6, linking components no longer requires that slots have matching data types, nor usage of
special components found in the “Conversion” folder in the kitControl palette. Now in most cases, you sim-
ply link between a source slot and target slot, regardless of data types, and a conversion link is automatically
created to handle conversion.

Each conversion link has a “BIConverter” implementation as a child, which is used to manage and customize
the conversion process.

Conversion links can simplify control logic by reducing amounts of needed components. Conversion links
can also help to de-clutter wire sheets.

NNOOTTEE:: Conversion links require AX-3.6 or higher on “both ends” when working with engineering control
logic. That is, the host (JACE) running the station must be at AX-3.6 or higher, and Workbench must be at
AX-3.6 or higher. Otherwise, conversion links are unavailable.

CCoonnvveerrssiioonn lliinnkk uussaaggee

TTyyppiiccaall ccoonnvveerrssiioonn lliinnkk uussaaggee

The most expected usage of a conversion links is to support a link between a “status type” numeric or boo-
lean to a “simple type” numeric or boolean, or vice versa.

FFiigguurree 8877 Example link from status type to simple type (statusBoolean to Boolean)

In the example above, the statusBoolean “out” of a BooleanWritable (Fan control) point is needed to ena-
ble/disable several history extensions, where the “Enabled” property is a simple boolean type. Before AX-
3.6, this required an intervening “StatusBooleanToBoolean” component. However, now you simply link be-
tween the two dissimilar slots, as allowed in the LLiinnkk editor.

Chapter 7 Conversion Links Engineering Notes

The example below shows linking from a simple data type to a status type.

FFiigguurree 8888 Example link from simple type to status type (integer to statusNumeric)

In the example above, the integer “Change Of State Count” slot value of a DiscreteTotalizerExt of a Boo-
leanWritable is needed as an input in a Math component, say an “Add” component. Before AX-3.6, this re-
quired an intervening “IntegerToStatusNumeric” component. Again, now you can simply link the two slots,
as allowed in the LLiinnkk editor.

DDaattaa ttrraannssffoorrmmaattiioonn vviiaa ccoonnvveerrssiioonn lliinnkk

Many types of conversion links go beyond the “simple-to-status type” or “status type-to-simple” model
used in kitControl “Conversion” components. The figure below shows one example.

FFiigguurree 8899 Example link from statusBoolean to statusNumeric

92 December 15, 2015

Engineering Notes Chapter 7 Conversion Links

In the example above, the statusBoolean “out” of a BooleanWritable is linked to the statusNumeric “In16”
slot of another component. With no other configuration, this transforms the boolean “active” value to a nu-
meric “1”, a boolean “inactive” value to a numeric “0”, and passes through a “null” value.

This sort of “value transform” may be useful in downstream logic. Note before AX-3.6, this type of conver-
sion was often done via a custom Program component.

To reverse this example, you can link the statusNumeric “out” of a component to a statusBoolean slot of an-
other component, for example a kitControl “Logic” component. See the figure below.

FFiigguurree 9900 Example link from statusNumeric to statusBoolean

In this case, the background “Status Numeric To Status Boolean” converter works like this:

• Numeric value of “0” is boolean “false”.

• Numeric value not “0” is boolean “true” (note this means value > 0, and also a negative value, i.e. < 0).

Many other link converters are used in various link combinations, including many string-related ones and
time-related ones.

For more details, see the following topics:

• “Supported conversion link types” on page 4 for a matrix of allowed links by data types.

• “Converter components” on page 5 for details on the converter that is automatically selected.

• “Converter properties” on page 6 for information on possible converter properties.

• “Conversion link "From" notes” on page 7 for details on linking from some specific data types.

SSuuppppoorrtteedd ccoonnvveerrssiioonn lliinnkk ttyyppeess

In AX-3.6 and later, a conversion link automatically results if you link two slots with dissimilar data types. Ta-
ble 1 lists those conversion-supported (Y) links, by “From” and “To” slots, by data type.

TTaabbllee 11 Supported conversion links, by “From” data type and “To” data type

FFrroomm

string boo-
lean

dou-
ble

float long inte-
ger

froze-
nE-
num

dy-
nami-
cEn-
um

sta-
tus-
Boo-
lean

sta-
tus-
Nu-
meric

sta-
tusE-
num

sta-
tus-
String

ord time ab-
sTime

re-
lTime

To string — Y* Y* Y* Y* Y* Y Y* Y Y Y Y Y Y* Y* Y

boolean Y* — Y* Y* Y* Y* Y Y* Y Y* Y* Y* — — — —

double Y Y — Y Y Y Y Y Y* Y Y Y — Y Y Y

float Y Y Y — Y Y Y Y Y* Y Y Y — Y Y Y

long Y Y Y Y — Y Y Y Y* Y Y Y — Y Y Y

integer Y Y Y Y Y — Y Y Y* Y Y Y — Y Y Y

December 15, 2015 93

Chapter 7 Conversion Links Engineering Notes

FFrroomm

frozenEnum — — — — — — — — — — — — — — — —

dynamicEnum — Y Y Y Y Y Y — Y Y Y — — — — —

statusBoolean Y* Y* Y* Y* Y* Y* Y Y* — Y Y* Y — — — —

statusNumeric Y Y Y Y Y Y Y Y Y — Y Y — — Y Y

statusEnum — Y Y Y Y Y Y Y Y Y — — — — — —

statusString Y Y Y* Y* Y* Y* Y Y Y Y* Y — Y — Y* Y

ord Y — — — — — — — — — — Y — — — —

time — — Y Y Y Y — — — — — — — — Y —

absTime Y — Y Y Y Y — — — Y — Y — Y — —

relTime — — Y Y Y Y — — — Y — — — — — —

Each of the “From-To” links made above results in a conversion link, where that link (component) has a spe-
cific type of child Converter component.

NNOOTTEE:: Y* indicates that the Converter component of the link has one or more properties.

CCoonnvveerrtteerr ccoommppoonneennttss

Any conversion link has a child “Converter” component. To see it in Workbench, open the EEddiitt dialog for
the link.

• If the link shows as a wire on the wire sheet, right-click it and select “EEddiitt LLiinnkk”.

FFiigguurree 9911 Right-click wire for conversion link and select “Edit Link” to see converter

The conversion link above uses converter type “Status Boolean To Boolean”.

• If the link shows on the wire sheet as a knob on a component, go to the component’s link sheet view, then
double-click the desired link for its EEddiitt dialog. See below.

94 December 15, 2015

Engineering Notes Chapter 7 Conversion Links

FFiigguurree 9922 Go to link sheet of component and double-click conversion link for “Edit” dialog

The link above is a “Number to Status Numeric” converter, allowing the integer “Change Of State Count”
value from a DiscreteTotalizeExt to be used in a Math component (from the example shown in the topic
“Conversion Link Usage”).

Typically, you seldom need to edit links between components in NiagaraAX. One exception is when linking
from the dynamically-created components of a station’s PlatformServices to other components, where you
need to edit the “Source Ord” property from “Handle” to “Slot”. For related details, refer to the NiagaraAX
Platform Guide section “PlatformServices binding and link caveats”.

Another possible exception may be with some conversion links, where a child Converter component has one
or more properties (such links are indicated with a “Y*” in the Table 1 matrix of supported links). See “Con-
verter properties” on page 6.

CCoonnvveerrtteerr pprrooppeerrttiieess

Most conversion links have no properties under the link’s Converter component. This is true for all conver-
sion links between “like” data types, that is, status type-to simple and vice versa. However, conversion links
that transform values like string to boolean or numerical, or the reverse (to string) may have one or more
Converter properties.

The image below shows one example.

FFiigguurree 9933 Example Converter with properties (Status Boolean To Number)

The example above reflects default values for a link made from a statusBoolean slot (in this case, “out” of a
BooleanWritable) to an Integer slot (in this case, “Duty Cycle” of a MultiVibrator). The converter type auto-
matically used is “Status Boolean To Number”.

Expanding the Converter component in the EEddiitt LLiinnkk dialog reveals two properties:

• True Value — default value of 1

December 15, 2015 95

Chapter 7 Conversion Links Engineering Notes

• False Value — default value of 0

The duty cycle range of a MultiVibrator is from 0 to 100, so defaults here are not typically appropriate.

FFiigguurree 9944 Example Converter properties edited to non-default values

In this example, converter properties were edited to true at 75, and false at 25, as shown in the figure
above.

In cases where the link’s slot target (To) data type is string or statusString, the Converter property, if present,
is typically “Format”. If a default “%.%” value, this means it is BFormat (Baja Format).

FFiigguurree 9955 Example Format property of “Boolean To String” Converter edited from default “%.%”

The figure above shows the static text “Enabled:” prepended on the default %.% Format property value of
a “Boolean to String” link Converter.

CCoonnvveerrssiioonn lliinnkk ""FFrroomm"" nnootteess

These notes describe some conversion link behaviors, grouped by source (From) data types:

See the following topics for more details.

LLiinnkkss ffrroomm ssttrriinngg

• A string-to-boolean link or string-to-statusBoolean link has a “False Value” converter property, with a de-
fault value of false. Any other source string value, instead of (or in addition to) this “False Value” string
(case insensitive) results in the target boolean or statusBoolean value to be true. Note that a blank string
source value is also a boolean or statusBoolean true (unless the “False Value” is blank).

• A string-to-double or string-to-float link requires a source string using decimal numerals only, expressed
as a decimal number or integer, either positive or negative. Any other source sting characters (or blank
string) results in the linked double or float slot to have an “nan” (not a number) value.

• A string-to-long or string-to-integer link requires a source string expressed as an integer only, either posi-
tive or negative. Any additional characters in the source string results in the linked long or integer slot to
have a 0 value, or the last non-zero value.

96 December 15, 2015

Engineering Notes Chapter 7 Conversion Links

• A string-to-statusNumeric link requires a source string using decimal numerals only, expressed as a deci-
mal number or integer, either positive or negative. Any other source sting characters (or blank string) re-
sults in the linked statusNumeric slot to have a “fault” condition, with no value change.

• A string-to-statusString link results in that string value in the statusString.

• A string-to-ord link provides no Niagara ord format/error checking—use sparingly.

• A string-to-absTime link requires an ISO-formatted string—otherwise, the linked absTime value remains
null. The ISO format is “yyyy-mm-ddThh:mm:ss.mmm[+/-]hh:mm”, for example, “2011-01-
31T13:23:53.772-05:00”, which an absTime slot could show as “31-Jan-2011 01:23 PM EST”.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm bboooolleeaann

• A boolean-to-string results in either a “false” string value if boolean false, or “true” string value if boo-
lean true. The link has a “Format” converter property. See the “Converter Properties topic for an
example.

• A boolean-to-simple number data type link (to-double, to-float, to-long, to-integer) results in a 0 value for
a boolean false, or 1 if a boolean true.

• A boolean-to-statusBoolean link has a “False Value” converter property, with a default value of 0. The de-
fault 0 keeps the statusBoolean value in synch with the source boolean value. If “False Value” is set to 1,
the linked statusBoolean value is opposite (NOT) the source.

• A boolean-to-statusNumeric link or boolean-to-statusEnum link results in a 0 value for a boolean false, or
1 if a boolean true.

• A boolean-to-statusString has a string value false if false, or string value true if boolean true.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm ddoouubbllee,, ffllooaatt,, lloonngg,, iinntteeggeerr

The following summarize links from one of the simple number data types (double, float, long, or integer, de-
scribed below as “number”), to another data type:

• A number-to-string or number-to-statusString link results in the string value of that number, for example
“78.30” The link also has a “Format” converter property based on a text string, with a blank default val-
ue. The blank Format outputs all existing digits with no formatting.

In the Format property, you can enter a Format value using pound signs (#) for digits, 0 numeral(s) for
leading/trailing zero(s), and placeholder separators, such as a comma (,) for grouping and/or period (.)
as decimal separator. Some Format value examples:

– ###,###.###—where a source number 123456.789 is string formatted as 123,456.789

– ###,##—where a source number 123456.789 is string formatted as 123456.79

– 00000.000—where a source number 123.78 is string formatted as 000123.780

• A number-to-boolean link or number-to-statusBoolean link has a “False Value” converter property, with a
default value of 0, such that any number value other than 0 results in a boolean true. If needed, “False
Value” can be edited to specify a different value to associate with false.

• A number-to- “different simple number type” link results in that number, unless outside the range of the
target data type. For example, a double-to-integer link with a source value of 2147484000 (exceeding
max integer value of 2147483647) will result in the integer value of “max” (2147483647).

• A number-to-statusNumeric link results in that number.

• A number-to-statusEnum link results in that number, unless outside the ordinal (integer) range of a status-
Enum data type. For example, a double-to-statusEnum link with a source value of 2147484000 (exceed-
ing max integer value of 2147483647) will result in an Enum (ordinal) value of 2147483647.

December 15, 2015 97

Chapter 7 Conversion Links Engineering Notes

• A number-to-Time link results in that number of milliseconds added to the base time of 12:00am midnight
(00:00). For example, a float value of 900000 is seen as Time 12:15am (00:15).

• A number-to-absTime link adds that number of milliseconds to the Java “epoch” date/timestamp of De-
cember 31 1969 7pm EST. For example, a long value of 1296509138929 results in an absTime value of
January 31 2011 4:25pm EST.

• A number-to-relTime link adds that number of milliseconds to 0ms. For example, an integer value of
4800000 results in an relTime value of 1hour 20mins, or -108000 results in -1min 48sec.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm ssttaattuussBBoooolleeaann

• A statusBoolean-to-string results in either a “false” string value if boolean false, or “true” string value if
boolean true. A statusBoolean “null” value does not change the target string value.

• A statusBoolean-to-simple number data type link (to-double, to-float, to-long, to-integer), by default, re-
sults in a 0 value for a boolean false, or 1 if a boolean true. A link’s Converter has two editable child prop-
erties: “True Value” (default = 1) and “False Value” (default = 0), to specify non-default values.

Typically, a statusBoolean “null” does not change a target long or integer link 0 value; however, a “null”
changes a linked double or float value to “nan” (not a number).

• A statusBoolean to statusNumeric or statusEnum link results in a 0 value for a boolean false, or 1 if a boo-
lean true. A statusBoolean “null” changes the statusNumeric or statusEnum target to “null”.

• A statusBoolean-to-statusString, by default, has a string value false if false, or string value true if boo-
lean true. A statusBoolean “null” changes the statusString target to “null”.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm ssttaattuussNNuummeerriicc

• A statusNumeric-to-string link results in the string value of that number, for example “78.30”.
A statusNumeric “null” value does not change the target string value.

• A statusNumeric-to-boolean link has a “False Value” converter property, with a default value of 0.0, such
that any number value other than 0 results in a boolean true. If needed, “False Value” can be edited to
specify a different value to associate with false.

Typically, a statusNumeric “null” value does not change the target boolean value.

• A statusNumeric to “different simple number type” link results in that number, unless outside the range
of the target data type. For example, a statusNumeric-to-integer link with a source value of 2147484000
(exceeding max integer range) will result in the integer value of “max” (2147483647).

A statusNumeric “null” value does not change/affect a linked long or integer value; however, a “null”
changes a linked double or float value to “nan” (not a number).

• A statusNumeric-to-statusBoolean link has a “False Value” converter property, with a default value of
0.0, such that any number value other than 0 results in a boolean true. If needed, “False Value” can be
edited to specify a different value to associate with false.

A statusNumeric “null” value changes the statusBoolean target to “null”.

• A statusNumeric-to-statusEnum link results in that number, unless outside the ordinal (integer) range of a
statusEnum data type, whereby it is “clamped” at that max or min value.

A statusNumeric “null” value changes the statusEnum target to the “null value” (often 0).

• A statusNumeric-to-statusString link results in the string value of that number, for example “78.30”. The
link also has a “Format” converter property, based on a text string, with a blank default value. The blank
Format outputs all existing digits with no formatting.

98 December 15, 2015

Engineering Notes Chapter 7 Conversion Links

In the Format property, you can enter a Format value using pound signs (#) for digits, 0 numeral(s) for
leading/trailing zero(s), and placeholder separators, such as a comma (,) for grouping and/or period (.)
as decimal separator. Some Format value examples:

– ###,###.###—where a source number 123456.789 is string formatted as 123,456.789

– ###,##—where a source number 123456.789 is string formatted as 123456.79

– 00000.000—where a source number 123.78 is string formatted as 000123.780

A statusNumeric “null” value changes the linked statusEnum target to “null”.

• A statusNumeric-to-absTime link adds that number of milliseconds to the Java “epoch” date/timestamp
of December 31 1969 for another date-timestamp. For example, a statusNumeric value of
1296509138929 results in an absTime value of January 31 2011 4:25pm EST.

A statusNumeric “null” value changes the absTime value to “null”.

• A statusNumeric-to-relTime link adds that number of milliseconds to 0ms. For example, a statusNumeric
value of 4800000 results in an relTime value of 01h 20m.

A statusNumeric “null” value does not change the current linked relTime value.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm ssttaattuussEEnnuumm

• A statusEnum-to-string link results in the string value of the Enum’s tag (descriptor), for example “Off” or
“Occupied”. A statusEnum “null” value does not change the target string value.

• A statusEnum-to-boolean link has a “False Value” converter property, with a default value of 0, such that
any ordinal value other than 0 results in a boolean true. If needed, “False Value” can be edited to specify
a different ordinal (integer) Enum value to associate with false.

A statusEnum “null” value does not change the target boolean value.

• A statusEnum to “different simple number type” link results in the (integer) ordinal value of that Enum. A
statusEnum “null” value does change/affect a linked long or integer value; however, a “null” changes a
linked double or float value to “nan” (not a number).

• A statusEnum-to-statusBoolean link has a “False Value” converter property, with a default 0 value, such
that any ordinal value other than 0 results in a boolean true. If needed, “False Value” can be edited to
specify a different ordinal (integer) Enum value to associate with false.

A statusEnum value “null” value changes the statusBoolean target to “null”.

• A statusEnum to statusNumeric link results in the (integer) ordinal value of that Enum. A statusEnum
“null” value changes the statusEnum target to “null”.

• A statusEnum-to-statusString link results in the string value of the Enum’s tag (descriptor), for example
“Off” or “Occupied”. A statusEnum “null” value changes the statusString target to “null”.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm ssttaattuussSSttrriinngg

• A statusString-to-string link results in that string value in the statusString.

• A statusString-to-boolean link has a “False Value” converter property, with a default value of false. Any
other source string value, instead of (or in addition to) this “False Value” string (case insensitive) results in
the target boolean value to be true. Note that a blank statusString source value is also a boolean true (un-
less the “False Value” has been set to blank).

• A statusString-to-double or statusString-to-float link requires a source string using decimal numerals only,
expressed as a decimal number or integer, either positive or negative. Any other source sting characters
(or blank string) results in the linked double or float to have a “nan” (not a number) value.

December 15, 2015 99

Chapter 7 Conversion Links Engineering Notes

• A statusString-to-long or statusString-to-integer link requires a source string expressed as an integer on-
ly, either positive or negative. Any additional characters in the source string results in the linked long or
integer slot to have a 0 value, or the last non-zero value.

• A statusString-to-statusNumeric link requires a source string using decimal numerals only, expressed as a
decimal number or integer, either positive or negative. Any other source sting characters (or blank string)
results in the linked statusNumeric to have a “fault” condition, and no value change.

• A statusString-to-ord link provides no Niagara ord format/error checking—use sparingly.

• A statusString-to-absTime link requires an ISO-formatted string—otherwise, the linked absTime value re-
mains null. The ISO format is “yyyy-mm-ddThh:mm:ss.mmm[+/-]hh:mm”, for example, “2011-01-
31T13:23:53.772-05:00”, which an absTime slot could show as “31-Jan-2011 01:23 PM EST”.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm ttiimmee

• A time-to-string link results in a string value that (by default) reflects hr:min:sec.ms, for example a time of
3:31 PM could result in a string value of 15:31:23.647. The link has “Format” converter property, with
a default value of HH:mm:ssZ. You can edit this if needed—for example reducing Format to HH:mm for
string output like 15:31, or to HH:mm a for string output 3:31 PM.

• A time-to-”simple number type” link (double, float, long, integer) results in the number of milliseconds in
the current time since the base time of 12:00 AM midnight (00:00). For example, a time-to-integer link
from 11:30 AM would have a value of 41400000.

• A time-to-absTime link results in the current date and time in the absTime value.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm aabbssTTiimmee

• An absTime-to-string or absTime-to-statusString link results in a string value for a date-timestamp that
(by default) reflects yyyy-mo-dayThr:min:sec.ms-tzone offset hr, for example a value of 2011-
02-01T13:47:13.358-05:00. The link has “Format” converter property, with a default value of YYYY-
MM-DDTHH:mm:ssZ. You can edit this if needed—for example to change Format to MM-DD-YYYY HH:mm
a to get a string output like 02-01-2011 13:51 PM.

• An absTime-to-”simple number type” link (double, float, long, integer) results in the number of millisec-
onds for that date-timestamp since the Java “epoch” timestamp of December 31 1969.

• An absTime-to-statusNumeric link results in the number of milliseconds for that date-timestamp since the
Java “epoch” timestamp of December 31 1969.

• An absTime-to-time link results in the time portion of the date-timestamp to be the time value.

Links to other “Conversion link "From" notes” on page 7.

LLiinnkkss ffrroomm rreellTTiimmee

• A relTime-to-string link or relTime-to-statusString link results in a string describing the relative time. For
example, a relTime of 25h 20m 02s can result in a string value of 1day 1hour 20mins 2sec.

• A relTime-to-”simple number type” link (double, float, long, integer) reflects the number of milliseconds
in the relative time. For example, a relTime value of 01h 20m results in a value of 4800000.

• A relTime-to-statusNumeric link reflects the number of milliseconds in the relative time. For example, a
relTime value of 01h 20m results in a value of 4800000.

Links to other “Conversion link "From" notes” on page 7.

100 December 15, 2015

December 15, 2015 101

CChhaapptteerr 88 JJAACCEE HHaarrddwwaarree SSccaann SSeerrvviiccee

Topics covered in this chapter
♦ Hardware scan benefits
♦ Adding the HardwareScanService
♦ Hardware Scan Service View notes
♦ HardwareScanService properties
♦ Lexicon customizing of HardwareScanService
♦ Px customization

Starting in AX-3.7, NiagaraAX support was added for a “Hardware Scan Service” to be added under a JACE
station’s PlatformServices. This optional service has a default view that shows a diagram of the hosting JACE
controller, identifying the location of communication ports and other features.

FFiigguurree 9966 Example Hardware Scan Service View for a JACE-6E

Included are callouts to a table that explain the description (such as COM2), port type, and status.

Also included are what types of JACE option cards are installed in option card slots (if applicable), plus other
information on various controller features, such as the current “Serial Shell” jumper position.

HHaarrddwwaarree ssccaann bbeenneeffiittss

NNOOTTEE:: The HardwareScanService is unlicensed, requiring only a JACE controller running AX-3.7 or later.

Prior to this service, the hardware configuration of a JACE host was often known to its station (and Work-
bench) in a generic way, for example by its “Host Model” value of “NPM2” or “NPM6”. Such values refer to

Chapter 8 JACE Hardware Scan Service Engineering Notes

a “Niagara Processor Module” board that fits on different types of controller base boards. Thus, an “NPM2”
host could be either a JACE-2, JACE-202 Express (M2M JACE), or a Security JACE.

Although a station’s platform SerialPortService lists each serial port on a JACE host, including its assigned
COM address, there was no indication as to which ports were on option cards. Other details on option cards
(and slots) were also unknown—for example, if an option slot was available (open) or not.

The Hardware Scan Service clarifies all of this by providing a complete hardware profile of the hosting JACE
controller to its station and Workbench. Included is the controller’s “Product Model” type (combination of
its base board and NPM module, if applicable) with a representative image, along with details about any in-
stalled JACE option cards. This information can be useful when troubleshooting remotely, or even after add-
ing an option card to confirm a COM address for a specific port.

Additionally, this information could be useful to a developer of an “appliance” that runs on the controller,
such that appliance (station) configuration could logically adapt to different hardware profiles.

NNOOTTEE:: Currently, the service is unaware of any attached I/O modules, including NDIO, NRIO, or Security
types.

CCuurrrreennttllyy ssuuppppoorrtteedd ppllaattffoorrmmss

Currently supported platforms (at the time of this document) are listed below, showing a thumbnail of the
“controller image” portion of the service’s default HHaarrddwwaarree SSccaann SSeerrvviiccee VViieeww.

JACE-2, JACE-3E, JACE-6,
JACE-6E

JACE-7 (JACE-700) Security JACE (201 and 601)

JACE-x02 Express (M2M JACE) JACE-603 JACE-645

JACE-NXT JACE-NXS

Below any image in the Hardware Scan Service View is a hardware reference table with details corresponding
to items with callouts. For more details, see “Hardware Scan Service View notes” on page 3.

102 December 15, 2015

Engineering Notes Chapter 8 JACE Hardware Scan Service

AAddddiinngg tthhee HHaarrddwwaarreeSSccaannSSeerrvviiccee

You can add the Hardware Scan Service in any JACE controller running AX-3.7 or later. To add the service,
simply install two software modules, using the SSooffttwwaarree MMaannaaggeerr in a platform connection:

• ppllaattHHwwSSccaann (always necessary), plus:

• ppllaattHHwwSSccaannTTyyppee

where Type varies by the specific JACE model series (see below). If you select only the platHwScanType
module, the required platHwScanmodule becomes automatically selected.

NNOOTTEE:: Installing these modules results in a reboot of the JACE controller.

FFiigguurree 9977 Choosing the two platHwScan modules needed for a JACE-6, JACE-3E, or JACE-6E series

The image above shows the two modules selected that are necessary for a JACE-2, JACE-3E, JACE-6, or
JACE-6E series controller. By controller series, platHwScanType is as follows:

platHwScanType module needed, by controller model series

CCoonnttrroolllleerr SSeerriieess ppllaattHHwwSSccaannTTyyppee mmoodduullee

JACE-6, JACE-3E, JACE-6E platHwScanNpm

JACE-7 (700) platHwScanJvln

JACE-603 (retrofit board) platHwScanJ603

JACE-645 (retrofit board) platHwScanJ645

JACE-x02 Express (202/602-XPR or M2M) platHwScanXpr

JACE-NXS/JACE-NXT platHwScanNx

SEC-J-601 platHwScanSec

December 15, 2015 103

Chapter 8 JACE Hardware Scan Service Engineering Notes

NNOOTTEE:: If you install the incorrect platHwScanTypemodule, or install only platHwScanmodule, the de-
fault view on the station’s Hardware Scan Service will simply display:

Jar file platHwScanType is required to support this platform

In this case, simply install the correct type using the table above.

HHaarrddwwaarree SSccaann SSeerrvviiccee VViieeww nnootteess

The main usage of the service is expected from its default view, the HHaarrddwwaarree SSccaann SSeerrvviiccee VViieeww.. Regard-
less of the JACE controller type, this view consistently appears with one or more image views of the physical
controller, with callouts to a table below with item details.

The following sections describe features of this view:

• Text in image notes

• Option card notes

• Callout to table notes

• Px usage of Hardware Scan Service View

TTeexxtt iinn iimmaaggee nnootteess

Three lines of text appear near the top of the controller image in a Hardware Scan Service View.

FFiigguurree 9988 Text on three lines near top of image portion in Hardware Scan Service View

• Station: Station_Name

The Niagara station name of the station running on the JACE.

• Host: IP_Address

The IP address of the JACE used in this Fox (station) connection fromWorkbench.

• Platform: Product_Model

“Product Model” descriptor, which may vary according to the vendor of the JACE controller.

OOppttiioonn ccaarrdd nnootteess

Most JACEs support one or two JACE-6-type option cards, which install in option slots on the controller’s
base board. An installed option card is “shaded gray” on the controller’s image.

104 December 15, 2015

Engineering Notes Chapter 8 JACE Hardware Scan Service

FFiigguurree 9999 Installed option cards are shaded gray

A numerical callout to the table below describes any installed option card. In the case of a JACE-700, which
has a MiniPCI slot in addition to two option card slots, any installed WiFi (MiniPCI) option is also indicated by
gray shading.

CCaalllloouutt ttoo ttaabbllee nnootteess

Callouts in the controller image are keyed to reference row entries in the table below it.

FFiigguurree 110000 Referenced items in table have defined data columns

By default, columns in this table are labeled as below, and are explained as follows:

• Reference

The callout number for the item in the controller image. If an option card port, it may use a “1-n” or “2-n”
number that relates to option slot 1 or 2 (for those platforms with two option card slots).

• Location

Usually either “Base Unit”, “Option Slot1”, or “Option Slot2” (the callout line in the image clarifies).

• Description

Text description of the item, whether option card, COM port, or other physical feature.

NNOOTTEE:: Any “vendor-unique” option card may incorrectly list, e.g. “Single Port RS-232 Option Card”. We
recommend that you verify with the option card’s vendor as to how it lists/appears in this service.

• Port Type

If applicable, the type of controller port, e.g. RS-485, RS-232, Ethernet, NDIO (Niagara Direct Input Out-
put), and so on. If not applicable to the referenced item, this field is blank.

• Status

If applicable, the disposition of the referenced item. If not applicable, this field is blank.

– If a serial port currently in use in the station, status reads “Owned by entity”, where the entity could
be a driver network (say ModbusAsyncNetwork), or low-level driver (say mstp1, for an MstpPort in a

December 15, 2015 105

Chapter 8 JACE Hardware Scan Service Engineering Notes

BacnetNetwork), or even Serial Shell for a COM1 port—if the serial shell jumper is installed. If a
serial port not currently used in the station, status is Available.

– If an Ethernet LAN port, status is either Available (port enabled in controller’s TCP/IP configuration)
or Disabled (port not enabled in controller’s TCP/IP configuration).

– Platforms with a “serial shell jumper” have status either Normal Operation or Serial Shell.

PPxx uussaaggee ooff HHaarrddwwaarree SSccaann SSeerrvviiccee VViieeww

The view is based on a Px file and graphic images inside platHwScan modules. If desired, you can make this
view available on a Px view, by dragging the Hardware Scan Service onto a canvas pane.

FFiigguurree 110011 Dragging the HardwareScanService onto a Px view

Make Widget selection for Hardware Scan Service View

If doing this, in the resulting “Make Widget” popup dialog select the WWoorrkkbbeenncchh VViieeww and HHaarrddwwaarree SSccaann
SSeerrvviiccee VViieeww, as shown above.

You must resize the copied widget to see all of the view. Depending on the controller series, the overall
“footprint” (pixel dimensions) varies. The approximate width and height dimensions for each view, including
the lower “hardware reference table” area plus side scroll bar, are provided in Table 2.

Pixel dimensions of different Hardware Scan Service Views, by controller series

CCoonnttrroolllleerr SSeerriieess WWiiddtthh xx HHeeiigghhtt ((ppiixxeellss))

JACE-6 (600), JACE-3E, or JACE-6E 660 x 720

JACE-7 (700) 820 x 700

JACE-603 or JACE-645 (403/545 with retrofit board) 660 x 740

JACE-NXT 830 x 600

JACE-NXS 800 x 600

SEC-J-601 790 x 800

106 December 15, 2015

Engineering Notes Chapter 8 JACE Hardware Scan Service

HHaarrddwwaarreeSSccaannSSeerrvviiccee pprrooppeerrttiieess

The HardwareScanService has a number of properties, available by selecting its property sheet from the
view selector (Figure 8). Values from many of these properties are reflected in the graphical default view.

FFiigguurree 110022 Property sheet for example HardwareScanService

All properties but one are children of the “Base Board Type” container, which varies by controller type. The
immediate child property is “Product Model”, a string property that describes the controller model. Other
children are containers that contain a mixture of other string properties and enumerated values, such as for
“Status” or “Port Type”. If needed, you can link any of these properties into other station logic.

As with most other station platform services, there is an available “Poll” action on the HardwareScanService.
However, usage should rarely be needed, due to the static nature of hardware configuration.

LLeexxiiccoonn ccuussttoommiizziinngg ooff HHaarrddwwaarreeSSccaannSSeerrvviiccee

Customizing text descriptors and values that appear in the service’s Hardware Scan Service View is possible
by editing the lexicon for the platHwScanmodule and various platHwScanTypemodules. For example, if
you edit the following lexicon key for the platHwScanNpmmodule:

NPM6E=JACE-6E

The “Platform=” value near the top of the controller image will be “JACE-6E” (instead of “T-600E”) when
viewing the service in a JACE-6E, as shown below.

NNOOTTEE:: Before such changes can become effective, you need to save and install the lexicon changes in the
target JACE, and also reboot that controller.

December 15, 2015 107

Chapter 8 JACE Hardware Scan Service Engineering Notes

PPxx ccuussttoommiizzaattiioonn

You can make a Px view in a station that provides a customized alternative to the default HHaarrddwwaarree SSccaann
SSeerrvviiccee VViieeww, by using Px widgets available in the palette of the platHwScanmodule, as well any custom
edited image (.png) file or files (for the controller “layout” diagrams).

FFiigguurree 110033 Palette of platHwScan module has four Px widgets

As shown, there are four types of Px widgets in the platHwScan palette:

• HardwareScanServiceReferenceTable

This widget automatically receives values from the station’s platform HardwareScanService, presenting it
in a table with five columns. It applies to any supported controller type.

• OptionCardWidget

This widget represents either a top view or side (port) view of any installed option card, and is designed
to overlay an image file that represents a top and/or side layout view of a controller type. It applies to all
supported controller types except the Windows-based ones (JACE-NXT, JACE-NXS).

• PciCardWidget

This widget represents an installed MiniPCI card, and also overlays a controller layout image file. It ap-
plies only to a WiFi option for a JACE-7 (700) series controller (using platHwScanJvlnmodule).

• SerialShellJumperWidget

This widget represents the current “serial shell jumper” position of a controller, and also overlays a con-
troller layout image file. It applies to the same controller types as the OptionCardWidget.

PPxx wwiiddggeett uussaaggee iinn ppllaattHHwwSSccaann mmoodduullee

Px widgets are used in the default HHaarrddwwaarree SSccaann SSeerrvviiccee VViieeww. A good way to see how is to examine the
local modules on your Workbench PC. Do this by expanding a platHwScanTypemodule to look at the con-
tents of its px folder in the PxEditor (edit mode).

108 December 15, 2015

Engineering Notes Chapter 8 JACE Hardware Scan Service

FFiigguurree 110044 Looking at the Px view in the platHwScanNpm module

Look at widget properties to see how layout parameters and other items are set.

EExxaammppllee ccuussttoommiizzeedd PPxx vviieeww ffoorr HHaarrddwwaarree SSccaann SSeerrvviiccee

An example customized Px view for a JACE-6, JACE-3E, or JACE-6E series is shown.

FFiigguurree 110055 Example customized Px view for Hardware Scan Service

In this example, the controller image (NpmHdwView.png) was copied from the platHwScanNpmmodule
and then edited in a graphics program to “color replace” the callout arrows and numbers from the default
green to blue. The edited png file was then copied to the controller’s station folder (using the platform File
Transfer Client view), and then referenced in the BoundLabel widget for it in the Px view.

The OptionCardWidgets used in the “side view” positions (topView=false) had “formatPalette” child proper-
ties for borderColor and referenceColor changed from (the default) green to blue, to match the edited im-
age callout lines. (The color of these “arrowless” callout lines and border is set in the widgets).

December 15, 2015 109

Chapter 8 JACE Hardware Scan Service Engineering Notes

NNOOTTEE:: An OptionCardWidget must have its “slot” property value set to either 1 or 2, depending on loca-
tion. If copied from the palette, the slot property value defaults to 0.

In the same way, properties were edited for the HardwareScanServiceReferenceTable widget, including re-
ducing columnGap and rowGap from 3.0 to 2.0. Also this widget’s “formatPalette” had its child property for
referenceColor set from (the default) green to blue, and properties referenceBackgroundColor and data-
BackgroundColor were set from (default) white to colors cyan and peach, respectively.

Finally in this example, the BoundLabel widgets for “Platform:” and “Host:” near the top of the view had
text property edits, to read (instead) “Controller:” and “IP:”, and all three BoundLabel widgets were reposi-
tioned and reduced in font size from 14pt to 12pt.

NNOOTTEE:: You can save time by copying the contents of a Px file from one of your local platHwScanType
modules (for the appropriate controller type), then pasting that in as the source XML for your new Px view.
Using this as a starting point, you can then use the Px Editor to make tweaks in widget properties, and/or
reference images outside of the platHwScanTypemodules. Combined with changes in lexicons for the
platHwScanmodules, this can provide a more tailored view of the Hardware Scan Service information.

110 December 15, 2015

December 15, 2015 111

CChhaapptteerr 99 FFoorrmmaattss ((BBFFoorrmmaatt))

Topics covered in this chapter
♦ BFormat default values
♦ Example scenarios
♦ BFormat errors

Baja data type or baja-Format (BFormat), is a class used to format objects into strings using a standardized
formatting pattern language. Bformats are very important for making templates (reusable portions of the
data model Tree that require minimal configuration), when creating Px views, and to enable localization (for-
eign language support).

A format string is normal text with an embedded scrip denoted by the % percent character (use %% to insert
a real %). A script is one or more calls chained together using the dot/period (.) operator. The system re-
solves formats (executes the instructions contained in the embedded script) starting with the object that de-
clares the format. Embedded calls then dynamically resolve to objects, and the system converts the final
object into a string.

In Niagara, many properties that allow text entry use the embedded BFormat scripts. For example, a formu-
la can refer to multiple points by using a Value Ord that contains BFormat script:
slot:/Drivers/NiagaraNetwork/%parent.name%/points/%name%

The name of the folder containing the point is substituted for the first script, and the name of the point is
substituted for the second script.

The system resolves calls in this order:

1. Special calls

The following are special calls:

• time() returns the current time as a Niagara BAbsTime object

• user() returns the current user’s name

• lexicon(module:key) get the specified lexicon text

• decodeFromString(module:type:escapedEncodedValue)

• substring(to) on a string

• substring(-fromEnd) on a string

• substring(from,to) on a string

2. Java method get<call>(Context)

3. Java method get<call>()

4. Java method <call>()

5. Java method get(“<call>”)

BBFFoorrmmaatt ddeeffaauulltt vvaalluueess

As copied from palettes or originated from manager views, some components already have default values in
certain BFormat-type properties (while others may default as empty).

This table lists examples of the components with default values.

Chapter 9 Formats (BFormat) Engineering Notes

TTaabbllee 22 Default values for a few properties using BFormat

CCoommppoonneenntt PPrrooppeerrttyy DDeeffaauulltt VVaalluuee NNootteess

Alarm extension for points, e.g.
OutOfRangeExt, etc.

sourceName %parent.displayName% Suitable as is in many cases, such as
where all parent points are uniquely
named.

History extension for points, e.
g. NumericInterval, etc.

historyName %parent.name%

Any network component’s
AlarmSourceInfo slot.

sourceName %parent.displayName% Often both properties work with these
default values.

Any device-level component’s
AlarmSourceInfo slot.

sourceName %parent.parent.displayName% %
parent.displayName%

EmailRecipient subject Niagara Alarm From %alarmData.
sourceName%

The system provides much additional
alarm data in the slot that contains the
body of the email.

For the property value you can use multiples of scripted variables along with static text, as demonstrated by
the defaults for a device’s AlarmSourceInfo (sourceName) property in the table. A static space character
separates the %parent.parent.displayName% from %parent.displayName%. The subject property of
the EmailRecipient contains static text Niagara Alarm From ahead of the variable.

With BFormat variables (scripting), you can sometimes save time by enabling the replication of applications,
where desired results happen with minimal custom edits to property values on your part. While reducing en-
gineering time, enabling the replication of applications can still yield consistent output results. Or, you may
have specific text formatting needs.

EExxaammppllee sscceennaarriiooss

Example scenarios demonstrate how to work with different non-default values for the BFormat-type
properties.

Alarm extensions, history extensions, Px Widgets, and WeatherService are good examples to illustrate how
to use BFormat.

BBFFoorrmmaatt eexxaammppllee:: nnaammiinngg ppooiinnttss

This example uses the BFormat parent.parent method to name points in alarm extensions.

VVAAVV sscceennaarriioo

You have a driver network of VAVs for 60 zones using 60 identical devices, each with identically-named proxy
points, but under a uniquely-named device component. For simplicity, assume that the devices are named:
VAV1, VAV2, …to VAV60.

Several proxy points in each zone require an alarm extension. You could: manually rename the points, or type
unique values in the BFormat type properties under each alarm extension, as well as related properties (in
some cases) under its offNormalAlgorithm slot. This would ensure that alarm records (viewed in the
alarm console) would show unique SSoouurrccee values for any alarm, without having to decipher by station ord
(for example) which RoomTemp point was in alarm, for example to isolate by zone.

Manually renaming the points in each zone

This would involve entering unique values in the BFormat type properties under each alarm extension.

In some cases, you may also have to modify related properties under the device’s offNormalAlgorithm
slot. These changes would ensure that alarm records viewed in the alarm console provide unique source

112 December 15, 2015

Engineering Notes Chapter 9 Formats (BFormat)

values (names) for each alarm. For example, without a unique source and only the station ord, it can be diffi-
cult to isolate the zone and RoomTemp point that is in alarm.

It could take you at least several hours to manually configure 60 zones.

Replicating properties

This method will save you time. You begin by replacing the default values for several BFormat-type proper-
ties of one VAV’s alarm extension such that generated alarms contain more useful source data, then replicate
the VAV application to the remaining 59 VAVs.

FFiigguurree 110066 Example config structure and alarm extension property values using edited BFormat-type data

The above shows part of the station’s config structure, including the non-default values entered for BFor-
mat-type properties under one alarm extension in one of the identically named points. The sourceName of
the alarm extension has been changed to use two variables:

• %parent.parent.parent.parent.displayName%

• %parent.displayName%

These variables are separated by a space.

Given the tree structure in use, the alarm record shows four (parent) levels up for the first part of the source,
that is the device (for example. VAV1), then the proxy point name appears as the second part of the source,
for example RoomTemp. So, in the alarm console the alarm source displays as “VAV1 RoomTemp”.

Here is the tricky part: All the alarm text properties are relative to the alarm record component generated
by an alarm, and not to the alarm extension responsible for generating the alarm. Alarm text properties in
the alarm extension Offnormal Algorithm include:

• toNormalText

• toOffNormalText

If the extension is an OutOfRangeExt, alarm text properties include:

• highLimitText

• lowLimitText

These OutOfRangeExt properties override any entry in the toOffNormalText property of the alarm
extension parent.

The location of these text properties in the alarm record means that you cannot use the parent.displayName
scheme for the alarm text properties, at least not if you expect to get any useful results.

But because each alarm extension’s sourceName is now unique (using the technique above), you can refer-
ence it within alarm text type properties, along with any desired static text. Except here, the sourceName is
an alarmData field, from the alarm record.

In the example , when RoomTemp in VAV1 triggers a high limit alarm, the alarm data message text is: VAV1
RoomTemp is too HOT!, and when it returns to normal the alarm data message text is: VAV1 RoomTemp is
OK now.

December 15, 2015 113

Chapter 9 Formats (BFormat) Engineering Notes

You could further modify the OffnormalAlgorithm high and low limit text properties to include the nu-
merical (alarm) limit, using another alarmData field. For example, if highLimitText is set to a BFormat val-
ue of %alarmData.source% is above %alarmData.highLimit% degrees!, and the extension’s
highLimit is set to 74.5, upon a high limit alarm the message text generated is VAV1 RoomTemp is above
74.5 degrees!. This technique may be useful if routing the alarm using a minimum amount of alarm data
text, say including only the timestamp and the message text.

NNOOTTEE:: To see what alarmData fields are available for use in this manner, go to a station’s alarm console
and view the complete details (AAllaarrmm RReeccoorrdd popup) for any one alarm.

BBFFoorrmmaatt eexxaammppllee:: nnaammiinngg hhiissttoorriieess

This example uses a technique other than the parent.parent method to name histories. This method may be
called the folder-level independent method, as explained in this topic.

HHiissttoorryy eexxtteennssiioonn sscceennaarriioo

Consider a VAV network with replicated device applications. In each VAV zone, you need histories of several
proxy points, all identically named. For example, in each zone you wish to have a numeric interval history on
RoomTemp and another one on Damper. However, you must either rename the parent point(s) or rename
the history extensions’ historyName to something unique, as duplicate history Ids are forbidden.

Or before replicating this VAV application, you could edit the historyName in all history extensions, similar
to editing the sourceName when naming points.

FFiigguurree 110077 Example config structure and history extension property values using edited BFormat-type data

The above shows part of the station’s config structure, including the non-default value entered in place of-
historyName for two history extensions.

The historyName for each extension has been changed to use two variables:

• %parent.proxyExt.device.displayName%

• %parent.displayName%

These names are separated by an underscore. This syntax uses a special getDevice() method in the first varia-
ble, where the proxy point’s parent device name is resolved, regardless of its folder depth under the Points
extension. (In this example, proxy point RoomTemp is in an Inputs point subfolder, while the Damper proxy
point is in the root of the Points extension).

Because the points are located in different folders, the parent.parent method would work for RoomTemp,
but not for Damper. The method folder-level independent method, however, is more fault tolerant as a result
of moving a proxy point, especially to change its hierarchy.

Given the tree structure of this network, the resulting histories appear as VAV1_RoomTemp, VAV1_Damper,
and if replicated, VAV2_RoomTemp, VAV2_Damper, and so on.

Here is how this works: “%parent.proxyExt.device.displayName%”, the parent steps up one level to the Lon
proxy point (say, RoomTemp). The proxyExt is the slot name that walks back down the tree to a different
child component, in this case to the LonProxyExt. The device calls the getDevice() method, and the dis-
playName calls the getDisplayName() method.

114 December 15, 2015

Engineering Notes Chapter 9 Formats (BFormat)

This example assumes that no other components in the station also have a VAV” component with a Room-
Temp child, which also requires a history extension. Also, the example uses an underscore instead of a space
even though spaces in object names are permitted (history being one type of object), they are escaped in
the database using a “%20” string. This can be confusing in certain scenarios.

BBFFoorrmmaatt PPxx WWiiddggeett eexxaammpplleess

BFormat can be used with Px widgets as shown in this example topic.

PPxx wwiiddggeett sscceennaarriiooss

When engineering Px widget properties, especially for BoundLabel types with a binding to a component,
there is an important property that uses the BFormat type:

The BFormat: BoundLabel:Text (ObjectToString): determines the content of the displayed text.

By default, when you drag a component onto a Px page (for example a BooleanWritable point), the Make
Widget wizard associates a BoundLabel’s Text with (and makes a binding to) the component ord. The de-
fault text value is: %.%

FFiigguurree 110088 Example of adding static text in Text property of a BoundLabel

In the example, a simple edit adds “Heating Mode:” in front of this default Text value, as shown below.

DDeeffaauulltt BBoouunnddLLaabbeell TTeexxtt rreessuullttss

For any point (or any component with an Out property), default text from the binding is identical to the out
value displayed in the component’s property sheet.

The default text that is identical to the Out value includes facets, as well as the following information:

• If bound to a writable point, the Text contains three pieces of data, namely:

<value> <status> @priorityLevel>
where:

– <value> is

– <status> is {ok}, etc.

– @jpriorityLevel> is

For example: On {ok} @16 (a BooleanWritable) or 20% {ok} @12 (a NumericWritable)

• If bound to a read-only point, the default Text provides two pieces of data in the text, that is:

<value> <status>
For example:

Clean {ok} (a BooleanPoint) or 72.3 °F {ok} (a NumericPoint)

• If bound to a component that is not a point (there is no Out property), you must bind to a particular slot
of that component, in order to display text other than its component type.

December 15, 2015 115

Chapter 9 Formats (BFormat) Engineering Notes

For example, if you drag a DegreeDays component to a Px page, the system displays the default text:
Degree Days. However, if you change the binding’s ord to <objectName>/clgDegDays, the system cal-
culates and displays the cooling degree-days value (and status), such as: 5.0 {ok}

EEddiittiinngg BBoouunnddLLaabbeell TTeexxtt ffoorr ppooiinnttss

You can edit the Text property in any BoundLabel widget to include additional static text, and/or modify (or
limit) the real-time data in the text.

The following table provides a few example BFormatting variables and results for writable points.

TTeexxtt ((BBFFoorrmmaatt)) vvaalluuee DDeessccrriippttiioonn EExxaammppllee 11 EExxaammppllee 22 ((ssccrriipptt aanndd rreessuulltt))

%out.value% Value only (with facets). On AHU is %out.value%

AHU is On.

%out.status% Status including priority lev-
el, if writable point.

{ok} @ 16 Status of AHU is %out.status%.

Status of AHU is {ok} @ 16.

%activeLevel% Number only (1-16, def) for
priority level, writable points
only.

16 AHU is %out.value% at level %activeLe-
vel%.

AHU is On at level 16.

%status.flagsToString% String value(s) for status
flags set, without braces. If
non: ok.

ok AHU status is %status.flagsToString%.

AHU status is ok.

The EExxaammppllee 11 column illustrates the resulting text if the Out script is On {ok} @ 16.

The EExxaammppllee 22 column shows the script and the resulting display when static text is added to the script.

AAddvvaanncceedd BBoouunnddLLaabbeell TTeexxtt eeddiittiinngg

You can use the Object to String BFormat script with BoundLabel.

Object-to-String scripting is quite flexible when working with BoundLabel widgets. You are limited only by
your understanding of Baja (see online Bajadoc in the Help system). For the non-developer, these few simple
rules may help:

• The BoundLabel widget must actually be bound to an object (using an ord). In other words, you cannot
simply drag a BoundLabel from the kkiittPPxx palette to the Px page, edit theText property, and get results.
If needed, the Text value may be totally unrelated to the bound object. For example, you can bind to any
object and enter a system-type call, as shown here:

%time().toDateString% to produce text like “01-Nov-08”

• Relative to the bound object, you can use the parent technique to “walk up” the component tree of the
text for a slot (or name), for example %parent.parent.name% gives the name of the parent two levels up.
For example, a BoundLabel bound to a DiscreteTotalizerExt under a BooleanPoint, where you
wish to display the (parent) point’s name and the number of times it has changed state since its last reset,
could be achieved using this Text entry:

%parent.displayName% had %changeOfStateCount% COS since last reset.

The resulting text might be: ChWPump2 had 14 COS since last reset..

• In addition, relative to the bound object, you can also “walk down” the tree in a parallel path, using the
slot name (versus name or displayName).An example of this “walk down” method (via slot name) is in
the history extension (historyName) example, along with the parent technique.

BBFFoorrmmaatt:: WWeeaatthheerrSSeerrvviiccee eexxaammppllee

This example uses the WeatherService to show how to use BFormat.

116 December 15, 2015

Engineering Notes Chapter 9 Formats (BFormat)

The WeatherService can provide many pieces of information including current conditions and forecasts. The
following image shows the property sheet for a weather report with one locale under the weather service.

FFiigguurree 110099 Example Weather Report property sheet

To display this information on a graphic you create a bound label that references the WeatherService and
the applicable property. For example, to display the forecast for today, the referenced ord would be sta-
tion:|slot:/Services/WeatherService/Charlotte/day0.

Instead of entering this value, you could expand the WeatherService in the Nav tree to find this slot, then
drag it to the Px page, where the Make Widget wizard automatically resolves to this ord. If the format Text
is left at the default of %.%, the text values that appear as shown in the second line in the following image.

FFiigguurree 111100 Default BoundLabel Text to Weather Report’s Today property

To control whether they appear and provide additional text and formatting, you can individually reference
each of the Today properties in the format Text.

For example, setting Text to the following:

High %High.value% °F / Low %Low.value% °F / Precip %PrecipChance.value%%%
results in the graphic displaying text as shown in the second line of the following image.

FFiigguurree 111111 Example modified BoundLabel Text to Weather Report’s Today property

NNOOTTEE:: The system uses the percentage symbol (%) To delimit scripts in format Text fields. To display this
symbol as text, enter two of them (%%).

BBFFoorrmmaatt eerrrroorrss

This topic covers a few example errors and considerations for dealing with errors.

Not all attempts at customizing Format-type property values may be successful. If a syntax error causes the
script to fail, an ERROR or err:<item>, where <item> is the script value appears in the produced text.

For example:

• If you forget a % on BoundLabel Text entry, say: Fan is %out.value, the system displays: ERROR Fan
is %out.value.

• Or, a script call to a misnamed slot might fail with a displayed error similar to: ChwPump2 had %err:con-
trol:DiscreteTotalizerExt:changeOfStates% COS since last reset.

December 15, 2015 117

Chapter 9 Formats (BFormat) Engineering Notes

Make sure you test all modifications to BFormat-type properties, to make sure you get the intended results.

118 December 15, 2015

December 15, 2015 119

CChhaapptteerr 1100 bbaaccnneettUUttiill CCoommppoonneenntt
UUssaaggee

Topics covered in this chapter
♦ BACnet and Niagara 4
♦ BACnet troubleshooting
♦ Reference

BBAACCnneett aanndd NNiiaaggaarraa 44

The user interface for configuring and managing a BACnet network is the same under Niagara 4 as it was
under previous versions of Niagara. This chapter explains some differences and documents the new bacne-
tUtil module.

These topics are covered:

• Broadcast message management, page 119 explains how BBMD works and documents the two BBMD
changes implemented in Niagara 4: you are required to manually enter the desired BBMDs into the BDT
(there is no automatic configuration); and you may have more than one BBMD per subnet.

• BACnet Ethernet on Windows using WinPcap, page 120 has been added to explain how to download
and install WinPcap, which is required for Windows platforms.

• A new module, BACnetUtil, has been added for troubleshooting connections. BACnet troubleshooting,
page 121 begins the information about BACnetUtil.

BBrrooaaddccaasstt mmeessssaaggee mmaannaaggeemmeenntt

Use of BBMDs (BACnet Broadcast Management Devices) makes it possible for a BACnet network to span
multiple IP subnets. When using BBMDs, each IP subnet with BACnet/IP devices requires at least one BBMD.
Multiple BBMDs are allowed.

A BBMD may be a device operating solely as a BBMD or, more typically, a device that includes BBMD func-
tions in addition to other application or controller functions. A station running a BACnet network and config-
ured for BBMD is a multi-function device.

WWhhyy aanndd wwhhaatt aa BBBBMMDD ddooeess

A BBMD supports delivery of BACnet broadcast messages, such as Who-Is and Who-Has. As a rule, the
standard IP routers used to connect separate IP subnets block globally broadcast messages. (Standard IP
routers do not block directed messages between devices on different subnets, such as common ReadProp-
erty requests.)

Working with other peer BBMDs, each BBMD acts as a broadcast manager for its local subnet. Stored in
each BBMD is a table that links the BBMD to its peer BBMDs. This BDT (Broadcast Distribution Table) con-
tains the IP address and distribution mask of other BBMDs in the system, itself included. Each subnet may
have multiple BBMDs. You are responsible for determining which BBMDs to put in any given BDT. Conse-
quently, the BDT in each BBMD may differ from the BDT in every other BBMD.

In a small configuration with only a few (or perhaps just one) BACnet/IP devices, the use of a local BBMD is
not necessary for broadcast message support. As an alternative, the devices in the subnet may register as
foreign devices with the BBMD of a remote subnet. The registration process adds the local device to a sec-
ond table in the remote BBMD, the FDT (Foreign Device Table). Using this table, the remote BBMD takes
the responsibility of delivering global BACnet broadcast messages to the device(s) on the local subnet.

The term “foreign device” implies no stigma or limitation of service. It simply makes possible the manage-
ment of messages when a BBMD is not practical.

Chapter 10 bacnetUtil Component Usage Engineering Notes

Registering as a foreign device is sometimes used for BACnet/IP devices that are temporarily connected.
Consequently, the registration process requires the assignment of a registration lifetime in seconds (Time
To Live) for each foreign device. The device must be re-registered within the Time To Live or the BBMD
purges the device from its FDT. This prevents unnecessary broadcast delivery attempts to part-time
participants.

The FDT reflects the current list of registered foreign devices along with each device’s Time To Live value
and calculated purge time. If a station is configured as a BBMD, you can see all these entries in the BBMD’s
FDT.

You modify a BDT and FDT using the BBaaccnneett CCoommmm PPrrooppeerrttyy SShheeeett. When adding a device, you must man-
ually update the BDT. There is no automatic configuration.

When all devices on a local subnet, including the BBMD, receive a globally broadcast message, they reply as
needed to the broadcast device without BBMD involvement. Then, the local BBMD forwards the broadcast
message to the other subnets using one of two methods (as defined for each remote subnet):

• Two-hopThe BBMD sends the message to its peer BBMD on the remote subnet and the remote BBMD
broadcasts the message on its local subnet. This is the normal case in a system with multiple subnets.

• One-hopThe BBMD directly broadcasts the message to another subnet IP router and the target router
broadcasts the message to all devices on its local subnet. This method is unusual as IP routers rarely pass
directed broadcasts on to the local subnet.

Replies to BACnet broadcast messages may or may not require BBMD involvement. Occasionally, replies are
directed messages back to the particular BACnet/IP device that generated the message. However, replies
to a Who-Is broadcast are often broadcast I-Am messages. This is the case with Niagara

BBAACCnneett EEtthheerrnneett oonn WWiinnddoowwss uussiinngg WWiinnPPccaapp

Starting a version of Niagara that contains a BACnet/Ethernet adapter without having WinPcap installed
causes the NetworkPort to go into fault. The system reports the fault cause as: “Verify WinPcap 4.1.x is
installed.”

FFiigguurree 111122 Fault message when WinPcap is not installed

WWAARRNNIINNGG:: Sending and receiving raw Ethernet frames on a Windows platform requires a Kernel Mode
Driver. Anyone with malicious intent who connects to a system that has the raw Ethernet Kernel Mode Driver
installed can send and receive raw Ethernet frames to assert full control over your BACnet/Ethernet net-
work. This is the case with all raw Ethernet drivers. If you are not willing to accept this increased attack risk,
upgrade to BACnet/IP.

WinPcap must be manually downloaded and installed to continue using BACnet/Ethernet on supported Ni-
agara 4 Windows platforms.

120 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

Step 1 Confirm that the EthernetPort is enabled.

Step 2 Stop the station.

Step 3 Download WinPcap from https://www.winpcap.org/install/.

Step 4 Double-click the downloaded installer to begin the installation process and follow the SSeettuupp
WWiizzaarrdd.

Step 5 When prompted, leave “Automatically start the WinPcap driver at boot time” selected.

Step 6 When the wizard finishes installing, restart the station.

When you start the station with an enabled BACnet EthernetPort, WinPcap is used to send and
receive packets.

BBAACCnneett ttrroouubblleesshhoooottiinngg

This topic summarizes things to do to resolve certain BACnet networking problems.

WWhheenn II ssttaarrtt aa ssttaattiioonn tthhee BBAACCnneett//EEtthheerrnneett PPoorrtt ggooeess iinnttoo ffaauulltt wwiitthh tthhee mmeessssaaggee,, ““VVeerriiffyy WWiinnPPccaapp
44..11..xx iiss iinnssttaalllleedd..””

WinPcap must be manually installed to use BACnet/Ethernet on supported Niagara 4 Windows platforms.
Download the utility from https://www.winpcap.org/install/, install it, and restart the station.

II hhaavvee ccoonnnneecctteedd aallll nneettwwoorrkk ddeevviicceess aass ddeessccrriibbeedd iinn tthhee ddooccuummeennttaattiioonn,, bbuutt WWoorrkkbbeenncchh ffaaiillss ttoo ddiiss--
ccoovveerr aannyy ddeevviicceess..

Failure to discover may be due to:

• duplicate mac addresses

• mis-configured baud rates

• a max master that is too small

Use bacnetUtil to diagnose the above problems.

HHooww ccaann II ddiiaaggnnoossee iinntteerrmmiitttteenntt MMSS//TTPP nneettwwoorrkk pprroobblleemmss

The BTokens component may be the most useful MS/TP troubleshooting tool. This component provides vis-
ibility into the health of an MS/TP network at a new level. Previously this type of information could only be
gathered by observing and interpreting the blink pattern of the device’s serial activity LEDs. Knowing the
bus is healthy at the token passing level may help shift the focus of an investigation to a remotely solvable
configuration problem that does not require dispatching a technician to the site to investigate.

Initial offsite diagnosis of intermittent problems can be performed using the BTokens component, standard
Niagara point extensions and web charts. For example, you can detect interruptions in bus communications
by graphing several relay values on the same WebChart as the tokens per second and monitoring the bus
health.

HHooww ccaann II iimmpprroovvee ppeerrffoorrmmaannccee ooff oollddeerr ddeevviicceess

Device overrides can be a useful tool for managing performance limitations in some devices. For example,
older devices in the field may claim support for features like “readPropertyMultiple” (answering multiple
questions per request), but do not do a great job of answering large multiple question requests in a timely
manner. Those older devices may be able to more quickly respond to 30 separate requests containing only
one question, than one request containing 30 questions. Adding an rpmOverride to the device may im-
prove overall performance of communication with the device by instructing Niagara to send only single
question requests to the device.

DDiiaaggnnoossiinngg nneettwwoorrkk pprroobblleemmss wwiitthh mmeettrriiccss

bbaaccnneettUUttiill provides tools to monitor the health of the BACnet ports in a station, and diagnose port prob-
lems. Three bacnetUtil tools count tokens and messages.

December 15, 2015 121

Chapter 10 bacnetUtil Component Usage Engineering Notes

PPrreerreeqquuiissiitteess:: Your BACnet network has been set up and all devices are configured and communicating.

Some networks do not allow the Wireshark utility to be installed on their control networks. Investigating cer-
tain BACnet communication problems without proper network diagnostic tools can be difficult. The bbaaccnnee--
ttUUttiill module is intended to provide diagnostic resources for these networks.

Step 1 To prepare the Nav tree, expand CCoonnffiigg→→DDrriivveerrss→→BBaaccnneettNNeettwwoorrkk→→BBaaccnneett CCoommmm→→NNeettwwoorrkk.

Step 2 To set up an MS/TP port, open the bbaaccnneett (Niagara BACnet Driver) palette and expand
NNeettwwoorrkkPPoorrttss.

Step 3 Drag the MMssttppPPoorrtt container to the NNeettwwoorrkk container in the Nav tree.

Step 4 To add metrics, open the bbaaccnneettUUttiill palette, expand the MMeettrriiccss container in the palette, and
drag the Tokens, SentMessages and Received Messages components to the MMssttppPPoorrtt node
in the Nav tree.

This starts the system monitoring tokens, sent and received messages.

Step 5 To view a chart, right-click the component (Tokens, SentMessages or Received Messages) and
click VViieewwss→→CChhaarrtt.

It may take a few moments for the chart to appear.

TTookkeenn mmeettrriiccss

The Tokens component aids in diagnosing certain configuration problems. While the problems may require
a site visit to resolve, the information gathered should aid in diagnosis and repair.

The Tokens per second (TPS) metric reports the tokens generated by the device per second. The number of
tokens generated may seem backwards at first glance because, a trunk with many devices, passes fewer to-
kens per second. The fewer the devices on the trunk, the more tokens generated.

There is no rule-of-thumb for tokens per second, no good or bad. Tokens per second varies wildly based on
device count, vendor implementation, baud rate, trunk utilization, and more. This limits the use of the metric
to viewing changes over time. You need to establish a baseline for each particular trunk, and then investigate
any deviations from its unique norm.

122 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

The following is an example of a couple of inflection points on a graph.

FFiigguurree 111133 Example of a Tokens graphic

These are the types of problems that this graph can help you investigate.

1. Notice that from 7 am until 2:45 pm the tokens per second indicates a healthy MS/TP trunk, passing to-
kens at a constant rate. It is impossible to see the effect of applications messages at this level, as repeti-
tive applications messages cause a repetitive impact on TPS.

2. Each spike or deviation was the result of adding or removing devices to or from the trunk. When the TPS
initially dropped to zero (0) shortly after 3 pm, the controller completely stopped passing tokens. In this
case, the MS/TP connector was unplugged from the controller.

3. The steady increase to ~13 TPS occurred when two other devices were removed from the trunk.

4. Shortly thereafter, the two devices were restored to the network and the TPS returned to its previous lev-
el (8).

5. The TPS again dropped to zero (0) when the controller was again unplugged.

6. Once the controller was plugged back in again, things returned to the normal 8 TPS. (The angle of the
line is a COV (Coefficient of Variation) history artifact, the value was zero (0) until it was five (5).

This sequence of events represents only the tip of the iceberg of possibilities. When Parse All Proper-
ties is set to true, the TTookkeennss component exposes all of the current properties and any that may be
added in the future.

NNeettwwoorrkkPPoorrtt mmeettrriiccss

Counting the number of messages sent and received per second is straightforward. The SentMessages
and ReceivedMessages components perform as intuitively expected.

The system monitors sent and received messages (or bytes) in the same way that it monitors tokens.

December 15, 2015 123

Chapter 10 bacnetUtil Component Usage Engineering Notes

FFiigguurree 111144 Example of a sent and received messages graph

1. Sent message count

2. Received message count

3. Time

4. Per seconds

A large disparity in the number of messages sent and received can be an indicator of a larger issue. In the
above example, the station is broadcasting three I-Am messages per second. This is why the received mes-
sages value is much lower and is likely to be just readProperty responses to idle device ping messages.

DDeevviiccee mmeettrriiccss

Knowing the latency of a device can be quite useful when diagnosing individual network devices that may be
responding slowly, but not slowly enough to trigger an APDU timeout (APDU - Application layer Data Unit).

124 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

FFiigguurree 111155 Average latency chart

Tracking latency over time allows more detailed analysis of changing network conditions and can help identi-
fy problem network segments before the network or router fails. The latency of a device can also be helpful
to appropriately tune the poll rate by device, instead of by network port.

SSeettttiinngg uupp aa wwiirreettaapp

Wiretaps evaluate (sniff) messages after they have been processed by a network port. You add wiretaps as
children of the NNeettwwoorrkkPPoorrttss container in the same way that you add metric components.

PPrreerreeqquuiissiitteess:: Your BACnet network has been set up and all devices are configured and communicating.

Step 1 To prepare the Nav tree, expand CCoonnffiigg→→DDrriivveerrss→→BBaaccnneettNNeettwwoorrkk→→BBaaccnneett CCoommmm→→NNeettwwoorrkk.

Step 2 To set up an MS/TP port, open the bbaaccnneett (Niagara BACnet Driver) palette and expand
NNeettwwoorrkkPPoorrttss.

Step 3 Drag the MMssttppPPoorrtt container to the NNeettwwoorrkk container in the Nav tree.

Step 4 To add the wiretap components, open the bbaaccnneettUUttiill palette, expand the WWiirreettaappss container in
the palette, and drag the ForwardingWiretap and ForwardedMessageSink to the MMssttppPPoorrtt
node in the Nav tree.

December 15, 2015 125

Chapter 10 bacnetUtil Component Usage Engineering Notes

PPrroocceessssiinngg aa ffoorrwwaarrddeedd wwiirreettaapp

The ForwardingWiretap component sends each captured message to a specified IP address. The intent is
to provide a way to forward MS/TP packets from a controller to another IP device, allowing the use of a
packet dissection tool (for example, Wireshark) to investigate the network problem.

PPrreerreeqquuiissiitteess:: You have added the ForwardingWiretap component to the MstpPort container in the Nav
tree. You are an experienced Wireshark user.

Step 1 To configure the ForwardingWiretap component, double-click it in the Nav tree.

The ForwardingWiretap property sheet opens.

Step 2 Change the Address field either to the IP address of your computer or to a broadcast address (if
the broadcast address of the controller matches the broadcast address of the PC/laptop)

Your computer should now be able to capture BACnet messages from the MS/TP trunk using Wire-
shark. Since the system forwards these messages on a non-standard BACnet port, which no BAC-
net devices are using, Wireshark needs to be configured to decode the messages as BVLC
(BACnet Virtual Link Control) messages. Otherwise, the messages show up as “Source Port: xxxx”
and “Destination Port: yyyy,” which do not provide useful information.

Step 3 To configure Wireshark, right-click one of the UDP (User Datagram Protocol) packets and click de-
code as.

A window opens for defining the destination port to associate with the protocol.

126 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

Step 4 Select the destination you specified when you set up the ForwardWiretap properties from the UUDDPP
list, locate BVLC in the ppoorrtt((ss)) aass list and click OOKK.

The system now parses the messages as BACnet-APDUs (Application Protocol Data Units):

This table contains quite a few ICMP (Internet Control Message Protocol) reject messages. These
messages are generated by the PC’s TCP/IP stack. They indicate that no process is prepared to
handle these messages. In other words, this is the operating system’s way of letting the caller (the
controller) know that there is “nobody home.”

Step 5 Do one of the following:

a. Ignore the messages.

b. Set up a BACnet filter to omit the ICMP reject messages from the capture.

c. Set up a process to listen for these incoming messages and discard them.

d. Set up the forwarder to send the messages to a broadcast address.

Configure sending to the broadcast address with care as every device on the network will re-
ceive the messages sent by the forwarder.

CCAAUUTTIIOONN:: Do not forward messages to 47808 (0xBAC0) or any other UDP port that real BAC-
net devices may be listening on. The messages forwarded are properly formatted and could po-
tentially command an unintended object to an unintended value.

Stripping out the ICMP messages leaves only the BACnet messages form the MS/TP trunk:

December 15, 2015 127

Chapter 10 bacnetUtil Component Usage Engineering Notes

SSeettttiinngg uupp lliisstteenniinngg ffoorr iinnccoommiinngg ppaacckkeettss

The best solution for eliminating the ICMP reject messages is to use the ForwardedMessageSink compo-
nent to listen for incoming packets. This component allows the packets to be unicast to your computer elimi-
nating the ICMP reject messages. (ICMP — Internet Control Message Protocol). ICMP reject messages are
sent back to the source device and are included in the Wireshark capture.

PPrreerreeqquuiissiitteess:: You have added the ForwardedMessageSink component to the MstpPort container in the
Nav tree.

You can configure the operating system to expect these messages by setting up a station on the machine
running Wireshark and directing the incoming messages to the “Forwarded Message Sink” listening on the
indicated port.

NNOOTTEE:: You do not need to run a station on your computer. You can add the ForwardedMessageSink compo-
nent to any location in the station.

Step 1 To configure the port, double-click the ForwardMessageSink.

The ForwardMessageSink property sheet opens.

Step 2 Set the Port to the same value used by the forwarder on the controller.

Step 3 Confirm that Log Messages is false.

While setting Log Messages to true creates hex dumps of received messages in the station out-
put, the output can be noisy. It is best to leave the property set to false and focus on the informa-
tion provided by the Wireshark capture.

OOvveerrrriiddiinngg aa ddeevviiccee

Occasionally, BACnet devices report false capabilities or external forces make operating a device with the
provided values impossible. Niagara provides override components that you can add as children of a BBac-
netDevice. These components provide a persistent mechanism to ignore device-provided values.

While you can temporarily alter certain properties, there is no persistent mechanism to ignore certain values
from a device. In other cases, the APDU size of the device is externally influenced by an intermediary router.
The device override components are:

• RpmOverride

• ApduSizeOverride

• SegmentationOverride

• ServicesOverride

Device overrides provide temporary solutions to problems that need to be corrected in third-party devices
either with firmware updates or by reconfiguring the network to eliminate hourglass performance bottle-
necks. As features of last resort, these overrides should not be considered as permanent solutions. In all
cases, you should notify the device manufacturer so that the root cause(s) of the problem can be addressed.

128 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

RReeffeerreennccee

The topics that follow provide detailed documentation for each component and plugin that supports this
system feature.

PPrrooppeerrttiieess

NNeettwwoorrkk

The NNeettwwoorrkk container under BBaaccnneettCCoommmm determines the BACnet network-layer configuration for the
station. You access BBaaccnneettCCoommmm directly in the Nav tree.

FFiigguurree 111166 BACnet network properties

Property Value Description

Router Table

Ip Port See Network properties, Ip Port, page 130.

Routing Enabled true (default) or
false

Maintain Routing
Enabled

true or false
(default)

Minimum router
Update time

milliseconds (de-
fault: 500)

Router Discovery
Timeout

milliseconds (de-
fault: 5000)

December 15, 2015 129

Chapter 10 bacnetUtil Component Usage Engineering Notes

Property Value Description

Termination Time
Value

seconds (default:
120)

MstpPort

NNeettwwoorrkk pprrooppeerrttiieess,, IIpp PPoorrtt

Property Value Description

Network Number number (defaults
to 1)

Link container for addi-
tional properties

B/IP (none:0xBAC0) Standard

Link, Adapter drop-down list

Link, Ip Address text (defaults to
none)

Link, Udp Port 0xBAC0 Bbmd Address

Link, Ip Device
Type

drop-down list

Link, Bbmd
Address

null

Link, Registration
Lifetime

hours minutes
seconds

Link, Broadcase
Distribution Table

BDT: 0 entries

Link, Foreign De-
vice Table

Link, Bbmd Debug true or false
(default)

Status
[component]

text Read-only field. Indicates the condition of the component at
last polling.

• {ok} indicates that the component is polling successfully.

• {down} indicates that polling is unsuccessful, perhaps be-
cause of an incorrect property.

• {disabled} indicates that the Enable property is set to
false.

• fault indicates another problem.

Fault Cause text Read-only field. Indicates why the network, component, or ex-
tension is in fault.

Poll Service See Network properties, Ip Port, Poll Service, page 131.

Max Devices max

Enabled [general] true or false Activates and deactivates use of the function.

130 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

Property Value Description

Port Id

Port Info

NNeettwwoorrkk pprrooppeerrttiieess,, IIpp PPoorrtt,, PPoollll SSeerrvviiccee

Property Value Description

Poll enabled true (default) or
false

Fast Rate hours minutes
seconds

Normal Rate hours minutes
seconds

Slow Rate hours minutes
seconds

Statistics Start null

Average Poll

Busy Time

Total Polls

Dibs Polls

Fast Polls

Normal Polls

Slow Polls

Dibs count

Fast Count

Normal count

Slow Count

Fast Cycle Time

Normal Cycle Time

Slow Cycle Time

NNeettwwoorrkk pprrooppeerrttiieess,, MMssttppPPoorrtt

Property Value Description

Network Number number (default: –
1)

Link MAC 0 on COM1
at Baud_9600

Link, Port Name COM1

December 15, 2015 131

Chapter 10 bacnetUtil Component Usage Engineering Notes

Property Value Description

Link, Baud Rate drop-down list (de-
fault: Baud_9600)

Link, Mstp Address 0–127 (default: 0)

Link, Max Master 0–127 (default:
127)

Link, Max Info
Frames

0–100 (default: 20)

Link, Support Ex-
tended Frames

true or false
(default)

Status
[component]

text Read-only field. Indicates the condition of the component at
last polling.

• {ok} indicates that the component is polling successfully.

• {down} indicates that polling is unsuccessful, perhaps be-
cause of an incorrect property.

• {disabled} indicates that the Enable property is set to
false.

• fault indicates another problem.

Fault Cause text Read-only field. Indicates why the network, component, or ex-
tension is in fault.

Poll Service See Network properties, Ip Port, Poll Service, page 131

Max Devices max

Enabled [general] true or false Activates and deactivates use of the function.

Port Id

Port Info

CCoommppoonneennttss

Components include services, folders and other model building blocks. They may be dragged and dropped
onto a property or wire sheet from a palette.

The descriptions included in the following topics appear as headings in documentation. They also appear as
context-sensitive help topics when accessed by:

• Right-clicking on the component and selecting VViieewwss→→GGuuiiddee HHeellpp

• Clicking HHeellpp→→GGuuiiddee OOnn TTaarrggeett.

bbaaccnneettUUttiill ccoommppoonneennttss

AAppdduuSSiizzeeOOvveerrrriiddee

This component allows you to specify a custom APDU (Application Protocol Data Units) size for a device.

Being able to customize the APDU size helps with a router that has a lower APDU size in between two nodes
that claim a full-size APDU (for example 1476). Without the ability to reject messages that are too large, the
intermediate router silently drops the oversized RPM messages. Adding an ApduSizeOverride to a device
ignores the device-provided value and allows the system to work around hourglass networks.

132 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

FFiigguurree 111177 ApduSizeOverride property

Property Value Description

Max A P D U
Length Accepted

number from 50 to
1476

The size of the APDU.

AAvveerraaggeeLLaatteennccyy

You can add this component to a BBacnetDevice for the purpose of recording the average amount of time it
takes the device to respond to a ping or poll message.

FFiigguurree 111188 Average Latency properties

Property Value Description

Facets trueText (default)
or falseText

Facets contain additional data applied to input and output
values.

• trueText is the text to display when output is true

• falseText is the text to display when output is false.

For example, you might want to set the facet trueText to dis-
play “ON” and the facet falseText to display “OFF.”

"Units of measurement" is also a type of facet.
You can view Facets on the Slot sheet and edit them from a
component Property sheet by clicking the >>>> icon to display
the CCoonnffiigg FFaacceettss window.

Proxy ext null indicates that
the point is an
empty placeholder.
The station itself
originates the
point’s default Out
value.driver
type identifies the
driver and point
type. For example,
a proxy ext of Bac-
netBoolean identi-
fies a

A frozen property found on each point that indicates from
where the point’s data originate, including details specific to
the parentage of the point’s network and communications
(driver).

December 15, 2015 133

Chapter 10 bacnetUtil Component Usage Engineering Notes

Property Value Description

BooleanWritable.
The point under
the PPooiinnttss contain-
er of a Bacnet De-
vice has a proxy
extension of Bac-
netBooleanProx-
yExt.

Out value facets
{ok}

The current out value, including any point facets. Out display
of a proxy point defaults to only the single (configured) prop-
erty value, along with Niagara status for the proxy point. You
can edit point facets to poll for additional properties, such as
the native "statusFlags" and/or "priorityArray" level.

Enabled [general] true or false Activates and deactivates use of the function.

Update Interval

Min

Max

Count

Alpha

FFoorrwwaarrddiinnggWWiirreettaapp

This component sends each captured message to a specified IP address. Once the message arrives, you may
use a packet dissection tool, such as Wireshark, to investigate network problems.

FFiigguurree 111199 ForwardingWiretap properties

134 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

Property Value Description

Facets trueText (default)
or falseText

Facets contain additional data applied to input and output
values.

• trueText is the text to display when output is true

• falseText is the text to display when output is false.

For example, you might want to set the facet trueText to dis-
play “ON” and the facet falseText to display “OFF.”

"Units of measurement" is also a type of facet.
You can view Facets on the Slot sheet and edit them from a
component Property sheet by clicking the >>>> icon to display
the CCoonnffiigg FFaacceettss window.

Proxy ext null indicates that
the point is an
empty placeholder.
The station itself
originates the
point’s default Out
value.driver
type identifies the
driver and point
type. For example,
a proxy ext of Bac-
netBoolean identi-
fies a
BooleanWritable.
The point under
the PPooiinnttss contain-
er of a Bacnet De-
vice has a proxy
extension of Bac-
netBooleanProx-
yExt.

A frozen property found on each point that indicates from
where the point’s data originate, including details specific to
the parentage of the point’s network and communications
(driver).

Out value facets
{ok}

The current out value, including any point facets. Out display
of a proxy point defaults to only the single (configured) prop-
erty value, along with Niagara status for the proxy point. You
can edit point facets to poll for additional properties, such as
the native "statusFlags" and/or "priorityArray" level.

Enabled [general] true or false Activates and deactivates use of the function.

Update Interval hours minutes
seconds

Indicates how frequently new information is reported.

Address IP address The IP address of the source or destination device.

Port numeric The port number on the controller or computer.

FFoorrwwaarrddeeddMMeessssaaggeeSSiinnkk

This component listens for incoming packets and unicasts them to your computer eliminating the ICMP re-
ject messages that clutter the output from a ForwardingWiretap.

December 15, 2015 135

Chapter 10 bacnetUtil Component Usage Engineering Notes

FFiigguurree 112200 ForwardedMessageSink properties

Property Value Description

Facets trueText (default)
or falseText

Facets contain additional data applied to input and output
values.

• trueText is the text to display when output is true

• falseText is the text to display when output is false.

For example, you might want to set the facet trueText to dis-
play “ON” and the facet falseText to display “OFF.”

"Units of measurement" is also a type of facet.
You can view Facets on the Slot sheet and edit them from a
component Property sheet by clicking the >>>> icon to display
the CCoonnffiigg FFaacceettss window.

Proxy ext null indicates that
the point is an
empty placeholder.
The station itself
originates the
point’s default Out
value.driver
type identifies the
driver and point
type. For example,
a proxy ext of Bac-
netBoolean identi-
fies a
BooleanWritable.
The point under
the PPooiinnttss contain-
er of a Bacnet De-
vice has a proxy
extension of Bac-
netBooleanProx-
yExt.

A frozen property found on each point that indicates from
where the point’s data originate, including details specific to
the parentage of the point’s network and communications
(driver).

Out value facets
{ok}

The current out value, including any point facets. Out display
of a proxy point defaults to only the single (configured) prop-
erty value, along with Niagara status for the proxy point. You
can edit point facets to poll for additional properties, such as
the native "statusFlags" and/or "priorityArray" level.

Enabled [general] true or false Activates and deactivates use of the function.

136 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

Property Value Description

Update Interval hours minutes
seconds

Indicates how frequently new information is reported.

Log Messages true or false When set to true, the system creates a hex dump of each re-
ceived message and stores it in station output. Setting this
property to false disables the creation of a hex dump of each
received message.

Port numeric The port number on the controller or computer.

RRppmmOOvveerrrriiddee

You can use this component to ignore the reported value for RPM (readPropertyMultiple).

By default Niagara’s poll service uses a bin packing algorithm to fit as many requests into a readProperty-
Multiple request as the device claims it can fit into a response. Some devices may not be ablel to process
a maximized readPropertyMultiplemessage faster than the APDU timeout. The RpmOverride provides
a way to ignore the device’s support of RPM. The poll service continues to poll the device using single read-
Propertymessages for each subscribed property.

FFiigguurree 112211 RpmOverride property

Property Value Description

Use R P M true or false true sends RPM messages to the device. This is the case even
if the device does not support these messages. Expect many
unsupported service errors to be returned by the device.

false causes the system to ignore any claimed support for
RPM. The system only sends readPropertymessages to the
device, even if the device supports readPropertyMultiple.

SSeeggmmeennttaattiioonnOOvveerrrriiddee

This component causes the system to persistently ignore the segmentation support of the BBacnetDevice.

Some devices claim segmentation support but either do not actually support segmentation or support it
poorly. Other devices consistently send segments out of order. Unsegmented requests may experience bet-
ter sustained throughput than large segmented messages.

FFiigguurree 112222 SegmentationOverride property

Property Value Description

Segmentation
Supported

drop-down list

December 15, 2015 137

Chapter 10 bacnetUtil Component Usage Engineering Notes

SSeennttMMeessssaaggeess aanndd RReecceeiivveeddMMeessssaaggeess

These components capture the messages exchanged between a controller and client. The properties are the
same for both sent and received message components. Once set up, you can view a chart that summarizes
the information captured by right-clicking on the component and clicking VViieewwss→→CChhaarrtt.

FFiigguurree 112233 NetworkPort properties

Property Value Description

Facets trueText (default)
or falseText

Facets contain additional data applied to input and output
values.

• trueText is the text to display when output is true

• falseText is the text to display when output is false.

For example, you might want to set the facet trueText to dis-
play “ON” and the facet falseText to display “OFF.”

"Units of measurement" is also a type of facet.
You can view Facets on the Slot sheet and edit them from a
component Property sheet by clicking the >>>> icon to display
the CCoonnffiigg FFaacceettss window.

Proxy ext null indicates that
the point is an
empty placeholder.
The station itself
originates the
point’s default Out
value.driver
type identifies the
driver and point
type. For example,
a proxy ext of Bac-
netBoolean identi-
fies a
BooleanWritable.
The point under
the PPooiinnttss contain-
er of a Bacnet De-
vice has a proxy
extension of Bac-
netBooleanProx-
yExt.

A frozen property found on each point that indicates from
where the point’s data originate, including details specific to
the parentage of the point’s network and communications
(driver).

138 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

Property Value Description

Out value facets
{ok}

The current out value, including any point facets. Out display
of a proxy point defaults to only the single (configured) prop-
erty value, along with Niagara status for the proxy point. You
can edit point facets to poll for additional properties, such as
the native "statusFlags" and/or "priorityArray" level.

Update Interval hours minutes
seconds

Indicates how frequently new information is reported.

SSeennttBByytteess aanndd RReecceeiivveedd BByytteess

These components capture the individual bytes exchanged between a controller and client. The properties
are the same for both sent and received byte components. Once set up, you can view a chart that summa-
rizes the information captured by right-clicking on the component and clicking VViieewwss→→CChhaarrtt.

FFiigguurree 112244 SentBytes properties

Property Value Description

Facets trueText (default)
or falseText

Facets contain additional data applied to input and output
values.

• trueText is the text to display when output is true

• falseText is the text to display when output is false.

For example, you might want to set the facet trueText to dis-
play “ON” and the facet falseText to display “OFF.”

"Units of measurement" is also a type of facet.
You can view Facets on the Slot sheet and edit them from a
component Property sheet by clicking the >>>> icon to display
the CCoonnffiigg FFaacceettss window.

Proxy ext null indicates that
the point is an
empty placeholder.
The station itself
originates the
point’s default Out
value.driver
type identifies the
driver and point
type. For example,
a proxy ext of Bac-
netBoolean identi-
fies a
BooleanWritable.
The point under

A frozen property found on each point that indicates from
where the point’s data originate, including details specific to
the parentage of the point’s network and communications
(driver).

December 15, 2015 139

Chapter 10 bacnetUtil Component Usage Engineering Notes

Property Value Description

the PPooiinnttss contain-
er of a Bacnet De-
vice has a proxy
extension of Bac-
netBooleanProx-
yExt.

Out value facets
{ok}

The current out value, including any point facets. Out display
of a proxy point defaults to only the single (configured) prop-
erty value, along with Niagara status for the proxy point. You
can edit point facets to poll for additional properties, such as
the native "statusFlags" and/or "priorityArray" level.

Update Interval hours minutes
seconds

Indicates how frequently new information is reported.

SSeerrvviicceessOOvveerrrriiddee

When added to a BBacnetDevice, this component causes the system to ignore the claimed services
supported.

While the RpmOverride may be sufficient as it is the service that users have requested to override, there
may be some other service you wish to ignore.

By default, the component supports no services until the RReesseett action is performed on the this component.

FFiigguurree 112255 ServicesOverride properties

As a child of a BBacnetDevice, the ServicesOverride component loads the claimed services from the target
device using the rreesseett action. As an independent object, the rreesseett action clears the services supported.
For example, after running the reset action:

140 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

FFiigguurree 112266 ServicesOverride example

Once you select or clear each protocol and save, Niagara uses the overrides in preference to device-pro-
vided values.
TTookkeennss

This component is a BNumericPoint that can be tracked, alarmed, and charted like any other NumericPoint.
Using it improves the ability to diagnose certain configuration problems. While the problems may require a
site visit to resolve, the metrics may provide a valuable diagnostic starting point.

FFiigguurree 112277 Tokens properties

December 15, 2015 141

Chapter 10 bacnetUtil Component Usage Engineering Notes

Type Value Description

Facets trueText (default)
or falseText

Facets contain additional data applied to input and output
values.

• trueText is the text to display when output is true

• falseText is the text to display when output is false.

For example, you might want to set the facet trueText to dis-
play “ON” and the facet falseText to display “OFF.”

"Units of measurement" is also a type of facet.
You can view Facets on the Slot sheet and edit them from a
component Property sheet by clicking the >>>> icon to display
the CCoonnffiigg FFaacceettss window.

Proxy ext null indicates that
the point is an
empty placeholder.
The station itself
originates the
point’s default Out
value.driver
type identifies the
driver and point
type. For example,
a proxy ext of Bac-
netBoolean identi-
fies a
BooleanWritable.
The point under
the PPooiinnttss contain-
er of a Bacnet De-
vice has a proxy
extension of Bac-
netBooleanProx-
yExt.

A frozen property found on each point that indicates from
where the point’s data originate, including details specific to
the parentage of the point’s network and communications
(driver).

Out value facets
{ok}

The current out value, including any point facets. Out display
of a proxy point defaults to only the single (configured) prop-
erty value, along with Niagara status for the proxy point. You
can edit point facets to poll for additional properties, such as
the native "statusFlags" and/or "priorityArray" level.

Enabled [general] true or false Activates and deactivates use of the function.

Update Interval hours minutes
seconds

Indicates how frequently new information is reported.

Mstp Os Name /dev/name Where name is mstp followed by a single digit to identify the
MS/TP port. This is the order in which the ports are started
(the order in which they appear under the BBacnetNetwor-
kLayer). For example, mstp1, mstp2.

Received Tokens number

Generated Tokens number

Parse All Metrics true (default) or
false

serialport /dev/sernumber Where number is a single digit that identifies the serial port.

142 December 15, 2015

Engineering Notes Chapter 10 bacnetUtil Component Usage

Type Value Description

baudrate 0.00

macaddress 0.00

maxinfoframes 0.00

maxmaster 0.00

master_state 0.00

receive_state 0.00

nextstation 00.00

pollstation 0.00

solemaster true or false
(default)

declaresolemaster 0.00

framecount 0.00

tokencount 0.00

silencetimer 0.00

n40bitdelay 0.00

chartimens 0.00

validframes 0.00

invalidframes 0.00

apptx 0.00

apprx 0.00

skippedframes 0.00

unwantedframes 0.00

testrequest_rx 0.00

testrequest_tx 0.00

testresponse_rx 0.00

testresponse_tx 0.00

extframes_rx 0.00

extframes_tx 0.00

ip_6lobac_rx 0.00

ip_6lobac_tx 0.00

n6lobac_rx_brdcst 0.00

n6lobac_tx_brdcst 0.00

badheadercrc 0.00

baddatacrc16 0.00

baddatacrc32 0.00

December 15, 2015 143

Chapter 10 bacnetUtil Component Usage Engineering Notes

Type Value Description

txq_fullcount 0.00

serialtxfails 0.00

144 December 15, 2015

	Engineering Notes
	About this guide
	Document change log
	Related documentation

	Chapter 1 Niagara Display Names
	Automatic display names
	Display name storage
	Manually setting display names
	Set a component display name
	Set display names from slot sheets

	Using the Batch Editor for display names
	Using the Batch Editor to change existing display names
	Using the Batch Editor to add display names
	Using the Batch Editor to change slot flags
	Troubleshooting batch edited display names

	Chapter 2 Niagara Batch Editor
	Batch Editor Interface
	Batch Editor quick reference
	Open the Batch Editor
	Clear the Batch Editor Object field

	Notes about using the Batch Editor
	Troubleshooting tips and examples
	Hide action slot on BooleanWritables
	Set the offnormal high limit on alarm extensions
	Increase history record count

	Chapter 3 Niagara R2 to NiagaraAX via oBIX
	R2 to AX oBIX Overview
	Requirements
	Loading effects of oBIX integration

	Engineering summary
	R2 station engineering summary
	AX station engineering summary

	R2 station engineering
	Pre-integration R2 station changes
	Reducing R2 station resource count
	Reducing R2 swid lengths
	Example

	Add ObixService
	R2 ObixExport objects

	Other possible R2 station configuration changes
	Other possible R2 host changes

	AxSupervisor engineering
	ObixNetwork and R2ObixClient devices
	R2ObixClient Points
	About Discover “Include” options
	Specify the property
	Add notes for R2 Obix proxy points

	About Obix proxy points
	About forceUpdate
	Command Notes
	Link control into R2 objects
	AnalogExport Limit Notes
	ObixClient proxy point tips
	Client polling timing

	R2ObixClient Histories (logs and archives)
	ObixClient history import notes

	R2ObixClient Alarms
	R2 alarm import operation
	Example R2 alarm imports
	Final notes on imported R2 alarms

	R2ObixClient R2 Schedule exports
	AX Schedule to R2 Schedule operation

	Chapter 4 Sample Reports Using BQL and Bound Tables
	Creating The Report Px Page
	Report Pane Versus Canvas Pane
	Using Bound Tables and Bound Labels

	Example Reports
	Point Status Report
	Schedule Report
	Tenant Override Report
	Weekly Electrical Demand Report

	Chapter 5 Scientific Notation Support
	E Notation Format
	Example Number Expressions
	Example 1: Maximum and Minimum Numbers
	Example 2: Numbers Displaying in a Graphic Display (Px Page)
	Example 3: Numbers Displaying in a Property Sheet View

	Chapter 6 BQL Expression component
	Component features
	What the component is not
	Syntax
	Supported operators
	Commas
	Long statements

	Create a BQL Expression component
	To create a BQL Expression component
	Mathematical expressions
	Logical expressions
	Component instances
	More examples

	Handling null
	Troubleshooting
	Frequently-asked questions

	Chapter 7 Conversion Links
	Conversion link usage
	Typical conversion link usage
	Data transformation via conversion link

	Supported conversion link types
	Converter components
	Converter properties
	Conversion link "From" notes
	Links from string
	Links from boolean
	Links from double, float, long, integer
	Links from statusBoolean
	Links from statusNumeric
	Links from statusEnum
	Links from statusString
	Links from time
	Links from absTime
	Links from relTime

	Chapter 8 JACE Hardware Scan Service
	Hardware scan benefits
	Currently supported platforms

	Adding the HardwareScanService
	Hardware Scan Service View notes
	Text in image notes
	Option card notes
	Callout to table notes
	Px usage of Hardware Scan Service View

	HardwareScanService properties
	Lexicon customizing of HardwareScanService
	Px customization
	Px widget usage in platHwScan module
	Example customized Px view for Hardware Scan Service

	Chapter 9 Formats (BFormat)
	BFormat default values
	Example scenarios
	BFormat example: naming points
	BFormat example: naming histories
	BFormat Px Widget examples
	Default BoundLabel Text results
	Editing BoundLabel Text for points
	Advanced BoundLabel Text editing

	BFormat: WeatherService example

	BFormat errors

	Chapter 10 bacnetUtil Component Usage
	BACnet and Niagara 4
	Broadcast message management
	Why and what a BBMD does

	BACnet Ethernet on Windows using WinPcap

	BACnet troubleshooting
	Diagnosing network problems with metrics
	Token metrics
	NetworkPort metrics
	Device metrics

	Setting up a wiretap
	Processing a forwarded wiretap
	Setting up listening for incoming packets

	Overriding a device

	Reference
	Properties
	Network

	Components
	bacnetUtil components
	ApduSizeOverride
	AverageLatency
	ForwardingWiretap
	ForwardedMessageSink
	RpmOverride
	SegmentationOverride
	SentMessages and ReceivedMessages
	SentBytes and Received Bytes
	ServicesOverride
	Tokens

