
Technical Document

 September 12, 2013

NiagaraAX-3.x kitControl Guide

NiagaraAX kitControl Guide

Confidentiality Notice
The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation (“Tridium”). Such
information, and the software described herein, is furnished under a license agreement and may be used only in accordance with
that agreement.
The information contained in this document is provided solely for use by Tridium employees, licensees, and system owners; and,
except as permitted under the below copyright notice, is not to be released to, or reproduced for, anyone else.
While every effort has been made to assure the accuracy of this document, Tridium is not responsible for damages of any kind,
including without limitation consequential damages, arising from the application of the information contained herein. Information
and specifications published here are current as of the date of this publication and are subject to change without notice. The latest
product specifications can be found by contacting our corporate headquarters, Richmond, Virginia.

Trademark Notice
BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Conditioning Engineers.
Microsoft and Windows are registered trademarks, and Windows NT, Windows 2000, Windows XP Professional, and Internet
Explorer are trademarks of Microsoft Corporation. Java and other Java-based names are trademarks of Sun Microsystems Inc. and
refer to Sun's family of Java-branded technologies. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON,
LonMark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara Framework, Niaga-
raAX Framework, and Sedona Framework are registered trademarks, and Workbench, WorkPlaceAX, and AXSupervisor, are trade-
marks of Tridium Inc. All other product names and services mentioned in this publication that is known to be trademarks, regis-
tered trademarks, or service marks are the property of their respective owners.

Copyright and Patent Notice
This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those
products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Trid-
ium, Inc.

Copyright © 2011 Tridium, Inc.
All rights reserved. The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

CONTENTS

Preface . v

About kitControl . 1–1
Application for kitControl components . 1–1

Types of kitControl components . 1–2

Location for kitControl components . 1–3

Extensions and kitControl components . 1–3
Components that cannot receive extensions . 1–4

About kitControl Alarm components . 1–4

About Constant components . 1–4

About Conversion components . 1–5
Status value to simple value . 1–5
Simple value to status value . 1–7
Status value to status value . 1–7

About Energy components . 1–8

About HVAC components . 1–8

About Latch components . 1–8
Types of Latch Components . 1–9
Types of Latch Component Properties . 1–9
About the Latch Action . 1–9
Latch Examples .1–10

About Logic components . 1–11

About Math components . 1–12

About Select components . 1–13

About String components . 1–13

About Timer components . 1–13

About Util components . 1–13

kitControl Component Guides . 2–1
Alphabetical list of kitControl components . 2–1

kitControl-AbsValue . 2–3
kitControl-Add . 2–3
kitControl-AlarmCountToRelay . 2–3
kitControl-And. 2–4
kitControl-ArcCosine. 2–5
kitControl-ArcSine . 2–5
kitControl-ArcTangent . 2–5
kitControl-Average . 2–5
kitControl-BooleanDelay . 2–5
kitControl-BooleanConst . 2–6
kitControl-BooleanLatch . 2–6
kitControl-BooleanSelect. 2–6
kitControl-BooleanSwitch . 2–6
NiagaraAX-3.x

kitControl Guide
i

September 12, 2013
kitControl-BooleanToStatusBoolean. 2–6
kitControl-BqlExprComponent . 2–6
kitControl-ChangeOfStateCountAlarmExt . 2–6
kitControl-Cosine . 2–7
kitControl-Counter. 2–7
kitControl-CurrentTime . 2–8
kitControl-DegreeDays. 2–8
kitControl-DigitalInputDemux. 2–9
kitControl-Divide .2–11
kitControl-DoubleToStatusNumeric .2–11
kitControl-ElapsedActiveTimeAlarmExt .2–11
kitControl-ElectricalDemandLimit .2–12
kitControl-EnumConst .2–17
kitControl-EnumLatch .2–17
kitControl-EnumSelect .2–17
kitControl-EnumToStatusEnum .2–17
kitControl-EnumSwitch .2–17
kitControl-Equal .2–17
kitControl-Exponential .2–17
kitControl-Factorial .2–17
kitControl-FloatToStatusNumeric. .2–18
kitControl-GreaterThan .2–18
kitControl-GreaterThanEqual. .2–18
kitControl-IntToStatusNumeric .2–18
kitControl-InterstartDelayControl .2–18
kitControl-InterstartDelayMaster .2–18
kitControl-LeadLagCycles .2–18
kitControl-LeadLagRuntime. .2–19
kitControl-LessThan .2–20
kitControl-LessThanEqual .2–20
kitControl-LogBase10 .2–21
kitControl-LogNatural. .2–21
kitControl-LongToStatusNumeric .2–21
kitControl-LoopAlarmExt. .2–21
kitControl-LoopPoint .2–21
kitControl-Maximum. .2–25
kitControl-Minimum .2–26
kitControl-MinMaxAvg. .2–26
kitControl-Modulus .2–26
kitControl-Multiply .2–26
kitControl-MultiVibrator .2–26
kitControl-Negative. .2–26
kitControl-NightPurge .2–26
kitControl-Not .2–28
kitControl-NotEqual .2–29
kitControl-NumericBitAnd .2–29
kitControl-NumericBitOr .2–30
kitControl-NumericBitXor .2–30
kitControl-NumericConst .2–30
kitControl-NumericDelay. .2–30
kitControl-NumericLatch. .2–31
kitControl-NumericSelect .2–31
kitControl-NumericSwitch .2–31
kitControl-NumericToBitsDemux .2–32
kitControl-NumericUnitConverter .2–32
kitControl-OneShot .2–32
kitControl-OptimizedStartStop .2–33
kitControl-Or .2–37
kitControl-OutsideAirOptimization .2–38
kitControl-Power .2–39
kitControl-Psychrometric .2–39
kitControl-Ramp .2–40
kitControl-Random .2–40
kitControl-Reset .2–41
kitControl-RaiseLower .2–41
kitControl-SequenceBinary. .2–43
kitControl-SequenceLinear. .2–44
kitControl-SetpointLoadShed .2–46
kitControl-SetpointOffset .2–47
kitControl-ShedControl .2–47
kitControl-Sine .2–48
kitControl-SineWave .2–48
kitControl-SlidingWindowDemandCalc. .2–48
kitControl-SquareRoot .2–50
kitControl-StatusBooleanToBoolean. .2–50
NiagaraAX-3.x

kitControl Guide
ii

September 12, 2013
kitControl-StatusDemux .2–50
kitControl-StatusEnumToEnum .2–50
kitControl-StatusEnumToInt .2–50
kitControl-StatusEnumToStatusBoolean .2–50
kitControl-StatusEnumToStatusNumeric. .2–50
kitControl-StatusNumericToDouble .2–50
kitControl-StatusNumericToFloat. .2–50
kitControl-StatusNumericToInt .2–50
kitControl-StatusNumericToStatusEnum. .2–51
kitControl-StatusNumericToStatusString .2–51
kitControl-StatusStringToStatusNumeric .2–51
kitControl-StringConcat. .2–51
kitControl-StringConst .2–51
kitControl-StringIndexOf .2–51
kitControl-StringLatch .2–51
kitControl-StringLen .2–51
kitControl-StringSelect. .2–51
kitControl-StringSubstring .2–52
kitControl-StringTest. .2–52
kitControl-StringToStatusString .2–52
kitControl-StringTrim .2–52
kitControl-Subtract .2–52
kitControl-Tangent .2–52
kitControl-TimeDifference .2–52
kitControl-Tstat .2–53
kitControl-Xor .2–53
NiagaraAX-3.x

kitControl Guide
iii

September 12, 2013
NiagaraAX-3.x

kitControl Guide
iv

CONTENTS

Preface
Document Change Log

Document Change Log
Updates (changes/additions) to this NiagaraAX kitControl Guide document are listed below.
• Updated: September 12, 2013

Made correction to Mean Temp formula description in “kitControl-DegreeDays” on page 2-9.
• Updated: March 24, 2011

Made AX-3.6-related changes in a few areas of the document, including the “About Conversion
components”section, noting that the automatic “conversion links” feature starting in AX-3.6 should
typically make these components unnecessary. Two related subsections were added to the “Status
value to simple value” conversion components section: “About null values” on page 1-5, and “Null
input handling changes in AX-3.6” on page 1-6. Also added was a summary description for the BQL
Expression component (“kitControl-BqlExprComponent” on page 2-7), available starting in AX-3.6.

• Updated: June 10, 2010
Added missing description for the SlidingWindowDemandCalc component’s “Meter Rollover”
property, available since AX-3.2 and build 3.1.31 and later. The property sheet screen shown for this
component (Figure 2-34 on page 53) now includes this property.

• Updated: March 11, 2010
Added summary descriptions for the new BooleanSwitch, Factorial, and Modulus components start-
ing in AX-3.5, also an entry for the “Earliest Start Time” addition to OptimizedStartStop properties.
Corrections were made for loop output formulas shown in the LoopPoint section, along with a few
other minor changes (note that loop behavior itself remains unchanged).
Removed two extraneous components from the kitControl Component Guides section. This docu-
ment applies to all NiagaraAX revisions, with any revision-dependent items noted.

• Updated: June 25, 2008
Added descriptions for the following new components: DigitalInputDemux, RaiseLower.

• Revised: April 18, 2008
Minor corrections and additions made to April 7, 2008 revisions based on technical document re-
views.

• Revised: April 7, 2008
Added new descriptions for the following components: AlarmCountToRelay, NumericToBitsDe-
mux.
Added more detail to the following component descriptions: BooleanDelay, ElectricalDemandLim-
it, OneShot, OptimizedStartStop, ShedControl, TimeDifference.
Added more detail and related sections to “About Latch components”.
Fixed broken online help links, and made minor edits.

• Revised: February 23, 2008
Applied new style to complete document.
Edited links to reflect NiagaraAX document-set reconfiguration.

• Revised: August 23, 2006
Provided setup and operation details for the LoopPoint, and truth tables for Logic components And,
Or, Not, and Xor. More details and examples are included for components EnumSelect, Numer-
icBitAnd, NumericBitOr, and NumericBitXor.
Reversed the order of this change log to list newest document changes at the top.

• Revised: November 30, 2005
NiagaraAX-3.x

kitControl Guide
v

September 12, 2013
Minor changes only. Added convenience links in “Alphabetical list of kitControl components” on
page 2-1, plus a link back to this page from online Help “Guide on Target” for any kitControl com-
ponent. Fixed several screencap figures and links.

• Revised: September 15, 2005
Minor changes only. Fixed links and used newer cover design.

• Revised: June 24, 2005
Minor changes only. Added Copyright and Trademarks to preface, fixed a few links.

• Draft: June 15, 2005
(Initial change log). Added additional descriptions of kitControl components: ElectricalDemand-
Limit, EnumSwitch, NightPurge, OptimizedStartStop, OutsideAirOptimization, Psychrometric,
Random, SetpointLoadShed, SlidingWindowDemandCalc, StatusEnumToInt, StatusEnumToStatus-
Boolean, StatusEnumToStatusNumeric, StatusNumericToStatusString, StatusStringToStatusNu-
meric.
NiagaraAX-3.x

kitControl Guide
vi

1CHAPTER

About kitControl
Important main kitControl topics include:
• Application for kitControl components
• “Types of kitControl components” on page 1-2
• “Location for kitControl components” on page 1-3
• “Extensions and kitControl components” on page 1-3

Application for kitControl components
The kitControl palette contains various components that you can use in combination with points, both
simple control points and proxy points. Whereas proxy points read (and possibly write) data from (and
to) remote devices, kitControl provides the “data manipulation” building blocks that let you further
process that data. Included are HVAC components like a PID loop and sequencers, a variety of boolean
logic components, math components for numeric values, and miscellaneous others. Together with proxy
points and schedules, kitControl components provide the basis of the “common component model” for
modeling control logic. See “About Scheduling” in the NiagaraAX-3.x User Guide.

Figure 1-1 Conceptual use for kitControl in object model

Note: Usage of kitControl components is entirely optional. It is possible to build a monitoring-type application
where only proxy points (and perhaps a few simple control points) are used. This would allow real-time
data monitoring, plus user-invoked “action” overrides through writable points’ right-click command
menus. As needed, you could also add extensions to the proxy points for alarming and history collections.

kitControl componentsPoints (Proxy, Simple)

links

Common component model

PX Graphics
Services

Histories
Alarm

s

NiagaraAX-3.x

kitControl Guide
1–1

Types of kitControl components Chapter 1 – About kitControl

September 12, 2013
Types of kitControl components
In total, the kitControl palette contains over 90 unique components across 12 folder categories (not
counting ControlPalette). As shown in Figure 1-2, folders in the palette reflect the types of components.

Figure 1-2 Folders in palette kitControl

Note: Currently, the kitControl palette includes all control palette components, under its “ControlPalette”
folder. This is a convenience, allowing you to open kitControl in your palette side bar, and still have access
to simple control points, extensions, and timers, in addition to the kitControl components found under its
other folders. See “Alphabetical list of kitControl components” on page 2-1 for a complete list of components
found only in kitControl.
By palette folder, types of kitControl components include:
• ControlPalette

Equivalent to contents of control palette, including subfolders Points, Extensions, and Triggers. For
more details, see the NiagaraAX-3.x User Guide sections “About control points”, “About control ex-
tensions”, and “About control triggers”.

• Alarm
Contains 3 extensions for alarming. One is expressly for a LoopPoint, for “setpoint-deviation” alarm-
ing. The others provide alarming options for a Boolean point with DiscreteTotalizerExt. A fourth
component provides alarm count monitoring of any Alarm Class, and includes a boolean “relay” out-
put. For more details, see “About kitControl Alarm components” on page 1-4.

• Constants
Contains 4 components, one for each data category. Each provides a linkable status-type output, and
a “Set” action for changing value. See “About Constant components” on page 1-4 for details.

• Conversion
Contains 19 components that mainly convert status values to simple values, and vice versa. Also has
other special conversion types. See “About Conversion components” on page 1-5 for details.
Note: Starting in AX-3.6, conversion components may be unnecessary—as linking directly between
status values and simple values, or even between different data types, is supported. For details, please
refer to the Engineering Notes II document NiagaraAX Conversion Links.

• Energy
Contains 10 components for typical energy functions, such as degree day calculation and electrical
demand limiting. See “About Energy components” on page 1-8.

• HVAC
Contains 9 components for typical HVAC functions, such as for interstart delay, lead-lag control and
sequence control. Included are a Tstat (thermostat) and LoopPoint (PID loop) component. See
“About HVAC components” on page 1-8.

• Latches
Contains 4 latch components, one for each data category. See “About Latch components” on page 1-
8.

• Logic
Contains 10 logic components, each with a StatusBoolean output. Starting in AX-3.6, an example
“Expr” (BQL Expression) component is also included—named “ExprLogic”. For more details, see
“About Logic components” on page 1-11.
NiagaraAX-3.x

kitControl Guide
1–2

Chapter 1 – About kitControl Location for kitControl components
September 12, 2013
• Math
Contains 23 components for processing one or more numeric input values, and producing a Status-
Numeric output. Starting in AX-3.6, an example “Expr” (BQL Expression) component is also includ-
ed—named “ExprMath”. See “About Math components” on page 1-12 for more details.

• Selects
Contains 4 select components, one for each data category. See “About Select components” on page
1-13.

• String
Contains 6 components with one or more StatusString inputs. See “About String components” on
page 1-13.

• Timer
Contains 5 components: 3 timer types (BooleanDelay, NumericDelay, and OneShot), and 2 “absolute
time” types (CurrentTime, TimeDifference). See “About Timer components” on page 1-13.

• Util
Contains 16 various utility components, including an “Expr” (BQL Expression) component added
starting in AX-3.6. See “About Util components” on page 1-13 for more details.

Location for kitControl components
As with simple control points, you can copy kitControl components to any folder or component needed
in the station. (This varies from proxy points—see “Location of proxy points” in the Drivers Guide). This
includes under any device’s Points extension (container), or any subfolder underneath.

Note: There are two competing “best practice” philosophies about locating your control logic.
1. Philosophy A, where you should only have proxy points under a device’s Points container. You can

add extensions (control, history, and alarm), as needed, to proxy points. However, other components
(kitControl components, simple control points, schedules) are located under a central folder not
under the station’s Driver architecture—but instead in subfolders under a main “Logic” folder (by
convention) created in the root of the station’s Config container.
This method requires many “internal” links between proxy points and kitControl components. It of-
ten makes following control logic harder, because you don’t see most links except as “knobs.” In ad-
dition, it makes applications much less portable (you can’t copy it all by selecting a single device
container, as you might otherwise using philosophy B).

2. Philosophy B, where you add any needed kitControl components, simple control points, and
schedules under each device’s Points container (either directly, or in subfolders). This allows you to
create more “local” links between the device’s proxy points and other components.

The original intention of philosophy A was to establish a logic “convention” that allows universal support
of different application types. However, philosophy B offers more “portability” of each application, allowing
easy replication and reuse at a “device level.” In general, use of philosophy B is more common—locate
kitControl components where they are needed.

Extensions and kitControl components
You can add point extensions to many kitControl components, for example an alarm extension, history
extension, or perhaps a control extension. For exceptions, see “Components that cannot receive exten-
sions” on page 1-4. For general details on extensions, see “About point extensions” in the User Guide.
Some examples of using extensions with kitControl components include the following:
• Average object (Math folder)

Inputs are linked to multiple proxy NumericPoints, each representing a room temperature. The Av-
erage object represents a “Zone” temperature (average). To this object you may wish to add an alarm
extension (OutOfRangeAlarmExt) and history extension (NumericInterval).

• And object (Logic folder)
Inputs are linked to multiple proxy BooleanPoints, each representing “fan status” (Off or On). The
And object is linked to downstream control logic. To track when all fans are running, you may wish
to a history extension (BooleanChangeOfValue) and perhaps a control extension to collect runtime
(DiscreteTotalizerExt).

• NumericSwitch object (Util folder)
Inputs are linked to two proxy NumericWritables, each representing a power rate (kW). The object
output is linked to downstream control logic (and represents the current “switched” rate). To total-
ize this effective rate into energy accumulation, you add a control extension (NumericTotalizerExt)
and add proper scaling to collect kWh.
NiagaraAX-3.x

kitControl Guide
1–3

About kitControl Alarm components Chapter 1 – About kitControl
Components that cannot receive extensions September 12, 2013
Components that cannot receive extensions
Some kitControl components are not based on “simple control points” (ControlPoint). You cannot add
any extensions to these components. If you try, you receive an “illegal parent” error message.
Components in kitControl that cannot receive extensions include:
• Constants components (any).
• Conversion components (any).
• Energy components (any).
• HVAC components (except for LoopPoint, InterstartDelayControl, and Tstat, which can have exten-

sions)
• Latches components (any)
• Selects components (any)
• String components (any)
• Timer components (any)
• Util components: (except for BooleanSwitch, EnumSwitch, MultiVibrator, NumericSwitch, Ramp,

Random, and SineWave, which can have extensions).
Note: You can quickly tell if a kitControl object can receive an extension, by seeing if it has the frozen “ProxyExt”

(proxy extension). See this by expanding the object in the kitControl palette, Nav tree or viewing the object’s
property sheet.
If present, you can add other extensions (providing they are the correct type), for example “Boolean-
ChangeOfValue” history extension for a Logic-type object, and so forth.
Also, note this is the only use for the proxy extension in a kitControl object (its value is always “null”)—only
control points can be proxy points.

About kitControl Alarm components
The Alarm folder in the kitControl palette contains 3 special-purpose alarm extensions, two of which are
for Boolean type points that also have one or more DiscreteTotalizerExt extensions, as follows:
• ChangeOfStateCountAlarmExt
• ElapsedActiveTimeAlarmExt
They provide alarm capability based upon COS count and runtime (elapsed active time). If using either
(or both) extensions above, in the parent Boolean point (BooleanPoint, BooleanWritable), you must add
(order) them under the corresponding DiscreteTotalizerExt.
Also, a LoopAlarmExt is available. This extension provides a “sliding limit” type alarm for a LoopPoint,
based upon control deviation from setpoint.
Finally, an AlarmCountToRelay component provides configurable monitoring of the number of alarms
(alarm count) of a linked Alarm Class component, and features a timed boolean “relay” output.

Note: Starting in AX-3.6, a new alarm extension is available in the “Extensions” folder of the alarm palette: a
StringChangeOfValueExt. See the User Guide section “alarm-StringChangeOfValueExt” for details.

About Constant components
The four constant kitControl components are:
• BooleanConst
• EnumConst
• NumericConst
• StringConst
Each object simply provides a linkable status-type output value, and offers a default “Set” action for
changing that value (in the case of the BooleanConst object, two default actions are “Active” and
“Inactive”). A constant object may be handy when the same target property of multiple components
needs to be adjusted simultaneously. Constants may also help clarify logic on a wire sheet.
Constant components are far simpler than writable control points (no priorities, status processing, and
so forth).
NiagaraAX-3.x

kitControl Guide
1–4

Chapter 1 – About kitControl About Conversion components
September 12, 2013 Status value to simple value
About Conversion components
In most cases, a kitControl conversion object takes an input value and makes it available on the object’s
output as a different data type. Prior to AX-3.6, you typically use them as a “go-between” to allow linking
between different data types.
For example, you use a conversion object to allow a link between a:
• Status value to simple value, or
• Simple value to status value, or
• Status value to status value

Note: Starting in AX-3.6, in most cases you no longer need conversion components. Instead, you simply link
directly between component slots of different data types, and a “conversion link” is automatically made.
Sometimes, further editing of such a link is also possible. For complete details, see the Engineering Notes II
document NiagaraAX Conversion Links.
Also starting in AX-3.6, all of the “Status value to simple value” components in kitControl were extended
with optional properties. See the “Status value to simple value” section for details.
Also, a NumericUnitConverter is available. It is unique in that it does not change the data type (both
input and output are StatusNumeric), but changes the actual numeric value, based upon unit conversions
going from the configured “In Facets” to “Out Facets.” To produce a valid output, you must configure both
facets to be under the same category (such as temperature or power, as examples). Otherwise, the
NumericUnitConverter has a fault status.

Status value to simple value
Here, these conversion object types are often used in a AX-3.5 or earlier host to permit a link between the:
• Source “Out” of a point, kitControl, or Schedule object (status value), to a
• Target “non status” value of a property in an extension or other component.
For example, to link the “Out” of a Schedule object to the “Enabled” property of a history extension (of a
point or object), you link a StatusBooleanToBoolean object between the two.
Conversion components in this category include:
• StatusBooleanToBoolean
• StatusEnumToEnum
• StatusEnumToInt
• StatusNumericToDouble
• StatusNumericToFloat
• StatusNumericToInt

Note: Starting in AX-3.6, additional properties were added to the conversion components listed above. These
properties allow specifying a pre-defined output value in case of a “null” input. Previously (and by default),
upon input change to “null”, the conversion output uses the “null value” from the source, typically from a
writable point’s “Fallback” slot with null status.
For more details see the following two sections:
• “About null values”
• “Null input handling changes in AX-3.6”

About null values
The four “status value” NiagaraAX data types: StatusBoolean, StatusEnum, StatusNumeric, and
StatusString, each hold two pieces of data:
• status

In normal operation, status is “ok”, meaning no status flag or flags are set. Status flags include alarm,
overridden, fault, and others, including one for “null”.

• value
The data value portion. If StatusBoolean: value is either true or false, if StatusNumeric: value is a
number, if StatusEnum: value is a state (or ordinal integer), or if StatusString: value is a text string.
If status is null, this data value is ignored (not processed) by any other linked “status value” proper-
ties. However, a value remains that does correspond with null, utilized only if data conversion from
a “status value” to “simple value” occurs.

Consider a NumericWritable point, in this case also a proxy point, that positions a damper from 0 to
100%. In the point’s configuration, its “Fallback” property has a default status of null, with 0.0 value. See
Figure 1-3.
NiagaraAX-3.x

kitControl Guide
1–5

About Conversion components Chapter 1 – About kitControl
Status value to simple value September 12, 2013
Figure 1-3 Default null value for NumericWritable is 0.0

If during configuration the null status is unchecked, and another value entered (and saved), this will now
become the new “null value” for this point. In other words, if the null status checkbox is set again this
value is now the null value. See Figure 1-4 below.

Figure 1-4 Non-default null value for NumericWritable can occur if Fallback has been configured

In this example, the Fallback property was changed from default: “null, 0.0” to 20.0. Then a subsequent
change was made to re-select (set) null for Fallback. Note the 20.0 null value remains, as read-only. If only
linking between other “StatusNumeric” properties, this is moot, as the null value is ignored—essentially
“dropping through” priority inputs.
However, when converting from StatusNumeric to a simple number data type (Double, Float, or Integer),
the current null value is used, as shown in Figure 1-4 below.

Figure 1-5 Null input to conversion component (or conversion link) can result in unexpected value

In this case the linked StatusNumericToDouble component has a value of 20.0, sourced by the “null value”
coming from the Fallback property of the NumericWritable. More typical—and perhaps even expected,
would be a value of 0.0, from Fallback defaults.
To avoid this type of ambiguity, new properties were added to all the “Status value to simple value”
conversion components in kitControl, starting in AX-3.6. For more details, see “Null input handling
changes in AX-3.6” on page 1-6.

Null input handling changes in AX-3.6
Starting in AX-3.6, all of the “Status value to simple value” conversion components have extended
properties that allow optional handling of a “null” input.
NiagaraAX-3.x

kitControl Guide
1–6

Chapter 1 – About kitControl About Conversion components
September 12, 2013 Simple value to status value
Figure 1-6 Example “On Null In Value” property and “outValueOnNull” property in AX-3.6 and later

These new properties are:
• On Null In Value

By default, this property is set to the first of two possible values:
• Use In Value

If saved this way, the “Out Value On Null” property below does not appear. Operation remains
the same as in previous NiagaraAX revisions. The value portion of the “null status” input is
used, which is often (if a source NumericWritable) a value of 0.0, or if a BooleanWritable, false.
However, note that other null values may result, in cases where the source “Fallback” slot was
previously set to a specific non-default value, and then set back to “null”.

• Specify Out Value
With this selection, following a Save, the property listed below appears. Configure it with a de-
sired out value for the conversion object, used whenever its input has a “null” status.

• Out Value On Null
This property shows only if the component is saved with “On Null In Value” as “Specify Out Value”.
You can specify a pre-defined out value for the conversion object when its input has a null status. For
example, a certain numeric value if a StatusNumericToFloat, StatusNumericToDouble, or Status-
NumericToInt, or one of two Boolean values (false, true) if a StatusBooleanToBoolean, and so on.
This removes any ambiguity about the conversion component’s output value, in case the compo-
nent’s input sees a null status.

Simple value to status value
Here, the conversion object is often used in a AX-3.5 or earlier host to permit a link between the:
• Source “non status” value of a property in an extension or other component, to a
• Target “In” of a point or kitControl object (status value).
Conversion components in this category include:
• BooleanToStatusBoolean
• DoubleToStatusEnum
• EnumToStatusEnum
• FloatToStatusEnum
• IntToStatusNumeric
• LongToStatusNumeric
• StringToStatusString
For example, to link the “changeOfStateCount” property of a DiscreteTotalizer extension of a Boolean-
Point to Math object input, you would link an IntToStatusNumeric between the two.

Status value to status value
Here, the conversion object is often used in a AX-3.5 or earlier host to permit a link between the:
• Source “status” value of a property in an extension or other component, to a
• Target “status” different type value of a point or kitControl object.
Conversion components in this category include:
• StatusEnumToStatusBoolean
NiagaraAX-3.x

kitControl Guide
1–7

About Energy components Chapter 1 – About kitControl
Status value to status value September 12, 2013
• StatusEnumToStatusNumeric
• StatusNumericToStatusEnum
• StatusNumericToStatusString
• StatusStringToStatusNumeric

About Energy components
Energy components include a degree-days calculation object as well as various objects used for electrical
demand limiting. Additional energy-saving functions are also represented as components.
Components in the Energy folder include:
• DegreeDays
• ElectricalDemandLimit
• NightPurge
• OptimizedStartStop
• OutsideAirOptimization
• Psychrometric
• SetpointLoadShed
• SetpointOffset
• ShedControl
• SlidingWindowDemandCalc

About HVAC components
HVAC components provide various control functions used in commercial HVAC applications. Included
are the following components:
• InterstartDelayControl
• InterstartDelayMaster
• LeadLagCycles
• LeadLagRuntime
• LoopPoint
• RaiseLower
• SequenceBinary
• SequenceLinear
• Tstat

Note: InterstartDelayControl components are like BooleanWritable control points, only they provide three
additional slots for use in an interstart delay control scheme. You use them with an InterstartDelayMaster,
then link outputs of InterstartDelayControl objects, as needed, to control corresponding Boolean-
Writable points (typically proxy points) for the final interstart control.

About Latch components
Latch components allow you to capture an input value by using either the component's Clock property
or by using the component's Latch action. In either case, “latching” means setting the value of the latch
component “Out” property to whatever the value of the latch component “In” property is at the time that
the “latch” occurs. The value of the latch component “In” property is ignored at all times other than the
when a latch occurs.
Latch components are available in the kitControl palette “Latches” folder, as shown in Figure 1-7.

Figure 1-7 Latch components

Each latch component type has the same properties and function; they vary only to accommodate
different point data types, as described in the following sections.
• Types of Latch Components
• Types of Latch Component Properties
• About the Latch Action
• Latch Examples
NiagaraAX-3.x

kitControl Guide
1–8

Chapter 1 – About kitControl About Latch components
September 12, 2013 Types of Latch Components
Types of Latch Components
The following types of Latch Components are available:
• BooleanLatch

The BooleanLatch component provides a “latch” for a status boolean input and is located in the
“Latches” folder of the kitControl palette. It has the same properties and actions as all the latch com-
ponents, which are described in “Types of Latch Components” and “About the Latch Action”.

• EnumLatch
The EnumLatch component provides a “latch” for a status Enum input and is located in the “Latch-
es” folder of the kitControl palette. It has the same properties and actions as all the latch compo-
nents, which are described in “Types of Latch Components” and “About the Latch Action”.

• NumericLatch
The NumericLatch component provides a “latch” for a status Numeric input and is located in the
“Latches” folder of the kitControl palette. It has the same properties and actions as all the latch com-
ponents, which are described in “Types of Latch Components” and “About the Latch Action”.

• StringLatch
The StringLatch component provides a “latch” for a status String input and is located in the “Latch-
es” folder of the kitControl palette. It has the same properties and actions as all the latch compo-
nents, which are described in “Types of Latch Components” and “About the Latch Action”.

Types of Latch Component Properties
The following illustration shows the latch property sheet view of a BooleanLatch component. While the
facets in this graphic are configured for a specific boolean usage, the properties are the same for all types
of latch component data types.

Figure 1-8 Latch property sheet view

Latch components have the following properties that are common to all latch component data types:
• Facets

This property allows you to configure how the component value displays. For example, on a Numer-
icLatch component you can set the units, precision, minimum and maximum value for the Out
property value.

• Clock
This is a boolean status property that has either a True or False state for all latch components. This
property "latches" the input property to the output property on the "rising edge". This means that a
single input property is captured and sent to the output property at the instant that the Clock status
changes from a False to a True state and NOT when the property changes from a True to a False
state.

• Out
This standard component property provides the actual latched value that is captured from the input
property at "latch" time. Link to this property to display the value on a graphic or to process the value
with another component.

• In
This is the standard component input property that you link into from a data source. For example,
you can link into this property from a control point or a Schedule output.

About the Latch Action
Latch components have a Latch action that you can invoke by:
• Selecting the Latch command under the Actions popup menu.

In this case, you right-click on the latch component and select "Latch" from the popup menu.
• Linking a boolean value to the latch action slot on a Latch component.

In this case, any change of the boolean status value invokes a latch action (False to True or True to
False). This is in contrast to using the Clock property, which latches only when the Clock property
status changes from False to True.

The Latch action captures the input value any time that the Latch command is invoked.
NiagaraAX-3.x

kitControl Guide
1–9

About Latch components Chapter 1 – About kitControl
Latch Examples September 12, 2013
Invoke a latch using the Latch command on the popup menu

Figure 1-9 Invoke a latch using the Latch command on the popup menu

Figure 1-10 Invoke a latch by linking to the latch action

Latch Examples
The following examples are similar, in that they all use a Schedule component to invoke a latch. Other
components may be used to invoke a latch, however, any latch that is invoked using the Clock property
must include a method for setting the Clock property status back to False before the Clock is available for
latching again. Example 3 illustrates the use of a latch component's latch action instead of using the Clock
property.

Example 1: BooleanLatch Component
In this example, a building manager wants a record of days when the building has occupants that arrive
before scheduled opening time of 6:00AM. This involves collecting the occupancy status from a building
security system at the scheduled opening time once a day. The following illustration shows a Boolean-
Latch component (OccupancyState) being used to capture the occupancy status value at a 6:00AM
(scheduled occupancy time) every day.

Figure 1-11 Using the NumericLatch component Clock property

Note the following about this example:
• A Boolean Schedule (OccupancySchedule) Out value is linked to the BooleanLatch Clock property

and a Boolean Out value from the "Occupied" boolean point is linked to the BooleanLatch In prop-
erty.

• At 6:00AM, the OccupancySchedule Out value changes to True and sets the Clock property to True,
causing the BooleanLatch component to "latch" the 6:00AM In value into the Out property.

• The BooleanLatch component Out property is linked to the BooleanWritable (OccRecord) compo-
nent which can record the value using a history extension.

• At 6:00PM the Schedule Out value changes to False and sets the Clock property to False from True.
No latch occurs here since the Clock property only latches on the "rising edge" (False to True). No
change is made in the Out value until the Clock property status changes again from False to True -
scheduled for 6:00AM the next day.
NiagaraAX-3.x

kitControl Guide
1–10

Chapter 1 – About kitControl About Logic components
September 12, 2013 Latch Examples
Example 2: NumericLatch Component
This example involves collecting the return air temperature value once a day according to a scheduled
building opening time. The following illustration shows a NumericLatch component (StartTempLatch)
being used to capture the return air temperature value at a specific time (scheduled occupancy time)
every day.

Figure 1-12 Using the NumericLatch component Clock property

Note the following about this example:
• A Boolean Schedule Out value is linked to the NumericLatch Clock property and a Numeric Out val-

ue from the ReturnTemp numeric point is linked to the NumericLatch In property.
• At 6:00AM, the Schedule Out value changes to True and sets the Clock property to True, causing

the NumericLatch component to "latch" the 6:00AM In value into the Out property.
• The NumericLatch component Out property is linked to the NumericWritable (StartTemp) com-

ponent which can record the value using a history extension.
• At 6:00PM the Schedule Out value changes to False and sets the Clock property to False from True.

No latch occurs at this time and no change is made in the Out value until the Clock property status
changes again from False to True (scheduled for 6:00AM).

Example 3: NumericLatch Component Latch Action
This example involves collecting the return air temperature value twice a day according to scheduled
building opening and closing times. The following illustration shows a NumericLatch component (Start-
TempLatch) being used to capture the return air temperature value at two specific times (scheduled
occupancy time and scheduled un-occupancy) Monday through Friday. This example is similar to
Example 1 except that the Schedule Out value is linked to the NumericLatch "Latch" action.

Figure 1-13 Using the NumericLatch component latch action

Note the following about this example:
• A Boolean Schedule Out value is linked to the NumericLatch Clock property and a Numeric Out val-

ue from the ReturnTemp numeric point is linked to the NumericLatch In property.
• At 6:00AM and at 6:00PM, the Schedule Out value changes to True or to False, respectively. In each

case this status change invokes the latch action, causing the NumericLatch component to "latch" the
In value into the Out property.

• The NumericLatch component Out property is linked to the NumericWritable (StartTemp) com-
ponent which can record the values using a history extension.

• A Trigger Schedule may be simpler to use in this example. Using a Trigger Schedule, you can simply
define the two time in the day that you want trigger the latch. The Boolean Schedule requires start
and stop times for each event.

About Logic components
All 10 of the logic components process input values and provide a StatusBoolean output. Logic object
types vary by input types.
NiagaraAX-3.x

kitControl Guide
1–11

About Math components Chapter 1 – About kitControl
Latch Examples September 12, 2013
• Four types have StatusBoolean inputs:
• And
• Or
• Xor
• Not

• Six types have StatusNumeric inputs:
• Equal
• GreaterThan
• GreaterThanEqual
• LessThan
• LessThanEqual
• NotEqual

Starting in AX-3.6, an “ExprLogic” component was added to the Logic folder in the kitControl palette,
however, it is unlike all others—and technically not a “logic component”. Instead it is a demonstration
example of an Expr component (BqlExprComponent) that provides a 4-input logic AND function.
If needed, you can add alarm and history extensions to any logic component, in addition to the control
extension DiscreteTotalizerExt. If configured with a DiscreteTotalizerExt, you can also add
special-purpose alarm extensions ChangeOfStateCountAlarmExt and or ElapsedActiveTimeAlarmExt.

Note: As with math components, you can individually configure logic components to “propagate” status flags
received on linked inputs (by default, status propagation does not occur). For more details, see “How status
flags are set” in the User Guide.

About Math components
Math components process one or more StatusNumeric input values and provide a StatusNumeric output.
Each component type provides a specific math function like Add, Average, Divide, Minimum, Maximum,
Reset, AbsValue, and so on.
Math object types vary by number of inputs used, in addition to math operation.
• The following Math types perform an operation on from one to four inputs:

• Add
• Average
• Maximum
• Minimum
• Multiply

• The following Math types perform an operation using two inputs:
• Divide
• Modulus
• Power
• Subtract

• The following Math types perform an operation on a single input:
• AbsValue
• ArcCosine
• ArcSine
• ArcTangent
• Cosine
• Exponential
• Factorial
• LogBase10
• LogNatural
• Negative
• Reset (using 4 values of high and low limits, both input and output, also linkable as inputs)
• Sine
• SquareRoot
• Tangent

Starting in AX-3.6, an “ExprMath” component was added to the Math folder in the kitControl palette,
however, it is unlike all others—and technically not a “math component”. Instead it is a demonstration
example of an Expr component(BqlExprComponent) that provides a 4-input Add math function.
If needed, you can add alarm and history extensions to any math component, in addition to the control
extension NumericTotalizerExt.
NiagaraAX-3.x

kitControl Guide
1–12

Chapter 1 – About kitControl About Select components
September 12, 2013 Latch Examples
Note: As with logic components, you can individually configure math components to “propagate” status flags
received on linked inputs (by default, status propagation does not occur). For more details, see “How status
flags are set” in the User Guide.

About Select components
A select object allows one of multiple inputs to be selected (passed to the output) upon selection by the
value at its “Select” (StatusEnum) input. From 3 to 10 inputs can be specified.
Note that all select objects require an enumerated input to perform the selection—the four select object
types differ only by the type of input data selected and passed to the “Out” slot.
The Selects folder of the kitControl palette includes the following components:
• BooleanSelect
• EnumSelect
• NumericSelect
• StringSelect

About String components
String components process one or more status string inputs, and produce some form of output. String
object types vary by outputs.
• Three String types perform a string function with a StatusString output:

• StringConcat
• StringSubstring
• StringTrim

• Two String types provide a logic function with a StatusBoolean output:
• StringIndexOf
• StringTest

• Finally, StringLen simply provides a StatusNumeric output equal to the number of non-null charac-
ters in the input string.

About Timer components
Components in the kitControl “Timer” folder include 3 timer types, and 2 components for working with
Baja absolute time (AbsTime). Two of the timers are boolean-types, as follows:
• BooleanDelay provides a configurable delay for an input transition passed to the output.
• OneShot provides an adjustable “one shot” timed output upon a false-to-true input transition.
The third timer is a NumericDelay, a numeric-type. It provides a input-to-output delay that is effectively
a “stepped ramp,” based upon configured properties.
For working with AbsTime, the Timer folder provides the following two components:
• CurrentTime — for display or reference to the current system time.
• TimeDifference — subtracts one AbsTime value from another, with output result in milliseconds.

About Util components
Components in the Util folder of kitControl range from a Counter object with boolean input and a
numeric output (counts active transitions) to a boolean-controlled NumericSwitch that selects one of two
numeric values. A StatusDemux provides a method to logic test (true/false) a linked object for the
presence of one or more status flags.
Util components also include “generator” components useful for simulation/logic testing, such as the
SineWave and Ramp (each with a numeric output) and MultiVibrator (boolean output).

Note: Starting in AX-3.6, an “Expr” (BqlExprComponent) component was added to the Util folder, available to
create custom math and logic functions based upon one or more BQL expression statements. For complete
information, refer to the Engineering Notes II document BQL Expression component.
The following components are included in the Util folder of the kitControl palette:
• BooleanSwitch
• Counter
• DigitalInputDemux
NiagaraAX-3.x

kitControl Guide
1–13

About Util components Chapter 1 – About kitControl
Latch Examples September 12, 2013
• EnumSwitch
• Expr (BqlExprComponent, AX-3.6 and later only)
• MinMaxAvg
• MultiVibrator
• NumericBitAnd
• NumericBitOr
• NumericBitXor
• NumericSwitch
• NumericToBitsDemux
• Ramp
• Random
• SineWave
• StatusDemux
NiagaraAX-3.x

kitControl Guide
1–14

2CHAPTER

kitControl Component Guides
This Component Guides section provides summary information on all kitControl components. Some
component topics include detailed descriptions with property information and examples. See the next
section “Alphabetical list of kitControl components” for a complete list of all kitControl components. For
details on the folder-based organization in the kitControl palette, see “Types of kitControl components”
on page 1-2.

Alphabetical list of kitControl components
For an overview of kitControl see “About kitControl” on page 1-1. For details on the folder-based organi-
zation of the kitControl palette, see “Types of kitControl components” on page 1-2.
The following list includes all kitControl components in alphabetical order, by name:
• AbsValue on page 3 (folder Math)
• Add on page 3 (folder Math)
• AlarmCountToRelay on page 3 (folder Alarm)
• And on page 4 (folder Logic)
• ArcCosine on page 5 (folder Math)
• ArcSine on page 5 (folder Math)
• ArcTangent on page 5 (folder Math)
• Average on page 5 (folder Math)
• BooleanDelay on page 5 (folder Timer)
• BooleanConst on page 6 (folder Constants)
• BooleanLatch on page 6 (folder Latches)
• BooleanSelect on page 6 (folder Selects)
• BooleanSwitch on page 6 (folder Util)
• BooleanToStatusBoolean on page 6 (folder Conversion)
• ChangeOfStateCountAlarmExt on page 7 (folder Alarm)
• Cosine on page 7 (folder Math)
• Counter on page 7 (folder Util)
• CurrentTime on page 8 (folder Timer)
• DegreeDays on page 9 (folder HVAC)
• DigitalInputDemux on page 10 (folder Util)
• Divide on page 12 (folder Math)
• DoubleToStatusEnum on page 12 (folder Conversion)
• ElapsedActiveTimeAlarmExt on page 12 (folder Alarm)
• ElectricalDemandLimit on page 12 (folder Energy)
• EnumConst on page 18 (folder Constants)
• EnumLatch on page 18 (folder Latches)
• EnumSelect on page 18 (folder Selects)
• EnumToStatusEnum on page 18 (folder Conversion)
• EnumSwitch on page 18 (folder Util)
• Expr (BqlExprComponent on page 7, folder Util) also “ExprLogic” and “ExprMath” components
• Equal on page 18 (folder Logic)
• Exponential on page 19 (folder Math)
• Factorial on page 19 (folder Math)
• FloatToStatusEnum on page 19 (folder Conversion)
• GreaterThan on page 19 (folder Logic)
• GreaterThanEqual on page 19 (folder Logic)
NiagaraAX-3.x

kitControl Guide
2–1

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• IntToStatusNumeric on page 19 (folder Conversion)
• InterstartDelayControl on page 19 (folder HVAC)
• InterstartDelayMaster on page 19 (folder HVAC)
• LeadLagCycles on page 19 (folder HVAC)
• LeadLagRuntime on page 21 (folder HVAC)
• LessThan on page 22 (folder Logic)
• LessThanEqual on page 22 (folder Logic)
• LogBase10 on page 22 (folder Math)
• LogNatural on page 22 (folder Math)
• LongToStatusNumeric on page 22 (folder Conversion)
• LoopAlarmExt on page 22 (folder Alarm)
• LoopPoint on page 23 (folder HVAC)
• Maximum on page 27 (folder Math)
• Minimum on page 27 (folder Math)
• MinMaxAvg on page 27 (folder Util)
• Modulus on page 28 (folder Math)
• Multiply on page 28 (folder Math)
• MultiVibrator on page 28 (folder Util)
• Negative on page 28 (folder Math)
• NightPurge on page 28 (folder HVAC)
• Not on page 30 (folder Logic)
• NotEqual on page 31 (folder Logic)
• NumericBitAnd on page 31 (folder Util)
• NumericBitOr on page 32 (folder Util)
• NumericBitXor on page 32 (folder Util)
• NumericConst on page 32 (folder Constants)
• NumericDelay on page 33 (folder Timer)
• NumericLatch on page 33 (folder Latches)
• NumericSelect on page 33 (folder Selects)
• NumericSwitch on page 34 (folder Util)
• NumericToBitsDemux on page 34 (folder)
• NumericUnitConverter on page 35 (folder Conversion)
• OneShot on page 35 (folder Timer)
• OptimizedStartStop on page 36 (folder HVAC)
• Or on page 40 (folder Logic)
• OutsideAirOptimization on page 41 (folder Energy)
• Power on page 42 (folder Math)
• Psychrometric on page 42 (folder HVAC)
• RaiseLower on page 44 (folder HVAC)
• Ramp on page 43 (folder Util)
• Random on page 43 (folder Util)
• Reset on page 44 (folder Math)
• SequenceBinary on page 46 (folder HVAC)
• SequenceLinear on page 47 (folder HVAC)
• SetpointLoadShed on page 49 (folder Energy)
• SetpointOffset on page 50 (folder Energy)
• ShedControl on page 50 (folder Energy)
• Sine on page 51 (folder Math)
• SineWave on page 51 (folder Util)
• SlidingWindowDemandCalc on page 51 (folder HVAC)
• SquareRoot on page 53 (folder Math)
• StatusBooleanToBoolean on page 53 (folder Conversion)
• StatusDemux on page 53 (folder Util)
• StatusEnumToEnum on page 53 (folder Conversion)
• StatusEnumToInt on page 53 (folder Conversion)
• StatusEnumToStatusBoolean on page 53 (folder Conversion)
• StatusEnumToStatusNumeric on page 53 (folder Conversion)
• StatusNumericToDouble on page 53 (folder Conversion)
• StatusNumericToFloat on page 54 (folder Conversion)
• StatusNumericToInt on page 54 (folder Conversion)
• StatusNumericToStatusEnum on page 54 (folder Conversion)
• StatusNumericToStatusString on page 54 (folder Conversion)
NiagaraAX-3.x

kitControl Guide
2–2

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-AbsValue
• StatusStringToStatusNumeric on page 54 (folder Conversion)
• StringConcat on page 54 (folder String)
• StringConst on page 54 (folder String)
• StringIndexOf on page 54 (folder String)
• StringLatch on page 55 (folder Latches)
• StringLen on page 55 (folder String)
• StringSelect on page 55 (folder Selects)
• StringSubstring on page 55 (folder String)
• StringTest on page 55 (folder String)
• StringToStatusString on page 55 (folder Conversion)
• StringTrim on page 55 (folder String)
• Subtract on page 55 (folder Math)
• Tangent on page 56 (folder Math)
• TimeDifference on page 56 (folder Timer)
• Tstat on page 56 (folder HVAC)
• Xor on page 56 (folder Logic)

kitControl-AbsValue
 AbsValue performs the operation out = abs(inA) (absolute value of inA). The AbsValue is available
in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-Add
 Add performs the operation out = (inA + inB + inC + inD). The Add is available in the Math folder
of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-AlarmCountToRelay
The AlarmCountToRelay component allows you to link from an Alarm Class component to monitor
alarm count and send an associated boolean output to a relay whenever there is an increase in the

alarm count. The alarm count type that you choose to monitor is optional and includes the alarm states
or statuses, as described under the “Alarm Count Type”, below. This component may be used in security
applications or situations where you want to connect the occurrence of a new alarm with an event such
as a light, horn, or other signal which requires a relay connection. When an alarm count increases, the
component’s Relay Out property is set to True from False and maintained at that status for the amount
of time that is specified by the Timer property value.
AlarmCountToRelay component properties are described below:
• Alarm Count

When the AlarmCountToRelay component is linked to an alarm class component, this property dis-
plays the current alarm count for that alarm class component. The numeric value of this property
dynamically displays the number of alarms of the type specified in the Alarm Type Count property.

• Relay Out
This property provides the boolean output value for linking into a relay control component. The de-
fault value is false and the active value is true. When this property transitions to true, it stays in the
true state for a time equal to the value of the Timer property.

• Timer
This property allows you to set a value that specifies how long the Relay Out value is to be held in
the active (true) state.

• Alarm Count Type
This property allows you to choose one of the following alarm types to monitor:
• Any Count

When you select this option, you can link from any alarm type to the Alarm Count property. In
this case, an increase in any type alarm count from this alarm class invokes a status change at
the Relay Out property for a time equal to the value of the Timer property.

• Unacked Alarm Count
When you select this option, you can link from the Unacked Alarm Count property on an
Alarm Class component to the Alarm Count property. Any increase in the Unacked Alarm
Count invokes a status change at the Relay Out property for a time equal to the value of the
Timer property.
NiagaraAX-3.x

kitControl Guide
2–3

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• Open Alarm Count
When you select this option, you can link from the Open Alarm Count property on an Alarm
Class component to the Alarm Count property. Any increase in the Open Alarm Count invokes
a status change at the Relay Out property for a time equal to the value of the Timer property.

• In Alarm Count
When you select this option, you can link from the In Alarm Count property on an Alarm Class
component to the Alarm Count property. Any increase in the In Alarm Count invokes a status
change at the Relay Out property for a time equal to the value of the Timer property.

Figure 2-1 shows an example of an AlarmCountToRelay component that is linked to the Unacked Alarm
Count property. In this example, the Unacked Alarm Count is 46. Any increase in the number of Unacked
Alarms causes the Relay Out property to change status from false to true for a time equal to the value of
the Timer property.

Figure 2-1 Example AlarmCountToRelay usage

See also Alphabetical list of kitControl components

kitControl-And
And performs a logical AND on all inputs and writes the result to the out property. It is available in
the Logic folder of the kitControl palette. Table 2-1 shows the And object truth table when using two

inputs. Table 2-2 shows the And object truth table if using all four inputs. NAND gate logic is accom-
plished by linking to a Not object.
See also Alphabetical list of kitControl components

Table 2-1 And object truth table (2 inputs)

In A In B Out

false false false
false true false
true false false
true true true
NiagaraAX-3.x

kitControl Guide
2–4

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-ArcCosine
Table 2-2 And object truth table (4 inputs)

kitControl-ArcCosine
 ArcCosine performs the operation out = acos(inA). The ArcCosine is available in the Math folder
of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-ArcSine
 ArcSine performs the operation out = asin(inA). The ArcSine is available in the Math folder of the
kitControl palette.

See also Alphabetical list of kitControl components

kitControl-ArcTangent
 ArcTangent performs the operation out = atan(inA). The ArcTangent is available in the Math folder
of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-Average
Average determines the average value of valid inputs and writes that value to out. out = (inA + inB +
inC + inD) / 4. The Average is available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-BooleanDelay
The BooleanDelay component provides a way to delay the status change of a boolean status “out”
property value by configuring an associated “Delay” property. Delay properties are provided for on

(true) and off (false) statuses and are labeled “On Delay” and “Off Delay”, respectively. The delay applies
to any transition (status change from on to off or off to on) at the component’s status boolean input. Both
delay times are configurable in terms of hours, minutes and seconds.
Types of BooleanDelay component properties include the following:
• Facets

Use this property to set the trueText and falseText for the Out property values. For example, you
might want to set the facet trueText to display “ON” and the facet falseText to display “OFF”.

In A In B In C In D Out

false false false false false
false false false true false
false false true false false
false false true true false
false true false false false
false true false true false
false true true false false
false true true true false
true false false false false
true false false true false
true false true false false
true false true true false
true true false false false
true true false true false
true true true false false
true true true true true
NiagaraAX-3.x

kitControl Guide
2–5

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• In
Typically, you set this property by linking a boolean out value into it. You can manually configure
the default state to be true, false, or null, so that when no value is linked into this property, the
default value is used. This property value is passed to the Out and Out Not properties (after any On
Delay or Off Delay) whenever there is a change in this property’s status.

• On Delay
This property allows you to set the amount of time (in hours, minutes, and seconds) that you want
to expire before sending a true (On) value to the Out property. Time begins to expire at the mo-
ment that a change in the In property occurs (a transition from false or null to true).

• Off Delay
This property allows you to set the amount of time (in hours, minutes, and seconds) that you want
to expire before sending a false (Off) value to the Out property. The time begins at the moment that
a change in the In property occurs (a transition from True to False or False to true).

• On Delay Active
This read-only property shows whether or not the On Delay time is actively counting down to expi-
ration. This (normally false) value changes to true anytime that a transition from false to true occurs
at the In property and stays at true until any Off Delay time is expired. If the On Delay value is set to
“0”, then this value does not change to true.

• Off Delay Active
This read-only property shows whether or not the Off Delay time is actively counting down to expi-
ration. This (normally false) value changes to true anytime that a transition from true to false occurs
at the In property and stays at true until any Off Delay time is expired. If the On Delay value is set to
“0”, then this value does not change to true.

• Out
This property has true, false, or null options available. These values are set at the end of any On Delay
or Off Delay to reflect the In property value.

• Out Not
This property has true, false, or null options available. These values are set at the end of any On Delay
or Off Delay to reflect the inverse In value. For example, when the In value is true, the Out Not value
is set to false (after expiration of any “delay” value).

The BooleanDelay component is located in the Timer folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-BooleanConst
Provides constant status boolean value, with actions to set. It is available in the Constants folder of
the kitControl palette. See “About Constant components” on page 1-4.

See also Alphabetical list of kitControl components

kitControl-BooleanLatch
 BooleanLatch provides a latch for a status boolean input, and is found in the Latches folder of the
kitControl palette. See “About Latch components” on page 1-8.

See also Alphabetical list of kitControl components

kitControl-BooleanSelect
 BooleanSelect is a boolean select, and is found in the Selects folder of the kitControl palette. See
“About Select components” on page 1-13 for an overview.

See also Alphabetical list of kitControl components

kitControl-BooleanSwitch
 (AX-3.5 and later) BooleanSwitch selects one of two StatusBoolean inputs based upon the boolean
value at the StatusBoolean input “In Switch.” BooleanSwitch is available in the Util folder of the

kitControl palette.
See also Alphabetical list of kitControl components

kitControl-BooleanToStatusBoolean
 BooleanToStatusBoolean converts a Boolean value to StatusBoolean. See “Simple value to status
value” on page 1-7. It is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–6

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-BqlExprComponent
kitControl-BqlExprComponent
 (AX-3.6 and later) BqlExprComponent (Expr) provides the means to create custom math and logic
operations based upon manually-added slots and one or more BQL expression statements. Slots can

be various baja types such as primitives Double, Float, Integer, Boolean, or String, or status types such as
StatusBoolean, StatusNumeric, and so on. Slots are used either as inputs, or as one or more outputs. BQL
expressions are entered in the component’s “Expr” property.
A “blank” Expr component is available in the Util folder of the kitControl palette. Additionally, example
Expr components are in the Logic folder (ExprLogic) and Math folder (ExprMath), demonstrating a
4-input logic AND gate and 4-input math ADD component, respectively.
For complete information, refer to the Engineering Notes II document BQL Expression component.
See also Alphabetical list of kitControl components

kitControl-ChangeOfStateCountAlarmExt
 ChangeOfStateCountAlarmExt is a special-purpose alarm extension, especially for use as child of a
BooleanPoint or BooleanWritable that has one or more DiscreteTotalizerExt extensions. It

provides alarming on COS (change of state) counts, using offNormal property errorLimit.
Note: In the parent Boolean point, order the ChangeOfStateCountAlarmExt slot below the DiscreteTotalizerExt

slot that it references. In the ChangeOfStateCountAlarmExt’s Offnormal container, use the Discrete Totalizer
Select property to reference the DiscreteTotalizerExt.
ChangeOfStateCountAlarmExt is available in the Alarm folder of the kitControl palette, along with a
ElapsedActiveTimeAlarmExt (for runtime-based alarms). You can use both extensions to reference the
same DiscreteTotalizerExt.
See also Alphabetical list of kitControl components

kitControl-Cosine
 Cosine performs the operation out = cos(inA). The Cosine is available in the Math folder of the
kitControl palette.

See also Alphabetical list of kitControl components

kitControl-Counter
 The Counter component will count boolean inactive to active transitions. It supports counting up,
counting down, presetting, and clearing. The Counter is available in the Util folder of the kitControl

palette. The following sections provide more details:
The Counter component includes the following properties:
• Facets

This is used to set the units and number precision of the Out property.
• Propagate Flags

Specifies which status flags will propagate from the Count Up, Count Down, Preset In, and Clear In
properties to the Out status flags.

• Out
This is the current count output.

• Count Up
This is a StatusBoolean input. When this input makes inactive to active transition the value of the
Out property increments by the Count Increment value.

• Count Down
This is a StatusBoolean input. When this input makes inactive to active transition the value of the
Out property will be decremented by the Count Increment.

• Preset In
This is a StatusBoolean input. When this input makes inactive to active transition the value of the
Out property will be decremented by the Count Increment.

• Clear In
This is a StatusBoolean input. When this input makes inactive to active transition the value of the
Out property will be set to 0.0.

• Preset Value
This defines the value that will be set in the Out property when the Preset In changes to active, or
when the Preset action is invoked.

• Count Increment
This is the value that the Out property will change for a single count up or count down active tran-
sition.
NiagaraAX-3.x

kitControl Guide
2–7

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• Preset
This action sets the Out property value to the Preset Value.

• Clear
This action sets the Out property value to 0.

Figure 2-2 shows an example of a Counter component property sheet.

Figure 2-2 Counter component example property sheet

Figure 2-3 shows an example application that ramps between the RampMaxValue and the RampMin-
Value. The period of the MultiVibrator object sets how fast the ramp counts. The Clock input of the
BooleanLatch object config flags is set to allow fan-in.

Figure 2-3 Counter component example ramp up and down

Figure 2-4 shows an example count from the RampMaxValue down to 0 and then reset back to
RampMaxValue and repeat.

Figure 2-4 Counter component example ramp down

See also Alphabetical list of kitControl components

kitControl-CurrentTime
CurrentTime provides the current system time formatted in Baja absolute time (AbsTime). Use it
directly for graphics display, or with a TimeDifference object for other applications. CurrentTime is

in the Timer folder of the kitControl palette.
See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–8

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-DegreeDays
kitControl-DegreeDays
DegreeDays provides degree day calculations, based upon temperature received at the Temp In slot
and values of various other properties.

Note: Definition of Degree Days: Degree Days is a unit of measure that may be expressed as either Heating
Degree Days (HDD) or Cooling Degree Days (CDD). You calculate Degree Days by taking the difference
between the average temperature during a given time period (month, season, year) and a reference point,
usually 65 degrees Fahrenheit.
Both cooling and heating degree day values are available, including totalized values. A Reset Totals action
is available to clear (zero) totalized values.
DegreeDays is available in the Energy folder of the kitControl palette. The following sections provide
more details:
The DegreeDays component includes the following properties and one action:
• Facets

This is used to set the units and number precision of the Temp In, Min Temp, Max Temp, and Mean
Temp properties.

• Base Temperature
Specifies the base temperature used in the degree-day calculation.

• Temp In
This is the input for the outside air temperature used in the degree-day calculation. Note: If this in-
put is not valid the no calculations will be done.

• Min Temp
The minimum temperature recorded for the current day. Tested and set on each calculation.

• Max Temp
The maximum temperature recorded for the current day. Tested and set on each calculation.

• Mean Temp
The mean temperature recorded for the previous day. Calculated when the day changes. Mean
Temp = (Max Temp + Min Temp) / 2.0

• Clg Deg Days
This is the cooling degree-day calculated for the previous day. Calculated when the day changes.
If (Mean Temp - Base Temperature) > 0
Clg Deg Days = Mean Temp - Base Temperature
else
Clg Deg Days = 0.0

• Clg Deg Days Total
This is the totalized cooling degree-days since last Reset Totals action was invoked. Calculated when
Clg Deg Days changes.

• Htg Deg Days
This is the heating degree-day calculated for the previous day. Calculated when the day changes.
If (Mean Temp - Base Temperature) < 0
Htg Deg Days = Base Temperature - Mean Temp
else
Htg Deg Days = 0.0

• Htg Deg Days Total
This is the totalized heating degree-days since last Reset Totals action was invoked. Calculated when
Htg Deg Days changes.

• Reset Totals
This action will clear the Clg Deg Days Total and Htg Deg Days Total properties to zero when in-
voked.

Figure 2-5 shows an example DegreeDays property sheet.
NiagaraAX-3.x

kitControl Guide
2–9

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-5 DegreeDays example property sheet

See also Alphabetical list of kitControl components

kitControl-DigitalInputDemux
The Digital Input Demux (Demultiplexer) object provides four status boolean outputs from one
StatusNumeric input. This component is available in the Util folder of the kitControl palette.

A typical application for this demultiplexer object is in association with a multiplexer module to expand
the IO capacity of a system. The multiplexer creates a single analog voltage output to represent the state
of up to four digital inputs. The analog voltage is then demultiplexed into four status boolean outputs by
the DigitalInputDemux object.
The DigitalInputDemux component has the following properties:
• Propagate Flags

By default, this object maintains independent status flags from input-linked points. However, as a
configuration option you can specify “out” status to propagate from the input status. The propagate
flags property specifies which status flags propagate from the “In” property to the “Out” status flags.
The PropagateFlags property allows you to select any combination of the following status types for
propagation:
• disabled
• fault
• down
• alarm
• overridden

• In
This is a StatusNumeric value for this object and is the input analog value from the multiplexer
which represents the state of the four digital inputs. This input must be valid for the object to func-
tion.

• Out1
This is a status boolean value which is set to true if the object determines that the “In” property
contains a value equivalent to the value set as the Out1 Value property.

• Out2
This is a status boolean value which is set to true if the object determines that the “In” property
contains a value equivalent to the value set as the Out2 Value property.

• Out3
This is a status boolean value which is set to true if the object determines that the “In” property
contains a value equivalent to the value set as the Out3 Value property.

• Out4
This is a status boolean value which is set to true if the object determines that the “In” property
contains a value equivalent to the value set as the Out4 Value property.

• Out1 Value
This should be set to a value which corresponds with the equivalent setting in the multiplexer device
to represent the status of digital input 1. The default is 4.80.

• Out2 Value
This should be set to a value which corresponds with the equivalent setting in the multiplexer device
to represent the status of digital input 2. The default is 2.40.

• Out3 Value
This should be set to a value which corresponds with the equivalent setting in the multiplexer device
to represent the status of digital input 3. The default is 1.20.
NiagaraAX-3.x

kitControl Guide
2–10

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-DigitalInputDemux
• Out4 Value
This should be set to a value which corresponds with the equivalent setting in the multiplexer device
to represent the status of digital input 4. The default is 0.60.

• Dead Band
The Dead Band allows you to set a tolerance value to prevent ‘chatter’ of the outputs due to fluctu-
ations of the input value. The Dead Band function operates purely on the input “In” value.
In the example shown in Figure 2-6, the DigitalInputDemux object is fed from a multiplexer device
on site which is connected to four digital inputs (DI). DI1 and DI2 are in an open (off) condition and
DI3 and DI4 are closed (on). The combined voltage weighting of DI3 and DI4 is 1.8v which is trans-
mitted to the DigitalInputDemux object via an NDIO universal input. The DigitalInputDemux ob-
ject then faithfully demultiplexes this signal so that “Out3” and “Out4” are both set to ‘True’.
In practice, a voltage drop occurs on the received signal and the Dead Band property allows you to
engineer in some protection for this fluctuation to prevent it adversely upsetting your control strat-
egy. The Dead Band property in this example is set to 0.10 which is applied to the “In” value. The
Dead Band function operates equally in both positive and negative sense on the “In” value. In this
example therefore, all values from 1.75 through to 1.85 are valid.
The default value of the Dead Band property is 0.10.

Figure 2-6 Operation of the Dead Band property

Note: The DigitalInputDemux object has no actions.
Examples In the example shown in Figure 2-7, four volt-free contacts, such as door status, are
connected to a 4 channel digital input multiplexer. The IO/DIM4 multiplexer device shown is manufac-
tured by Titan Products Ltd., although similar suitable devices are available from other equipment
suppliers. The IO/DIM4 multiplexer is microprocessor based and is designed to convert 4 separate digital
input signals into a single analogue voltage output. Each combination of digital input signal is converted
to an output voltage level which is then connected to one universal input of an NDIO IO-16 module. The
NDIO universal input is configured as a “Voltage Input Point” and its output feeds the DigitalInput-
Demux object. Finally, the DigitalInputDemux object provides 4 status boolean outputs which represent
the status of the original 4 contacts.
NiagaraAX-3.x

kitControl Guide
2–11

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-7 DigitalInputDemux object application

See also Alphabetical list of kitControl components

kitControl-Divide
 Divide performs the operation out = (inA / inB) If either input is Numeric.NaN, the output will be
Numeric.NaN. The Divide is available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-DoubleToStatusNumeric
 DoubleToStatusNumeric converts a Double value to StatusNumeric. See “Simple value to status
value” on page 1-7. It is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-ElapsedActiveTimeAlarmExt
 ElapsedActivetimeAlarmExt is a special-purpose alarm extension, especially for use as child of a
BooleanPoint or BooleanWritable that has one or more DiscreteTotalizerExt extensions. It

provides alarming on runtime (elapsed active time), using offNormal property errorLimit.
Note: In the parent Boolean point, order the ElapsedActiveTimeAlarmExt slot below the DiscreteTotalizerExt

slot that it references. In the ElapsedActiveTimeAlarmExt’s Offnormal container, use the Discrete Totalizer
Select property to reference the DiscreteTotalizerExt.
ElapsedActiveTimeAlarmExt is available in the Alarm folder of the kitControl palette, along with a
ChangeOfStateCountAlarmExt (for COS-based alarms). You can use both extensions to reference the
same DiscreteTotalizerExt.
See also Alphabetical list of kitControl components

kitControl-ElectricalDemandLimit
ElectricalDemandLimit provides load shedding calculations based upon a projected electrical
demand averaging using a configurable sliding window interval.

To use the ElectricalDemandLimit component, as a minimum, you need to do the following:
NiagaraAX-3.x

kitControl Guide
2–12

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-ElectricalDemandLimit
• configure the component properties
• setup any Power Input links
• setup the output links
• enable the EDL component
The Shed Out slot (output) is typically linked to a ShedControl object, which actually performs the
equipment shed and restoration control. Based on how you have configured the EDL component, the
calculations direct that load shedding, load restoration, or no action be taken. With each calculation, the
projected average demand is updated and displayed. Execution of this object can be enabled or disabled
(default) either by linking or manually setting the Prediction Enabled property value.
ElectricalDemandLimit is available in the Energy folder of the kitControl palette, along with related
objects SetpointOffset and ShedControl.
The following sections provide an overview and description of this component:
• Overview of the Electrical Demand Limit component
• Determining shed levels
See also Alphabetical list of kitControl components
Overview of the Electrical Demand Limit component Electrical Demand Limiting (EDL) is an energy
management tool that allows you to level-out fluctuations that may occur in daily energy demand levels.
Energy providers often set billing rates based on periodic maximum demand levels, so it is possible that
a single day (anomaly) could dramatically increase a monthly billing rate. Reducing peak demand levels
can significantly lower energy costs - even if the total energy consumption does not change. The Electri-
calDemandLimit component is used to monitor and control building or enterprise energy usage in order
to avoid costly spikes in demand level.
The EDL component monitors instantaneous electrical power, calculates a “projected demand average
over a specified demand interval, and directs the shedding of specified loads whenever the projected
demand average is higher than a specified demand limit. As projected demand levels recede, the
component invokes a prioritized restoration of loads. Also, the EDL component records and saves peak
demand times, dates, and values for both the current month and the previous month.
• Projected Demand Average

The EDL component logic executes at a minimum of once per minute using a single Power Input value
collected at the current time to calculate a “projected demand average”. It totalizes the Power Input
every time the Power Input property value changes, but it only calculates projected demand average
and Shed Level once a minute. This projected average is calculated using a combination of projected
and historical samplings that are averaged over a specified interval (configurable in the EDL property
sheet view). You can influence the value of the Projected Demand Average by using the Demand In-
terval and the Percent Interval Elapsed properties.
• Demand Interval

You can set the demand interval time window using the EDL Demand Interval property. This
property value sets the length (in minutes) of the demand window that is used for calculating
the average. The default demand interval value is 15 minutes and may be set to 30 minutes—
any other entry results in 15 minutes being used. The larger demand interval has more data
points (one per minute) than the smaller interval. Depending on the value of the Percent Inter-
val Elapsed property, these data points may be comprised of mostly sampled historical demand
values, mostly values that are projected (based on current demand), or half and half.

• Percent Interval Elapsed
You can control the weighting of projected demand data usage versus historical demand data
usage by setting the Percent Interval Elapsed property value. A Percent Interval Elapsed value of
“50” uses half of the actual sampled (or historical) values and half of the projected values in a
demand interval to calculate the projected demand average. The projected demand value that
is used to figure the “projected” data is the current energy demand.

Figure 2-8 shows how actual historical data and projected data are proportionally used across a 15
minute demand interval by setting the Percent Interval Elapsed property. In this example, the Percent
Interval Elapsed property is set to 67, so the actual “minutes elapsed” over the 15 minute demand in-
terval equals 10 minutes and the “minutes remaining” equals 5 minutes. The actual historical de-
mand data is averaged over 10 minutes and the instantaneous demand (taken at the 11 minute point)
is used to calculate an average “Projected Data” value. These two numbers are then used to calculate
the Projected Demand Average.
NiagaraAX-3.x

kitControl Guide
2–13

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-8 Demand Interval Illustration

• Demand Periods and Demand Limits
A day may be divided into three periods, based on time-of-day, with each period having a specific
demand limit value. The Projected Demand Average is compared to the Demand Limit value that is
set for the current time-of-day to determine whether “shedding” or “restoring” loads is appropriate.
If the projected demand is higher than the demand limit for the current time of day, shedding is in-
voked. If shedding is active and the projected demand is lower than the demand limit for the current
time of day, then the restoring is invoked.

• Power Shed Levels
There are 32 Power Shed Level properties available in the EDL component. You can set a value on
one or more of these properties to make them available for shedding calculations. Each shed level
property value represents an amount of power that is dropped when that shed level is active. These
values must be entered manually in the property sheet and are estimates, not “live” data.
When the projected demand exceeds the Demand Limit for the current demand period, a calcula-
tion is performed to determine home many loads to shed. The Power Shed Level properties should
be set to a demand value that is based on loads that are controlled by the specific shed group. The
load shed logic calculates how much demand is required to be reduced, and then uses the Power
Shed Level values to determine how many of the loads to shed.
Shedding or restoring loads occurs in a fixed priority that sheds Power Shed Level1 first and restores
it last.

Following, are examples that illustrate how Projected Demand Average calculation can vary.
Example: Projected demand average using mostly Projected Values

Assuming that the Demand Interval is set to 15 minutes and the Percent Interval Elapsed property is set
to “7” (7%), then the Projected Data (calculated demand) is based on the current minutes demand reading
being projected for the remaining minutes in the Demand Interval window. The following example
assumes that the Power Input value is 400.

minutesElapsed = 15 * 6.67 / 100 = 1
minutesRemaining = 15 - 1 = 14

calculated total = (current Power Input * minutesRemaining) + Power Input from
each minutesElapsed interval
calculated total = (400 * 14) + 400 = 6000

projectedDemand = calculated total / (minutesElapsed + minutesRemaining)
projectedDemand = 6000 / (1 + 14) = 400

Note the following about this example:
• By setting the Percent Interval Elapsed property to a value that corresponds to the first minute of the

demand window, the calculated demand is based almost entirely on a projected data value.
• In this case the projected demand calculation uses the Power Input value at minute “2” and averages

that demand across the remaining 14 minutes.
Example: Projected demand average using all Recorded Values

Assuming that the Demand Interval property is set to 15 minutes and the Percent Interval Elapsed
property is set to 93%, then the calculated demand is based completely on recorded demand readings for
the current minute and the 14 previous minutes. Following, is an example of using all “recorded” values
and no “projected” values.

minutesElapsed = 15 * 93.33 / 100 = 14
minutesRemaining = 15 - 14 = 1

calculated total = (current Power Input * minutesRemaining) + Power Input from
each minutesElapsed interval
NiagaraAX-3.x

kitControl Guide
2–14

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-ElectricalDemandLimit
calculated total = (600 * 1) + 600 + 600 + 600 + 600 + 600 + 600 + 600 + 600
+ 600 + 400 + 400 +400 + 400 + 400 = 8000

projectedDemand = calculated total / (minutesElapsed + minutesRemaining)
projectedDemand = 8000 / (14 + 1) = 533

• There would be no actual “projected” demand in this case.
• This example assumes that the Power Input is currently 600 and has been at that value for the pre-

vious 9 minutes, prior to that the value was 400.
• By setting the Percent Interval Elapsed to a value that corresponds to the last minute of the Demand

Interval, the projected output is a sliding window average of the minutely recorded Power Input val-
ues.

• In this case actual demand is used in the calculation as opposed to projected demand.
Example: Projected demand average using Recorded and Projected Values

The default operation of the EDL component uses a Percent Interval Elapsed property value of 75%. The
calculated demand is then based 75% on actual recorded Power Input property values and 25% on a
projection that assumes the demand will remain at the current value for the remaining minutes in the
Demand Interval.
Determining shed levels When Projected Demand Average exceeds the Demand Limit value for the
current Demand Interval, a calculation is performed to determine home many loads to shed. All available
(or desired) Power Shed Level properties (1-32) should be set to a demand value based on the loads that
are controlled by the specific shed group. The load-shed logic calculates how much demand is required
to be reduced, and then uses the Power Shed Level property values to determine how many the loads to
shed.

Example: Estimating the Power Shed Level values
An estimate of the demand associated with a group of equipment can be calculated if the operating
voltage and current draw are known for the loads. For example:
• Single Phase Loads

W = V * A
W = 120 Volts * 30 Amps = 3600 Watts = 3.6 kW

• Three Phase Loads (use square root of 3)
W = V * A * 1.73
W = 480 Volts * 30 Amps * 1.73 = 24919 Watts = 24.9 kW

Example: Shed calculation
Using the following list of property values, this example shows a calculation that uses an EDL component
configured with three power shed levels. For this example, assume that the current Demand Limit Period
is Demand Limit Period1.
• calculated total = 7625 kW
• Projected Demand Average = 533 kW
• Demand Interval = 15
• Percent Interval Elapsed: = 75
• Demand Limit Period1: = 500 kW
• Demand Limiting Deadband = 5 kW
• Power Shed Level: = 20 kW
• Power Shed Leve2: = 15 kW
• Power Shed Leve3: = 30 kW
The following equations show example calculations:

targetIntervalTotal = demandLimit * (minutesElapsed + minutesRemaining)
targetIntervalTotal = 500 * (11.25 + 3.75) = 7500

powerChange = (calculated total - targetIntervalTotal) / minutesRemaining
powerChange = (7625 - 7500) / 3.75 = 33.33 KW that needs to be shed

Note the following about this example:
• Since Power Shed Level1 is only expected to reduce the demand by 20 kW, both Power Shed Level1

and Power Shed Level2 must be shed to reduce the demand by an expected 35 kW combined.
• The necessary loads are shed in sequential order during the same execution cycle, without evaluating

the actual impact on demand.
• The load shed determination is based on the projected reduction in demand for each group.
• Subsequent executions of the object may result in additional load shedding if the actual demand is

not reduced below the demand limit.
The following properties are available in the Electrical Demand Limit component property sheet view.
NiagaraAX-3.x

kitControl Guide
2–15

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• Prediction Enabled
This property allows you to enable or disable the EDL component by choosing true or false, re-
spectively. Choosing the null option (by selecting the null checkbox from the property sheet view)
leaves the “enabled” status in its current state. For example, if this property is currently set to true
then choosing the null option does not stop the execution of the EDL component. This value must
be set to true for the component to work.

• Power Input
This property is a writable field that allows you to link in a numeric value that represents the actual
power demand (kW) rate. This property monitors the demand rate and averages it over every minute
in order to use the value for comparison to the Projected Demand Average. This property should
always represent the total actual demand rate — the total of all meters that are on the energy network
being monitored by this component. Whenever a shed or restoration is invoked, this value is expect-
ed to change in relation to the estimated values that are set in the Power Shed Level properties.

• Message
This property displays information that relates to the status of the shed, restoration, or projected de-
mand values. It also may indicate the status of the EDL component, itself.

• Shed Out
This property displays a value that indicates the number of shed levels that are to be shed. For ex-
ample, a Shed Out value of 3 specifies that a Power Shed Level of 3 is being shed.

• Billing Start Delay
This property specifies the first billing day of the month for utility billing. This allows you to align
your data with actual energy company billing periods. Each month, on the day specified by this prop-
erty, the “current month” data moves to “Previous Month” and the current month data becomes
“This Month”.

• Demand Interval
This property represents the length of time, in minutes, that is used for the demand window portion
of the Projected Demand Average calculation. The default value is 15 minutes and may also be set
to 30 minutes.
Note: If any value other than 15 or 30 minutes is entered in this field, the value automatically reverts
to 15.

• Percent Interval Elapsed
This property is used to determine how much of the calculated demand is based on actual demand
as opposed to how much is based on projected demand. This integer value is used to set where in the
demand window the “current minute” is. In a 15 minute demand window, a value of 67 would mean
that the “current minute” is at 10. Larger numbers in this property increase the amount of historical
data that is used and decrease the amount of data that is based on the “current minute” demand.

• Rotate Level
This property specifies the maximum Shed Level that may be used. For example, a Rotate Level value
of 3 limits load shedding to Shed Level 3.

• Demand Limiting Deadband
This property allows you to set a deadband value that is used when activating restoration levels. The
deadband value is used only in determining whether or not to invoke a restoration action; it is not
used for invoking shed actions.

• Demand Period (1, 2, and 3) Start
These three properties allow you to split-up a 24 hour day into three different time-periods in order
to assign a separate demand limit for each distinct time.

• Demand Limit Period(1,2,3)
These three property fields allow you to set a desired demand limit value to correspond to each of
the three demand periods. When the Demand Limit value for a period is exceeded, load shedding is
invoked.

• Power Shed Level (1-32)
These properties allow you to set up to 32 estimated power shed levels. Each property represents the
amount of demand that you expect to shed when the associated shed level is invoked. The numbers
in these properties are used to calculate how many shed levels need to be invoked in order to lower
the demand level below the current Demand Period limit. Once a shed level is invoked, the actual
power drop is evaluated at the next minute to determine the actual effects of the shed action. If the
initial load shed does not actually bring down the demand to below the demand limit level, the next
shed level (if any) is invoked.
Note: You can limit the maximum number of shed levels that may be invoked by using the Rotate
Level property.
NiagaraAX-3.x

kitControl Guide
2–16

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-ElectricalDemandLimit
• This Month Demand Period (1,2, or 3) Peak
This historical data property displays the value of the highest demand (minute) that has occurred (so
far) in the current month.

• This Month Demand Period (1,2, or 3) Time
This property is associated with the “This Month Demand Period (1,2, or 3) Peak and displays the
time and date that the current month’s peak demand occurred.

• Previous Month Demand (1,2, or 3) Period Peak
This historical data property displays the value of the highest demand (minute) that occurred in the
previous month.

• Previous Month Demand (1,2, or 3) Period Time
This property is associated with the “Previous Month Demand Period (1,2, or 3) property and dis-
plays the time and date that the previous month’s peak demand occurred.

• Projected Demand Average
This is the read-only display of the average demand that is predicted to occur for the current demand
interval. Calculations occur to update this value every minute.

• Max Shed Level
This property displays the maximum shed level that has been used in the current month.

The following example illustrates using the Electrical Demand Limit component.
Example: Setting EDL component links and properties

The following example shows a partial wiresheet view of an EDL component configured for shedding
energy loads. The current time period in this example is Demand Period2.

Figure 2-9 Wiresheet view of EDL example application

Note the following about this example:
• EDL Configuration

• Power Input
Total demand is linked into the EDL component Power Input property. This is a single input
property, therefore the power sources need to be totaled before linking because there is more
than one meter supplying actual electrical demand data. This demand level value is expected to
change in response to load shedding.

• Demand Interval
This property is set to the default value of 15 minutes.

• Percent Interval Elapsed
This property is set to 25 percent, which adds more weight to the “current demand” and less
weight to “historical demand” for each calculation of the Projected Demand Average.

• Demand Limit
Demand limits are shown for Period1 and Period2, as 1000 and 2000, respectively. These are
the values that specify the demand levels that initiate power shedding.
NiagaraAX-3.x

kitControl Guide
2–17

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• Demand Period
Demand period start times are shown for Period1 and Period2, as 0000 (midnight) and 0800
(8:00 am), respectively. Demand Period3 start time is not shown. These values specify the start
time for each of the three Demand Periods.

• Power Shed levels
In this example, it is estimated that by shedding loads associated with Power Shed Level1, that
the amount of demand will decrease by 900 kW. Power Shed Levels 2 and 3 are set at 910 and
920, respectively. These properties are only the estimated amount of demand that is reduced by
shedding at each respective level. If they are exactly correct, then shedding at level 3 reduces
demand by the sum of all three shed levels: (900+910+920)=27030kW.

• Projected Demand Average
The current value for this property is shown as 2051, so shedding is initiated, as shown in the
message property “SHEDDING REQUIRED! Projected demand is 2051” and in the Shed Out
property value of “1.0” (Shed Level 1).

• EDL Linking
• Shed Out

The EDL Shed Out property value is linked to a Shed Control component that allows you to set
specific Shed Level(1-16) links into boolean controls. In the example, these controls are config-
ured to shut off power to “Plant_A”, “Plant_B”, and “Plant_C”, with Shed Level(1, 2, and 3), re-
spectively. In addition, the Shed Control component “out1” value is linked to a
SetpointLoadShed component that uses a configurable setpoint offset to reduce power usage.
You can also link from the Shed Out property to other energy components, such as a Setpoint
Offset component (also shown here).

• Power Input
In the example, with a Shed Level1 in effect, Power Input is at 2100, and the Projected Average
Demand value is 2051, still greater than the Demand Limit Period2 value of 2000. The Power
Shed Level2 value (estimate) indicates that invoking a Power Shed Level2 will yield a decrease
of 910kW and bring the demand down below the limit. If this estimate is fairly accurate, actual
power usage should drop and the Power Input value lower to below the Demand Limit Period2
value.

kitControl-EnumConst
 Provides constant EnumStatus value, with available action to Set. See “About Constant compo-
nents” on page 1-4. EnumConst is available in the Constants folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-EnumLatch
 EnumLatch provides a latch for a StatusEnum input, and is available in the Latches folder of the
kitControl palette. See “About Latch components” on page 1-8.

See also Alphabetical list of kitControl components

kitControl-EnumSelect
 EnumSelect is an Enum select, and is available in the Selects folder of the kitControl palette. See
“About Select components” on page 1-13 for an overview.

See also Alphabetical list of kitControl components

kitControl-EnumToStatusEnum
 EnumToStatusEnum converts an Enum value to StatusEnum, and is available in the Conversion
folder of the kitControl palette. See “Simple value to status value” on page 1-7.

See also Alphabetical list of kitControl components

kitControl-EnumSwitch
 EnumSwitch selects one of two StatusEnum inputs based upon the boolean value at the Status-
Boolean input “In Switch.” EnumSwitch is available in the Util folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-Equal
 Equal performs the operation A == B. Numeric.NaN values are never equal. Equal is available in the
Logic folder of the kitControl palette.

See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–18

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-Exponential
kitControl-Exponential
 Exponential performs the operation out = e ^ inA (e raised in the inA power). The Exponential is
available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-Factorial
 (AX-3.5 and later) Factorial provides a factorial math ouput, based upon the value present at its
statusNumeric input. Only the integer portion of the input value is evaluated—for example, either

value of 1.03 or 1.9999 is evaluated as 1. Factorial is available in the Math folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-FloatToStatusNumeric
 FloatToStatusNumeric converts a Float value to a StatusNumeric. See “Simple value to status value”
on page 1-7. FloatToStatusNumeric is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-GreaterThan
 GreaterThan performs the operation A > B with a boolean result. It is available in the Logic folder
of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-GreaterThanEqual
 GreaterThanEqual performs the operation A >= B with a boolean result. It is available in the Logic
folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-IntToStatusNumeric
 IntToStatusNumeric converts an Int (integer) value to StatusNumeric. See “Simple value to status
value” on page 1-7. IntToStatusNumeric is in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-InterstartDelayControl
 InterstartDelayControl objects are just like BooleanWritables, but with 3 additional slots for use in
interstart delay sequences, as follows:

• Delay — Delay before next object in delay sequence is started.
• Master — Specifies the InterstartDelayMaster component in the station that acts as delay master.
• Start Pending — Read-only Boolean status of whether a start is pending (true) or not (false).
No other InterstartDelayControl object using the same delay master can start for delay time after this
object starts. If delay is not defined, the default delay on the master will be used. InterstartDelayControl
is available in the HVAC folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-InterstartDelayMaster
 InterstartDelayMaster defines the master in an interstart delay sequence. Use it in conjunction with
one or more InterstartDelayControl objects. An available action is DelayTimerExpired. The

InterstartDelayMaster is available in the HVAC folder of the kitControl palette.
See also Alphabetical list of kitControl components
• DelayTimerExpired

DelayTimerExpired is an available action of an InterstartDelayMaster.

kitControl-LeadLagCycles
 LeadLagCycles provides lead-lag control of from 2 to 10 BooleanWritables based upon their
accumulated COS (change of state) counts. This object balances the number of change of states

cycles of each of the devices. Only one of the controlled devices will be active at a time based on cycle
count.
LeadLagCycles is available in the HVAC folder of the kitControl palette, along with a similar
LeadLagRuntime object.
Setup of the object involves the following properties:
NiagaraAX-3.x

kitControl Guide
2–19

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• In
A StatusBoolean input that controls whether any control device should be on. If this input is true,
one of the outputs will be active based on the cycle count of each controlled device.

• Number Outputs
Specifies the number of devices (outputs) that are controlled.

• Max Runtime
Specifies the maximum amount a given output will be true before switching to another output.

• Feedback
A StatusBoolean input, to provide positive feedback that a controlled device actually started. If the
feedback value does not show true within the Feedback Delay time, the current controlled output
will show alarm, and the LeadLagCycles switches to the next controlled output. Setting this value to
true (and not linking) disables this alarm feature.

• Feedback Delay Time
Specifies the delay time used to evaluate the feedback link (if any)

• Out A—J
StatusBoolean outputs, each typically linked to a BooleanWritable control point with a DiscreteTo-
talizerExt. Outputs are typically used to control loads of some type, such as 2 or more pumps.

• Cycle Count A—J
These are Integer inputs that are used for cycle count feedback for the corresponding Out A - J.
These inputs will typically be linked to the ChangeOfStateCount property of the DiscreteTotalizer-
Ext that is measuring the cycles of the corresponding Out A - J.

Example: Using the LeadLagCycle component
A simple example LeadLagCycle object that controls 3 pumps is shown in Figure 2-10 and Figure 2-11.

Figure 2-10 LeadLagCycle example property sheet

Figure 2-11 LeadLagCycle example with linked objects

Note that in this example, each of the three BooleanWritable points has a DiscreteTotalizerExt, with its
changeOfStateCount slot linked back to a Cycle Count x input on the LeadLagCycles object. The
“feedback” Or object simulates feedback, fed through a BooleanDelay object.
NiagaraAX-3.x

kitControl Guide
2–20

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-LeadLagRuntime
See also Alphabetical list of kitControl components

kitControl-LeadLagRuntime
 LeadLagRuntime provides lead-lag control of from 2 to 10 BooleanWritables based upon their
accumulated runtimes (elapsed active time). This object balances the active runtime of each of the

devices. Only one of the controlled devices will be active at a time based on runtime.
LeadLagRuntime is available in the HVAC folder of the kitControl palette, along with a similar LeadLag-
Cycles object.
Setup of the object involves the following properties (also see LeadLagRuntime usage), as follows:
• In

A StatusBoolean input that controls whether any control device should be on. If this input is true,
one of the outputs will be active based on runtime.

• Number Outputs
Specifies the number of devices (outputs) that are controlled.

• Max Runtime
Specifies the maximum amount a given output will be true before switching to another output.

• Feedback
A StatusBoolean input, to provide positive feedback that a controlled device actually started. If the
feedback value does not show true within the Feedback Delay time, the current controlled output
will show alarm, and the LeadLagRuntime switches to the next controlled output. Setting this value
to true (and not linking) disables this alarm feature.

• Feedback Delay Time
Specifies the delay time used to evaluate the feedback link (if any)

• Out A—J
StatusBoolean outputs, each typically linked to a BooleanWritable control point with a DiscreteTo-
talizerExt. Outputs are typically used to control loads of some type, such as 2 or more pumps.

• Runtime A—J
These are RelTime inputs that are used for runtime feedback for the corresponding Out A - J. These
inputs will typically be linked to the ElapsedActiveTime property of the DiscreteTotalizerExt that is
measuring the runtime of the corresponding Out A - J.

Example: LeadLagRuntime usage
A simple example LeadLagRuntime object controlling 3 pumps is shown in Figure 2-12 and Figure 2-13.

Figure 2-12 LeadLagRuntime example property sheet
NiagaraAX-3.x

kitControl Guide
2–21

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-13 LeadLagRuntime example with linked objects

Note that in this example, each of the three BooleanWritable points has a DiscreteTotalizerExt, with its
elapsedActiveTime slot exposed up in the composite of the parent point for link clarity. The “feedback”
Or object simulates feedback, fed through a BooleanDelay object.
See also Alphabetical list of kitControl components

kitControl-LessThan
 LessThan performs the operation A < B with a boolean result. It is available in the Logic folder of
the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-LessThanEqual
 LessThanEqual performs the operation A <= B with a boolean result. It is available in the Logic
folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-LogBase10
 LogBase10 performs the operation out = log10(inA) (log base 10 of inA). It is available in the Math
folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-LogNatural
 LogNatural performs the operation out = ln(inA) (log base e of inA). The LogNatural is available in
the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-LongToStatusNumeric
 LongToStatusNumeric converts a Long value to StatusNumeric. See “Simple value to status value”
on page 1-7. LongToStatusNumeric is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-LoopAlarmExt
 The LoopAlarmExt is a special-purpose alarm extension, especially for use as child of a LoopPoint.
It provides alarming as a “deviation-from-current-setpoint” (plus or minus), using offnormal

properties errorLimit and deadband. This extension is available in the Alarm folder of the kitControl
palette.
See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–22

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-LoopPoint
kitControl-LoopPoint
 The LoopPoint implements a simple PID control loop, and is available in the HVAC folder of the
kitControl palette. Loop objects provide closed-loop PID control (proportional, integral, derivative)

at the station level. Independent gain constants allow the loop to be configured as P-only, PI, or PID.
ResetIntegral is an available action on a LoopPoint. If invoked, this clears the current integral
component of the loop’s output calculation. If needed, this slot can be linked to another object to provide
a quick purge of the integral effect. Typically, the latter would provide more of a “debug” utility, and
should not be necessary if the LoopPoint’s configuration properties are correctly defined.
The following sections provide more LoopPoint details:
• “LoopPoint setup” on page 2-23
• “Loop terms” on page 2-24
• “Proportional-only control” on page 2-24
• “Proportional with Integral (PI) control” on page 2-25
• “Proportional with Integral and Derivative (PID) control” on page 2-26
• “LoopPoint Examples” on page 2-27
See also Alphabetical list of kitControl components
LoopPoint setup Setup of the LoopPoint component involves setting the following properties:
• Facets

Used to set the units and display number precision of the output slot.
• Loop Enable

Setting this input to true will enable the PID loop algorithm to execute at the rate selected by the
Execute Time property. Setting this input to false will force the PID loop output to a value dependent
on the selection in the Disable Action property.

• Input Facets
Used to set the units and number precision of the input slot (control variable and setpoint).

• Control Variable
Input for the controlled parameter (for example, space temperature). This input must be valid for
this object to function.

• Setpoint
Input for the setpoint value (for example, space temperature setpoint). This input must be valid for
this object to function. The object does not provide an integral command function for the setpoint
value when entered on the property sheet. If a commandable setpoint is required, link from a Nu-
mericWritable control point to the setpoint slot.

• Execute Time
Controls the execution frequency for the PID algorithm, where the default value is 0.5 seconds.

• Loop Action
Determines whether the control algorithm is direct or reverse acting.
• Loops setup for direct acting mode increase the loop output as the value of the controlled vari-

able becomes greater than the setpoint value. In a temperature loop, this is typically considered
to be a cooling application.

• Loops setup for reverse acting mode increase the loop output as the value of the controlled vari-
able becomes less than the setpoint value. In a temperature loop, this is typically considered to
be a heating application.

• Disable Action
The value that the loop output will be set to when the loop is disabled by setting the Loop Enable prop-
erty to false.
• Max Value sets the loop output value to the Max Output property value.
• Min Value sets the loop output value to the Min Output property value.
• Hold maintains the loop output at the last calculated value.
• Zero sets the loop output value to a zero (0.0) value.

• Proportional Constant
Defines the value of the proportional gain parameter used by the loop algorithm. Used to set the
overall gain for the loop. A starting point for this value is found by output range/throttling range.

• Integral Constant
Defines the integral gain parameter, in repeats per minute, used by the loop algorithm. Also called
reset rate. Acts on magnitude of the setpoint error. A typical starting point is 0.5.

• Derivative Constant
Defines the derivative gain parameter, in seconds, used by the loop algorithm. Acts on the rate of
change of the setpoint error.
NiagaraAX-3.x

kitControl Guide
2–23

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• Bias
Defines the amount of output bias added to the output to correct offset error, normally used only
used with proportional control.

• Maximum Output
Defines the maximum output value that the loop algorithm can produce.

• Minimum Output
Defines the minimum output value that the loop algorithm can produce.

• Ramp Time
Defines the minimum time that the output can ramp completely from Minimum Output to Maxi-
mum Output, effectively establishing a “rate of change” slope. This rate of change is enforced upon
station startup, or whenever the LoopPoint transitions from disabled to enabled.
Once the Ramp Time has expired, it has no effect on the output. Intended use is to prevent the loop
from “slamming” a valve or other controlled device to a limit during startup.
Note: The default Ramp Time is 0:00:00, or disabled. To constrain loop output rate of change when
the loop starts or is enabled, enter a reasonable Ramp Time value.

Loop terms The following terms are used when describing the operation of the LoopPoint component:
• Process variable

The controlled process, meaning the value at the setpoint input. (“What you’ve got.”) Abbreviated
here as “PV.”

• Setpoint
The target for the process variable, meaning the value at the setpoint input. (“What you want.”) Ab-
breviated here as “setpt.”

• Setpoint error
The difference between the process variable and the setpoint, acted upon by the loop algorithm. Ab-
breviated as “ES.”

• Loop output
The correction signal produced by the loop algorithm. The output should be linked (directly or in-
directly) to a NumericWritable component used to position a proportionally-modulated device
(such as a valve or damper) that controls the process variable.

• Proportional gain
The value of the property Proportional Constant. Abbreviated here as “KP”. Sets the overall gain of
the loop, as in the following ratio:
KP = Output range / effected process range (sometimes called throttling range)

• Throttling range
The amount of process variable change expected as a result of throttling the system between the mi-
nOutput and maxOutput.

• Bias
A value added to the output to correct offset error. It is typically used in proportional-only control
as a “pivot” output value, for when the PV = setpt.

• Action
Defines the “direction” of the output relative to setpoint error, where:
• Direct — Loop output increases when PV increases.
• Reverse — Loop output increases when PV decreases.

• Integral gain
The value of the property integralConstant. Abbreviated as “KI”. Sets the integral or “reset” gain of
the loop, expressed in repeats per minute. The KI component of the loop output reacts to the dura-
tion of the setpoint error.

• Derivative gain
The value of the property derivativeConstant. Abbreviated as KD. Sets the derivative or “rate” gain
of the loop, expressed in repeats per minute. The KD component of the loop output reacts to the
“rate of change” of the setpoint error, and provides a “dampening” effect.

Proportional-only control P-only control is just reset action, where loop output is directly proportional
to the magnitude of the setpoint error (ES) and the size of the proportional gain (KP).

The following topics apply to PI loop control with a LoopPoint:
• Output calculation
• P-only configuration guidelines
Output calculation P-only loop output is linear, and is calculated as follows:
Output = (KP x ES) + bias (if action = direct), or
NiagaraAX-3.x

kitControl Guide
2–24

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-LoopPoint
Output = - ((KP x ES) + bias) (if action = reverse)
where:
ES = [PV - setpt]

P-only configuration guidelines If using proportional-only loop control, follow these guidelines:
Output limits Define the maxOutput and minOutput properties for the loop output, noting that the
maximum value must be greater than the minimum.
Proportional Gain Calculate and enter a proportionalConstant (KP) property value starting with this
formula:
[output range (maxOutput - minOutput)] / throttling range

where throttling range is the corresponding result in the process variable.
For example, for a temperature loop where a 0-to-100% loop output results in a 20 degree swing in the
process variable, a starting point KP is:
[(100% - 0%)/ 20deg.] = [(100% / 20deg.] = 5

When tuning the loop, you can try increasing this value (effectively using only a portion of the throttling
range) to eliminate the amount of setpoint error. However, if you increase the KP too much, this typically
results in a constant oscillation of the process variable (above and below the setpoint).
Bias Assign the bias property an “output-midpoint” value (for example, 50.0). This allows for equal
corrections for a process variable above or below setpoint.
Integral and Derivative Gain Set the properties integralConstant and derivativeConstant to 0.0 (the
defaults).
Proportional with Integral (PI) control PI configuration is recommended for most control loops,
because the integral term eliminates the setpoint offset inherent in P-only loops. PI control uses propor-
tional gain to adjust the output, and then incrementally continues to “add” (or subtract, if appropriate)
from the output value for as long as a setpoint error continues to exist.
The following topics apply to PI loop control with a LoopPoint:
• Output calculation
• Repeats per minute
• Integral overshoot
• Integral windup prevention
• PI configuration guidelines
Output calculation PI loop output is calculated as follows:
Output = KP x (ES + KI x ErrorSum) (if action = direct), or
Output = - (KP x (ES + KI x ErrorSum)) (if action = reverse)

where:
ES = [PV - setpt]

ErrorSum = Sum of ES over time

The integralConstant property specifies the integral gain (KI) in “Repeats per minute,” sometimes called
a “reset rate.”
Repeats per minute To understand repeats per minute, consider the scenario where a loop is
controlling at setpoint. If a certain setpoint error occurs, say from a sudden setpoint change, the loop
output immediately changes by a level corresponding to its proportional constant (acting on the P-term).
During this hypothetical example, assume the controlled process does not react from any loop output
change, but stays at the original value (setpoint error stays constant).
The loop’s integral term immediately begins increasing the output (or decreasing the output, depending
on the direction of setpoint error) at specific rate determined by the integral term. Over the period of one
minute, the amount of output change that would occur is defined by the integralConstant (repeats per
minute). A “repeat” equals the amount of output change initially generated by the P-term. For example,
if this loop was configured with an integralConstant value of 2.0, and the original output change was +7%,
over a period of one minute the integral term would linearly ramp up the output value an additional
+14%, or “2 repeats.”
NiagaraAX-3.x

kitControl Guide
2–25

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
In a real-world PI loop, of course, the process variable does respond to an output change, and this contin-
uously-linear ramping of the output would not occur. Instead, the process variable would start moving
towards setpoint and the setpoint error would change (changing the proportional and integral terms,
thus the loop output).
Integral overshoot The integral term of a PI loop can cause an “overshoot” of setpoint, meaning that
the increased loop output may result in a new setpoint error in the opposite direction. In some cases, it
is possible for this overshoot to continuously repeat (oscillation), which is typically undesired. However,
a small amount of overshoot for an initial correction is not uncommon.
To minimize overshoot, the PI loop’s integralConstant is typically kept small, and sized appropriately for
the assigned proportionalConstant.
Integral windup prevention Integral windup is prevented by limiting the ErrorSum value based on the
LoopPoint’s Maximum Output and Minimum Output values.
PI configuration guidelines If using PI loop control, follow these guidelines:
Output limits Define the Maximum Output and Minimum Output properties for the loop output,
noting that the maximum value must be greater than the minimum.
Proportional Gain Calculate and enter a proportionalConstant (KP) property value starting with this
formula:
[output range (minOutput - maxOutput)] / throttling range

where throttling range is the corresponding result in the process variable.
For example, for a temperature loop where a 0-to-100% loop output results in a 20 degree swing in the
process variable, a starting point KP is:

[(100% - 0%)/ 20deg.] = [(100% / 20deg.] = 5
When tuning a PI loop, you typically reduce the proportionalConstant value, because the integral effect
on the output will correct setpoint error over time.
Bias Assign a value of 0.0 (no output bias). A fixed bias is not desired, because the integral term of the
loop effectively creates an “adjustable bias,” as needed.
Integral Gain Set the integral gain (property integralConstant) to a nominal value, typically less than
one (1.0). A value of 0.5 is a good starting point for many loops. Decreasing the integral constant will
make the loop respond more slowly.
Derivative Gain Disable derivative by setting the derivativeConstant property at 0.0 (the default).
Proportional with Integral and Derivative (PID) control PID loop control can be difficult to tune and
(often for this reason) is seldom used. However, in certain cases, PID control may be needed. An example
is the control of a process with a long “reaction time,” such as temperature control of a large mass. For
such a lag-oriented system, the derivative component of the PID loop output can help prevent
“overshoot” that might otherwise result from PI control.
The derivative gain (KD) exerts an anticipating “braking” effect on the loop output, based on the rate-of-
change of the process.
The following topics apply to PID loop control with a LoopPoint:
• Output calculation
• PID configuration guidelines
Output calculation PID loop output is calculated as follows:
Output = KP x (ES + KI x ErrorSum + KD x ((ES - LastES) / deltaT))

(if action = direct), or
Output = -(KP x [ES + KI x ErrorSum) + KD x ((ES - LastES) / deltaT)))

(if action = reverse)
where:
ES = [PV - setpt]

ErrorSum = Sum of ES over time

LastEs = last error

deltaT = time between samples
NiagaraAX-3.x

kitControl Guide
2–26

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-Maximum
In the LoopPoint, the derivativeConstant property specifies the derivative gain (KD) directly in seconds
(note this differs from some systems using derivative in minutes).
PID configuration guidelines If using PID control, follow the “PI configuration guidelines” on page 2-
26, with the addition of defining a positive value as the derivativeConstant.
In general, a derivativeConstant less than 10 seconds should be tried first, and only then increased (if
necessary), providing that the loop output remains stable at steady-state conditions.
LoopPoint Examples Figure 2-14 shows an example of a LoopPoint property sheet.

Figure 2-14 Example LoopPoint property sheet

Figure 2-15 shows an example of a direct-acting LoopPoint with a commandable setpoint.

Figure 2-15 Example LoopPoint in wire sheet, linked to other components.

kitControl-Maximum
 Maximum determines the maximum value of valid inputs and writes that value to out. Out = max
(inA, inB, inC, inD). The Maximum is available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-Minimum
 Minimum determines the minimum value of valid inputs and writes that value to out. Out = min
(inA, inB, inC, inD). The Minimum is available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-MinMaxAvg
 MinMaxAvg has 3 StatusNumeric output slots that provide the current minimum, maximum, and
average values of from 2 to 10 linked StatusNumeric inputs. It is available in the Util folder of the

kitControl palette.
See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–27

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
kitControl-Modulus
 (AX-3.5 and later) Modulus provides a modulus operation based on values at its two statusNumeric
inputs. The output is the remainder of dividing the inA value by the inB value. If the inB value is 0,

the output is NaN (not a number). Note that operation is intended for integer input values, such as from
the output of a Counter component. Modulus is available in the Math folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-Multiply
 Multiply performs the calculation out = inA * inB * inC * inD. The Multiply is available in the Math
folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-MultiVibrator
 MultiVibrator provides an oscillating binary pulse output (StatusBoolean) with a period config-
urable between 200ms to infinity, and a duty cycle configurable from 0 to 100%. It is available in the

kitControl palette’s Util folder.
See also Alphabetical list of kitControl components

kitControl-Negative
 Negative simply converts any input status numeric to a negative output value. Negative is available
in the Math folder of the kitControl palette

See also Alphabetical list of kitControl components

kitControl-NightPurge
 This component is available in the kitControl palette Energy folder. It uses the two sets of temper-
ature and humidity inputs to find the air supply with the least amount of heat when the purgeEnabled

input is true. The freeCooling output will be set to false if outside >= inside or set to true if
outside = nightSetpoint.
For inside and outside comparisons, you can select either temperature or enthalpy comparisons. There
is also a low temperature check to protect against freezing.
The NightPurge component includes the following properties:
• Temperature Facets

Specifies the units and number precision of the Outside Temp, Inside Temp, and Low Temperature
Limit properties.

• Humidity Facets
Specifies the units and number precision of the Outside Humidity and Inside Humidity properties.

• Purge Enabled
StatusBoolean, must be true to enable night purge operation. Whenever false, the Free Cooling out-
put is set to the opposite of the Free Cooling Command (or null, if Use Null Output is set to true),
and the Current Mode slot value is “Disabled.”
Often, Purge Enabled is linked to a “Not” object sourced from a BooleanSchedule output.

• Outside Temp
Input for the current outside air temperature. This input must be valid for this object to function.

• Outside Humidity
Input for the current outside air humidity. This input must be valid for this object to function.

• Inside Temp
Input for the current inside air temperature. This input must be valid for this object to function.

• Inside Humidity
Input for the current inside air humidity. This input must be valid for this object to function.

• Low temperature Limit
This property is used to provide freeze protection.

• Night Setpoint
Inside night temperature setpoint, at or below which free cooling is not applied. Instead, the Current
Mode is set to “Satisfied.”

• Outside Enthalpy
This is the calculated outside air enthalpy.

• Inside Enthalpy
This is the calculated inside air enthalpy.
NiagaraAX-3.x

kitControl Guide
2–28

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-NightPurge
• Free Cooling
A StatusBoolean output set to value of the Free Cooling Command when it is determined that free
cooling should be used. Otherwise, the value is set to the opposite state, or null (if Use Null Output
is set to true).

• Current Mode
This enumeration indicates which of the following modes this object is currently in:
• Disabled (Purge Enabled is false)
• Free Cooling
• No Free Cooling (free cooling not available)
• Low temperature (Outside Temp below Low Temperature Limit, free cooling disabled)
• Input error (A temperature or humidity is invalid (down, fault, etc.), free cooling disabled)
• Satisfied (Inside temperature below Night Setpoint, free cooling disabled)

• Setpoint Deadband
Temperature setpoint deadband applied when inside temperature falls below Night Setpoint, before
free cooling can be enabled. Default value is 1.0.

• Threshold Span
The difference between the inside enthalpy and the outside enthalpy must be greater than this value
before free cooling will be enabled. Default value is 1.0.

• Use Enthalpy
Setting this property to true will enable the use of enthalpy for determining if free cooling is avail-
able. Otherwise, it will just use outside and inside temperature to decide.

• Free Cooling Command
If it is determined that free cooling is available, this is the boolean value that will be set in the Free
Cooling output.

• Use Null Output
If this property is true, then the null flag will also be set on the Free Cooling output when free cooling
is not available.

The following illustrations show some example property sheet and wiresheet views of the NightPurge
component usage.

Figure 2-16 Example NightPurge property sheet
NiagaraAX-3.x

kitControl Guide
2–29

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-17 Example NightPurge application: Purge enabled and active

Figure 2-18 Example NightPurge application: Purge disabled

See also Alphabetical list of kitControl components

kitControl-Not
 The Not out simply inverts the Boolean logic value currently at the (single) object input. It is
available in the Logic folder of the kitControl palette.

You often link Not objects with other logic objects to make different logic gates. As simple examples,
Table 2-3 shows NAND logic, Table 2-4 shows NOR logic, and Table 2-5 shows EQUIV gate logic.
See also Alphabetical list of kitControl components

Table 2-3 NAND logic using And and Not

In A In B Out

false false true
false true true
true false true
true true false
NiagaraAX-3.x

kitControl Guide
2–30

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-NotEqual
Table 2-4 NOR logic using Or and Not

Table 2-5 EQUIV logic using Xor and Not

kitControl-NotEqual
 NotEqual performs the operation A != B with a boolean result. It is available in the Logic folder of
the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-NumericBitAnd
 NumericBitAnd performs a logical AND on the bit equivalent of the StatusNumeric “In” value
against the bit equivalent of its StatusNumeric “Mask” slot value. It may be useful in cases where

boolean information is mapped into integer values. It is available in the Util folder of the kitControl
palette, along with the closely-related NumericBitOr and NumericBitXor
As an example, some manufacturers multiplex binary data into a single numerical point by converting the
bits from hexadecimal to decimal format. To obtain the status of the individual binary data, the number
must be converted back from decimal to hex format. Each digit of the hex number represents a particular
binary parameters state (0 = false, 1 = true). The NumericBitAnd object converts a StatusNumeric input
to hex value and compares it against the mask value. Any digits with a value of 1 in the mask and the input
will result in a corresponding value of 1 in the same digit of the output.

Figure 2-19 NumericBitAnd example

In the example shown in Figure 2-19:
• Input decimal 65553 converts to a hex value of 10011
• Mask decimal 65536 converts to a hex value of 10000
• The resulting hex value is 10000
See also Alphabetical list of kitControl components

In A In B Out

false false true
false true false
true false false
true true false

In A In B Out

false false true
false true false
true false false
true true true
NiagaraAX-3.x

kitControl Guide
2–31

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
kitControl-NumericBitOr
 NumericBitOr performs a logical OR on the bit equivalent of the StatusNumeric “In” value against
the bit equivalent of its StatusNumeric “Mask” slot value. It may be useful in cases where boolean

information is mapped into integer values. It is available in the Util folder of the kitControl palette, along
with the closely-related NumericBitAnd and NumericBitXor.
As an example, some manufacturers multiplex binary data into a single numerical point by converting the
bits from hexadecimal to decimal format. To obtain the status of the individual binary data, the number
must be converted back from decimal to hex format. Each digit of the hex number represents a particular
binary parameters state (0 = false, 1 = true). The NumericBitOr object converts a StatusNumeric input
to a hex value, and compares it against the mask value. Any digits with a value of 1 in the mask or the input
will result in a corresponding value of 1 in the same digit of the output. Any value on the output slot
greater than 1 indicates that at least one of the binary parameters is true.

Figure 2-20 NumericBitOr example

In the example shown in Figure 2-20:
• Input decimal 65553 converts to a hex value of 10011
• Mask decimal 0 converts to a hex value of 00000
• The resulting hex value is 10011
See also Alphabetical list of kitControl components

kitControl-NumericBitXor
 NumericBitXor performs a logical XOR on the bit equivalent of the StatusNumeric “In” value
against the bit equivalent of its StatusNumeric “Mask” slot value. It may be useful in cases where

boolean information is mapped into integer values. It is available in the Util folder of the kitControl
palette, along with the closely-related NumericBitAnd and NumericBitOr.
As an example, some manufacturers multiplex binary data into a single numerical point by converting the
bits from hexadecimal to decimal format. To obtain the status of the individual binary data, the number
must be converted back from decimal to hex format. Each digit of the hex number represents a particular
binary parameters state (0 = false, 1 = true). The NumericBitXor object converts a StatusNumeric input
to hex value and compares it against the mask value. Each digit is analyzed using exclusive OR (XOR)
logic, setting the corresponding digit value to either a 1 or 0.

Figure 2-21 NumericBitXor example

In the example shown in Figure 2-21:
• Input decimal 65553 converts to a hex value of 10011
• Mask decimal 65536 converts to a hex value of 10000
• The resulting hex value is 00011
See also Alphabetical list of kitControl components

kitControl-NumericConst
 Provides constant StatusNumeric value, with available action to Set. See “About Constant compo-
nents” on page 1-4. It is available in the Constants folder of the kitControl palette.

See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–32

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-NumericDelay
kitControl-NumericDelay
The NumericDelay component provides a “soft ramp” delay from StatusNumeric In to Out. The
component uses configurable values in properties Max Step Size and Update Time to provide a “stepped”

output value. The combination of these two property values determines how quickly and how smoothly
the current Out value changes as it approaches the In value.
The NumericDelay component is located in the Timer folder of the kitControl palette.
Types of NumericDelay component properties include the following:
• Facets

Use this property to set the display units, precision, min. and max. values, or other display options,
as desired.

• In
Typically, you set this property by linking a numeric out value into it. You can manually configure
the default state to a numeric value or set it to null, so that when no value is linked into this prop-
erty, the default value is used. This numeric property value is passed to the component’s Out prop-
erty in stages or “steps” according to the property values in the Update Time and Max Step Size
properties.

• Update Time
This property allows you to set a value that determines how often the Max Step Value is added to
the current Out value. The greater the Update Time value, the longer it takes for the Out value to
match the In value.
Note: An Update Time value that is equal to or less than “0” (zero) does not allow updating. In this
case, the NumericDelay component In value is set but no value is passed to the Out property.

• Max Step Size
This property allows you to set a number that limits the value that may be added with each “step”
that occurs at Update Time. If Update Time is 1 sec., then the Max Step Size value (or a value that is
less than that) may be added to the current Out value every 1 sec. until the Out value equals the In
value.

• Out
This property displays the current output value as it approaches and equals the In property value.
The numeric in this property changes at a rate defined by the Update Time and Max Step Size prop-
erties until the value equals the In property value.

See also Alphabetical list of kitControl components

kitControl-NumericLatch
 NumericLatch provides a latch for a status numeric input, and is available in the Latches folder of
the kitControl palette. See “About Latch components” on page 1-8.

See also Alphabetical list of kitControl components

kitControl-NumericSelect
 NumericSelect is a numeric select, and is available in the Selects folder of the kitControl palette. See
“About Select components” on page 1-13 for an overview.

See also Alphabetical list of kitControl components
Figure 2-22 shows an EnumWritable linked to a NumericSelect’s select slot (where enumerated values are
1 = Econ Disabled, 2 = Min Oa Enabled, 3 = Econ Enabled). This sets the output value to one of the input
values depending on the select value.
NiagaraAX-3.x

kitControl Guide
2–33

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-22 NumericSelect example application

kitControl-NumericSwitch
NumericSwitch selects one of two StatusNumeric inputs based upon the boolean value at the Status-
Boolean input “In Switch.” The NumericSwitch is available in the Util folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-NumericToBitsDemux
NumericToBitsDemux is a component that converts a numeric value into the binary equivalent.
Each bit in the component represents the binary bit position of the numeric integer (numerics are

truncated to whole numbers for the conversion). This component can express numeric values in bits (up
to 32) as well as bytes (up to 4).

Note: This component is not designed to convert negative numbers.
The NumericToBitsDemux component is located in the Util folder of the kitControl palette and has the
following properties:
• In Numeric

This property displays the value of the numeric that is set. Typically you would link a StatusNumeric
output to the In Numeric property of this component. The Status portion of the input is propagated
to all of the StatusBoolean outputs and StatusNumeric (byte) outputs.

• Bit0 through Bit31
These 32 bits are available for representation of the converted numeric as binaries.

• Byte0 through Byte3
These 4 bytes are available for expressing the converted numeric input as bytes.

See also Alphabetical list of kitControl components
Figure 2-23 shows an example of the NumericToBitsDemux component with a numeric value of 357
linked to the In Numeric property. Note that Bits 0 through 8 are set to the binary representation of this
number, as well as Bytes0 and 1.
NiagaraAX-3.x

kitControl Guide
2–34

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-NumericUnitConverter
Figure 2-23 Example NumericToBitsDemux component - wiresheet view

kitControl-NumericUnitConverter
 NumericUnitConverter converts a StatusNumeric value from a definable “In Facets” to definable
“Out Facets.” It is available in the Conversion folder of the kitControl palette.

To produce a valid numeric output, both configured facets must under the same category (such as
temperature, power, and so forth). Otherwise, the NumericUnitConverter has a fault status.
See “About Conversion components” on page 1-5 for related details.
See also Alphabetical list of kitControl components

kitControl-OneShot
The OneShot component provides a single, temporary, status boolean output for a specified
duration (as set in the Time property). A OneShot action occurs with a False-to-True value transition

at the In property, or with an invoked Fire action. When either of these conditions occurs, the Out
property value is set to True and the Out Not property value is set to False for a time that is equal to the
value of the Time property. When the time expires, these values revert to the previous (default) values.
The following types of properties are used in the OneShot component:
• Facets

Use this property to set the display trueText and falseText, or other display options, as desired.
• In

Typically, you set this property by linking a boolean Out value into it. You can manually configure
the default state to a numeric value or set it to null, so that when no value is linked into this prop-
erty, the default value is used. This property value is passed to the component’s Out property for the
amount of time set in the Time property.

• Time
The value of this property determines how long the Out and Out Not properties hold their “one-
shot” values. For example, a Time property value of “2” holds the Out property at True for 2 seconds
when triggered and the Out Not property value at False for “2” seconds.

• Out
This property value displays the current value (display text) that changes with a False to True tran-
sition at the In property value or a “Fire” action. Using the Facets property, you can configure the
Out value display text, as desired. After a OneShot is triggered and the Time value period expires,
this value returns to the default (False) value. If a null value is set, the value does not change with a
OneShot “Fire” action or False to True transition at the In property value.

• Out Not
This property has true, false, or null options available. The Out value change with a False to True
transition at the In property value or a “Fire” action. After a OneShot is triggered and the Time value
period expires, this value returns to the default (True) value. If a default null value is set, the value
does not change with a OneShot “Fire” action or False to True transition at the In property value.
NiagaraAX-3.x

kitControl Guide
2–35

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
OneShot is in the Timer folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-OptimizedStartStop
The OptimizedStartStop component allows you to use Start Time Optimization and Stop Time
Optimization to save energy. This component uses a space temperature input and area character-

istics to calculate an optimal amount of lead-time before a scheduled event. It can analyze area temper-
ature changes and adjust the optimization parameters based on the actual temperature change rates after
an optimized start or stop.
The OptimizedStartStop component is available in the kitControl Energy folder.
The two basic optimization types are described, as follows:
• Start time optimization

This type of optimization reduces energy consumption by turning on equipment at the latest possi-
ble time that still allows for providing a comfortable temperature by occupancy time.

• Stop time optimization
This type of optimization turns equipment off at the earliest possible time that allows the building
to “drift” and stay within a temperature comfort range until the end of occupancy time.

See the following sections for additional details:
• OptimizedStartStop operation
• OptimizedStartStop properties
• Using the OSS component for optimum start
See also Alphabetical list of kitControl components
OptimizedStartStop operation The OptimizedStartStop calculation is performed at 15 seconds after
the beginning of every minute, when the appropriate Start Enable or Stop Enable properties are set to true,
a valid schedule event is linked to the component, and the next scheduled event value is not already set.

Note: For example, if a value is scheduled to be set to “true” in 1 hour but is already set to “true”, no calculation
is performed, even if the Start Enable or Stop Enable properties are set to true.
The product of this calculation is the “Calculated Command Time”. The Calculated Command Time
applies to both the Start Time and the Stop Time, as appropriate. Therefore, it defines an early start
command to achieve a specified temperature range by occupancy time or an early stop command without
sacrificing the temperature range by unoccupancy time. After a CalculatedCommand Time is invoked,
the actual area response (temperature change rate) is analyzed and weighted adjustments are made to the
calculation parameters based on the detected values so that subsequent calculations might be more
accurate.
Start time and stop time operations are described below:
• Calculated Start Time

Only one optimized start sequence is performed per day. The following factors affect the Calculated
Start Time calculation.
• Temperature differential

If the space temperature is outside the range defined by the lower and upper comfort limits, the
difference between the space temperature and the closer limit represents the number of degrees
the mechanical equipment must make up during the prestart (“optimized”) period.

• Run-time minutes
The run-time heating or cooling factors (depending on the direction the space temperature
must move) are multiplied by the temperature differential to determine the number of run-time
minutes required to achieve the comfort limit at occupancy time, as defined by the schedule's
start time.

• Optimum start time
When the system's time is later than the schedule's time offset by the calculated leadtime, the
optimum start outputs are enabled.
Note: If the calculated leadtime is so large that an optimum start time prior to midnight is the
result, the optimum start occurs at midnight. An optimum start is performed only for the first
scheduled start for the day.

• Calculated Stop Time
You can perform multiple stop operations but no optimized stop can occur before the time specified
by the Earliest Stop Time property.
NiagaraAX-3.x

kitControl Guide
2–36

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-OptimizedStartStop
• Temperature differential
If the space temperature is inside the range defined by the lower and upper comfort limits and
the schedule’s status is active, the difference between the space temperature and one of the lim-
its (depending on the mode) represents the number of degrees the temperature can drift be-
tween the time the mechanical equipment is stopped and the schedule’s inactive event time.

• Drift time
The drift (lead-time) calculation is similar to the one for Start Time but using the drift-time
heating and cooling factors.

• Optimum stop time
Optimum stop time is invoked for each of the schedule’s inactive events and is based on the drift
time and Next Event Time value.

OptimizedStartStop properties The OptimizedStartStop component includes the following
properties:
• Heat Cool Mode

This boolean property allows you to enable either the heatMode or the coolMode. The selected
option applies only to optimized stop calculations which means that optimized stop calculations are
performed only for the selected mode. Optimized start calculations are performed for both heat and
cool modes, regardless of this property value.

• Parameter Reset Time
This property displays the time when any of the four runtime or driftime properties change to the
User Defined values. The OSS component copies the user defined drifttime and runtime property
values to the corresponding actual drifttime and runtime property values.

• Start Enable
This property allows you to manually or automatically enable or disable the optimized start function.

• Stop Enable
This property allows you to manually or automatically enable or disable the optimized stop function.

• Schedule Status
This boolean property monitors and displays the status of the schedule that is linked to it.

• Next Event Time
This property is linked to a schedule for the time of the next scheduled event.

• Next Event Value
This property is linked to a schedule and reflects the value of the action for next scheduled event.

• Outside Temp
This property is linked to outside temperature and displays the value for information only.

• Space Temp
This property is linked to a space temperature output and displays the temperature of the area af-
fected by equipment associated with the OSS component.

• Start Time Command
This boolean property is an output that you link to a control for invoking an equipment start com-
mand. For example, it can be linked to a prioritized input of a boolean writable - or directly to the
equipment Start control.

• Stop Time Command
This boolean property is an output that you link to a control for invoking an equipment stop com-
mand. For example, it can be linked to a prioritized input of a boolean writable - or directly to the
equipment Stop control.

• Message
This field provides information that indicates the results of the latest start or stop command, the sta-
tus of an optimized start analysis, or other possible messages. For example, the following message is
displayed to indicate that an optimized stop has occurred: “Optimized stop for 14-Jun-07
5:18 PM EDT schedule time. Space temp is 75.0.”

• Upper Comfort Limit
This property value is the Cooling mode target temperature.

• Lower Comfort Limit
This property value is the Heating mode target temperature.

• Dynamic Parameter Adjust
This controls whether or not calculation parameters are programmatically adjusted after an execu-
tion. After the OSS component completes a start or stop control, if this property value is set to true,
the component evaluates the actual recovery rate (degrees/hour) and automatically adjusts the
Runtime and Drifttime properties values so that they are influenced by actual drift time and run
time.
NiagaraAX-3.x

kitControl Guide
2–37

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• Old Parameter Multiplier
This property is used to weight the dynamic parameter adjustment calculation. The value that you
specify in this field affects how much weighting you assign to the previous runtime property value
when it is used in the dynamic parameter adjustment calculation. A larger value increases the
amount of weighting given to the previous runtime and a smaller value decreases the weighting.

• Earliest Start Time
This property allows you to specify a time, before which, no optimized start command may be is-
sued. If this value is set earlier than the Calculated Command Time, the Calculated Command Time
is adjusted to equal this time.
Note: Prior to AX-3.5, this property was unavailable, with its default 12:00:10 AM value (around
midnight) effectively hardcoded. Now using this property, you can enter a later earliest start time.

• Earliest Stop Time
This property allows you to specify a time, before which, no stop command may be issued. If this
value is set earlier than the Calculated Command Time, the Calculated Command Time is adjusted
to equal this time.

• Drifttime Per degree Cooling User Defined
This property allows you to set a default value for calculating the rate of drift in cooling mode. When
you save a value to this field, the value is copied to the Drifttime Per Degree Cooling field.

• Drifttime Per degree Heating User Defined
This property allows you to set a default value for calculating the rate of drift in heating mode. When
you save a value to this field, the value is copied to the Drifttime Per Degree Heating field.

• Runtime Per degree Cooling User Defined
This property allows you to set a default value for calculating the runtime value in cooling mode.
When you save a value to this field, the value is copied to the Runtime Per Degree Cooling field.

• Runtime Per degree Heating User Defined
This property allows you to set a default value for calculating the runtime value in heating mode.
When you save a value to this field, the value is copied to the Runtime Per Degree Heating field.

• Drifttime Per degree Cooling
This property displays the actual value that is used for calculating an optimized stop time when the
equipment is in cooling mode. This value is adjusted automatically if the Dynamic Parameter Adjust
value is set to true.

• Drifttime Per degree Heating
This property displays the actual value that is used for calculating an optimized stop time when the
equipment is in heating mode. This value is adjusted automatically if the Dynamic Parameter Adjust
value is set to true.

• Runtime Per degree Cooling
This property displays the actual value that is used for calculating an optimized start time when the
equipment is in cooling mode. This value is adjusted automatically if the Dynamic Parameter Adjust
value is set to true.

• Runtime Per degree Heating
This property displays the actual value that is used for calculating an optimized start time when the
equipment is in heating mode. This value is adjusted automatically if the Dynamic Parameter Adjust
value is set to true.

• Last Start Time
This is a record of the last Start Time that was used for calculating an optimized start time. Since
only one optimized start per day is allowed, this value does not display Start Times (restarts) that are
subsequent to the initial Start Time for a day.

• Last Stop Time
This is a record of the last Stop Time that was used for calculating an optimized stop time. Since
multiple Optimized Stops are allowed in a day, this value changes to reflect the latest Optimized Stop
time.

• Outside Temp At Beginning
This is a record of what the outside air temperature was at the time of the last start or stop command.
This is the temperature that was used in calculations for dynamic parameter adjustment.

• Space Temp At Beginning
This is a record of what the space temperature was at the time of the last start or stop command.
This is the temperature that was used in calculations for dynamic parameter adjustment.

• Calculated Command Time
This field shows the calculated time for the next command. This could be a start or a stop command.
NiagaraAX-3.x

kitControl Guide
2–38

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-OptimizedStartStop
• Program Mode
As part of the logic that the OSS component uses, there are five “program mode” states. These states
serve primarily in logic control, however, they may be informative to the system engineer, as well.
The Program Mode value displays the current heating or cooling state for optimized start or stop.
The following list describes the possible display values and meanings.
• 0 (“No” Calculation)

This value indicates that no calculation is being made
• 1 (“Start” Calculation)

This valued indicates that the optimized start calculation process is ongoing but that an opti-
mized start or stop is not yet in progress.

• 2 (“Start” in Process)
This value indicates that an optimized start has been initiated.

• 3 (“Stop” Calculation)
This value indicates that an optimized stop calculation process is ongoing but that an optimized
start or stop is not yet in progress.

• 4 (“Stop” in Process)
This value indicates that an optimized stop has been initiated.

Example: Using the OSS component for optimum start
Figure 2-24 shows an example wiresheet view of a simple use of an OSS component.

Figure 2-24 Using the OSS component: example - part 1

Note the following about this example:
• A weekly schedule specifies occupancy times and is linked to the OSS component for calculations.

The schedule is also linked directly (bypassing the OSS component) to the in16 property (lowest pri-
ority in this case) of the occupancy control point (AhuOccCmd).

• The OSS component Start Enable and Stop Enable properties are both true, so that both Opti-
mized starts and Optimized stops are enabled.

• The Start Time and Stop Time commands are linked to priority inputs in12 and in13, respectively
of the occupancy control point (AhuOccCmd). The Start Time and Stop Time commands are true
when an optimal start or stop condition is required, otherwise the outputs are set to null which re-
linquishes control to the next higher priority level.

Figure 2-25 shows additional logic added to the example.

Figure 2-25 Using the OSS component: example - part 2

• Additional logic is linked into the occupancy command component (AhuOccCmd) to control which
NiagaraAX-3.x

kitControl Guide
2–39

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
logic has priority on specifying the “AhuOccCmm” boolean point status, as follows:
• in9 temperature control overrides a demand limiting link from an EDL component to in10. This

prevents a load shed if the configurable comfort range is exceeded.
• in10 (demand limiting link from EDL component) overrides an OSS Stop link into in12
• in12 (OSS component Stop link) overrides a Start link into in13 (as described above)
• in13 (optimal start) overrides the schedule link to in16 (lowest priority) (as described above)

For related information, refer to “kitControl-ElectricalDemandLimit” on page 2-12.

kitControl-Or
 Or performs a logical OR on all valid inputs and writes the boolean result to the out property. The
Or is available in the Logic folder of the kitControl palette. Table 2-6 shows the Or object truth table

when using two inputs. Table 2-7 shows the Or object truth table when using all four inputs. NOR gate
logic is accomplished by linking to a Not object.
See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–40

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-OutsideAirOptimization
Table 2-6 Or object truth table (2 inputs)

Table 2-7 Or object truth table (4 inputs)

kitControl-OutsideAirOptimization
 OutsideAirOptimization is available in the kitControl Energy folder. The OutsideAirOptimization
component is used to support applications that need to allow for enthalpy based free cooling. This

object is typically used during occupancy periods.
The freeCooling output is set to false if outside >= inside and set to true if
outside <= inside - (abs) thresholdSpan. You can select temperature or enthalpy comparisons.
There is also a low temperature check to protect against freezing.
Setup of the object involves the following properties (also see Using OutsideAirOptimization), as follows:
• Temperature Facets

This is used to set the units and number precision of the Outside Temp, Inside Temp, and Low Tem-
perature Limit properties.

• Humidity Facets
This is used to set the units and number precision of the Outside Humidity and Inside Humidity
properties.

• Outside Temp
Input for the current outside air temperature. This input must be valid for this object to function.

In A In B Out

false false false
false true true
true false true
true true true

In A In B In C In D Out

false false false false false
false false false true true
false false true false true
false false true true true
false true false false true
false true false true true
false true true false true
false true true true true
true false false false true
true false false true true
true false true false true
true false true true true
true true false false true
true true false true true
true true true false true
true true true true true
NiagaraAX-3.x

kitControl Guide
2–41

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• Outside Humidity
Input for the current outside air humidity. This input must be valid for this object to function.

• Inside Temp
Input for the current inside air temperature. This input must be valid for this object to function.

• Inside Humidity
Input for the current inside air humidity. This input must be valid for this object to function.

• Low Temperature Limit
This property is used to provide freeze protection.

• Outside Enthalpy
This is the calculated outside air enthalpy.

• Outside Enthalpy String
This provides the outside enthalpy value as a string or possible status/error message.

• Inside Enthalpy
This is the calculated inside air enthalpy.

• Inside Enthalpy String
This provides the inside enthalpy value as a string or possible status/error message.

• Free Cooling
This boolean output value is set to the value of the Free Cooling Command when it is determined
that free cooling should be used. Otherwise, the value is set to null.

• Current Mode
This indicates what mode this object is currently in.
• Input out of range
• Free Cooling
• No Free Cooling
• Low temperature
• Input error

• Threshold Span
The difference between the inside enthalpy and the outside enthalpy must be greater than this value
before free cooling will be enabled.

• Use Enthalpy
Setting this property to true will enable the use of enthalpy for determining if free cooling is avail-
able. Otherwise, it will just use outside and inside temperature to decide.

• Free Cooling Command
If it is determined that free cooling is available, this is the boolean value that will be set in the Free
Cooling property.

• Use Null Output
If this property is true, then the null flag will also be set on the Free Cooling output when free cooling
is NOT available.

Example: Using OutsideAirOptimization
An example OutsideAirOptimization component usage is shown in Figure 2-26.

Figure 2-26 Example OutsideAirOptimization

See also Alphabetical list of kitControl components

kitControl-Power
 Power performs the operation out = (inA ^ inB) or a raised to the b power. The Power component
is available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-Psychrometric
 The Psychometric component is available in the kitControl Energy folder. You can use it to support
applications that need to calculate the properties of moist air using given temperature and humidity

inputs.
NiagaraAX-3.x

kitControl Guide
2–42

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-Ramp
The following sections provide more Psychrometric details:
See also Alphabetical list of kitControl components
Setup of the component involves setting the following properties:
• Temperature Facets

Used to set the units and number precision of the Temp In, Min Temp, Max Temp, and Mean Temp
properties.

• Humidity Facets
used to set the units and number precision of the humidity properties. Currently, only English units
are supported.

• In Temp
Input temperature

• In Humidity
Input humidity

• Out Dew Point
Calculated dew point temperature. Requires valid In Temp and In Humidity to calculate.

• Out Enthalpy
Calculated enthalpy. Requires valid In Temp and In Humidity to calculate.

• Out Sat Pressure
Calculated saturated pressure. Requires valid In Temp to calculate.

• Out Vapor Pressure
Calculated vapor pressure. Requires valid In Temp and In Humidity to calculate.

• Out Wet Bulb Temp
Calculated wet bulb temperature. Requires valid In Temp and In Humidity to calculate.

A Psychrometric example property sheet is shown in Figure 2-27.

Figure 2-27 Psychrometric example property sheet

kitControl-Ramp
 Ramp provides a StatusNumeric Out with a linear ramping output. Slots define the Period,
Amplitude, Offset, and Update Interval. It is available in the kitControl palette’s Util folder.

See also Alphabetical list of kitControl components

kitControl-Random
 This component can be used to generate random numbers. The output is derived by multiplying a
random number (that is greater than 0 but less than 1) times a variable “multiplier” plus an offset. It

is available in the kitControl palette’s Util folder. See the next section, Random setup.
See also Alphabetical list of kitControl components
Random setup Setup of the Random component involves setting the following properties:
• multiplier:

this is a double value that is used to multiply by the random number (the random number is >=0.0
but <1.0). The multiplier is set to 1.0 by default.

• Offset
This is the positive or negative distance from zero that the wave's amplitude is centered on. The de-
fault offset value is 50.

• Update Interval
This is the amount of time between output changes. The default value is set to 01 seconds.
NiagaraAX-3.x

kitControl Guide
2–43

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-28 Example Random component property sheet

kitControl-Reset
 This component performs a linear “reset” on the inA value. Reset is available in the Math folder of
the kitControl palette. Reset operation is defined by the following four slots:

• Input Low Limit — must be less than the Input High Limit
• Input High Limit — must be greater than the Input Low Limit
• Output Low Limit — may (or may not) be greater than the Output High Limit
• Output High Limit — may (or may not) be greater than the Output Low Limit
For example, a Reset object is used to establish a hot water control setpoint, based on the outside air
temperature at inA. When the outside air temperature is 0°F, the hot water setpoint is 200°F. When the
outside air temperature is 75°F, the hot water setpoint is 100°F. The Reset object is configured as:

Input Low Limit = 0.0
Input High Limit = 75.0
Output Low Limit = 200.0
Output High Limit = 100.0

Whenever the inA value is beyond the input limits, the output is limited by the corresponding output
limit (in this case, 200 at 0°F or below, 100 at 75°F or above). When the input is at an intermediate value,
the output scales linearly. For example, when the outside air temperature is at 38.2°F, the Reset output is
149.1°F.
See also Alphabetical list of kitControl components

kitControl-RaiseLower
The RaiseLower object provides a staged analog output designed to be used with a third party 2-relay
hardware device but also provides for operation of two digital outputs from normal IO hardware

such as NDIO as an alternative control method. The actuator should be able to sustain an overdrive at
each boundary (for example, a clutch mechanism) as the Raise lower object does not have proportional
feedback or limit switch features. The RaiseLower component is available in the HVAC folder of the
kitControl palette.

A typical application for the RaiseLower component is to control a reversible actuator in order to drive a
coupled valve or damper either open or closed. The external hardware device consists of two on-board
relays with volt free contacts that switch to provide power to either the “open” command of the actuator
or the “close” command of the actuator. Either relay is activated for a proportion of the full scale drive
time of the actuator (drive time is pre-defined by the manufacturer). The acceptable input to this device
is 0 to10 volts, with staged control at 0v, 4v, 7v and 10v as detailed in Table 2-8.

Table 2-8 RaiseLower staged control voltage

The Raise Lower object has the following properties:
• Propagate Flags

By default, this object maintains independent status flags from input-linked points. It is therefore
possible to specify the “out” status to propagate from the input status. The Propagate Flags property
specifies which status flags will propagate from the “In” property to the “Out” status flags. The object

Volts Raise Lower Function

0 Off Off Off
4 Off On Lower
7 Off Off Static
10 On Off Raise
NiagaraAX-3.x

kitControl Guide
2–44

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-RaiseLower
Propagate Flags property allows for selection of any combination of the following status types for
propagation:
• disabled
• fault
• down
• alarm
• overridden

• Out
This is a status numeric value and is the analog output value from the object. This output has valid
voltage outputs of 0v, 4v, 7v and 10v as illustrated in Table 2-8, depending on the function deter-
mined by the object.

• In
This property is a status numeric value typically connected to a modulated output of a Control object
such as PID Loop. It has an input range of 0 to 100.

• Virtual Position
This is a slot that holds the value representing the virtual position of the actuator, as calculated by
the RaiseLower object.

• Raise
This is a status boolean value which is set to true if the object determines that the output should
command a “Raise” output. A Raise output is maintained for a period of time determined by the pos-
itive differential of “Virtual position” subtracted from the “In” slot, and is a relative proportion of the
full scale drive time. In addition, if the “virtual position” of the object is calculated to be 100% (fully
raised), then twice the drive time is asserted in order to synchronize the physical actuator with the
calculated virtual position to compensate for realtime drift.

• Lower
This is a status boolean value which is set to true if the object determines that the output should
command a “Lower” output. A Lower output is maintained for a period of time determined by the
negative differential of “Virtual position” subtracted from the “In” slot and is a relative proportion of
the full scale drive time. In addition, if the “virtual position” of the object is calculated to be 0% (Fully
Lowered) then twice the drive time is asserted in order to synchronize the physical actuator with the
calculated virtual position to compensate for realtime drift.

• Function
This property value displays operational information corresponding to the current activity of the ob-
ject. Valid status values include: Off, Lower, Static, Raise.

• Dead Band
This should be set to a value that corresponds to a percentage of full scale drive time. The “In” value
would have to exceed the dead band value before the “out” commands to “Raise” or “Lower”. The
default value is 0.25, Range is 0 to 5.

• Drive Time
This should be set to a value that corresponds to the full scale drive time provided by the manufac-
turer.

• Midnight Reset Enabled
This should be set to false to inhibit a reset. A midnight reset invokes a synchronization cycle at
midnight in order to compensate for realtime drift that may accumulate during normal operation of
the actuator. The reset cycle will override an input signal for a period of twice the full scale drive
time.

• Reset action
This action can be used to re synchronize the actuator through 0% (Fully Lowered) temporarily over-
riding an input signal for a period of twice the full scale drive time

Examples Refer to Figure 2-29 for this example. An actuator having a 100 second full scale drive time
and initialized values of the actuator and virtual position are 0% (synchronized at fully lowered). Should
the input signal increase to 40% the “Raise” output turns on for 40% of the full scale drive time (40 sec).
If a subsequent input is decreased to 15% the “Lower” output is active for 25% of full scale drive time (25
sec) moving the actuator to 15% open.
NiagaraAX-3.x

kitControl Guide
2–45

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-29 Example using the RaiseLower component

kitControl-SequenceBinary
 The SequenceBinary component provides sequenced weighted “staging” control of from 2 to 10
BooleanWritables based upon the status numeric In value (0—100). An adjustable delay time is also

provided. It can be used to support applications that need to sequence 2 to 10 loads or stages in a binary
sequence. Binary sequencing provides an analog to binary converter function that selects the outputs
whose total load rating relates directly to the control need. For each successive output, the output rating
is twice the previous output.
A similar object is the SequenceLinear, which uses a rotating method (vs. weighted) for sequencing.
SequenceBinary is available in the HVAC folder of the kitControl palette.
Table 2-9 illustrates how, by controlling 3 loads, eight unique levels of control can be achieved:

Table 2-9 Example SequenceBinary component

Setup of the SequenceBinary object involves the following properties:
• Facets

Used to set the active and inactive text to be used for the Out properties.
• In

Input property that is used to determine the number of stages that should currently be On.
• In Minimum

Value of the input that produces all outputs off.
• In Maximum

Value of the input that produces all outputs on.
• Number Outputs

This object can be configured to support 2 to 10 outputs or stages.
• OutA - OutJ

These are status boolean values that can be used to control 2 to 10 loads. The number of outputs
used is defined by the Number Outputs property.

• Delay
Defines the amount of time, in seconds, that must pass between changes in outputs. The default time
is 0 seconds.

• On Delay Active
Boolean read-only property that indicates that the on delay timer is active.

• Off Delay Active
Boolean read-only property that indicates that the off delay timer is active.

• Desired Stages On
Read-only property that indicates the calculated number of stages that should be on based on the In
property.

 Control Signal
(In) %

OutC
(4kw load size)

OutB
(2kw load size)

OutA
(1kw load size)

Stage Hystere-
sis

100 On On On 14.3
85.7 On On Off 14.3
71.4 On Off On 14.3
57.1 On Off Off 14.3
42.9 Off On On 14.3
28.6 Off On Off 14.3
14.3 Off Off On 14.3
0 Off Off Off 14.3
NiagaraAX-3.x

kitControl Guide
2–46

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-SequenceLinear
• Current Stages On
Read-only property that indicates the current number of stages that are currently on. Normally the
Current Stages On and the Desired Stages On will be the same. They will be different when going
through a transition and the delay timer is active.

• Next Stage On
Read-only property that indicates the next stage that will be turned on if needed.

• Next Stage Off
Read-only property that indicates the next stage that will be turned off if needed.

An example of a SequenceBinary property sheet is shown in Figure 2-30.

Figure 2-30 Example SequenceBinary property sheet

See also Alphabetical list of kitControl components

kitControl-SequenceLinear
 SequenceLinear provides sequenced rotating “staging” control of from 2 to 10 BooleanWritables
based upon the status numeric In value (0—100). An adjustable delay time is also provided. A similar

object is the SequenceBinary, which uses a weighted method (vs. rotating) for sequencing.
The SequenceLinear component can be used to support applications that need to sequence 2 to 10 loads
or stages in a linear or rotating sequence. With linear sequencing the first stage on will be the last stage
off. With rotating sequencing the first stage on will be the first stage off. The In property, which is a
StatusNumeric, is used to control the number of stages that should be on. The input range is defined by
the InMinimum and InMaximum properties. SequenceLinear is available in the HVAC folder of the
kitControl palette.
On and Off setpoints are calculated for each stage by the following Table 2-10 formulas (this assumes
there are 5 outputs defined):
NiagaraAX-3.x

kitControl Guide
2–47

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Table 2-10 SequenceLinear On / Off calculation formulas

Setup of the SequenceLinear object involves configuring the following properties:
• Facets

Used to set the active and inactive text to be used for the Out properties.
• In

Input property that is used to determine the number of stages that should currently be On.
• In Minimum

Value of the input that produces all outputs off.
• In Humidity

Value of the input that produces all outputs on.
• Number Outputs

This object can be configured to support 2 to 10 outputs or stages.
• OutA - OutJ

These are status boolean values that can be used to control 2 to 10 loads. The number of outputs
used is defined by the Number Outputs property.

• Delay
Defines the amount of time the must pass between changes in outputs.

• On Delay Active
Boolean read-only property that indicates that the on delay timer is active.

• Off Delay Active
Boolean read-only property that indicates that the off delay timer is active.

• Desired Stages On
Read-only property that indicates the calculated number of stages that should be on based on the In
property.

• Current Stages On
Read-only property that indicates the current number of stages that are currently on. Normally the
Current Stages On and the Desired Stages On will be the same. They will be different when going
through a transition and the delay timer is active.

• Next Stage On
Read-only property that indicates the next stage that will be turned on if needed. This is primarily
used when the Action is selected to be Rotating.

• Next Stage Off
Read-only property that indicates the next stage that will be turned off if needed. This is primarily
used when the Action is selected to be Rotating.

• Action
This configuration property selects between Linear and Rotating action. With Linear action, Out A
(Stage 1) will always be the first stage to turn on and the last stage to turn off. With Rotating action,
the first stage to turn on will increment to the next stage each time the current stages on goes to 0.

• Rotate Time
This configuration property specifies the amount of time that the outputs will remain in a fixed con-
figuration before the outputs are shifted to the next configuration.

• Rotate Timer Active
Read-only property that indicates that the rotate timer is active.

Linear Rotating

range = InMaximum - InMinimum 100 = 100 - 0 100 = 100 - 0
delta = range / NumberOutputs 20 = 100 / 5 20 = 100 / 5
OnSetpointA = 1 * delta 20 20
OnSetpointB = 2 * delta 40 40
OnSetpointC = 3 * delta 60 60
OnSetpointD = 4 * delta 80 80
OnSetpointE = 5 * delta 100 100
OffSetpointA = 0 * delta, 4 * delta 0 80
OffSetpointB = 1 * delta, 3 * delta 20 60
OffSetpointC = 2 * delta, 2 * delta 40 40
OffSetpointD = 3 * delta, 1 * delta 60 20
OffSetpointE = 4 * delta, 0 * delta 80 0
NiagaraAX-3.x

kitControl Guide
2–48

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-SetpointLoadShed
An example of a SequenceLinear property sheet is shown in Figure 2-31.

Figure 2-31 SequenceLinear example property sheet

See also Alphabetical list of kitControl components

kitControl-SetpointLoadShed
 This component provides a convenient way to implement load shedding strategies. It causes a
specified setpoint to be raised or lowered by a specific amount in response to an input link, that

enables the SetpointLoadShed component. Generally, this component solves the problem often found in
temperature control sequences where shutting down an output directly may be complicated by other
control dependencies. By changing the setpoint based on a shed request, the output is shut down under
the direction of the control sequence and the interdependencies are maintained.
Setup of the SetpointLoadShed involves the following slots, as follows:
• Enabled

True value in this property causes the setpoint to be adjusted by the offset value.
• Setpoint In

This is the normal setpoint value that is be adjusted by the SetpointLoadShed object, if needed.
• Htg Offset

The setpoint is adjusted by this signed (+ or -) amount if active and in heating mode.
• Clg Offset

 The setpoint is adjusted by this signed (+ or -) amount if active and in cooling mode
• Mode In

This StatusEnum type property has three possible modes: Off, Heat, Cool. The modes are selectable
from the options list in the property sheet.

• Offset In Effect
This is an output to indicate whether or not the Setpoint Out property value has been adjusted.

• Setpoint Out
This property value is the adjusted setpoint value, if active, otherwise it passes through original set-
point.

A example SetpointLoadShed object property sheet is shown in Figure 2-32.
NiagaraAX-3.x

kitControl Guide
2–49

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
Figure 2-32 SetpointLoadShed example property sheet

See also, Figure 2-9 for an example wiresheet view using this component.
See also Alphabetical list of kitControl components

kitControl-SetpointOffset
SetpointOffset provides setpoint control for electrical demand limiting applications, for use with the
ElectricalDemandLimit and ShedControl objects. SetpointOffset is available in the Energy folder of

the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-ShedControl
ShedControl receives inputs from a primary (network) EDL source and a local (secondary) EDL
source (separate ElectricalDemandLimit objects) that specify the number of load levels that should

be shed. The Secondary Shed Level is used as a backup whenever the Primary Shed Level is not available.
ShedControl has StatusBoolean outputs for up to 16 contiguous levels, as specified in the Number Levels
property. A Status slot provides an output message to indicate this component’s state in reference to the
overall demand limiting control scheme. Execution of this component can be enabled or disabled by
setting the Shed Enable property.
ShedControl is available in the Energy folder of the kitControl palette, along with related objects.
Following is a description of the ShedControl component properties:
• Primary Shed Level

This is an input that allows you to link in a Shed Level property value from an EDL component. Typ-
ically this would be a component on the network.

• Secondary Shed Level
This is an input that allows you to link in a Shed Level property value from a secondary (or “backup”
EDL component. Typically this would be an EDL component with a locally available connection.
The Secondary Shed level is used only if the Primary Shed Level property is not available.

• out(1-16)
These 16 properties have binary status values that reflect the current active Shed Level. For example,
a Shed Level of 3 (as indicated by the Primary Shed Level, or Secondary Shed Level when Primary is
not available) sets the first three out properties (out1, out2, out3) to false. This false value may be
used to turn off power by linking to an appropriate control. When a “restore” changes the Shed Level
to 2, the out3 property returns to null, relinquishing control to the next (out2) priority level.

Figure 2-33 shows an example wiresheet view of a ShedControl component in use.

Figure 2-33 Wiresheet view of Shed Control component
NiagaraAX-3.x

kitControl Guide
2–50

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-Sine
Note the following about the example wiresheet view:
• The Primary Shed Level (linked from an EDL component) is “1” (no Secondary Shed Level is used).
• out1, 2, and 3 are linked to boolean controls that are set to turn off power to Plant_A, B, and C, re-

spectively, if required.
• The current Shed Level of “1” sets out1 to false and sets the “Plant_A” boolean control status to

False. This should turn off power to any power consuming devices that are linked to this object.
• The out1 value is also linked to the SetpointLoadShed component, which adjusts a setpoint to re-

duce the electrical demand.
• If more shed levels are needed, out2 and out3 will be set to false. If shed levels are no longer need-

ed (a “restoration” is invoked) then out3, out2, and out1 are restored (to null), in that order, as al-
lowed by the current Shed Level.

See also Alphabetical list of kitControl components

kitControl-Sine
 Sine performs the operation out = sin(inA). The Sine is in the Math folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-SineWave
 SineWave generates a sine wave as a StatusNumeric out. The SineWave is available in the Util folder
of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-SlidingWindowDemandCalc
 This component is available in the Energy folder of the kitControl palette. It simulates a demand
meter (see, “About demand meters”) and calculates the sliding window demand for 5, 15, and 30-

minute demand intervals based on an accumulative pulse counter input. It also calculates the total kWh
since last reset and the hourly and daily kWh values.
The hourly and daily kWh values can then be logged using a standard history extension setup to execute
on-trigger only. The SlidingWindowDemandCalc object fires the hourly and daily triggers to align the
kWh data correctly to actual clock values. The pulse input into the object is assumed to be accumulative
(not delta pulses) that roll over after reaching the 16 bit limit (65535).
The SlidingWindowDemandCalc object can be configured to reset all the calculated accumulative values
on a preset interval such as at “noon on the first Sunday, every month”.
For more information about demand meters, see “About demand meters”.
See also Alphabetical list of kitControl components
About demand meters A demand meter measures peak demand using electromechanical components,
and provides a pulsed contact output in proportion to the rate of electrical consumption over a interval
such as 15 or 30 minutes. The utility meter will record the highest average interval rate (kW), which will
be billed as the “Demand Charge.” At the end of the billing cycle, peak demand will be read and the
demand will be rest to zero for the start of a new billing cycle. The total consumption (kWh) is also
totalized by the meter to determine the “Usage Charge.”
The SlidingWindowDemandCalc object can simulate the demand meter by calculating the average value
over an interval. On a normal update frequency, the kW data from the oldest sample is replaced by the
kW data from the most recent sample. This constant updating of the kW information every scan is called
a “Sliding Window Demand Value.”
The highest “Sliding Window” demand reading may be higher than the utility demand since the calcu-
lation updates average demand every 2 seconds and the utility meter may be resetting on a fixed or
discrete 15 or 30 minute interval.
Setup of the SlidingWindowDemandCalc object involves the following properties:
• Consumption Facets

This property allows you to set the facets for the consumption output property:
• units

Select the desired units from the drop-down option list. Default units are energy and kilo-
watt hour (kW-hr).

• precision
Type in an integer to set the precision level for your data (how many decimal places to display).

• min
Type in a value for the smallest allowable value of the output property (default is -inf)
NiagaraAX-3.x

kitControl Guide
2–51

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
• max
Type in a value for the largest allowable value of the output property (default is +inf)

• Demand Facets
This property allows you to set the facets for the demand output property:
• units

Select the desired units from the drop-down option list. Default units are power and kilo-
watts (kW)

• precision
Type in an integer to set the precision level for your data (how many decimal places to display).

• min
Type in a value for the smallest allowable value of the output property (default is -inf)

• max
Type in a value for the largest allowable value of the output property (default is +inf)

• Current Pulse Count
Displays data from a link to a pulse counter input object indicating the running total of pulses.

• Time of Reset
Displays the date and time of the last reset.

• Demand 5
Displays the demand (kW) for a five minute window.

• Demand 15
Displays the demand (kW) for a fifteen minute window.

• Demand 30
Displays the demand for a 30 minute period.

• Kwh
Displays the running kWh (consumption) value since the last reset.

• Kwh Hourly
Displays the running value since the last hourly reset.

• Kwh Last Hour
Displays the kWh (consumption) value for the last hour.

• Kwh Daily
Displays the kWh (consumption) value since the last daily reset.

• Kwh Last Day
Displays the kWh (consumption) value for the last day.

• Kwh Per Pulse
This field allows you to set the value per pulse. It is usually noted on the meter or provided by the
power company. It is how much energy each pulse represents.

• Enable Reset
A true value in this field allows recurring automatic resets to happen at a frequency based on the fol-
lowing properties.

• Reset Day of Month
Allows you to set the day of month for recurring automatic reset (if enabled) to occur.

• Reset Day of Week
Allows you to set the day of the week for recurring automatic reset (if enabled) to occur.

• Reset Time
Allows you to set the time of day for recurring automatic reset (if enabled) to occur.

• Meter Rollover
Specifies the maximum value the meter provides before it rolls over to zero (0). The default value is
65535, the data type is a long (up to a very large number, 9223372036854775807).

An example SlidingWindowDemandCalc property sheet is shown in Figure 2-34:
NiagaraAX-3.x

kitControl Guide
2–52

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-SquareRoot
Figure 2-34 Example SlidingWindowDemandCalc property sheet

kitControl-SquareRoot
 SquareRoot performs the operation out = sqrt(inA) (square root of inA). The SquareRoot is
available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusBooleanToBoolean
StatusBooleanToBoolean converts a StatusBoolean value to Boolean. See “Status value to simple
value” on page 1-5. StatusBooleanToBoolean is available in the Conversion folder of the kitControl

palette.
See also Alphabetical list of kitControl components

kitControl-StatusDemux
 StatusDemux provides a method to check for individual status flags of the In-linked object, and sets
corresponding (demuxed) StatusBoolean out slots active (true) if that status as found. StatusDemux

is available in the Util folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-StatusEnumToEnum
StatusEnumToEnum converts a StatusEnum value to Enum. See “Status value to simple value” on
page 1-5. StatusEnumToEnum is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusEnumToInt
StatusEnumToInt converts a StatusEnum value to an Integer. See “Status value to simple value” on
page 1-5. StatusEnumToEnum is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusEnumToStatusBoolean
StatusEnumToStatusBoolean converts a StatusEnum value to a StatusBoolean value. See “Status
value to status value” on page 1-7. It is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusEnumToStatusNumeric
StatusEnumToEnum converts a StatusEnum value to a StatusNumeric value. See “Status value to
status value” on page 1-7. It is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusNumericToDouble
StatusNumericToDouble converts a StatusNumeric value to a Double value. See “Status value to
simple value” on page 1-5. It is available in the Conversion folder of the kitControl palette.
NiagaraAX-3.x

kitControl Guide
2–53

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
See also Alphabetical list of kitControl components

kitControl-StatusNumericToFloat
StatusNumericToFloat converts a StatusNumeric value to a Float value. See “Status value to simple
value” on page 1-5. It is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusNumericToInt
StatusNumericToInt converts a StatusNumeric value to an Int (integer). See “Status value to simple
value” on page 1-5. It is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusNumericToStatusEnum
StatusNumericToStatusEnum converts a StatusNumeric value to a StatusEnum value. See “Status
value to status value” on page 1-7. It is available in the Conversion folder of the kitControl palette.

See also Alphabetical list of kitControl components

kitControl-StatusNumericToStatusString
StatusNumericToStatusString converts a StatusNumeric value to a StatusString value. It is available
in the Conversion folder of the kitControl palette.

Object properties specify the number of integer (whole number) digits and decimal digits to use in the
output string, with a default value of 6 each. Unused digits are padded with a zero. For example, with an
input numeric value of 72.8, the default output string would be “000072.800000”.
See “Status value to status value” on page 1-7 for other status-to-status conversion types. See “About
String components” on page 1-13 for related string operations.
See also Alphabetical list of kitControl components

kitControl-StatusStringToStatusNumeric
StatusStringToStatusNumeric converts a StatusString value to an StatusNumeric value. It is
available in the Conversion folder of the kitControl palette.

The input string must contain only numeral characters, and optionally one period (“.”) for decimal
notation. Valid input strings examples are “145678” or “34.81”. Leading and/or trailing space characters
are allowed and ignored. Any other input string characters (e.g. alpha, punctuation) result in a fault
status.
See “Status value to status value” on page 1-7 for other status-to-status conversion types. See “About
String components” on page 1-13 for related string operations.
See also Alphabetical list of kitControl components

kitControl-StringConcat
 StringConcat simply concatenates (joins) up to 4 StatusString values present on inputs InA, InB,
InC, and InD and outputs the concatenated string. String output order is A + B + C + D.

The StringConcat is available in the String folder of the kitControl palette. See “About String compo-
nents” on page 1-13.
See also Alphabetical list of kitControl components

kitControl-StringConst
 Provides constant StatusString value, with available action to Set. It is available in the Constants
folder of the kitControl palette. See “About Constant components” on page 1-4.

See also Alphabetical list of kitControl components

kitControl-StringIndexOf
 StringIndexOf compares two StatusString inputs (InA, InB), looking for an exact match of string InB
within string InA. The object outputs a StatusBoolean result (true, false), as well as “begin” and

“after” index character positions. Three properties are integer types: FromIndex, BeginIndex, and After-
Index. The object works as follows:
inputs: InA, InB, FromIndex
outputs: Out, BeginIndex, AfterIndex
The object tests an exact match of string InB within string InA starting at character position FromIndex
within string InA.
NiagaraAX-3.x

kitControl Guide
2–54

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-StringLatch
• If a match does occur:
Out is set to true. BeginIndex is set to the character position within string InA where the match
starts, and AfterIndex is set to the character position just after the match ends.

• If a match does not occur:
Out is set to false. BeginIndex and AfterIndex are both set to -1.

 The StringIndexOf is available in the String folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-StringLatch
 StringLatch provides a latch for a StatusString input, and is available in the Latches folder of the
kitControl palette. See “About Latch components” on page 1-8.

See also Alphabetical list of kitControl components

kitControl-StringLen
 StringLen simply outputs the total number of non-null characters in the In StatusString value. Out
value is StatusNumeric from 0 to n. The StringLen is available in the String folder of the kitControl

palette.
See also Alphabetical list of kitControl components

kitControl-StringSelect
StringSelect is a string select. The StringSelect is available in the String folder of the kitControl
palette. See “About Select components” on page 1-13 for an overview.

See also Alphabetical list of kitControl components

kitControl-StringSubstring
 StringSubstring outputs a portion of the “In” slot StatusString value, as specified by integer
properties Begin Index and End Index. By default, Begin Index=0 and End Index=-1, which means

the entire In string is passed.
The StringSubstring is available in the String folder of the kitControl palette. See “About String compo-
nents” on page 1-13.
See also Alphabetical list of kitControl components

kitControl-StringTest
 StringTest compares 2 StatusString values (InA and InB) and outputs a StatusBoolean Out (true/
false) result. Test Selection property choices are:

• aEqualsB
• aEqualsBIgnoreCase
• aStartsWithB
• aEndsWithB
• aContainsB
The StringLen is available in the String folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-StringToStatusString
StringToStatusString converts the string In value to a StatusString Out value. See “Simple value to
status value” on page 1-7. StringToStatusString is available in the Conversion folder of the kitControl

palette.
See also Alphabetical list of kitControl components

kitControl-StringTrim
 StringTrim “trims whitespace” from both ends of the StatusString In value. Whitespace is typically
leading/trailing space characters, but may also include control characters. The StringTrim is available

in the String folder of the kitControl palette. See “About String components” on page 1-13.
See also Alphabetical list of kitControl components

kitControl-Subtract
 Subtract performs the operation out = (inA - inB). If either input is Numeric.NaN, the output will
be Numeric.NaN. The Subtract is available in the Math folder of the kitControl palette.

See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–55

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
kitControl-Tangent
 Tangent performs the operation out = tan(inA). The Tangent is available in the Math folder of the
kitControl palette.

See also Alphabetical list of kitControl components

kitControl-TimeDifference
 TimeDifference has two inputs (In1 and In2), each requiring an absolute time (AbsTime) value. The
TimeDifference component subtracts In2 from In1, and outputs it as a StatusNumeric, in milli-

seconds. You may link a CurrentTime object to one of the inputs for a “countdown” or “count-up” type
output.
The following types of properties are used in the TimeDifference component:
• Out

This property displays the numeric value (in milliseconds) that represents the time difference be-
tween In1 property value and In2 property value.

• In1
This is the property value from which In2 is subtracted.

• In2
This is the property value that is subtracted from In1.

Figure 2-35, shows an example use of the TimeDifference component:

Figure 2-35 Example use of TimeDifference component

Note the following about the example wiresheet view in Figure 2-35:
• This example shows the configuration of a TimeDifference component that is used to keep a run-

ning count of the “Days until Christmas”.
• A fixed target date (December 25) is set into the In1 property.
• A CurrentTime component is used to link into In2. This date is “subtracted from” the date in In1.
• The Out value is linked to three separate conversion components that convert the time difference

Out value from milliseconds into Weeks, Days, and Minutes.
• After December 25, the Out value is negative
The TimeDifference component is in the Timer folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-Tstat
Tstat provides basic thermostatic (On/Off) control with a StatusBoolean Out property and Status-
Numeric inputs for controlled variable (Cv), setpoint (Sp), and differential (Diff). An Action property

allows operation as Direct or Reverse. A “Null On Inactive” property is also available. Default action is
Direct (cooling). Tstat is available in the HVAC folder of the kitControl palette.
See also Alphabetical list of kitControl components

kitControl-Xor
 Xor performs a logical XOR on all valid inputs and writes the result to the out property. It is available
in the Logic folder of the kitControl palette. Table 2-11 shows the Xor object truth table when using

two inputs (typical). Table 2-12 shows the Xor object truth table if using all four inputs. EQUIV gate logic
is accomplished by linking to a Not object.
See also Alphabetical list of kitControl components
NiagaraAX-3.x

kitControl Guide
2–56

Chapter 2 – kitControl Component Guides Alphabetical list of kitControl components
September 12, 2013 kitControl-Xor
Table 2-11 Xor object truth table (2 inputs)

Table 2-12 Xor object truth table (4 inputs)

In A In B Out

false false false
false true true
true false true
true true false

In A In B In C In D Out

false false false false false
false false false true true
false false true false true
false false true true false
false true false false true
false true false true false
false true true false false
false true true true true
true false false false true
true false false true false
true false true false false
true false true true true
true true false false false
true true false true true
true true true false true
true true true true false
NiagaraAX-3.x

kitControl Guide
2–57

Alphabetical list of kitControl components Chapter 2 – kitControl Component Guides

September 12, 2013
NiagaraAX-3.x

kitControl Guide
2–58

	Preface
	About kitControl
	Application for kitControl components
	Types of kitControl components
	Location for kitControl components
	Extensions and kitControl components
	Components that cannot receive extensions

	About kitControl Alarm components
	About Constant components
	About Conversion components
	Status value to simple value
	Simple value to status value
	Status value to status value

	About Energy components
	About HVAC components
	About Latch components
	Types of Latch Components
	Types of Latch Component Properties
	About the Latch Action
	Latch Examples

	About Logic components
	About Math components
	About Select components
	About String components
	About Timer components
	About Util components

	kitControl Component Guides
	Alphabetical list of kitControl components
	kitControl-AbsValue
	kitControl-Add
	kitControl-AlarmCountToRelay
	kitControl-And
	kitControl-ArcCosine
	kitControl-ArcSine
	kitControl-ArcTangent
	kitControl-Average
	kitControl-BooleanDelay
	kitControl-BooleanConst
	kitControl-BooleanLatch
	kitControl-BooleanSelect
	kitControl-BooleanSwitch
	kitControl-BooleanToStatusBoolean
	kitControl-BqlExprComponent
	kitControl-ChangeOfStateCountAlarmExt
	kitControl-Cosine
	kitControl-Counter
	kitControl-CurrentTime
	kitControl-DegreeDays
	kitControl-DigitalInputDemux
	kitControl-Divide
	kitControl-DoubleToStatusNumeric
	kitControl-ElapsedActiveTimeAlarmExt
	kitControl-ElectricalDemandLimit
	kitControl-EnumConst
	kitControl-EnumLatch
	kitControl-EnumSelect
	kitControl-EnumToStatusEnum
	kitControl-EnumSwitch
	kitControl-Equal
	kitControl-Exponential
	kitControl-Factorial
	kitControl-FloatToStatusNumeric
	kitControl-GreaterThan
	kitControl-GreaterThanEqual
	kitControl-IntToStatusNumeric
	kitControl-InterstartDelayControl
	kitControl-InterstartDelayMaster
	kitControl-LeadLagCycles
	kitControl-LeadLagRuntime
	kitControl-LessThan
	kitControl-LessThanEqual
	kitControl-LogBase10
	kitControl-LogNatural
	kitControl-LongToStatusNumeric
	kitControl-LoopAlarmExt
	kitControl-LoopPoint
	kitControl-Maximum
	kitControl-Minimum
	kitControl-MinMaxAvg
	kitControl-Modulus
	kitControl-Multiply
	kitControl-MultiVibrator
	kitControl-Negative
	kitControl-NightPurge
	kitControl-Not
	kitControl-NotEqual
	kitControl-NumericBitAnd
	kitControl-NumericBitOr
	kitControl-NumericBitXor
	kitControl-NumericConst
	kitControl-NumericDelay
	kitControl-NumericLatch
	kitControl-NumericSelect
	kitControl-NumericSwitch
	kitControl-NumericToBitsDemux
	kitControl-NumericUnitConverter
	kitControl-OneShot
	kitControl-OptimizedStartStop
	kitControl-Or
	kitControl-OutsideAirOptimization
	kitControl-Power
	kitControl-Psychrometric
	kitControl-Ramp
	kitControl-Random
	kitControl-Reset
	kitControl-RaiseLower
	kitControl-SequenceBinary
	kitControl-SequenceLinear
	kitControl-SetpointLoadShed
	kitControl-SetpointOffset
	kitControl-ShedControl
	kitControl-Sine
	kitControl-SineWave
	kitControl-SlidingWindowDemandCalc
	kitControl-SquareRoot
	kitControl-StatusBooleanToBoolean
	kitControl-StatusDemux
	kitControl-StatusEnumToEnum
	kitControl-StatusEnumToInt
	kitControl-StatusEnumToStatusBoolean
	kitControl-StatusEnumToStatusNumeric
	kitControl-StatusNumericToDouble
	kitControl-StatusNumericToFloat
	kitControl-StatusNumericToInt
	kitControl-StatusNumericToStatusEnum
	kitControl-StatusNumericToStatusString
	kitControl-StatusStringToStatusNumeric
	kitControl-StringConcat
	kitControl-StringConst
	kitControl-StringIndexOf
	kitControl-StringLatch
	kitControl-StringLen
	kitControl-StringSelect
	kitControl-StringSubstring
	kitControl-StringTest
	kitControl-StringToStatusString
	kitControl-StringTrim
	kitControl-Subtract
	kitControl-Tangent
	kitControl-TimeDifference
	kitControl-Tstat
	kitControl-Xor

