Technical Document

Hierarchies Guide

August 18, 2015

niagara4

Hierarchies Guide

Tridium, Inc.

3951 Westerre Parkway, Suite 350
Richmond, Virginia 23233

U.S.A

Confidentiality

The information contained in this document is confidential information of Tridium, Inc., a Delaware corpora-
tion (“Tridium"). Such information and the software described herein, is furnished under a license agreement
and may be used only in accordance with that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and, except as permitted under the below copyright notice, is not to be released to, or re-
produced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for
damages of any kind, including without limitation consequential damages, arising from the application of the
information contained herein. Information and specifications published here are current as of the date of this
publication and are subject to change without notice. The latest product specifications can be found by con-
tacting our corporate headquarters, Richmond, Virginia.

Trademark notice

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Con-
ditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL
Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON, Lon-
Mark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara
Framework, NiagaraAX Framework, and Sedona Framework are registered trademarks, and Workbench,
WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services men-
tioned in this publication that is known to be trademarks, registered trademarks, or service marks are the
property of their respective owners.

Copyright and patent notice

This document may be copied by parties who are authorized to distribute Tridium products in connection
with distribution of those products, subject to the contracts that authorize such distribution. It may not oth-
erwise, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form without prior written consent from Tridium, Inc.

Copyright © 2015 Tridium, Inc. All rights reserved.

The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

Contents

August 18, 2015

About this GUIEcccevreirrrrremmeeiiiiiiiiiiieeinmmeiiiiiiniiineessmeesiisssssiinrsssssssssssssssssssees 5
Document change og «...ccciviiiiiiiiiiiiiiiiiiiiiiii e 5
Related documentationcccoevviiiiiiiiiiiiiiiiiiieiinic e 5

Chapter 1 Common hierarchy taskscccceevvnunureieeciiirnneeeeeneciiinnnneeeeeecscsnnnne 7
Preliminary preparations............cccocuiiiiiiiiiiiiiiiiii 7
Setting up a hierarchy definition............ccccccciiiii 8
Editing a hierarchy definitioncccceiieiiiiiiiiii e, 10
Assigning a hierarchy to aroleoooiuiiiiiiiiiiiiiiiiiiiccreee e 10

Chapter 2 Hierarchy CONCePtS......ccceereerrrrrrmnnnneeesisscnnerrnrssnnseessssssssssessasssessesses 13
About the Hierarchy Servicecccocoovoieieiiiiiiiiiieiieeeeeeeeeeeeceeeeeeeeeeeeeeeee 13
Tags provide context in a hierarchycoccocviiiiiiiiiiiiiiini, 13
Hierarchy componentccccoiiiiiiiiiiiiiiii s 14
About level definitions..........eeeiiiiiiiiiiiii e 14

QueryLevelDef component..........ccooviiiiiiiiiiiiiiiii 15
RelationLevelDef component..........cccceiviiiiiiiiiiiiniiiciiiicin, 16
GrouplevelDef componentccccovvviiiiiiiiiiiiniiien 16
ListLevelDef component.........cccccevvviiiiiiiiiiiiniiiiieeiiiniceees 17
NamedGroupDef componentccccueeieiiiiiiiiiiiieiiniiiiiiceeeeinns 17
Context parameters ... 18
Hierarchy scopes..........cccuiiiiiiiiiiiiiiiii 18
Permissions......coooiiiiiiiiiiiiiiii 18

Chapter 3 EXamples.....uuuuueeeeeeeeiineiiiiiiiiiiiiiiiiiiiiiieiiieiiiiieiiieees 19
Display all points examplecoooviiiiiiiiiiiiii 19
Query context exampleoccviiiiiiiiiiiiii 21
Multi-user example......ccoovviiiiiiiiiiiiiiii 24
NEQL query eXxamples...........eeeeiiiiiiiiiiiiiiniiiiiiieceniieeeeeeenineeeee e 28

INA@X.urrunnrieeinniinnnneetenneissssnneeeeessssssnsesessssssssssessesssssssssssasssssssssssssssssssssssssnanans 31

3

Contents Hierarchies Guide

4 August 18, 2015

About this guide

This document provides tasks and conceptual information about the hierarchies features in Niagara 4.
Document change log

Updates (changes and additions) to this document are listed below.

¢ |Initial release publication: August 18, 2015

Related documentation

Additional information is available in the following documents.
e Tagging Guide
® Relations Guide

e Station Security Guide

August 18, 2015

Hierarchies Guide

August 18, 2015

Chapter 1 Common hierarchy tasks

Topics covered in this chapter

4 Preliminary preparations

Setting up a hierarchy definition
Editing a hierarchy definition

Assigning a hierarchy to a role

The Hierarchy Service provides an efficient method of creating one or more logical navigation trees for the
Niagara system. You manage (set up and edit) hierarchy definitions on a station under the HierarchyService.
Hierarchy definitions are not legal anywhere else in the station. To set up new hierarchy definition, drag and
drop the Hierarchy component onto the HierarchyService node or property sheet. Currently, the Hier-
archy Service can contain an unlimited number of hierarchy definitions.

When you save a hierarchy definition, it executes against the system and the resulting Nav tree hierarchy is
saved in the station’s Hierarchy space. The navigation hierarchy name matches that of the hierarchy defini-
tion. In order to modify a navigation hierarchy, you must make necessary changes in the hierarchy definition
and save. Then simply right-click the Hierarchy node and refresh the nav tree to update the navigation
hierarchy.

Preliminary preparations

The following preparations should be done prior to setting up a hierarchy.

1. Lay out how you want your hierarchy to look on a piece of paper before you begin assigning tags and cre-
ating components for buildings, offices, etc.

NOTE: It may be helpful to model the desired navigation nodes in the station using folders to represent
objects such as offices or floors.

2. Make a list of tags you plan to use and to which components you will assign the tags. You are not limited
to using tags from one tag dictionary. You can use any tags that are available, as well as individual Ad Hoc
tags which you create as needed (they do not need to be in a tag dictionary). For any tags that you cre-
ate, use a consistent tag naming convention, such as acme:AHU, acme:building, etc.

NOTE: Only the tags that you add to an object appear on its property sheet. To view both implied tags
and directly added tags for a component, right-click the component in the Nav tree and select Edit Tags,
then click the tabs to view either Direct or Implied tags.

3. Confirm that the necessary tag dictionaries are installed. If desired, create a custom tag dictionary con-
taining a collection of tags that you create in order to simplify the tagging process.

NOTE: The Niagara tag dictionary is installed by default. Also, the Haystack open source tag dictionary,
included in the installation, can be added from the haystack palette.

4. Confirm devices and points are already discovered and tagged. If not, add the necessary tags. You can
assign multiple tags to any component. For example, one piece of equipment might have the following
tags applied: n:device, acme:AHU2, acme:equipRef, etc. For details on adding tags, see the Tagging
Guide.

NOTE: Tags are case sensitive. Make sure you use the correct case when entering tags in your hierarchy
definition queries otherwise the queries will return nothing.

5. Confirm any additional components (any model components representing buildings, offices, etc.) are al-
ready created and tagged. If not, add necessary tags.

6. Confirm any necessary relationships between components are already added. If not, add any necessary
relations. For example, you may need to add a relation between a folder in your model representing a
particular floor and several air handler units. For details on adding relations, see the Relations Guide.

August 18, 2015 7

Chapter 1 Common hierarchy tasks Hierarchies Guide

NOTE: When editing a hierarchy definition (in the HierarchyService) the changes are not automatically re-
flected in the resulting Nav tree hierarchy (in the Hierarchy space). To view changes in the Nav tree hier-
archy, right-click the Hierarchy node and select Refresh Tree Node. This updates the hierarchy according
to the current definition.

Once you have tagged all components as needed and added any desired relations between components
you are ready to define your hierarchy.

Additional Tips

* You can speed up hierarchy creation by copying and pasting level definitions within the current hierarchy,
or from one hierarchy to another. Then make any necessary edits to the pasted level definitions.

* You can create multiple hierarchies for the same station in order to have different users navigate the sta-
tion differently. For example a Facilities Manager might navigate the system differently than an Operator.

¢ When defining a hierarchy, a common practice is to frequently save and evaluate the resulting hierarchy.
In this way, you are able to identify where an additional level definition is required. Tweak the resulting hi-
erarchy by making iterative passes in this manner.

Setting up a hierarchy definition

This procedure demonstrates the steps to define a hierarchy to easily navigate to Air Handler Units in a spe-
cific building in order to monitor child points and performance.

Prerequisites:

¢ The hierarchy and tagdictionary modules must be installed on your system.

¢ The hierarchy palette is open in the side bar.

e All devices, points and other components are already tagged and any necessary relations already added.

* Anplan for the desired navigation hierarchy already determined during preliminary preparations. For more
details see the section, Preliminary preparations.

Shown here is the modelled site structure (left) and the resulting navigation hierarchy (right).

Q) Model |
d i Westerre E Hierarchy
E Westermre | d E AHU Points
O Floort v g AHU-L
© Floor2 b (D coolSetpoint
O Floorz » (D) Heat setpoint
4 e Floor4 » D supply Temp
© cuilding ~ g AHU-Z
BB occupancy_sch b) cool Setpoint
4 :i Equipment bk ":]' Heat Setpoint
o AHU-1 » D) supply Temp
o AHU-2
Cl oaTemp
0 Energy
E Westerre ||

Step 1 Navigate to the station’s Config—Services node in the Nav tree and double-click the
HierarchyService.

The Hierarchy Service Property Sheet displays in the right pane.

Step2 Drag and drop the Hierarchy component from the palette side bar to the Hierarchy Service Prop-
erty Sheet (or to HierarchyService node in the Nav tree), and in the Name dialog enter the hier-
archy name: “AHU Points” and click OK.

8 August 18, 2015

Hierarchies Guide Chapter 1 Common hierarchy tasks

The new hierarchy definition appears in the Hierarchy Service Property Sheet and under the Hier-
archyService in the Nav tree.

Step 3 Inthe right pane, click on AHU Points to open it's property sheet.
Step4 Click to expand the Scope and Station properties and enter the following Scope ORD: sta-
tion:|slot:/Model/Westerre/Wl
This Scope ORD causes the hierarchy query to search only this specific location within the station.
An alternative to limiting the scope is to use additional LevelDefs.
NOTE: Red icons appear in a hierarchy definition as you make changes. This alerts you that there
are changes that have not yet been saved.
Step5 Click and drag a QueryLevelDef component from the hierarchy palette to the AHU Points
Property Sheet and in the Name dialog enter “Device” and click OK.
Step 6 Inthe property sheet, click to expand the new Device component and perform the following
action:
Property Action
Query Enter: n:device and nB1ld: ahu to return any objects tagged with
n:device and nB1ld:ahu.
NOTE: Typically, you identify the tags applied to AHUs in the station and make note of them, by
examining tags on one or more of these devices during preliminary preparations. Without prior
knowledge, you need to examine the devices at this point to determine how they are tagged or to
apply tags.
Step7 Click and drag a RelationLevelDef component from the hierarchy palette to the AHU Points
Property Sheet and in the Name dialog enter “Points” and click OK.
Step 8 Inthe property sheet, click to expand the new Points component and perform the following
action:
Property Action
Relation Id Enter: n:point to return any point components.
Inbound Select: false
NOTE: Examining the Relation Sheet view of one or more points
under one of the devices reveals that the relation direction is out-
bound so this property must be set to false.
Filter Expression Enter additional tags to filter results: hs:air or nB1d: temp to re-
turn any objects tagged with either hs:air or nB1d: temp.
Repeat Relation Select: true
Step 9 Click Save.
Step 10 In the Nav tree, right-click the Hierarchy space, select Refresh Tree Node, and expand the no-

des to view the resulting AHU Points hierarchy.

August 18, 2015 9

Chapter 1 Common hierarchy tasks Hierarchies Guide

Example: AHU Points hierarchy definition

AHU Points (Hierarchy
[l Query Context » M-

. Scope Hierarchy Scope Container

‘ Tags Hierarchy Tags

= Device Query Level Def: m:device and nBld:ahu
[l Query Context 2 0O-
Fi Query n:device and nBld:ahu

(@l Include Grouping Queries) true

F. Sort Accending
Points Relation Level Def: nipoint
[l Query Context M -

[l Relation 1d nipoint

[l inbound @ fals=

[Filter Expression {hs:air or nBld:temp)
(M Repeat Relation) true
(M Sort Ascending

Editing a hierarchy definition

Editing a Nav tree hierarchy is done by making modification in the corresponding hierarchy definition lo-
cated under the HierarchyService node. You can add, remove, or reorder the LevelDefs in an existing hier-
archy definition, as well as edit the configured properties (NEQL text, GroupBy tags and facets) for any
LevelDef.

Prerequisites:
¢ An existing Nav tree hierarchy in the Hierarchy space
Step1 Expand the HierarchyService and double-click the hierarchy definition to edit.
Step2 Make any of the following changes as needed:
e Click existing LevelDefs to edit configured properties.
e Add additional LevelDefs.
¢ Delete existing LevelDefs.
* Reorder existing LevelDefs
Step 3 Click Save.

Step4 To view your changes in the hierarchy, right-click the Hierarchy node in the Nav tree and click Re-
fresh Tree Node.

Assigning a hierarchy to arole

The visibility of any particular hierarchy is given on a role by role basis. More than one hierarchy can be as-
signed to a role. The role(s) assigned to a user determines which hierarchies are visible to that user.
Prerequisites:

* The hierarchy you wish to assign exists in the Hierarchy space.

Step1 To open the RoleManager view, double-click the RoleService.

10 August 18, 2015

Hierarchies Guide

Step2 Double-click to edit an existing role.

Step 3 Inthe Edit window, click the chevron icon to the right of Viewable Hierarchies.

Step4 Inthe Edit Viewable Hierarchies window, click to the left of the desired hierarchy to select it, and

click OK.

The hierarchy will be visible under the Hierarchy space to any user assigned that role who logs in to the

station.

Chapter 1 Common hierarchy tasks

NOTE: Assigning a hierarchy to a role only controls visibility of the top level of that hierarchy. The visibility

of elements under any assigned hierarchy are still restricted by the assigned role and its category

permissions.
Example
3 Edit e (=
Name Permissions Viewable Hierarchies displayName name type
lﬂ Building Owner User=nyiR; Admin=r Alarm=raRW: Westermel=rR Building Owner Building5200wner bajaR
Ti Hame Building Owner
"@l Permissions [] Super Useriaccess entire station, file system) 1=rwill;2=r;{=rwliN: 5=t })

'@l viewable Hierarchies

» | ropoeeses. ||

4 displayName
name
type

& ordinsession

This example shows the Building Owner role being edited to assign the Local Facility Manager

hierarchy.

After a user assigned the Building Owner role logs in to the station, the Local Facility Manager hierarchy

I
Builg Mational Facility Manager
Buil - Local Facility Manager
baj Operations Cenber
atad System Integrator = -
{_Jlg Cancel I
DK | Cancel |

is visible under the Hierarchy space.

< C & [localhost/ord/stat

(M Station
| * © config
@ Hierarchy

@ Local F{Ecjil':ty Manager

Next, the particular Role must be assigned to a user for the hierarchy to be visible to that user.

August 18, 2015

11

Chapter 1 Common hierarchy tasks Hierarchies Guide

12 August 18, 2015

Chapter 2 Hierarchy concepts

Topics covered in this chapter

About the Hierarchy Service

Tags provide context in a hierarchy
4 Hierarchy component

About level definitions

¢ Context parameters

Hierarchy scopes

¢ Permissions

The following topics describe the basic hierarchy concepts and hierarchy components.

About the Hierarchy Service

The Hierarchy Service provides an efficient method of creating a logical navigation tree for the Niagara sys-
tem. Rather than defining each element of the tree in a Nav file, the Hierarchy Service allows you to define
the navigation tree based on a set of level definition rules referred to as “LevelDefs".

The hierarchy module is required in order to use hierarchies.

The HierarchyService, installed by default in the station’s Services directory, is the parent container for all
hierarchy definitions.

The default view for the Hierarchy Service is the Property Sheet view.

The hierarchy palette (shown here) provides the HierarchyService component, the Hierarchy component
which you use to create a new hierarchy definition, as well as default level definition components (LevelDefs)
which you add to a hierarchy definition to define the node levels within a hierarchy.

Figure 1 The hierarchy palette showing default LevelDef components

~ Palette =
W [X] B @ hierarchy

a HierarchyService
E] Hierarchy
= QueryLevelDef

= RelationLevelDef
GrouplevelDef
= ListLevelDef

NamedGroupDef

Tags provide context in a hierarchy

Hierarchies are based on the tags associated with each object (device, point and component). Tags tell the
system, for example, that a specific device is located in a specific building and that a specific point belongs
to a specific piece of equipment. The HierarchyService uses this contextual information to set up the
structure.

All types of tags may be used to structure hierarchies, including implied (default) tags, such as n:device
and n:point as well as Haystack dictionary tags (tags that begin with hs :), custom-built dictionary tags,
and Ad Hoc tags that you might create while defining the hierarchy. You do not have to create a custom tag
dictionary to use Ad Hoc tags in a hierarchy.

August 18, 2015 13

Chapter 2 Hierarchy concepts Hierarchies Guide

Before creating one or more hierarchies, configure your devices with the tags that will yield the hierarchies
that you need.

NOTE: As a convenience, you can fine tune a hierarchy by editing the tags on a component where it appears
in the Hierarchy space, rather than navigating to the component in the station logic. Whether your changes
are made in the station logic or in the Hierarchy space, they are applied to the same component.

Hierarchy component

Obtained from the hierarchy palette, the Hierarchy component creates the root level of a hierarchy Nav
tree structure.

The name of the Hierarchy component becomes the collective name for the root node in the tree. Exam-
ples might be a company or department name, a geographic region or the name of a group of devices that
are being monitored together.

Fo Hierarchy {Herarchy)

[Query Conkext » Kp -

O Scope Hierarchy Scope Contsiner
[T Station Hierarchy Scope
Property Value Description
Query Context Config Facets dia- .,
Y o ng Sets up the current location’s context as a facet. The facet val-
9 ue is compared with the value of the context tag on a device
or point at a lower level in the navigation tree.
Scope station: Causes the hierarchy query to search the local station
database.
Scope Ord station: | Causes the hierarchy query to search within a specific location
slot:/... in the station database

About level definitions

Level definitions (LevelDefs) are used under the HierarchyService to define hierarchies. Each hierarchy is
defined as a tree of LevelDefs where there is a unique LevelDef for each node of the tree. The two basic
types of LevelDefs, Group and Element, are described here:

* Group and list level definitions, basically placeholder folders, set up the structure.

- A GrouplLevelDef defines a node based on distinct tag values assigned to devices, points or other
components, and provides simple grouping.

- A ListLevelDef works with marker tags and defines a node based on one or more NamedGroupDefs
(named group definitions). ListLevelDefs require one or more NamedGroupDefs below them.

In order to view the actual data, you must add devices and child elements underneath a group or list level
definition. You do this using the Element level definitions (either QueryLevelDef or RelationLevelDef).

e Element level definitions set up each NEQL query.
- A QuerylLevelDef defines the tags to search on.
- ARelationLevelDef defines a relationship with a parent element to search on.

Level elements (LevelElems) are the nodes presented in an expanded hierarchy in the station Hierarchy
space as shown in the following image, where each node in the hierarchy is represented with a LevelElem.

14 August 18, 2015

Hierarchies Guide Chapter 2 Hierarchy concepts

LevelElems result from running the NEQL query at each level of the defined hierarchy. An individual LevelE-
lem typically is associated to a BComponent within the scope of the NEQL query, which is typically a station.

Figure 2 Group and Element LevelDefs in hierarchy definition (left) determine the individual LevelElem nodes in the
resulting hierarchy (right)

B station indDemo
- Nav
M Home
H 0 @ My Network ._ Alarm
= Config
® Hierarchyservice o =
Files
@ National Facility Manager g
Hierarch
b @t}pcrntionsttnlﬂ)
i - National Facility Manager
p pe
Operations Cent
b | = state GroupLevell @ —
d —~ Ow
¥ | == City GroupLevel
L — o Richmond
k| == Campus_QuerylLeve
; = W westerre

= Tenant Grouplevel
‘ﬁ-—__—___'—-——-& °EL.iIC|n;

F ™= Room_QueryLevel _\
o International Foods
°hatcr‘-.'.l-:e

© Tridium

QueryLevelDef component

Obtained from the hierarchy palette, this component sets up a NEQL query that returns the data displayed
in a hierarchy. QueryLevelDef is added to a hierarchy definition usually following one or more GroupLevel-
Def component or a ListLevelDef.

Property Sheet
== Campus_QueryLevel [Query Level Daf)
[Query Context » 0O-
(M Query
.'i Include Grouping Queries . true
i Sort Ascending
Property Value Description
Query Context Config Facets dia- .,
J Sets up the current location’s context as a facet. The facet val-
log box . ; .
ue is compared with the value of the context tag on a device
or point at a lower level in the navigation tree.
Query NEQL query

This property is a NEQL query. You may use all the NEQL oper-
ators: and, or, etc.

One query has special syntax: facetname={identifier},
where facetname is the key name you set up for Query Con-
text on the definition of a previous node; and {identifier}
is the tag that identifies the results to display at the current
node.

August 18, 2015 15

Chapter 2 Hierarchy concepts

Hierarchies Guide

Property

Value

Description

Include Group-
ing Queries

true (default),
false

True: Preceding GroupLevelDef queries in the hierarchy are
appended to the current NEQL query.

False: Prevents preceding GroupLevelDef queries from ap-
pending to the current NEQL query, which allows for greater
flexibility in structuring a query.

Sort

None, Ascending
(default),

Descending

Determines the order in which results display.

RelationLevelDef component

Obtained from the hierarchy palette, this component defines a query that returns data for all objects that
are related to the level immediately above it. The relationship is usually a child relationship (n:child).

Property Sheet

RelationLevelDef (Relation Level Def]

(Ml Query Context B o -
.”. Relation Id
(Ml Inbound ® e
- Filter Expression
[l Repeat Relation @ false
. Sort Ascending
Property Value Description

Query Context

Config Facets dia-
log box

Sets up the current location’s context as a facet. The facet val-
ue is compared with the value of the context tag on a device
or point at a lower level in the navigation tree.

Relation Id NEQL query You may use all the NEQL operators: and, or, etc.
Inbound true (default), Indicates the relation direction.
false
Filter Further limits results returned by Relationld by the tags ap-
Expression plied to the object at the other end of the relation

Repeat Relation

true, false

When true, displays query results for devices and points that
are related to the Query Tags property defined in the Query-
LevelDef above.

When false, ignores results for related devices.

Sort

None, Ascending
(default),

Descending

Determines the order in which results display.

GrouplLevelDef component

Obtained from the hierarchy palette, this component sets up a group to contain the results of one or more
QueryLevelDefs that follow.

NOTE: At least one QueryLevelDef is required after a GroupLevelDef, at any subsequent position.

16

August 18, 2015

Hierarchies Guide Chapter 2 Hierarchy concepts

-o GroupleveDef (Group Level Cef)
» Fn o«
|5'_al::|

Aspending E

[0 Query Context

[Group By
[0y Sort

Property Value Description
Query Context nfig F ia- .
Y |Co bg acets dia Sets up the current location’s context as a facet. The facet val-
og box A . .
ue is compared with the value of the context tag on a device
or point at a lower level in the navigation tree.

Group By Text Defines one or more tags to use for grouping query results at
the current level. For example, state groups all resulting data
by the state tag on the device: AZ, CA, VA, etc.

Sort None, Ascendin

(default), 9 | Determines the order in which results display.
Descending

ListLevelDef component

Obtained from the hierarchy palette, this component works with marker tags. ListLevelDef must be fol-
lowed by one or more NamedLevelDefs and at least one QueryLevelDef.

ListlevelDef List Level D

Juery LOnTexT -

Type

Value

Description

Query Context

Config Facets dia-
log box

Sets up the current location’s context as a facet. The facet val-
ue is compared with the value of the context tag on a device
or point at a lower level in the navigation tree.

Sort

None, Ascending
(default),

Descending

Determines the order in which results display.

NamedGroupDef component

Obtained from the hierarchy palette, this component works in conjunction with ListLevelDef and Rela-
tionLevelDef. It allows you to add one or more placeholder folders (nodes) under the ListLevelDef.

0 Query

- MamedBrouphiet (Mamed Group D=f)

August 18, 2015

17

Chapter 2 Hierarchy concepts Hierarchies Guide

Property Value Description

Query NEQL query This property is a NEQL query. You may use all the NEQL oper-

ators: and, or, etc.

Context parameters

Context parameters on a LevelDef can be used to pass context sensitive information to lower level defini-
tions. You can use a Query Context to store any name value pair, but a more powerful use is to store con-
text sensitive data via facets.

If we add a String facet to a Query Context where the value of that facet is a tag name, the tag name is eval-
uated against the results returned by the LevelDef and the value stored in the Query Context. See also,
Query context example, page 21

NOTE: When adding facets to a Query Context, the facet values for tag names must be Strings.

When comparing tag value to values from the Query Context, make sure the resulting types are the same.
From the Query context example, page 21, with equipId=hs:id and hs:equipRef={equipId}, the
“type” for the values: hs:id and hs:equipRef must be the same (BOrds in this example).

Hierarchy scopes

The Scope container under each hierarchy can contain one or more HierarchyScopes over which the hier-
archy can be generated. The default is the station (or Component Space) scope. In later releases, more
scopes will be available over which to build hierarchies.

Permissions

Roles have a Viewable Hierarchies property that allows you to assign on a per role basis which hierar-
chies are visible to a user.

Users with the Admin role can always view all hierarchies and due to their super user permissions can view
everything under those hierarchies. All other users are assigned permissions to view a hierarchy via their
role(s).

In the Role Service, when editing a role in the Role Manager, you can select which hierarchies are visible to
that role. A user will be able to see all hierarchies that are assigned to their role.

NOTE: Assigning a hierarchy to a role only controls visibility of the top level of that hierarchy. The visibility
of elements under any assigned hierarchy are still restricted via the Role and its Category permissions.

For more details on categories, roles, and permissions, refer to the “Authorization Management” section of
the Station Security Guide

18 August 18, 2015

Chapter 3 Examples

Topics covered in this chapter

4 Display all points example
4 Query context example

4 Multi-user example

¢ NEQL query examples

The following examples are designed to help you plan your tag requirements in advance.

Display all points example

This is a straight-forward example of how to create a hierarchy that displays real-time results from all points
configured for three AHU units owned by the same company.

August 18, 2015

19

Chapter 3 Examples Hierarchies Guide

Figure 3 The resulting Nav tree

E Hierarchy
w [&] AllAHU Points

* g AHU-1

» 'm DamperPosition

m RetumTemp
m SupplyTemp
AHU-2
"I’ DamperPosition
m RetumTemp
) supplyTemp
AHU-3
‘:I DamperPosition
D retumTemp
'D SupplyTemp

'v'l_;b'v'..g.'v

Figure 4 All AHU Points hierarchy definition setup

[&) All AHU Points {Hierarchy)
[l Query Context » @ -

b (@ Scope Hierarchy Scope Container
b P Tags Hierarchy Tags
w = Device Query Level Def: n:device and hs:ahu
[Query Context » M-
:i Query n:device and ha:ahu
:i Include Grouping Queries . true
a Sort Ascending
w = Points Relation Level Def: n:point
(M Query Context » ©-
[Relation Id n:point
(@ inbound @ false

(@ Filter Expression
[Repeat Relation | true

-.ri Sort Ascending

NOTE: Red icons on a hierarchy definition indicate that a new hierarchy has been created or changes have
been made the hierarchy needs to be saved.

This table explains each property in the hierarchy definition.

Level name Property Where set up Comments

Scope Scope: Station Station selected by de- This property limits the range of the hi-
fault in the hierarchy erarchy to the station database.
definition.

In later Niagara 4 releases, Scope will
allow queries and hierarchy generation
based on other specified spaces, such
as System Db.

20 August 18, 2015

Hierarchies Guide

Chapter 3 Examples

Tags

Hierarchy Tags

Tags added to compo-
nents that are not
BComponents

None in this example. When the navi-

gation hierarchy is built, picks up tags

applied to LevelElems (nodes) that are
not BComponents

Device (QueryLevelDef)

Query Context

Query:n:device

and hs:ahu

Sort: Ascending

Selected here in the hi-
erarchy definition.

Direct tag added to
each AHU.

Direct tag added to
each AHU.

Selected here in the hi-
erarchy definition.

Not used in this example.
Returns all components tagged as

"devices".

Further narrows the search results to
only devices tagged with “hs:ahu”.

Defines the display sequence.

Points (RelationLevelDef)

Relation Id:n:point

Inbound: false

Filter Expression:

Repeat Relation: true

Implied tag on each
point.

Selected here in the hi-
erarchy definition.

Set up here in the hier-
archy definition.

Set up here in the hier-
archy definition.

Returns all points under the station be-
ginning at the station root. Results are
limited to AHU child relations tagged
with n:point.

Indicates the relation direction setup
on the object (target) component of a
relation.

Not used in this example.

Causes the hierarchy to include any
children of the points. Device children
are any components under the device,
such as alarms, histories, schedules,
etc. Children of each point (grandchil-
dren of the device) include point
extensions.

NOTE:

Referencing the implied n: point relation between devices and their points, you can easily create hierarchy
displays that omit of the Points folder.

Query context example

This example has two buildings, each with a Modbus network and Modbus Variable Air Volume (VAV) con-
troller. The goal is to monitor supply and return temperatures for each controller. Specifically, this example
demonstrates how the query context works.

Hierarchy result

The resulting Nav tree hierarchy under the Hierarchy space looks like this:

August 18, 2015

21

Chapter 3 Examples Hierarchies Guide

v EE ContextParametersExample
v OB:.:iI:!:iu;'
¥ ModbusVAW1
oSu!?,:E;.-Tr:m!:
| oq":iLl:'l‘TEI‘ﬂ:.‘-
v O Building?
v Vodbus\VAW2
| oS;q:r:E;.-Tr:nn:
[o’f&L-.irrTen'ui:

The software monitors the same two points for each device. Without the query context all four points would
appear below each VAV device.
Building setup

Each building is a system component set up under the Drivers folder in the Nav tree. Buildingl and
Building2 are arbitrary names assigned to the buildings when they are set up as components. Each build-
ing is tagged with two Haystack tags:

e The Haystack tag hs: site identifies the object as a physical site.

e Like a serial number, the implied Haystack tag hs:id=h: [identifier], where [identifier] isa
four-digit number that provides unique identification for each building. For Building1 hs:idis h: 6496,
and for Building2itis h:6497.

Device setup

The network and VAV controllers are set up under the Drivers folder. ModbusVAV1 and ModbusVAV?2 are
the arbitrary equipment names. Each device is tagged with these tags:

* The Haystack tag hs: equip identifies the object as a physical device.

e Like a serial number, the implied Haystack tag hs:id=h: [deviceID], (where [deviceID] is a four-dig-
it identifier) provides unique identification for each device. In the example, ModbusVAV1’s hs:id is
h:3efc, and ModbusVAV2's hs:idish:3£00.

e The Haystack tag hs:siteRef=h: [buildingId] (where [buildingId] isthe building number) asso-
ciates each device with the building in which it is located: for ModbusVAV1, hs:siteRef=6496 and for
ModbusVAV2, hs:siteRef=6497.

Points setup

VAV performance is monitored by two points (ModbusClientPointDeviceExt):
® SupplyTemp

¢ ReturnTemp

Each point has these Haystack tags associated with it:

* hs:point identifies this object as a point.

® hs:equipRef=h: [deviceID] (where [devicelID] is a four-digit identifier) associates each point with
the equipment to which it belongs. For the points associated with ModbusVAV1, hs:equipRef=
h:3efc, and for the points associated with ModbusVAV2, hs:equipRef=h:3£00

22 August 18, 2015

Hierarchies Guide

Hierarchy definition
The hierarchy definition consists of three QueryLevelDefs.

Figure 5 Context Parameter Example hierarchy definition

a

— [8 ContextParametersExample Hierarchy

OQuc—ryContr:xt » !‘:_I-.)'

— -o Sjte Query Level Def: hsisite
o Query Context siteld=hzid » @ i
O GQuery Tags |hs:site
— -8 Egquipment Query Level Def: hsieguip and hssiteRef={siteld}
o Query Context equipld=hsid » @'-
o Query Tags |hs:e:.1'uip and hs:siteRe:’={siteﬂi}
— -= Paints Query Level Def: hsipoint and hsiequipRef={equ..
O Query Context b @ -
o Query Tags |hs:pcim: and hs:egquipRef={equipId} |

This table explains each property in the hierarchy definition.

Chapter 3 Examples

Id=[identifier], where

[identifier] is aunique

string that identifies the site
(Building 1 and Building 2)

Query Tag: hs:site Name, value tag on each build-
ing component hs:site =
6496 orhs:site = 6497

Level Name Property Where set up Processing
site (QueryLevelDef) Query Context: siteId=hs: Implied name, value tag on Establishes the context for the
id each building component: hs: equipment level (next level in

the tree) by storing the value
of each building’s hs:id
(Building 1 or Building 2) in the
config facet sitelId.

Returns components tagged
with hs:site.

equipment (QueryLevelDef) Query Context: equipId= hs:Id=[identifier],
hs:id (where [identifier] isa
unique string that identifies
the equipment). The equip-
ment Id for ModbusVAV1 is
h:3efc, and that for Modbus-

Establishes the context for the
points level by storing the val-
ue of each device's hs:idin
the config facet equip1d.

VAV2 is 3f00.
Query Tag: hs:equip Implied marker tag on each Returns all devices tagged
equipment component. with the implied tab: hs:
equip.
Query Tag: hs:siteRef= Set up by the site query con- Compares the value of the de-
{siteId} text in this hierarchy definition. vice's hs:siteRef tag with
the siteId context passed
down from the Site level in the
definition.
points (QueryLevelDef) Query Tag: hs:point Implied marker tag on each Returns all data for all points in
point. the system
Query Tag: hs:equipRef= Set up by the equipment Compares the value of the de-
{equipId} query context in this hierarchy vice's equipRef with the
definition. equipId passed down from

the equipment level in the
definition.

August 18, 2015

23

Chapter 3 Examples Hierarchies Guide

Context processing

In this example:

e The siteId=h:6496 for Building 1 matches the siteRef=h:6496 tag on ModbusVAV1 causing Mod-
busVAV1 to appear under Building 1 in the hierarchy.

* The siteId=h:6497 for Building 2 matches the siteRef=h:6497 tag on ModbusVAV2, causing Mod-
busVAV2 to appear under Building 2 in the hierarchy.

Continuing with the processing of points:

* The equipId=h:3efc matches the equipRef=h:3efc tag on two points labeled SupplyTemp and Re-
turnTemp, causing these points to appear under ModbusVAV1.

® The equipId=h:3£00 matchesthe equipRef=h:3£00 tag on two additional points SupplyTemp and
ReturnTemp, causing them to appear under ModbusVAV2.

Without using config facets to store the site and equipment contexts, a query would place all equipment be-
low each building and all points below each piece of equipment regardless of where the equipment and
points actually belong.

NOTE: When adding facets to the Query Context, the facet values for tag names should be Strings.

When comparing tag value to values from the Query Context, make sure the resulting types are the same.
from the example above with equipId=hs:id and hs:equipRef={equipId}, the types in the values of
hs:id and hs:equipRef must be the same (BOrds in this example).

Multi-user example

This example features a campus of two multi-tenant buildings: Westerre | and Westerre Il. The Niagara sys-
tem monitors each building’s lighting systems and HVAC equipment. The example illustrates how to struc-

ture hierarchies in a Supervisor station for three users: facilities manager, system integrator, and operations
center.

Three hierarchies

All three users require a hierarchy that displays data by building, but under the node for each building, their
tree structures differ.

¢ To monitor usage for the entire building as well as by floor, the facility manager prefers that the data to
be displayed by floor:

24 August 18, 2015

Hierarchies Guide Chapter 3 Examples

Figure 6 Facility Manager hierarchy expanded to show VAV points

E Faclity Mansgs
I Wesherne Complex
T Westere 1
| Bl
I &HU-1
Mair HYAC
¢ Main Lighting
i Tl bey
| Occupancy_Scheduls
IC3 Finar 1

Office 107
107 Mater

H vav-107
 Box Fow
ﬂ Dy Corsunphon
@ Damper Pos
@ Demand
W Fower
0 Asheat
W Space Temp
& Suly Temp
@ wesldy Consumpton

IS Aoor 2

Each floor expands in a similar fashion to Floor 1 in the screen capture. Westerre Il follows the same struc-
ture. This is the hierarchy definition fully explained in this example topic.

* The systems integrator, whose main interest is monitoring device performance, prefers to view the same
data by device.

Figure 7 Systems Integrator hierarchy fully expanded

B2 System Integrator
|2 ¥vesterre Camplex
Wieotarie [
i Hvac
I3 AHU-L
= vav-107
=] vav-z01
B vav-521
15 Meters
) Main HYAC
} Main Lighting
Main Wieter
(5 Lighting
office 107
office-201
Oiffic=-321
15 Scheduie
7] ocoupancy_Schedule
Wiectarre [T

* Finally, the operations center monitors the data by tenant and individual office.

August 18, 2015 25

Chapter 3 Examples Hierarchies Guide

Figure 8 Operations Center hierarchy fully expanded

T8 operatona Center
[westerme Complex
‘West=rre [
) Building
) Internstianal Foods

Office-201

201 Meter

[vav-201
) Mabiorwite Insursnce
affice-321

321 Meter

[vav-a21

5 Tridium

Cffice 107

107 Meter

[vav-107

‘Westarre [[

Definition for Facility Manager hierarchy

Now that you know the goal, here is what the hierarchy structure looks like for the FacilityManager:

Figure 9

Facility Manager hierarchy definition

{0 Query Context

O soope
-a Campus_Grouplevel
-= site_Querylawve

0 Query Context
O Query Taps
O Sart

-a floor_Grouplavel
0 Query Context
O Group By
O Sart

-= office_Querieve
@ Query Context
O Query Taps
O Sart

-a equpQueryLevel
@ Query Context
O Query Taps
O Sart

-= historyQueryLevel

F: Facity Manager (Herarchy]

B -
Hierarchy Scope Contziner
Group Level Def groupBy: demo: campus
Query Level Def: haisite
steld-hsid » -

hs:esite

Ascencirg E

Group Level Def groupBy: demo: fioor
B

[gemo:rioor

Ascencirg E

Query Level Deft demotoffice and he:ateR ef={al...
officeld=hsid » T -

|:1e:u:: office and haiaiteRel=[3iceld}]

Ascencirg E|

Query Level Deft hetequip and demaofficeRaf=1...
equipld =h=id B -

lhsteguip and demo:iofriceRer=|ofriceld]

Ascencirg E|

Query Level Deft nipoint and nrhistary and hatec.,..

All tags, including implied (default) and dictionary tags are available for constructing hierarchies. The table

that follows explains each of six levels for the Facility Manager’s hierarchy definition. After studying this ex-
ample you should be able to understand the hierarchies for the Systems Integrator and Operations Center.
The level names (left column) were set up by the hierarchy designer.

Level name

Property

Where set up

Result

Campus_GroupLevel

Group By: demo: campus

Name, value tag on each build-
ing component; the value of
campus is “Westerre Complex”

"Westerre Complex” appears
as the first node in the hier-
archy under “Facility Manager”

26

August 18, 2015

Hierarchies Guide

Chapter 3 Examples

site_QuerylLevel Query Context: siteld=hs:id

Query: hs:site

Implied tag on each building
component: hs:Id=[identi-
fier], (where [identifier]
is a unique string that identifies
the site)

Marker tag on each building
component

Sets siteId equal to the value
of the site’s hs: id and passes
siteId down to the next level
in the hierarchy definition

Identifies the component as a
location, causing the site
names to appear as nodes
under “Westerre Complex”

floor_GroupLevel Group By: demo: floor

Name, value tag on each office:
demo:=Floor [n], (where [n]
is1,2,3o0r4)

Identifies the floor on which
each office is located, causing
the floor to appear in the
hierarchy

office_QueryLevel Query Context: officeId=hs:id

Query: demo:office

Query: hs:siteRef={sitelId}

hs:Id=[identifier],
(where [identifier] isa
unique string that identifies the
office) is an implied tag on each
office.

Marker tag on each office

siteRef is a name, value tag
on each office. The value of this
tag is the hs:id of the site
(building) in which the office is
located.

Sets officeId equal to the
value of the office’s hs:id and
passes of ficeId down to the
next level in the hierarchy
definition.

Identifies the component as an
office, causing the office names
to appear as nodes under each
floor in the hierarchy

Compares the hs:siteRef
tag on the office) with the si-
teld passed down from the
site_QueryLevel. A match en-
sures that the office appears
under the correct building in
the hierarchy.

equip_QueryContext Query: hs:equip

On each device

Identifies the device as a piece
of equipment. This tag causes
the equipment names to ap-
pear as nodes under each of-
fice in the hierarchy.

Query: demo:officeRef=
{officeId}

officeRef is a name/value
tag on each device. The value
of this tag is the hs: id of the
office in which the device is
located.

Compares the demo: offi-
ceRef tag on the equipment
with the officelId passed
down from the office_Query-
Level. A match ensures that
the equipment appears under
the correct office in the
hierarchy.

Query Context: equipId=hs:id

hs:Id=[identifier],
(where [identifier] isa
unique string that identifies the
office) is an implied tag on each
office.

Sets equipID to the value of
the device's hs: id and passes
equipId down to the next lev-
el in the hierarchy definition.

history_QueryLevel Query: n:point

Query:n:history

Query: hs:equipRef={equipId}

Implied tag on each point.

Implied tag on each point.

Name, value tag on each point.
The value of this tag is the hs:
id of the device in which the
point is located.

Returns data from all device
points.

Returns all histories for the
device.

Compares the hs:equipRef
tag on each point with the
equipld passed down from
the equip_QueryLevel. A
match ensures that the point
appears under the correct de-
vice in the hierarchy.

August 18, 2015

27

Chapter 3 Examples

About assigning hierarchies to Roles

Hierarchies Guide

Roles have a Viewable Hierarchies property that allows you to assign on a per role basis which hierar-
chies are visible to a user. By assigning a hierarchy to a specific role you are able to control the visibility of
the entire hierarchy (and grouping elements within the hierarchy). Only the users assigned to that role are

able to view the hierarchy.

NOTE: Users with the Admin role can always view all hierarchies and due to their super user permissions
can view everything under those hierarchies. All other users are assigned permissions to view one or more

hierarchies via their role(s).

NEQL query examples

The Niagara Entity Query Language (NEQL) provides a mechanism for querying tagged entities in Niagara
applications. NEQL only queries for tags. NEQL supports parameterized queries and allows you to use the
same syntax as is used in Search. The following examples are designed to help you construct queries.

Examples
To query for Syntax example Returns result
point tag n:point Any entity with the point tag (in the “n”
namespace)
name tag = "foo" n:name = "foo" Any entity with the “foo” name tag (in the “n”

namespace)

type tag = "baja:Folder"

n:type ="baja:Folder"

Any entity with the "baja:Folder” type tag (in
the “n” namespace)

point tag and name tag

= "foo" and type tag = "baja:
Folder" and hs:coolingCapac-
ity > 4.03

point and name = "foo" and type = "baja:
Folder" and hs:coolingCapacity >4.03

Any entity with the point tag and any entity with
the foo tag (in the “n” namespace) and any en-
tity with the "baja:Folder” type tag (in the “n”
namespace) and any entity with the coolingCa-
pacity tag (in the "hs"” namespace) with a value

greater than 4.03

foo tag

t:foo

Any entity with the foo tag (in the t namespace)

entities containing child enti-
ties tagged with “foo”

n:child->t:foo

Any parent (n:child->t: foo) of any entity
with the foo tag

entities containing other enti-
ties with child entities tagged
with “foo”

n:child->n:child->t:foo

Any grandparent (n:child->n:child->t:
foo) of any entity with the foo tag

entities with t:foo tag or enti-
ties containing child entities
with t:foo tag or entities con-
taining other entities with child
entities tagged with t:foo tag

t:fooorn:child->t:fooorn:child->n:
child->t:foo

Any entity with the foo tag (in the t name-
space) or any parent of any entity with the foo
tag or any grandparent of any entity with the
foo tag

where n:pxView is a relation

n:pxView->n:type

Any entity with a pxView relation where the
endpoint is a niagara type. This is all the enti-
ties that have px views.

NEQL Grammar

<statement> := <full select> | <filter select>

<full select> := select (<tag list>) where <predicate>

<filter select> := <predicate>

<tag list> := <tag> (, <tag>)*

<tag> := <word>(: <word>) // either namespace:key or key

28

August 18, 2015

Hierarchies Guide Chapter 3 Examples

<predicate> := <condOr>

<condOr> := <condAnd> ("or" <condAnd>)*
<condAnd> := <term> ("and" <term>)*
<term> := <val> | <cmp>

<cmp> := <val> <cmpOp> <val>
<cmpOp>:="="|"I="|"<" | "<="|">" | ">="
<val> := <number> | <bool> | <str> | <tag>
<bool> := "true" or "false"

<number> := <int> | <double>

<bool> :=true | false

<str>:=" <chars>"

August 18, 2015 29

Chapter 3 Examples Hierarchies Guide

30 August 18, 2015

Index

A
assigning hierarchy toroleccceeevviiiiiiiinnnnnnn. 10
C
component
GroupLevelDef.........ccccoviiiiiiiiiiiiiiiiiiiin, 16
Hierarchyccceeeeeiiiiiiiiiiiiiiiiiiiiiiiiieeeen, 14
ListLEvelDef ..o 17
NamedGroupDefccoccviiiiiiiiiiniiiiiinnnnn. 17
QuerylLevelDef...........eueeiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 15
RelationLevelDef...........oovviiiiiiiiiiiiiiiini, 16
Context parameters........ccccoeeviiiiiiiiiinniiiinnn. 18
context parameters example...........ccccceeeiiiiiinns 21
E
example
context parameters........coooeveiiiiiiniinninnnininn, 21
display points in a hierarchycccccovnnnnee. 19
multi-user hierarchycccccccciiiinnnnn. 24
query context hierarchyc.ccccoeviiunnnnnnne. 21
G
GrouplevelDef.........oooiiiiiiiiiii 16
H
Hierarchies concepts..........cccovvviiiiiiiiiiiniiinnnne, 13
hierarchy
display all points.........cccouvveiiiiiniiiiiiiiinne. 19
editing .cooeeviiiiiiiii e 10
EXAMPIE.coiiiiiiiiiiiiiii 19
multi-user example........ccccovviiiiiiiiinnniinn, 24
Hierarchy componentccccoooviiiiniiiine, 14
hierarchy definition
Setting UP «.ooovviiiiiiiiii 8
hierarchy palette...........ccoooviiiiiiiiiiiiiiis 13
Hierarchy scopes
Station ..o.oovi 18
SystemDboooiiiiiii e 18
Hierarchy space........cccccovvviiiiieiiiiiiiiiiiiecienines 13
HierarchyService
ADOUL ...eiiiiiiiiiiiieee e 13
L
Legal Noticescvvririiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee, 2
Level definition componentscccoecuviinnnne. 13
Level definitions
ABOUL ..cooiiiiiiiiiiiiiiiiiiii e 14

August 18, 2015

LeVeIDETSuueeeiiiieiiiiiiiiiieiieeeee et 14
LevelElems.......coovvuviiiiiiiiiniiiiiiiinis 14
ListLevelDef

COMPONENt ..coeviiiiiiiiiiiiiiiiis 17
N
NamedGroupDef

COMPONENt ...ooviiiiiiiiiiiiiiiiiiiii s 17
Niagara Entity Query Language (NEQL)

query examples........coccuviiiiiiiiii, 28
P
Permissions

VI T0lES coiiiiiiiiiiii i 18
points

displayed in hierarchy...........ccoocciiiiiiiinnnnnn. 19
Prerequisitesoceeeueiiiiiiiiiiiiiiiiiccce e, 7

Q

Query context

context parameters.........cccccuviiiiiiiiiiinne, 18
query context examplecocccviiiiiiiiniiinn, 21
Query examplesccccovviiiiiiiiiiiii 28
QueryLevelDef

COMPONENt ...cooviiiiiiiiie e 15
R
RelationLevelDef

COMPONENt ..ottt 16
S
setting up a hierarchy definitionccccceeni. 8
T
tags

in hierarchies........ccuuuuiiiieriiiiiiiiiiiiiiiiieeeeeeeeeees 13
Vv
Viewable hierarchiesc.ccccccciiiiiiininnnnnnnnnnns. 18

31

	Hierarchies Guide
	About this guide
	Document change log
	Related documentation

	Chapter 1 Common hierarchy tasks
	Preliminary preparations
	Setting up a hierarchy definition
	Editing a hierarchy definition
	Assigning a hierarchy to a role

	Chapter 2 Hierarchy concepts
	About the Hierarchy Service
	Tags provide context in a hierarchy
	Hierarchy component
	About level definitions
	QueryLevelDef component
	RelationLevelDef component
	GroupLevelDef component
	ListLevelDef component
	NamedGroupDef component

	Context parameters
	Hierarchy scopes
	Permissions

	Chapter 3 Examples
	Display all points example
	Query context example
	Multi-user example
	NEQL query examples

	Index

