
Technical Document

Updated: August 25, 2010

NiagaraAX-3.x Modbus Guide

NiagaraAX Modbus Guide

Confidentiality Notice
The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation (“Tridium”). Such
information, and the software described herein, is furnished under a license agreement and may be used only in accordance with
that agreement.
The information contained in this document is provided solely for use by Tridium employees, licensees, and system owners; and,
except as permitted under the below copyright notice, is not to be released to, or reproduced for, anyone else.
While every effort has been made to assure the accuracy of this document, Tridium is not responsible for damages of any kind,
including without limitation consequential damages, arising from the application of the information contained herein. Information
and specifications published here are current as of the date of this publication and are subject to change without notice. The latest
product specifications can be found by contacting our corporate headquarters, Richmond, Virginia.

Trademark Notice
Modbus is a registered trademark of Schneider Electric, Inc. BACnet and ASHRAE are registered trademarks of American Society
of Heating, Refrigerating and Air-Conditioning Engineers. Microsoft and Windows are registered trademarks, and Windows NT,
Windows 2000, Windows XP Professional, and Internet Explorer are trademarks of Microsoft Corporation. Java and other Java-
based names are trademarks of Sun Microsystems Inc. and refer to Sun's family of Java-branded technologies. Mozilla and Firefox
are trademarks of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trademarks of Echelon
Corporation. Tridium, JACE, Niagara Framework, NiagaraAX Framework, and Sedona Framework are registered trademarks, and
Workbench, WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services mentioned in
this publication that is known to be trademarks, registered trademarks, or service marks are the property of their respective owners.

Copyright and Patent Notice
This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those
products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from
Tridium, Inc.
Copyright © 2010 Tridium, Inc.
All rights reserved. The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

CONTENTS

Preface . v
About this document . 1–v

Modbus terms . 1–v

Document change log . vi

Modbus Driver Installations . 1–1
Modbus license requirements . 1–1

Installing Modbus software . 1–1

Modbus Quick Start . 2–1
Configure the client Modbus network . 2–1

Add a ModbusAsyncNetwork . 2–1
Configure the serial port parameters and transmission mode . 2–2
Add a ModbusTcpNetwork . 2–2
Add a ModbusTcpGateway . 2–2
Review network-level Modbus client configuration . 2–3

Add client Modbus devices . 2–3

Create Modbus client proxy points . 2–4

Add other client Modbus components . 2–5

Configure the slave Modbus network . 2–6
Add a ModbusSlaveNetwork . 2–6
Configure the serial port parameters and transmission mode . 2–6
Add a ModbusTcpSlaveNetwork . 2–7
Review network-level Modbus server configuration . 2–7

Add server (slave) Modbus devices . 2–8

Create Modbus server proxy points . 2–9

Add other server Modbus components . 2–9

Modbus Meets NiagaraAX . 3–1
Brief History . 3–1

Modbus key concepts . 3–1
Modbus registers . 3–2
Modbus data addresses . 3–2
Organization and addressing of data . 3–2
Consecutive addresses . 3–3
Consecutive address usage (general) . 3–3
Consecutive address usage (NiagaraAX) . 3–4
Data address format in NiagaraAX . 3–5
Modbus data types . 3–6
Data in Modbus . 3–6
Numerical data types . 3–6
NiagaraAX data representation . 3–7
NiagaraAX-3.x

Modbus Guide
i

 Contents

August 25, 2010
Modbus function codes . 3–7
Supported function codes . 3–7
Modbus messages . 3–8
Message structures . 3–8
NiagaraAX debug example . 3–9
Exception responses . 3–9
Exception response format . 3–9
Exception codes . 3–10

Device-to-device differences . 3–11
Network-level settings .3–11
Device-level Modbus Config properties .3–11

NiagaraAX Modbus Representation . 4–1
About Modbus Async networks . 4–1

Modbus Async Network configuration . 4–2
Modbus Async Device Manager notes . 4–3

About Modbus TCP networks . 4–4
Modbus Tcp Network configuration . 4–4
Modbus Tcp Device Manager notes . 4–5

About Modbus TCP Gateway networks . 4–6
Modbus Tcp Gateway configuration . 4–7
Modbus Tcp Gateway Device Manager notes . 4–8

About Modbus Slave networks . 4–8
Modbus Slave Network configuration . 4–9
Modbus Slave Device Manager notes .4–10

About Modbus TCP Slave networks . 4–10
Modbus Tcp Slave Network configuration .4–11
Modbus Tcp Slave Device Manager notes .4–11

About Master (client) types . 4–12
About Modbus client devices .4–12
Modbus Config (client device level) . 4–12
Ping Address properties . 4–13
Base Address properties . 4–14
Device Poll Config . 4–15
Modbus Client Point Manager notes .4–16
About Modbus client proxy points .4–17
Types of Modbus client proxy points . 4–18
Modbus client point ProxyExt properties . 4–19
About Modbus preset components .4–21
Modbus Client Preset Coils . 4–22
Modbus Client Preset Registers . 4–23
Adding client presets . 4–24
About Modbus (client) file records .4–25
About Modbus client exception status .4–25

About Slave (server) types . 4–26
About Modbus server devices .4–26
Modbus Config (server device level) . 4–26
Modbus Register Range Tables . 4–27
About Modbus server proxy points .4–29
Types of Modbus server proxy points . 4–29
Modbus server point ProxyExt properties . 4–30
About Modbus (server) file records .4–31

Modbus Plugin Guides . 5–1
Plugin Guides Summary . 5–1

modbusAsync plugins . 5–1

modbusCore plugins . 5–1
NiagaraAX-3.x

Modbus Guide
0-ii

Contents
August 25, 2010
modbusSlave plugins . 5–2

modbusTcp plugins . 5–2

modbusTcpSlave plugins . 5–2

Modbus Component Guides . 6–1
Component Reference Summary . 6–1

modbusAsync components . 6–1

modbusCore Components . 6–2

modbusSlave components . 6–5

modbusTcp components . 6–6

modbusTcpSlave components . 6–7
NiagaraAX-3.x

Modbus Guide
0-iii

 Contents

August 25, 2010
NiagaraAX-3.x

Modbus Guide
0-iv

PREFACE

Preface
• About this document
• Modbus terms
• Document change log

About this document
This document applies to any of the Modbus drivers for any release of NiagaraAX. Any features that
require a certain release level of NiagaraAX are noted, if necessary.

Note: The audience is considered to be knowledgeable in Modbus technology and is NiagaraAX Certified.
The following main sections are included:
• This preface.

Includes Modbus terms and a Document change log.
• “Modbus Driver Installations” on page 1-1

Explains NiagaraAX license requirements and the software modules that need to be installed.
• “Modbus Quick Start” on page 2-1

Provides several quick procedures for station configuration to add various Modbus client or slave
networks, add child Modbus devices and proxy points, and also other Modbus components.

• “Modbus Meets NiagaraAX” on page 3-1
Provides general explanations of basic Modbus concepts. Included is basic information on registers,
addressing, data types, function codes, device differences, and Modbus messaging.

• “NiagaraAX Modbus Representation” on page 4-1
Provides details on NiagaraAX components and views used to model Modbus devices and networks,
including the different client types and server types. Included are details on Modbus proxy points.

• “Modbus Plugin Guides” on page 5-1
Provides brief summaries of the different Modbus manager views, each with links back to the more
detailed concepts section. Entries are used in NiagaraAX context-sensitive help “On View”.

• “Modbus Component Guides” on page 6-1
Provides brief summaries of the different Modbus components, most with links back to the more de-
tailed concepts section. Entries are used in NiagaraAX context-sensitive help “Guide On Target”.

Modbus terms
The following list of terms and abbreviations is specific to Modbus usage in NiagaraAX, and covers
entries used in this document. For general NiagaraAX terms, see the Glossary in the User Guide.

ASCII American Standard Code for Information Interchange (or in frequent context), Modbus ASCII.
One of two Modbus serial transmission modes, where two eight-bit bytes of information are sent as two
ASCII characters. Typically, most Modbus serial devices use the Modbus RTU protocol instead.

coils Discrete “On/Off” outputs in a Modbus slave that can be read and typically written by the Modbus
master. One of four different Modbus data groups. The term “coil” originated from the first PLC appli-
cations, in which outputs of a PLC were set by energizing coils of output relays. See “Modbus registers”
on page 3-2.

COV Change-of-Value.

CRC Cyclic Redundancy Check. An error checksum mechanism used in Modbus RTU.
NiagaraAX-3.x

Modbus Guide
v

Modbus terms Preface

August 25, 2010
exception code A numerical code (contained within an exception response) that explains why a suc-
cessful response to a query cannot be delivered. See “Exception codes” on page 3-10.

exception response A response sent by a Modbus slave when the query message (sent by the master)
cannot be successfully delivered, for some reason. See “Exception responses” on page 3-9.

function code One of numerous functions defined within the Modbus specification, of which a device
may implement. Each function has a numerical code. See “Modbus function codes” on page 3-7.

holding registers 16-bit (2-byte) data registers in a Modbus slave that hold values that can typically be
read and written by the Modbus master. Values may use different data types, such as integer, float, long,
and others. One of four different Modbus data groups. See “Modbus registers” on page 3-2.

hex For hexadecimal. The base-16 numerical format used to describe Modbus message transactions,
and sometimes used for Modbus data addressing.

inputs Relating to Modbus, refers to the discrete “On/Off” status of digital inputs for a Modbus slave.
Can be read (only) by the Modbus master. One of four different Modbus data groups. See “Modbus reg-
isters” on page 3-2.

input registers 16-bit (2-byte) data registers in a Modbus slave that hold read-only values. Values may
use different data types, such as integer, float, long, or others. One of four different Modbus data groups.
See “Modbus registers” on page 3-2.

query In general Modbus terms, a message sent from the Modbus master to a slave, to retrieve or write
a value in a data item. See “Modbus messages” on page 3-8.

register In general Modbus terms, an addressable 2-byte (16-bit) memory location in a Modbus slave
that can hold a data value. There are two main types of registers: input registers and holding registers.

response In general Modbus terms, a message reply from the Modbus slave sent to the master, typically
with a requested data value or other confirmation. See “Modbus registers” on page 3-2.

RTU Remote Terminal Unit, or simply Modbus RTU. One of two Modbus serial transmission modes,
where data is sent as two four-bit, hexadecimal characters. This provides higher throughput than using
the (older) Modbus ASCII protocol for the same serial baud rate.

status Specific to Modbus, status implies boolean (binary or On/Off) data, such as for Modbus data
types coils and inputs. As used in Niagara, status can also mean general “health” of an object or output,
such as “down,” “fault,” or “ok.”

TCP Transmission Control Protocol (or in frequent context) Modbus TCP. An open Modbus protocol
that facilitates Modbus message transfer using TCP/IP protocol and standard Ethernet networks.

Document change log
Updates (changes/additions) to this NiagaraAX Modbus Guide document are listed below.
• Updated: August 25, 2010

Added “About this document” section in the this Preface. Added details about client Modbus “Enum
Bits” and “Numeric Bits” proxy points made available in build 3.5.26 or later (or AX-3.6 or higher),
which affected sections “NiagaraAX data representation” on page 3-7, “Types of Modbus client
proxy points” on page 4-18, and in reference topics for related proxy extensions ModbusClientE-
numBitsProxyExt and ModbusClientNumericBitsProxyExt. Added details about client component
to read function code 07 (exception status), which affected section “Supported function codes” on
page 3-7, along with new sections “About Modbus client exception status” on page 4-25, and sum-
mary reference ModbusClientExceptionStatus. Updated document with newer style legal text.

• Updated: February 14, 2008
Changed document to reference the new NiagaraAX Drivers Guide, which was created from infor-
mation formerly found in the NiagaraAX User Guide.

• Updated: March 15, 2007
Completely reworked what was formerly a “placeholder” document. Included are new main sections
“Modbus Quick Start”, “Modbus Meets NiagaraAX”, and “NiagaraAX Modbus Representation”,
along with numerous content changes in the “Modbus Plugin Guides” and “Modbus Component
Guides” summary descriptions. Also added was“Modbus terms” in this Preface.

• Published: June 24, 2005
Initial document.
NiagaraAX-3.x

Modbus Guide
vi

1CHAPTER

Modbus Driver Installations
Currently, this section has only two subsections:
• Modbus license requirements
• Installing Modbus software

Modbus license requirements
To use any of the NiagaraAX Modbus drivers, you must have a target NiagaraAX host (JACE) that is
licensed with the corresponding feature(s). These include the following:
• modbusAsync — For ModbusAsyncNetworks (serial Modbus RTU or ASCII over RS-485 or RS-232)
• modbusSlave — For ModbusSlaveNetworks (serial Modbus RTU or ASCII over RS-485 or RS-232)
• modbusTcp — For ModbusTcpNetworks and/or ModbusTcpGateways (Modbus TCP via Ethernet)
• modbusTcpSlave — For ModbusTcpSlaveNetworks (Modbus TCP via Ethernet)
In addition, note that other limits on devices and proxy points may exist in your license.

Installing Modbus software
From your PC, use the Niagara Workbench 3.n.nn installed with the “installation tool” option (checkbox
“This instance of Workbench will be used as an installation tool”). This option installs the needed distri-
bution files (.dist files) for commissioning various models of remote JACE platforms. The dist files are
located under your Niagara install directory under a “sw” subdirectory.
For details, see “About your software database” in the Platform Guide.
Apart from installing the 3.n.nn version of the Niagara distribution in the JACE, make sure to also install
the modbusCore module, plus any specific modbus<type> module needed (for example, modbusAsync,
modbusTcp, and so on). Upgrade any modules shown as “out of date”.
For details, see “Software Manager” in the Platform Guide.
Following this, the remote JACE is now ready for Modbus configuration in its running station, as
described in the rest of this document. See the next section “Modbus Quick Start” for a series of task-
based procedures, as well as other sections “Modbus Meets NiagaraAX” and “NiagaraAX Modbus Repre-
sentation” for conceptual and operational topics.
NiagaraAX-3.x

Modbus Guide
1–1

Installing Modbus software Chapter 1 – Modbus Driver Installations

August 25, 2010
NiagaraAX-3.x

Modbus Guide
1-2

2CHAPTER

Modbus Quick Start
This section provides a collection of procedures to use the NiagaraAX Modbus drivers to build networks
of devices with proxy points and other components. Like other NiagaraAX drivers, you can do most
configuration from special “manager” views and property sheets using Workbench.
These are the main subsections:
• For any of the “client” (master) Modbus networks:

• “Configure the client Modbus network” on page 2-1
• “Add client Modbus devices” on page 2-3
• “Create Modbus client proxy points” on page 2-4
• “Add other client Modbus components” on page 2-5

• For either of the “server” (slave) Modbus networks:
• “Configure the slave Modbus network” on page 2-6
• “Add server (slave) Modbus devices” on page 2-8
• “Create Modbus server proxy points” on page 2-9
• “Add other server Modbus components” on page 2-9

Configure the client Modbus network
To add and configure a client Modbus network, perform the following main tasks:
• Add the client Modbus network, as needed:

• Add a ModbusAsyncNetwork
• Add a ModbusTcpNetwork
• Add a ModbusTcpGateway

• Review network-level Modbus client configuration

Add a ModbusAsyncNetwork
Note: First see “Modbus Driver Installations” on page 1-1 for license and software requirements. For background

information, see “About Modbus Async networks” on page 4-1.

To add a ModbusAsyncNetwork in the station
Use the following procedure to add a ModbusAsyncNetwork component under the station’s Drivers
container.

Note: If the host JACE has multiple RS-485 or RS-232 ports to be used for client (master) access of Modbus
networks, add one ModbusAsyncNetwork for each physical port. Note that for each ModbusAsyncNetwork,
you must Configure the serial port parameters and transmission mode.
To add a ModbusAsyncNetwork in the station:

Step 1 Double-click the station’s Drivers container, to bring up the Driver Manager.
Step 2 Click the New button to bring up the New network dialog. For more details, see “Driver Manager New

and Edit” in the Drivers Guide.
Step 3 Select “Modbus Async Network,” number to add: 1 (or more if multiple networks) and click OK.

This brings up a dialog to name the network(s).
Step 4 Click OK to add the ModbusAsyncNetwork(s) to the station.

You should have a ModbusAsyncNetwork named “ModbusAsyncNetwork” (or whatever you named it),
under your Drivers folder, initially showing a status of “{fault}” and enabled as “true.”
After you Configure the serial port parameters and transmission mode, status should change to “{ok}”.
NiagaraAX-3.x

Modbus Guide
2–1

Configure the client Modbus network Chapter 2 – Modbus Quick Start
Add a ModbusTcpNetwork August 25, 2010
Configure the serial port parameters and transmission mode
In the ModbusAsyncNetwork property sheet for each network, you must set the serial port configuration
to match the serial communications parameters used by other Modbus devices on the network, including
the Modbus transmission mode (RTU or ASCII).

To set the serial port parameters
To set the serial port parameters and mode for a ModbusAsyncNetwork:

Step 1 Right-click the ModbusAsyncNetwork and select Views > Property Sheet.
The Property Sheet appears.

Step 2 Scroll down and expand the Serial Port Config slot
Set the properties for the JACE serial port used, where defaults are:
• Port Name: none — Enter the JACE port being used, like COM2 or COM3.
• Baud Rate: Baud9600 — Or choose different from selection list.
• Data Bits: Data Bits8 — Or choose different from selection list.
• Stop Bits: Stop Bit1 — Or choose different from selection list.
• Parity: none — Or choose different from selection list.
• Flow Control Mode: none — Or choose different using checkbox.

Note: You must determine the setup of the Modbus serial network to correctly set the baud rate, data bits, stop
bits, parity, and flow control settings.

Step 3 Set the Modbus Data Mode property value, either Rtu (default) or Ascii, depending on network type.
Step 4 Click the Save button.
Step 5 While in the property network’s property sheet, you should review its “global” Modbus settings.

See “Review network-level Modbus client configuration” on page 2-3.

Add a ModbusTcpNetwork
Note: First see “Modbus Driver Installations” on page 1-1 for license and software requirements. For background

information, see “About Modbus TCP networks” on page 4-4.

To add a ModbusTcpNetwork in the station
Use the following procedure to add a ModbusTcpNetwork component under the station’s Drivers
container.

Note: Only one ModbusTcpNetwork is needed, even if the JACE host has two Ethernet ports connected to two
different (non-routed) TCP/IP LANs. In this case, the destination IP addresses of child ModbusTcpDevices
will automatically determine the Ethernet port utilized.
To add a ModbusTcpNetwork in the station:

Step 1 Double-click the station’s Drivers container, to bring up the Driver Manager.
Step 2 Click the New button to bring up the New network dialog. For more details, see “Driver Manager New

and Edit” in the Drivers Guide.
Step 3 Select “Modbus Tcp Network,” number to add: 1 and click OK.

This brings up a dialog to name the network.
Step 4 Click OK to add the ModbusTcpNetwork to the station.

You should have a ModbusTcpNetwork named “ModbusTcpNetwork” (or whatever you named it), under
your Drivers folder, initially showing a status of “{ok}” and enabled as “true.”

Step 5 Right-click the ModbusTcpNetwork and select Views > Property Sheet.
The Property Sheet appears. See “Review network-level Modbus client configuration” on page 2-3.

Add a ModbusTcpGateway
Note: First see “Modbus Driver Installations” on page 1-1 for license and software requirements. For background

information, see “About Modbus TCP Gateway networks” on page 4-6.

To add a ModbusTcpGateway in the station
Use the following procedure to add a ModbusTcpGateway (network) component under the station’s
Drivers container.

Note: One or more ModbusTcpGateways are supported. Often, Modbus TCP/serial gateways are on the same
LAN as other Modbus TCP devices.
NiagaraAX-3.x

Modbus Guide
2-2

Chapter 2 – Modbus Quick Start Add client Modbus devices
August 25, 2010 Review network-level Modbus client configuration
To add a ModbusTcpGateway in the station:
Step 1 Double-click the station’s Drivers container, to bring up the Driver Manager.
Step 2 Click the New button to bring up the New network dialog. For more details, see “Driver Manager New

and Edit” in the Drivers Guide.
Step 3 Select “Modbus Tcp Gateway,” number to add: 1 (or more, if multiple) and click OK.

This brings up a dialog to name the network(s).
Step 4 Click OK to add the ModbusTcpGateway(s) to the station.

You should have a ModbusTcpGateway named “ModbusTcpGateway” (or whatever you named it), under
your Drivers folder, initially showing a status of “{ok}” and enabled as “true.”

Step 5 Right-click the ModbusTcpGateway and select Views > Property Sheet.
The Property Sheet appears.

Step 6 In the Ip Address property, enter the Modbus gateway’s unique IP address, replacing the
“###.###.###.###” default value.

Step 7 In the Port property, review the default 502 default value.
This is the “standard” port used by Modbus TCP. If the Modbus TCP/serial gateway is using another TCP
port, change this value to match.

Step 8 Click the Save button.
Step 9 While this network’s property sheet is open, you should review its “global” Modbus settings.

See the next section “Review network-level Modbus client configuration”.

Review network-level Modbus client configuration
For any of the client Modbus networks (ModbusAsyncNetwork, ModbusTcpNetwork, ModbusTcp-
Gateway), you should review its “network-level” defaults for interpreting/supporting Modbus data.
These defaults are on the property sheet of the network-level component.

Note: These settings apply to all Modbus devices in the network, unless overridden in the configuration of any
device, using equivalent properties. For more information, see “Device-to-device differences” on page 3-11.

To review network-level Modbus configuration
To review network-level Modbus configuration:

Step 1 In the property sheet of the network, review the following properties:
• Float Byte Order: Order3210 — Or select Order1032 instead if used by most devices.
• Long Byte Order: Order3210 — Or select Order1032 instead if used by most devices.
• Use Preset Multiple Register: false — Or set to true if most devices support it (function code 16).
• Use Force Multiple Coil: false — Or set to true if most devices support it (function code 15).

Step 2 If you made any changes, click the Save button.

Add client Modbus devices
After adding a client Modbus network, you can use the network’s default “device manager” view to add
the appropriate client Modbus devices.

Note: You need the address information for each Modbus device you are adding, as well as its Modbus data
configuration (coils, inputs, input registers, and holding registers) for this procedure, as well as for later
procedures to add proxy points under devices. Have the device vendor’s documentation available for
reference, in order to map Modbus data correctly in NiagaraAX.

To add a client Modbus device in the network
Use the following procedure to add the correct type of client Modbus device in the network.
To add a client Modbus device:

Step 1 In the Nav tree or in the Driver Manager view, double-click the client network, to bring up the device
manager (Modbus Async Device Manager, Modbus Tcp Device Manager, Modbus Tcp Gateway Device
Manager). All of these device manager views operate in a similar fashion.

Note: For general device manager information, see the “About the Device Manager” section in the Drivers Guide.
Step 2 Click the New button to bring up the New device dialog.

Depending on the network type, the appropriate device object Type will be preselected (either
ModbusAsyncDevice, ModbusTcpDevice, or ModbusTcpGatewayDevice).
NiagaraAX-3.x

Modbus Guide
2-3

Create Modbus client proxy points Chapter 2 – Modbus Quick Start
Review network-level Modbus client configuration August 25, 2010
For more details on this step, see one of the following:
• “Modbus Async Device Manager notes” on page 4-3
• “Modbus Tcp Device Manager notes” on page 4-5
• “Modbus Tcp Gateway Device Manager notes” on page 4-8

Step 3 Select for number to add: 1 (or more, if multiple) and click OK.
This brings up a dialog to name the device(s), enter Modbus device address, as well as enter other infor-
mation, such as Modbus Config overrides, and ping address. Typically, the default values for most items
are sufficient to start with, except the following:
• Any ModbusAsyncDevice needs the unique Modbus address (1—247) in use.
• Any ModbusTcpDevice needs the unique IP address in use (Modbus address can remain at 1).

Also, if it uses a TCP port besides the standard 502, enter it here.
• Any ModbusTcpGatewayDevice needs the unique Modbus address (1—247) in use.
For more details on this step, see “About Modbus client devices” on page 4-12.

Step 4 Click OK to add the client device(s) to the network.
You should see the device(s) listed in the Modbus device manager view, showing a status of “{ok}” and
enabled as “true.”
If a device shows “down” check the configuration of the network and/or the device addresses. You can
simply double-click a device in the device manager to review settings in an Edit dialog, identical to the
New dialog when you added it.
After making any address changes, click Save, then right-click the device and select Actions > Ping.

Note: The default “ping address” for a client Modbus device is for the “first” (40001 Modbus) holding register
value (integer)—often this works well without an exception response. However, it is recommended that you
confirm this ping address, and if necessary change in the device’s property sheet. See “Ping Address
properties” on page 4-13 for more details.

Create Modbus client proxy points
As with device objects in other drivers, each client Modbus device has a Points extension that serves
as the container for proxy points. The default view for any Points extension is the Point Manager (and in
this case, the “Modbus Client Point Manager”). You use it to add Modbus client proxy points
under any client Modbus device.
For general information, see the “About the Point Manager” section in the Drivers Guide. Also see
“Modbus Client Point Manager notes” on page 4-16.

Note: Unlike the point managers in many other drivers, the Modbus Client Point Manager does not offer
a “Learn mode” with a Discover button and pane. The simplicity of the Modbus protocol excludes these
functions. Instead, you simply use the New button to create proxy points, referring to the vendor’s documen-
tation for the addresses of data items in each Modbus device.

To add Modbus client proxy points
Once a client Modbus device is added, you can add proxy points to read and write data. If programming
online (and the device shows a status of “{ok}”), you can get statuses and values back immediately, to help
determine if point configuration is correct. Use the following procedure:
To create client Modbus proxy points in a device:

Step 1 In the Device Manager, in the Exts column, double-click the Points icon in the row
representing the device you wish to create proxy points.
This brings up the Modbus Client Point Manager.

Step 2 (Optional) Click the New Folder button to create a new points folder to help organize points, and give
it a short name, such as “Hldg1_to_64”, or whatever name works for your application. You can repeat this
to make multiple points folders, or simply skip this step to make all proxy points in the root of Points.
Note that all points folders have their own Modbus Client Point Manager view, just like Points.
If making points folders, double-click one to move to its location (and see the point manager).

Step 3 At the location needed (Points root, or a points folder), click the New button.
The New points dialog appears, in which you select a point “Type,” “Number to Add,” “Starting Address,”
and “Data Type” (latter applies only if selecting type: Numeric Point or Numeric Writable).
For more details, see “About Modbus client proxy points” on page 4-17.
NiagaraAX-3.x

Modbus Guide
2-4

Chapter 2 – Modbus Quick Start Add other client Modbus components
August 25, 2010 Review network-level Modbus client configuration
Step 4 Click OK.
This brings up another New dialog to name the point(s), enter data addresses as well as enter other infor-
mation, such as point facets and conversion. Default point names use a convention similar to:
“<PointType><Address>”, for example: “Numeric Point40012” or “Boolean Writable6”.
Details on related entries in this step are in “Modbus client point ProxyExt properties” on page 4-19, and
background information is given in the section “Modbus Meets NiagaraAX” on page 3-1.

Step 5 Click OK to add the proxy point(s) to the Points extension (or to the current points folder), where each
shows as a row in the point manager.
If addressed correctly, each point should have a status of “{ok}” with a polled value displayed.
• If a point shows a “{fault}” status, check its ProxyExt “Fault Cause” property value, which typically

includes a Modbus “exception code” string, such as “Read fault: illegal data address”.
In such a case, re-check the address in the point against the documented address for the data item.
For related details, see “Exception codes” on page 3-10, and sections “Data address format in Niaga-
raAX” on page 3-5, and “Data address format in NiagaraAX” on page 3-5.

• If a NumericPoint or NumericWritable for a float or long (2-register) value shows a “0” value (or an
impossibly large value) instead of an expected value, yet still has an “{ok}” status, verify that the cor-
rect “byte order” settings exist for float and long values in the parent device.
See “Modbus Config (client device level)” on page 4-12 for related details.

Step 6 Continue to add proxy points as needed under the Points extension of each client Modbus device.
As needed, double-click one or more existing points for the Edit dialog, similar to the New dialog used
to create the points. This is commonly done for re-editing items like data addresses, names, or facets.

Step 7 After all needed proxy points have been added under a device, you may wish to configure it for “device
polling.” Typically, this improves polling response due to fewer messages to get the same amount of data.
To configure a client Modbus device for device polling:
1. In the Nav side bar, expand the Modbus device so you see its Device Poll Config slot (or, open

the property sheet of the Modbus device to see this same slot listed with other properties/slots).
2. Right-click Device Poll Config, and select Actions > Learn Optimum Device Poll

Config.
The necessary Device Poll Config Entry components are automatically added and configured under
this container. For more details, see “Configuring Device Poll Config” on page 4-15.

Add other client Modbus components
In cases where you want to write “preset values” to specified coils and/or holding registers in a Modbus
device using a linkable “Write” action, you can add special “Preset” components under the device. These
are not actually proxy points—you need to copy them from the modbusAsync or ModbusTcp palette.
In rare cases, you may also wish to read/write string data from Modbus files in a device. The palettes also
have a component especially for this application, which you can also copy under the Modbus device.
The following procedures explains how:
• To add client Modbus presets
• To add client Modbus file records

To add client Modbus presets
To add preset components under a client Modbus device:

Step 1 Open the modbusAsync or modbusTcp palette in the Palette side bar.
Step 2 In the Nav side bar, expand the client Modbus network to show the Modbus device of interest.
Step 3 From the palette, drag the “Presets” folder onto the Modbus device in the Nav side bar (or, into the

property sheet view of that device, if open).
Step 4 In the popup Name dialog, accept the default “Presets” name or enter an alternate name, and click OK.

The folder is added under the device. By default it contains two “preset containers,” each with one “preset
entry”—one for a preset coil, one for a preset holding register. Either preset container can be deleted (if
not needed), or duplicated, as well as have additional “preset entries” added.

Step 5 In any preset container, configure the “Starting Address” and other property values, and in its child preset
entries (coil or register types), enter the actual preset values.
For more details, see “About Modbus preset components” on page 4-21.
NiagaraAX-3.x

Modbus Guide
2-5

Configure the slave Modbus network Chapter 2 – Modbus Quick Start
Add a ModbusSlaveNetwork August 25, 2010
Note: You do not have to copy the entire “Presets” folder from the palette—this is just the easiest way to add both
preset containers, each with a single preset entry child. You can locate preset containers anywhere under
the Modbus device. However, be aware if you copy these components under the Points container, they are
not visible in any Modbus Client Point Manager view.

To add client Modbus file records
To add components for client Modbus file records, use the following procedure:

Step 1 Open the modbusAsync or modbusTcp palette in the Palette side bar, if not already opened.
Step 2 In the Nav side bar, expand the client Modbus network to show the Modbus device of interest.
Step 3 From the palette, drag the “Modbus File Records” folder onto the Modbus device in the Nav side bar (or,

into the property sheet view of that device, if open).
Step 4 In the popup Name dialog, accept the default “Modbus File Records” name or enter an alternate name,

and click OK.
The folder is added under the device. By default it contains a single “ModbusClientStringRecord”
component. You can duplicate it if multiple file record objects are needed.

Step 5 Double-click the added component to open its property sheet, and enter appropriate configuration
values per the Modbus device vendor’s documentation.
For more details, see “About Modbus (client) file records” on page 4-25.

Note: You do not have to copy the entire “Modbus File Records” folder from the palette—this is simply the easiest
way to add the needed component with a descriptive parent folder. You can locate ModbusClientStrin-
gRecord components anywhere under the Modbus device. However, be aware if you copy these components
under the Points container, they are not visible in any Modbus Client Point Manager view.

Configure the slave Modbus network
To add and configure a server (slave) Modbus network, perform the following main tasks:
• Add the server (slave) Modbus network, as needed:

• Add a ModbusSlaveNetwork
• Add a ModbusTcpSlaveNetwork

• Review network-level Modbus client configuration

Add a ModbusSlaveNetwork
Note: First see “Modbus Driver Installations” on page 1-1 for license and software requirements. For background

information, see “About Modbus Slave networks” on page 4-8.

To add a ModbusSlaveNetwork in the station
Use the following procedure to add a ModbusSlaveNetwork component under the station’s Drivers
container.

Note: If the host JACE has multiple RS-485 or RS-232 ports to be used for server (slave) Modbus networks, add
one ModbusSlaveNetwork for each physical port. Note that for each ModbusSlaveNetwork, you must
Configure the serial port parameters and transmission mode.
To add a ModbusSlaveNetwork in the station:

Step 1 Double-click the station’s Drivers container, to bring up the Driver Manager.
Step 2 Click the New button to bring up the New network dialog. For more details, see “Driver Manager New

and Edit” in the Drivers Guide.
Step 3 Select “Modbus Slave Network,” number to add: 1 (or more if multiple networks) and click OK.

This brings up a dialog to name the network(s).
Step 4 Click OK to add the ModbusSlaveNetwork(s) to the station.

You should have a ModbusSlaveNetwork named “ModbusSlaveNetwork” (or whatever you named it),
under your Drivers folder, initially showing a status of “{fault}” and enabled as “true.”
After you Configure the serial port parameters and transmission mode, status should change to “{ok}”.

Configure the serial port parameters and transmission mode
In the ModbusSlaveNetwork property sheet for each network, you must set the serial port configuration
to match the serial communications parameters used to communicate to the attached Modbus master
device, including the Modbus transmission mode (RTU or ASCII).
NiagaraAX-3.x

Modbus Guide
2-6

Chapter 2 – Modbus Quick Start Configure the slave Modbus network
August 25, 2010 Add a ModbusTcpSlaveNetwork
To set the serial port parameters
To set the serial port parameters and mode for a ModbusSlaveNetwork:

Step 1 Right-click the ModbusSlaveNetwork and select Views > Property Sheet.
The Property Sheet appears.

Step 2 Scroll down and expand the Serial Port Config slot
Set the properties for the JACE serial port used, where defaults are:
• Port Name: none — Enter the JACE port being used, like COM2 or COM3.
• Baud Rate: Baud9600 — Or choose different from selection list.
• Data Bits: Data Bits8 — Or choose different from selection list.
• Stop Bits: Stop Bit1 — Or choose different from selection list.
• Parity: none — Or choose different from selection list.
• Flow Control Mode: none — Or choose different using checkbox.

Note: You must determine the setup of the Modbus serial network to correctly set the baud rate, data bits, stop
bits, parity, and flow control settings.

Step 3 Set the Modbus Data Mode property value, either Rtu (default) or Ascii, depending on network type.
Step 4 Click the Save button.
Step 5 While in the property network’s property sheet, you should review its “global” Modbus settings.

See “Review network-level Modbus server configuration” on page 2-7.

Add a ModbusTcpSlaveNetwork
Note: First see “Modbus Driver Installations” on page 1-1 for license and software requirements. For background

information, see “About Modbus TCP Slave networks” on page 4-10.

To add a ModbusTcpSlaveNetwork in the station
Use the following procedure to add a ModbusTcpSlaveNetwork component under the station’s Drivers
container.

Note: Only one ModbusTcpSlaveNetwork is needed, even if the JACE host has two Ethernet ports connected to
two different (non-routed) TCP/IP LANs. In this case, the destination IP addresses of child
ModbusTcpSlaveDevices will automatically determine the Ethernet port utilized.
To add a ModbusTcpSlaveNetwork in the station:

Step 1 Double-click the station’s Drivers container, to bring up the Driver Manager.
Step 2 Click the New button to bring up the New network dialog. For more details, see “Driver Manager New

and Edit” in the Drivers Guide.
Step 3 Select “Modbus Tcp Slave Network,” number to add: 1 and click OK.

This brings up a dialog to name the network.
Step 4 Click OK to add the ModbusTcpSlaveNetwork to the station.

You should have a ModbusTcpSlaveNetwork named “ModbusTcpSlaveNetwork” (or whatever you
named it), under your Drivers folder, initially showing a status of “{ok}” and enabled as “true.”

Step 5 Right-click the ModbusTcpSlaveNetwork and select Views > Property Sheet.
The Property Sheet appears. See the next section, “Review network-level Modbus server configu-
ration”.

Review network-level Modbus server configuration
For either of the server Modbus networks (ModbusSlaveNetwork, ModbusTcpSlaveNetwork), you
should review its “network-level” defaults for interpreting “2-register” numerical data (floats and longs).
These defaults are on the property sheet of the network-level component.

Note: These settings apply to all Modbus slave devices in the network, unless overridden in any device’s configu-
ration, using equivalent properties. For details, see “Modbus Config (server device level)” on page 4-26.

To review network-level server Modbus configuration
To review network-level Modbus configuration:

Step 1 In the property sheet of the network, review the following properties:
• Float Byte Order: Order3210 — Or select Order1032 instead if used by most devices.
• Long Byte Order: Order3210 — Or select Order1032 instead if used by most devices.

Step 2 If you made any changes, click the Save button.
NiagaraAX-3.x

Modbus Guide
2-7

Add server (slave) Modbus devices Chapter 2 – Modbus Quick Start
Review network-level Modbus server configuration August 25, 2010
Add server (slave) Modbus devices
After adding a slave Modbus network, you can use the network’s default “device manager” view to add
the appropriate server (slave) Modbus devices.

Note: You need to plan how you are mapping station data into one or more “virtual” Modbus slave devices,
including the “virtual” Modbus data items like coils, inputs, input registers, and holding registers.
In the case of a ModbusSlaveNetwork, you may wish to create multiple “virtual” Modbus slave devices,
each with a different (and currently unused) Modbus address. Or, you may simply wish to have all data to
be exposed to a Modbus master to appear sourced from a single (one address) device.
In the case of ModbusTcpSlaveNetwork, although you can add multiple “virtual” Modbus slave devices
(with different Modbus addresses)—they all must be reached through the same IP address as the station.
In any case, for any Modbus slave device, you can configure a number of valid data item “register ranges”
for it. In turn, you can then add corresponding Modbus server proxy points under that device, in order to
exchange data with the networked Modbus server.
Essentially, you are building a “custom” Modbus device, and should document its setup (and application)
carefully, to make available to the programmer of the master Modbus device.
The following two procedures describe needed procedures:
• To add a server (slave) Modbus device in the network
• To configure register ranges in a Modbus slave device

To add a server (slave) Modbus device in the network
Use the following procedure to add the correct type of slave Modbus device in the network.
To add a sever (slave) Modbus device:

Step 1 In the Nav tree or in the Driver Manager view, double-click the slave network, to bring up the device
manager (Modbus Slave Device Manager, Modbus Tcp Slave Device Manager). Both of these device
manager views operate in a similar fashion.

Note: For general device manager information, see the “About the Device Manager” section in the Drivers Guide.
Step 2 Click the New button to bring up the New device dialog.

Depending on the network type, the appropriate device object Type will be preselected (either Modbus-
SlaveDevice or ModbusTcpSlaveDevice).

Step 3 Select for number to add: 1 (or more, if multiple) and click OK.
This brings up a dialog to name the device(s), enter Modbus device address, and set Modbus Config
overrides. Typically, the default values for most items are sufficient to start with, except the following:
• Any ModbusSlaveDevice needs a unique Modbus address (1—247), not currently in use.
For more details on this step, see “About Modbus server devices” on page 4-26.

Step 4 Click OK to add the server device(s) to the network.
You should see the device(s) listed in the Modbus device manager view, showing a status of “{ok}” and
enabled as “true.”

To configure register ranges in a Modbus slave device
Use the following procedure to establish the “register ranges” for data items in any server (slave) Modbus
device. The device’s proxy points must fall within these register ranges, or else they will have a fault status.
To configure register ranges in a server (slave) Modbus device:

Step 1 In the Nav tree, expand the slave network, and double-click the slave Modbus device of interest.
Its property sheet show, including 4 “Modbus Register Range Table” container slots with default names
“Valid Coils Range,” Valid Status Range,” “Valid Input Register Range,” and “Valid Holding Register Range”.

Note: Alternatively, you can access these container slots when you expand the Modbus slave device in the Nav
tree, if you prefer to work from the Nav side bar.

Step 2 Click to expand each of these range containers, and expand the single “Default” register range entry in
each. By default, a slave device copied from the modbusSlave or modbusTcp palette has the same values
for each of the 4 default register range containers: Enabled, Starting Address Offset: 1, Size: 64.

Step 3 Make whatever range entry changes are needed, and click OK.
Note that you can add additional register range entries using the right-click “Add Range” action on any
of the 4 register range containers.
For more details, see “Modbus Register Range Tables” on page 4-27.
NiagaraAX-3.x

Modbus Guide
2-8

Chapter 2 – Modbus Quick Start Create Modbus server proxy points
August 25, 2010 Review network-level Modbus server configuration
Create Modbus server proxy points
As with device objects in other drivers, each server Modbus device has a Points extension that serves
as the container for proxy points. The default view for any Points extension is the Point Manager (and in
this case, the “Modbus Server Point Manager”). You use it to add Modbus server proxy points
under any server (slave) Modbus device.
For general information, see the “About the Point Manager” section in the Drivers Guide.

Note: Modbus server proxy points must fall within the defined address “register ranges” of the parent server
(slave) Modbus device, otherwise they will retain a fault status. See the previous procedure, “To configure
register ranges in a Modbus slave device” on page 2-8.

To add Modbus server proxy points
Once a slave Modbus device is added and its register ranges defined, you can add server proxy points.
Use the following procedure:
To create server Modbus proxy points in a device:

Step 1 In the Device Manager, in the Exts column, double-click the Points icon in the row
representing the device you wish to create proxy points.
This brings up the Modbus Server Point Manager.

Step 2 (Optional) Click the New Folder button to create a new points folder to help organize points, and give
it a short name, such as “Hldg1_to_64”, or whatever name works for your application. You can repeat this
to make multiple points folders, or simply skip this step to make all proxy points in the root of Points.
Note that all points folders have their own Modbus Server Point Manager view, just like Points.
If making points folders, double-click one to move to its location (and see the point manager).

Step 3 At the location needed (Points root, or a points folder), click the New button.
The New points dialog appears, in which you select a point “Type,” “Number to Add,” “Starting Address,”
and “Data Type” (latter applies only if selecting type: Numeric Point or Numeric Writable).

Note: Generally, it is unwise to expose any coil or holding register as a writable point if the Modbus master may
also write to this same item—otherwise “write contention” issues may result. In other words, writable point
types are better suited to items exposed as Modbus (status) “inputs” and “input register s”.
For more details, see “About Modbus server proxy points” on page 4-29 and “Types of Modbus server
proxy points” on page 4-29.

Step 4 Click OK.
This brings up another New dialog to name the point(s), enter data addresses as well as enter other infor-
mation, such as point facets and conversion. Default point names use a convention similar to:
“<PointType><Address>”, for example: “Numeric Point40012” or “Boolean Writable6”.
Details on related entries in this step are in “Modbus server point ProxyExt properties” on page 4-30, and
background information is given in the section “Modbus Meets NiagaraAX” on page 3-1.

Step 5 Click OK to add the proxy point(s) to the Points extension (or to the current points folder), where each
shows as a row in the point manager.
If addressed correctly, each point should have a status of “{ok}” with a value displayed.
If a point shows a “{fault}” status, check its ProxyExt “Fault Cause” property value, which typically
includes a Modbus “exception code” string, such as “Read fault: illegal data address”.
In such a case, re-check the address in the point against the defined register ranges in the parent slave
device. For related details, see “Exception codes” on page 3-10, and sections “Data address format in
NiagaraAX” on page 3-5, and “Modbus Register Range Tables” on page 4-27.

Step 6 Continue to add proxy points as needed under the Points extension of each server Modbus device.
As needed, double-click one or more existing points for the Edit dialog, similar to the New dialog used
to create the points. This is commonly done for re-editing items like data addresses, names, or facets.

Add other server Modbus components
Rarely, you may also wish to expose string data as Modbus files in a “virtual” Modbus slave device. The
modbusSlave and modbusTcpSlave palettes have a component especially for this application, which you
can also copy under the Modbus device.
NiagaraAX-3.x

Modbus Guide
2-9

Add other server Modbus components Chapter 2 – Modbus Quick Start
Review network-level Modbus server configuration August 25, 2010
To add server Modbus file records
To add components for server Modbus file records, use the following procedure:

Step 1 Open the modbusSlave or modbusTcpSlave palette in the Palette side bar.
Step 2 In the Nav side bar, expand the slave Modbus network to show the Modbus device of interest.
Step 3 From the palette, drag the “Modbus File Records” folder onto the Modbus device in the Nav side bar (or,

into the property sheet view of that device, if open).
Step 4 In the popup Name dialog, accept the default “Modbus File Records” name or enter an alternate name,

and click OK.
The folder is added under the device. By default it contains a single “ModbusServerStringRecord”
component. You can duplicate it if multiple file record objects are needed.

Step 5 Double-click the added component to open its property sheet, and enter appropriate configuration
values needed. F or more details, see “About Modbus (server) file records” on page 4-31.

Note: You do not have to copy the entire “Modbus File Records” folder from the palette—this is just the easiest
way to add the needed component with a descriptive parent folder. You can locate ModbusServerStrin-
gRecord components anywhere under the Modbus device. However, be aware if you copy these components
under the Points container, they are not visible in any Modbus Server Point Manager view.
NiagaraAX-3.x

Modbus Guide
2-10

3CHAPTER

Modbus Meets NiagaraAX
This section provides a quick look at Modbus. It is by no means a complete summary or overview. Only
key points necessary for successful NiagaraAX integrations are included. A good understanding of these
concepts will make integration easier.
The following main sections are included:
• Brief History
• Modbus key concepts

• Modbus registers
• Modbus data addresses
• Modbus data types
• Modbus function codes
• Modbus messages
• Exception responses

• Device-to-device differences

Note: Currently, the independent, member-based, non-profit organization Modbus-IDA provides a variety of
links to Modbus technical resources. Included are technical overviews, FAQs, and complete protocol
(standards) documents. For detailed Modbus information, refer to it at this URL: www.modbus.org

Brief History
Modbus is an open communications protocol originally developed in 1978 by Modicon Inc.1 for
networking industrial PLCs (programmable logic controllers). Since its introduction, it has gained
popularity with a number of control device vendors to transfer discrete/analog I/O and register data
between control devices.
Apart from PLCs, Modbus-capable devices now include many with both industrial and commercial
applications, such as electric-demand meters and lighting controllers, among many others. In addition,
Modicon has introduced another variant of the Modbus protocol, Modbus TCP, again as an open
protocol. Modbus TCP is becoming increasingly popular because it supports TCP/IP/Ethernet connec-
tivity.

Note: Modicon also developed a related protocol, Modbus Plus®, which is proprietary. Compared to Modbus and
Modbus TCP, the Modbus Plus protocol is not widely-used. Modbus Plus is currently not supported by any
NiagaraAX driver.

Modbus key concepts
The Modbus protocol defines a message structure and format used in communication transactions.
Modbus devices communicate using a master-slave method, in which only the master device can initiate
a communications transaction. There can be only one master device on a Modbus network—in most
integrations (modbusAsync, modbusTcp), this is the JACE. All other devices must be Modbus slaves.
However, note that two “slave” Modbus drivers are also available, in which the station can act as a dumb
slave (server), using modbusSlave or modbusTcpSlave components. Usage of these drivers is expected to
be infrequent. However, basic Modbus principles remain the same.

1. Modicon is now an international brand of Schneider Electric.
NiagaraAX-3.x

Modbus Guide
3–1

www.modbus.org
www.modbus.org

Modbus key concepts Chapter 3 – Modbus Meets NiagaraAX
Modbus registers August 25, 2010
Before reading about Modbus, please understand that any NiagaraAX Modbus integration uses Modbus
proxy points to provide monitoring and control, similar to other NiagaraAX integrations. Therefore,
many of the following Modbus topics mention items specific to NiagaraAX components, to help clarify
station configuration.
The following topics may contribute to a basic understanding of Modbus:
• Modbus registers
• Modbus data addresses
• Modbus data types
• Modbus function codes
• Modbus messages
• Exception responses

Modbus registers
A Modbus device holds transient (real-time) data and often persistent (configuration) data in addressable
registers. Here, the term “registers” implies all addressable data, but this is a loose interpretation. Using
Modbus nomenclature, all accessible data in a Modbus slave is contained in the following four available
groups of data flags and registers (including the Modbus-master access that is possible):
• Coil status

Or simply “coils”: single-bit flags that represent the status of digital (NiagaraAX: boolean) outputs
of the slave, that is, On/Off output status. A Modbus master can both read from and write to coils.

• Input status
Or simply “inputs”: single-bit flags that represent the status of digital (NiagaraAX: boolean) inputs
of the slave, that is, On/Off output status. A Modbus master can read (only) inputs.

• Input registers
Are 16-bit registers that store data collected from the field by the Modbus slave. The Modbus master
can read (only) input registers.

• Holding registers
Are 16-bit registers that store general-purpose data in the Modbus slave. The Modbus master can
both read from and write to input registers.

Modbus data addresses
A Modbus device is not required to contain all four groups of data. For example, a metering device may
contain only holding registers. However, for each data group implemented, an “address convention” is
used. Requests for data (made to a device) must specify a data address (and range) of interest.
The following sections provide more details:
• Organization and addressing of data
• Consecutive addresses
• Consecutive address usage (general)
• Consecutive address usage (NiagaraAX)
• Data address format in NiagaraAX

Organization and addressing of data
Modbus data in a device is addressed as follows:
• Coils — Addressed at 00000 — 0nnnn decimal, or “0x” addresses.
• Inputs — Addressed at 10000 — 1nnnn decimal, or “1x” addresses.
• Input Registers— Addressed at 30000 — 3nnnn decimal, or “3x” addresses.
• Holding Registers — Addressed at 40000 — 4nnnn decimal, or “4x” addresses.
Note that data addressing (at least in decimal and hex formats) is zero-based, where the first instance of
a data item, for example coil 1, is addressed as item number 0. As another example, holding register 108
is addressed as 107 decimal or 006B hex.
However, it is common for a vendor to list a device’s data items using a 5-digit Modbus address, for
example, holding registers starting with 40001, as shown for a meter in Table 3-1.
NiagaraAX-3.x

Modbus Guide
3-2

Chapter 3 – Modbus Meets NiagaraAX Modbus key concepts
August 25, 2010 Modbus data addresses
Table 3-1 Example Modbus device register address documentation (portion)

In the Table 3-1 example, each table row represents a 16-bit holding register. The holding register with
Modbus address 40011 (phase B power), can be alternately addressed as a holding register (with an
“implied 4nnnn value”) having a decimal address of “10” (“0010”), or a hex address of “A” (“000A”).

Note: Integer-stored data often requires additional math operations. NiagaraAX Modbus proxy points provide
this capability “built-in,” via the proxy extension’s Conversion slot. For example, selecting “Linear” in
Conversion provides entries for scale and offset, to process the raw Modbus value to a finished value.
Typically, the vendor ‘s documentation for a Modbus device includes any “scaling” values needed for any
such data items.

Consecutive addresses
Within any particular data group (coils, inputs, input registers, holding registers), it is typical for a
Modbus device to use consecutive addresses, particularly for related data. For example, in the Table 3-1
example, holding registers 40001-40015 are used consecutively for integer data, where each is a separate,
integer, “data point”.
In this example device, register 40259 begins a consecutive series of holding registers used to access
“floating point” data values—note, however, that an address “gap” exists in this case. The address gap
(while not necessary), was probably implemented by the device vendor for clarity. Note also that floating-
point data values (being 32-bit based) require the use of two consecutive registers for each data point.
See “Numerical data types” on page 3-6 for related information.

Consecutive address usage (general)
Modbus messaging supports device queries for data using both a starting address and range, which is
dependent on data items being consecutively addressed. This allows for message efficiency when
retrieving multiple data points, as it can be handled in one message response.
The address range for data in any data group (coils, inputs, input registers, holding registers) received in
a query must be implemented by the receiving device—otherwise, it will generate an exception response.
For example, a read request of holding registers 40003—40015 to the device represented by Table 3-1
receives a normal response (data values), while a similar request to registers 40003-40017 results in an
“illegal data address” response (as holding registers 40016 and 17 are not implemented). See Exception
Responses for more information.

Modbus
Addr.

Units Description Data Type

40001 kWH Energy Consumption, LSW Integer (multiplication required)
40002 kWH Energy Consumption, MSW Integer (multiplication required)
40003 kW Demand (power) Integer (multiplication required)
40004 VAR Reactive Power Integer (multiplication required)
40005 VA Apparent Power Integer (multiplication required)
40006 — Integer (multiplication required)
40007 Volts Voltage, line to line Integer (multiplication required)
40008 Volts Voltage, line to neutral Integer (multiplication required)
40009 Amps Current Integer (multiplication required)
40010 kW Demand (power), phase A Integer (multiplication required)
40011 kW Demand (power), phase B Integer (multiplication required)
40012 kW Demand (power), phase B Integer (multiplication required)
40013 — Power Factor, phase A Integer (multiplication required)
40014 — Power Factor, phase B Integer (multiplication required)
40015 — Power Factor, phase C Integer (multiplication required)
— — — —
40259 kWH Energy Consumption Float, upper 16 bits
40260 kWH Energy Consumption Float, lower 16 bits
40261 kW Demand (power) Float, upper 16 bits
40262 kW Demand (power) Float, lower 16 bits
NiagaraAX-3.x

Modbus Guide
3-3

Modbus key concepts Chapter 3 – Modbus Meets NiagaraAX
Modbus data addresses August 25, 2010
Consecutive address usage (NiagaraAX)
A NiagaraAX Modbus integration makes use of consecutively addressed data in two different ways:
• When using the Point Manager to create proxy points, by using the “Number to Add” option in the

New dialog box. See Figure 3-1 below for an example of where 8 points are being added.

Figure 3-1 New dialog to create Modbus proxy points has “Number to Add” option for consecutive points

When you specify more than 1 point, additional points are automatically assigned consecutive ad-
dresses—relative to the “Starting Address” you specify for the first point.

• Data polling in a client device may be improved by using “device polls”, where data values in consec-
utively addressed items are requested in a single message, reducing network messaging traffic.
In NiagaraAX, this is configured in the device object (ModbusAsyncDevice, ModbusTcpDevice,
ModbusTcpGatewayDevice), in the device’s DevicePollConfigTable slot. See Figure 3-2 below for an
example.

Figure 3-2 Modbus client device’s DevicePollConfigTable container slot allows “device polling” setup

You can add child “DevicePollConfigEntry” objects manually in this container and configure, or op-
tionally use the container’s right-click action: “Learn Optimum Device Poll Config”. Note that de-
vice polling should be configured only after proxy points are created, and typically already receiving
values from (individual) point polling. For more details, see “Device Poll Config” on page 4-15.
NiagaraAX-3.x

Modbus Guide
3-4

Chapter 3 – Modbus Meets NiagaraAX Modbus key concepts
August 25, 2010 Modbus data addresses
Data address format in NiagaraAX
Generally speaking, when configuring a Niagara Modbus point for a data address, you should choose
“Modbus” addressing from the available “Address Format” types (Figure 3-3). This lets you enter target
data addresses directly from the device’s documentation, without having to “subtract 40001” for example,
or perform other mental math.

Figure 3-3 Modbus address format recommended when adding proxy points

Also, for read-only client points, using the Modbus address format also frees you from setting the register
type property (“Reg Type”), as it automatically sets this property going by the leading numeral of the full
Modbus address (3 for input registers, and 4 for holding registers), as shown in Figure 3-4.

Figure 3-4 Reg Type property of Modbus

Note: When entering a Modbus formatted address for a coil, “leading zeros” are ignored—for example the
Modbus address “00109” is the same as entering Modbus “109”.
Again, note that unlike Decimal or Hex address formats (“zero-based formats”), the Modbus address
format is “one-based”, meaning that a coil addressed as Modbus 109 has a “Decimal address” of 108, and
a “Hex address” of 6D.
NiagaraAX-3.x

Modbus Guide
3-5

Modbus key concepts Chapter 3 – Modbus Meets NiagaraAX
Modbus data types August 25, 2010
Modbus data types
Data in Modbus devices can exist in a wide variety of ways. In a NiagaraAX Modbus integration, data is
brought into Niagara's common object model in a manner that simplifies the sharing of values. See the
following subsections for details:
• Data in Modbus
• Numerical data types
• NiagaraAX data representation

Data in Modbus
By definition, data represented by coils and inputs is “status”, which in Modbus nomenclature means
“boolean” (On/Off). In Niagara, this equates to two-state, meaning Active or Inactive (true or false).
As far as input registers and holding registers are concerned, however, the Modbus protocol does not
dictate how data is formatted (data type used, numerical encoding). A Modbus device vendor can use
whatever data types are needed and can be accomplished with one or more consecutive 16-bit registers.

Note: The device vendor should document the data type used for each input register and holding register—and
it is important to configure Niagara Modbus proxy points accordingly. When dealing with 32-bit values
such as long or float values (see Numerical data types below), this includes the “byte-order scheme” for the
two consecutive registers, as processed in the device.
Perhaps the most popular data type for a register is “integer,” using a single register. This is the Niagara
“Data Type” for an unsigned, 16-bit integer value, and is the default data type for many newly-created
Modbus proxy points. The value range possible in an integer value is 0 to 65,535. Note that in some
systems (or devices), the term word is synonymous, that is, meaning an unsigned, 16-bit integer value.

Numerical data types
The following numerical data types are supported by Niagara proxy points for Modbus input registers
and holding registers:
• Integer — Unsigned 16-bit integer, data range 0 to 65,535. Same as “word”.
• Float— (floating point), 32-bit single precision, sometimes called “real”. Very small and large num-

bers are possible. Requires two consecutive registers1 in the Modbus device. In addition, there are
two different byte-order schemes for float values (3-2-1-0 or 1-0-3-2).

• Long — Signed 32-bit integer, data range -2,147,483,648 to 2,147,483,647. Also requires two con-
secutive registers, and the same byte-order scheme information (as for “float” data).

• Signed Integer — Signed 16-bit integer, data range -32,768 to 32,767. Sometimes called “short”.
For any Modbus proxy NumericPoint or NumericWritable, you specify this in the “Data Type” property
of its Modbus proxy extension.
Note that the “byte order” scheme for two-register numeric values (float and long) can be set at the device
level (if necessary), or set globally at the network level. See “Device-to-device differences” on page 3-11
for related details.
In addition to these numeric formats, sometimes a holding register or input register is used by a device
to pack a number of boolean statuses (On/Off states), with each status mapped to a bit. NiagaraAX
Modbus provides special “Register Bit” proxy point extensions for boolean control points to read and
write to such registers, accessing each bit independently per proxy point.
Also (although not common), a Modbus device may use a number of consecutive holding registers to
hold a string of alphanumeric (ASCII encoded) characters. The Modbus integration provides a “Modbus
String” proxy point extension for String control points to read such character strings.

1. Proxy points automatically allocate 2 consecutive registers for each data item whenever you specify a float or long
data type. Keep this in mind when specifying “number of points” within any range of Modbus registers.
NiagaraAX-3.x

Modbus Guide
3-6

Chapter 3 – Modbus Meets NiagaraAX Modbus key concepts
August 25, 2010 Modbus function codes
NiagaraAX data representation
With the exception of the String control point with the “Modbus String” proxy point extension, Modbus
proxy points represent all data on their inputs and outputs using these Niagara data types:
• Boolean — BooleanPoint and BooleanWritable. Two-state data represented by coils and inputs.

Less frequently, boolean data is “bitmapped” into input registers or holding registers. Note that all
Modbus boolean proxy points provide facets that you can individually edit to match the vendor's
documented state descriptions, such as “On” and “Off”, or “enable” and “disable”.

• Numeric — NumericPoint and NumericWritable. Numerical data in holding registers or input
registers, whether a Modbus Float proxy point's selected Data Type is integer, long, float, or signed
integer (see Numerical data types). Note that all Modbus numeric proxy points provide facets that
you can individually edit for minimum/maximum values, precision, and data units.

• Enum — (Modbus 3.5.26 or higher, or AX-3.6 or later) EnumPoint and EnumWritable. Enumerated
data in holding registers or input registers, using the integer (ordinal) value resulting from some
range of consecutive bits, specified by a starting bit and number of bits. See “Example” on page 4-18.

Rounding values Note that Modbus NumericWritable proxy points that write values to holding
registers provide rounding (and possibly clamping) of the input value before any write. This depends on
the proxy point’s selected Data Type, as follows:
• Integer type — Input values are rounded up or down to the nearest whole number. Range is

from 0 to 65,535; input values outside the range are clamped to these limits.
• Long type — Input values are rounded up or down to the nearest whole number.

The range (-2,147,483,648 to 2,147,483,647) matches the Niagara value range.
• Signed Integer type — Input values are rounded up or down to the nearest whole number.

Range is from -32,768 to 32,767; input values outside this range are clamped to these limits.
• Float type — No rounding—any input value is written directly as is.

Modbus function codes
Modbus uses defined function codes in communications transactions for the type of information
requested by the master, in addition to a specific data addresses (or range of addresses) that apply to the
function code-defined request. Function codes are also used for verification in slave responses back to
the master device. Example codes are “READ COIL STATUS” and “READ HOLDING REGISTERS”.
The Modbus protocol defines 24 different function codes. However, few devices support all function
codes. A vendor’s documentation for a Modbus device should state which function codes are supported.

Supported function codes
Function codes have associated numbers, used in Modbus messages. Table 3-2 shows in numerical order
the function codes supported through the use of components in any NiagaraAX Modbus integration.

Table 3-2 NiagaraAX-supported Modbus function codes

Note: If integrating a Modbus device that supports functions codes 15 or 16 (see Table 3-2), you can optionally
choose to use these function codes instead of codes 05 and 06 by setting the corresponding Modbus Config
properties (in the Modbus network and/or device objects) from “false” value defaults. See “Device-to-device
differences” on page 3-11 for related details.

Code Function Name NiagaraAX Operation (JACE master)
01 READ COIL STATUS Normal data polling of all read-only and writable Modbus

proxy points.02 READ INPUT STATUS
03 READ HOLDING REGISTERS
04 READ INPUT REGISTERS
05 FORCE SINGLE COIL Change of values at inputs and/or invoked actions of writ-

able Modbus proxy points or client “preset” components.06 PRESET SINGLE REGISTER
07 READ EXCEPTION STATUSa

a. Modbus AX-3.5 or later (build 3.4.52 or higher) required. See “About Modbus client exception status” on page 4-25.

Poll device for exception status, output values and bits set.

15 FORCE MULITPLE COILS Change of values at inputs and/or invoked actions of writ-
able Modbus proxy points or client “preset” components.16 PRESET MULTIPLE REGISTERS

20 READ FILE RECORD Using ModbusClientStringRecord to read and write file
records, in which data is converted to ASCII characters and
displayed as string.

21 WRITE FILE RECORD
NiagaraAX-3.x

Modbus Guide
3-7

Modbus key concepts Chapter 3 – Modbus Meets NiagaraAX
Modbus messages August 25, 2010
Modbus messages
Each communications transaction is initiated by the Modbus master, with a message known as a Query.
To any specifically addressed query, the master expects a Response back from the slave. A slave never
initiates a transaction (sends an unsolicited message). This query-response cycle is the basis for all
communications on a Modbus network. It is always the master that initiates the query, and the slave that
responds.
A “broadcast” message can also be sent by the Modbus master. In this one case, the master does not
require a response from any slave. A slave identifies a received broadcast message by the target address
of “device 0”. See the following subsections for more details:
• Message structures
• NiagaraAX debug example

Message structures
Each Modbus message has a defined structure, referencing device address, function code, and the data
address (or requested data). Message structures in a serial (async) network are as follows:
Query The master-generated query message contains, in order:
1. A device address of target slave (or “broadcast address”, for all slaves), as first byte.
2. A function code defining the requested action, as second byte.
3. A data field describing particulars for the function code. This may be a register address (and a

range) to read, or a coil address to write, for example.
4. An error-check field to confirm integrity of the message, as it will be received from the master. If the

slave detects an error in a query, it is ignored. The slave then waits for the next query addressed to it.
Response The slave-generated response message contains, in order:
1. Its device address, confirming to the master that it is replying to the query, as first byte.
2. The function code, as second byte—normally an exact copy, unless the slave is unable to perform

the requested function. In this case, the function code returned is a modified form, indicating that
the slave was unable to perform. See “Exception responses” on page 3-9 for more details.

3. The data, containing the data requested in the query.
4. An error-check field to confirm integrity of the message, as it will be received from the slave. If the

master detects an error in the response, it is ignored.
The error-checking method depends on the Modbus transmission mode—in Modbus RTU (the most
prevalent), a CRC (cyclical redundancy checksum) method is used.1

Example Modbus query and response message The following is an example query and response
message pair from a ModbusAsyncNetwork to a Modbus RTU (serial) device:
• Query

020300030004B43A
For device 02, function code 03, starting address 0003, number of registers 04, error checksum B43A

• Response
02030800510052003C003CA387
From device 02, function code 03, number bytes returned 08, data (00510052003C003C), error
checksum A387

1. The Modbus TCP protocol has a similar message format for query and response messages. However, Modbus TCP
is freed from error check routines. Instead, the error-checking mechanisms built into the lower-level TCP/IP and
link layers (that is, Ethernet) are used.
NiagaraAX-3.x

Modbus Guide
3-8

Chapter 3 – Modbus Meets NiagaraAX Modbus key concepts
August 25, 2010 Exception responses
NiagaraAX debug example
By enabling “Trace” logging on a Modbus network, you can see this query/response message cycle in the
station’s Standard Output, for example resulting from normal data polling. The sent query is “broken out”
to show fields on separate lines, and the received (response) is shown in a single line (in hex format).

Figure 3-5 Trace-level log output from (COMx) of a ModbusAsyncNetwork, as seen in Standard Output

Note that in the case of the ModbusTCPNetwork, trace-level output shows a similar query/response
message cycle from data polling, but with a slightly different format. There, a 6-byte leading TCP header
“000000000006” is seen in sent queries, and the checksum byte is omitted in both sent and response
messages.

Exception responses
If a Modbus slave receives a query message correctly (that is, it passes error checking), but then finds it
is unable to perform the required operation, it issues an Exception Response. This may happen, for
instance, if the request is to read a non-existent register or coil.
An exception response message is formatted differently than a normal response, as it contains an
exception code (instead of requested data). The format used is as follows:

Exception response format
A slave-generated response message contains, in order:
1. Its device address, confirming to the master that it is replying to the query.
2. The function code, modified from the originally-requested function code by adding 80 hex to it

(this signals the master to look for a following exception code, versus the originally-requested data).
3. The exception code number. Refers to the exception code sent by the slave, which indicates why it

was unable to deliver a normal response. See “Exception codes”.
4. An error-check field to confirm integrity of the message, as it will be received from the slave. If the

master detects an error in the response, it is ignored.
NiagaraAX-3.x

Modbus Guide
3-9

Modbus key concepts Chapter 3 – Modbus Meets NiagaraAX
Exception responses August 25, 2010
Exception codes
Table 3-3 lists standard Modbus exception codes (01-08) plus extended codes (09-13). NiagaraAX
Modbus proxy points that reflect an exception response assume a “fault” status, and have a “Fault Cause”
slot in the proxy extension that shows the name of the received exception code, as in the table below.

Table 3-3 Modbus exception codes, standard and extended

Code Name Meaning
01 ILLEGAL FUNCTION The function code received in the query is not an allowable

action for the slave. For example, if a FORCE SINGLE
COILS (05) is received by a slave without coils, this excep-
tion code would be issued.

02 ILLEGAL DATA ADDRESS The data address received in the query is not an allowable
address for the slave. For example, if a READ INPUT REG-
ISTERS (04) with an input register address higher than
contained in the slave is received, this exception code
would be issued.

03 ILLEGAL DATA VALUE A value contained in the query data field is not an allow-
able value for the slave. For example, if a PRESET SINGLE
REGISTER (06) is received with an implied length that is
incorrect, this exception code might be issued.

04 SLAVE DEVICE FAILURE An unrecoverable error occurred while the slave was
attempting to perform the requested action. For example,
a READ HOLDING REGISTERS (03) is received on data
that is deemed corrupted in the slave. The slave is still able
to reply, however.

05 ACKNOWLEDGE The slave has accepted the request and is processing it, but
a delay is necessary before response is ready. Further poll-
ing of the slave may result in a rejected message response
(06, next exception code).

06 SLAVE DEVICE BUSY The slave is busy processing a long-duration query, or is
otherwise occupied. This acknowledges to the master that
the query has been received, but that the slave is too busy
to respond to it.

07 NEGATIVE ACKNOWLEDGE The slave cannot perform the requested function. An
example might occur when attempting to write data in a
holding register that is currently “write disabled”.

08 MEMORY PARITY ERROR The slave attempted to read extended memory, but
detected a parity error. A retry from the master may be
successful, but the slave likely needs service.

09 noResponse The slave is not responding to a particular query.
10 (0A) crcError An error-checking CRC error has been detected.
11 (0B) otherError The query has resulted in an uncategorized error.
12 (0C) okNotActive No error/No operation. The normal status of a Niagara

proxy point that is not configured to poll, or of a proxy
point not yet written.

13 (0D) unknown The slave has responded, but nothing else is known.
NiagaraAX-3.x

Modbus Guide
3-10

Chapter 3 – Modbus Meets NiagaraAX Device-to-device differences
August 25, 2010 Network-level settings
Device-to-device differences
Because Modbus does not specify which specific function codes are necessary in a device (much less the
data group types needed), devices from different vendors tend to greatly vary. In addition, the data format
of register-held data, as previously mentioned, is left up to the vendor. Quite commonly, different byte-
order storage schemes are used for storing 32-bit data types such as float and long (integer).
With this in mind, the client networks (ModbusAsyncNetwork, ModbusTCPNetwork, and ModbusTCP-
Gateway) provide four configuration properties, set at the network-level, that act as “global” Modbus
defaults for all devices on the associated network. If needed, any (or all) of these settings can be
overridden at the device-level (see “Device-level Modbus Config properties”). Properties are:
• Network-level settings
• Device-level Modbus Config properties

Network-level settings
The four properties, as they appear in a Modbus network include two for the “byte-order” that devices
use for sending or receiving 4-byte (32-bit) data values in Modbus messages. Separate settings are for
float (floating-point) and long (integer).
• Float Byte Order

Choices reflect two alternate methods, where numerals 0, 1, 2, and 3 represent the least significant
byte to most significant byte, as follows:
• Order3210 — Most significant byte first, or “big-endian”, it is the default.
• Order1032 — Bytes transmitted in a 1,0,3,2 order, or “little-endian”.

• Long Byte Order
Choices reflect two alternate methods, where numerals 0, 1, 2, and 3 represent the least significant
byte to most significant byte, as follows:
• Order3210 — Most significant byte first, or “big-endian”, it is the default.
• Order1032 — Bytes transmitted in a 1,0,3,2 order, or “little-endian”.

Note: Float or long values received in incorrect byte order may appear abnormally big, or not at all.
The other two properties depend on the Modbus function codes supported by child devices, which (if
available) provide alternative options in Modbus messaging for write actions:
• Use Preset Multiple Register

Function code 16 support (Preset Multiple Registers) is available in devices (true or false). The de-
fault is false, where function code “Preset Single Register” is used in place.

• Use Preset Multiple Coil
Function code 15 support (Preset Multiple Coils) is available in devices (true or false). The default is
false, where function code “Preset Single Coil” is used in place.

Device-level Modbus Config properties
Each client Modbus device object (ModbusAsyncDevice, ModbusTCPDevice, and ModbusTCPGate-
wayDevice) has an associated Modbus Config container slot to override these network-wide defaults.
These properties adjust the settings for message transactions to (and from) only that device, as follows:
• Override Network

True or false. The default, false, means the Network-level settings are used. Set this to True when-
ever you want the settings below to be used instead of the equivalent network-level values.

• Float Byte Order
Choices reflect two alternate methods, where numerals 0, 1, 2, and 3 represent the least significant
byte to most significant byte, as follows:
• Order3210 — Most significant byte first, or “big-endian”, it is the default.
• Order1032 — Bytes transmitted in a 1,0,3,2 order, or “little-endian”.

• Long Byte Order
Choices reflect two alternate methods, where numerals 0, 1, 2, and 3 represent the least significant
byte to most significant byte, as follows:
• Order3210 — Most significant byte first, or “big-endian”, it is the default.
• Order1032 — Bytes transmitted in a 1,0,3,2 order, or “little-endian”.

• Use Preset Multiple Register
Function code 16 support (Preset Multiple Registers) is available in the device (true or false). The
default is false, where function code “Preset Single Register” is used in place.

• Use Preset Multiple Coil
Function code 15 support (Preset Multiple Coils) is available in the device (true or false). The default
is false, where function code “Preset Single Coil” is used in place.
NiagaraAX-3.x

Modbus Guide
3-11

Device-to-device differences Chapter 3 – Modbus Meets NiagaraAX
Device-level Modbus Config properties August 25, 2010
NiagaraAX-3.x

Modbus Guide
3-12

4CHAPTER

NiagaraAX Modbus Representation
There are four different types of Modbus drivers (and five network types). Three networks are client
types, where the station acts as a Modbus master device. The other two networks are slave or server
types, where the station exposes data as a Modbus server, and simply responds to Modbus queries.
All Modbus networks use the standard NiagaraAX network architecture. See “About Network archi-
tecture” in the Drivers Guide for more details. These are the different Modbus network types:
• Client types:

• Modbus Async — see About Modbus Async networks.
• Modbus Tcp — see About Modbus TCP networks.
• Modbus Tcp Gateway — see About Modbus TCP Gateway networks.

• Server types:
• Modbus Slave — see About Modbus Slave networks.
• Modbus Tcp Slave — see About Modbus TCP Slave networks.

Under the various Modbus networks, child Modbus device components and their children (proxy points
and other components) are similar and sometimes identical—especially among the client types, and also
among server types. Therefore, Modbus component information is arranged into two main sections:
• About Master (client) types
• About Slave (server) types

About Modbus Async networks
Each ModbusAsyncNetwork requires a serial port (typically, RS-485) on the host JACE platform. The
JACE connects on the Modbus RTU or ASCII network and functions as the Modbus master.

Figure 4-1 ModbusAsyncNetwork with JACE as master device, here on an RS-485 Modbus RTU network

Communications rates are typically at 9600 baud, and the network transmission mode (protocol) may be
either Modbus RTU or Modbus ASCII (either one is supported). If Modbus RTU over RS-485, up to 31
slave devices may be attached—or more, if repeaters are used. The address range for Modbus devices on
a serial network is from 1 to 247—however (as noted), networks are typically smaller. Depending on the
number of available COM ports, a JACE may support multiple Modbus Async networks.
NiagaraAX-3.x

Modbus Guide
4–1

About Modbus Async networks Chapter 4 – NiagaraAX Modbus Representation
Modbus Async Network configuration August 25, 2010
Figure 4-2 ModbusAsyncNetwork in JACE station

The station acts as Modbus master to all other Modbus devices on the attached COM port. Each child
device is represented by a ModbusAsyncDevice, and has a unique Modbus address (1 to 247), as well as
other Modbus config data and starting addresses for Modbus data items (coils, inputs, input registers,
holding registers). There are typically many child ModbusAsyncDevices.
Modbus Async Network configuration is straightforward, using the property sheet of the network object.

Modbus Async Network configuration
In the property sheet of the ModbusAsyncNetwork (Figure 4-3), you configure the serial port/comm
settings needed to communicate to attached Modbus devices, and review other default network values.

Figure 4-3 ModbusAsyncNetwork property sheet

Note the ModbusAsyncNetwork has the standard collection of network components, such as for status,
health, monitor, tuning policies, and poll scheduler. For more details, see “Common network compo-
nents” in the Drivers Guide.
NiagaraAX-3.x

Modbus Guide
4-2

Chapter 4 – NiagaraAX Modbus Representation About Modbus Async networks
August 25, 2010 Modbus Async Device Manager notes
In addition, the following properties have special importance:
• “Global” Modbus device defaults, which (as needed) can be overridden in the Modbus Config (client

device level) slot of any child ModbusAsyncDevice:
• Float Byte Order

Specifies the byte-order used to assemble or receive floating-point (32-bit) values in messages.
• Long Byte Order

Specifies the byte-order used to assemble or receive long integer (32-bit) values in messages.
• Use Force Multiple Coil

Specifies whether to use function code 15 (Force Multiple Coils) instead of function code 05
(Force Single Coil) when writing to coils. The default is false, where function code 05 (Force
Single Coil) is used.

• Use Preset Multiple Register
Specifies whether to use function code 16 (Preset Multiple Registers) instead of function code
06 (Preset Single Register) when writing to registers. The default is False, where function code
06 (Preset Single Register) is used.

• Serial Port Config
The container slot in which you specify the serial port/communications setup required to talk to at-
tached serial Modbus devices.

• Modbus Data Mode
As either RTU (the default) or ASCII, depending on the type of networked Modbus devices.

Other ModbusAsyncNetwork properties such as “Retry Count”, “Response Timeout”, “Sniffer Mode”, and
“Rtu Sniffer Mode Buffer Size” are typically left at defaults, unless particular reasons dictate change.
Double-click the ModbusAsyncNetwork for the default Modbus Async Device Manager view,
which you can use to add new ModbusAsyncDevice children. For general information, see “About the
Device Manager” in the Drivers Guide. See “Modbus Async Device Manager notes” for additional
details.

Modbus Async Device Manager notes
Each ModbusAsyncDevice you add under a ModbusAsyncNetwork requires the unique Modbus address
(1—247) used by that device on that network. When using the Modbus Async Device Manager view to
create new devices, the popup dialog allows you to enter this “Starting Address”, as shown in Figure 4-4

Figure 4-4 New ModbusAsyncDevice popup dialog

Note this dialog allows you to add a sequentially-addressed range of multiple ModbusAsyncDevices, by
setting “Number to Add” more than 1, with the first device using the starting (Modbus) address. This
technique may be useful in cases where all devices in that range will have a different set of proxy points.
However, in cases where you have “like devices,” you might create a single ModbusAsyncDevice first,
configure its proxy points and other components as needed, and then duplicate it as many times as
needed. Then you can change the “Device Address” of each duplicate to a unique number, as needed.
When you click OK in the dialog shown in Figure 4-4, the next New dialog provides a number of
“standard” new device properties to enter (such as Name and Enabled), and others common to all client
Modbus devices (ModbusAsyncDevice, ModbusTcpDevice, ModbusTcpGatewayDevice). For more
details on these Modbus-related properties, see “About Modbus client devices” on page 4-12.
NiagaraAX-3.x

Modbus Guide
4-3

About Modbus TCP networks Chapter 4 – NiagaraAX Modbus Representation
Modbus Tcp Network configuration August 25, 2010
About Modbus TCP networks
A ModbusTCPNetwork automatically binds to the TCP/IP setup of the host JACE platform’s Ethernet
adapter. Again, the JACE appears as the Modbus master on a network of Modbus TCP slave devices,
however network connectivity is Ethernet/IP (see Figure 4-2).

Figure 4-5 ModbusTcpNetwork with Modbus TCP slave devices

In addition to specifying the TCP software port used (typically 502), there are various global properties
on the network’s property sheet specific to Modbus, for example the default order for “float” and “long”
numeric data (overrideable within each child device).

Figure 4-6 ModbusTcpNetwork in JACE station

As shown in Figure 4-6, each child device is represented by a ModbusTcpDevice, and has a unique IP
address, as well as other Modbus config data and starting addresses for Modbus data items (coils, inputs,
input registers, holding registers). There are typically many child ModbusTcpDevices.
Modbus Tcp Network configuration is straightforward, using the property sheet of the network object.

Modbus Tcp Network configuration
In the property sheet of the ModbusTcpNetwork (Figure 4-7), you review the default global values for
Modbus device data (the network automatically binds to the local TCP/IP address of the JACE).
NiagaraAX-3.x

Modbus Guide
4-4

Chapter 4 – NiagaraAX Modbus Representation About Modbus TCP networks
August 25, 2010 Modbus Tcp Device Manager notes
Figure 4-7 ModbusTcpNetwork property sheet

Note the ModbusTcpNetwork has the standard collection of network components, such as for status,
health, monitor, tuning policies, and poll scheduler. For more details, see “Common network compo-
nents” in the Drivers Guide.
In addition, the following properties have special importance:
• “Global” Modbus device defaults, which (as needed) can be overridden in the Modbus Config (client

device level) slot of any child ModbusTcpDevice:
• Float Byte Order

Specifies the byte-order used to assemble or receive floating-point (32-bit) values in messages.
• Long Byte Order

Specifies the byte-order used to assemble or receive long integer (32-bit) values in messages.
• Use Force Multiple Coil

Specifies whether to use function code 15 (Force Multiple Coils) instead of function code 05
(Force Single Coil) when writing to coils. The default is false, where function code 05 (Force
Single Coil) is used.

• Use Preset Multiple Register
Specifies whether to use function code 16 (Preset Multiple Registers) instead of function code
06 (Preset Single Register) when writing to registers. The default is False, where function code
06 (Preset Single Register) is used.

Other ModbusTcpNetwork properties such as “Retry Count”, “Response Timeout”, and “Max Fails Until
Device Down” are typically left at defaults, unless particular reasons dictate change.
Double-click the ModbusTcpNetwork for the default Modbus Tcp Device Manager view, which
you can use to add new ModbusTcpDevice children. For general information, see “About the Device
Manager” in the Drivers Guide. See “Modbus Tcp Device Manager notes” for additional details.

Modbus Tcp Device Manager notes
Each ModbusTcpDevice you add under a ModbusTcpNetwork requires the IP address used by that
device. Usually, each Modbus TCP device uses this address (only) for communications, with its “Modbus
address” (1—247) often left at “1”.
However, when using the Modbus Tcp Device Manager view to create new devices, the initial popup
dialog allows you to enter this Modbus “Starting Address”, as shown in Figure 4-8, and you enter the IP
address in the subsequent dialog.

Figure 4-8 New ModbusTcpDevice popup dialog
NiagaraAX-3.x

Modbus Guide
4-5

About Modbus TCP Gateway networks Chapter 4 – NiagaraAX Modbus Representation
Modbus Tcp Device Manager notes August 25, 2010
Note the initial dialog allows you to add a sequentially-addressed range of multiple ModbusTcpDevices,
by setting “Number to Add” more than 1, with the first device using the starting (Modbus) address. This
technique is probably more useful in a ModbusAsyncNetwork, where devices do not use IP addressing.
It is recommended you leave the “Device Address” at 1 for all ModbusTcpDevice objects, unless vendor’s
documentation for Modbus TCP devices state otherwise.
Note in cases where you have “like devices,” you might create a single ModbusTcpDevice first, configure
its proxy points and other components as needed, and then duplicate it as many times as needed. Then
you can change the “Ip Address” property of each duplicate to the IP address in use, as needed.
When you click OK in the initial dialog shown in Figure 4-8, the next New dialog provides a number of
“standard” new device properties to enter (such as Name and Enabled), and others common to all client
Modbus devices (ModbusAsyncDevice, ModbusTcpDevice, ModbusTcpGatewayDevice). For more
details on these Modbus-related properties, see “About Modbus client devices” on page 4-12.

About Modbus TCP Gateway networks
A ModbusTCPGateway is a network-level object that also represents a particular device: a Modbus TCP-
to-Serial gateway, where this device has an IP address reachable by the station. On the gateway’s “far side”
are serially-connected Modbus devices (typically Modbus RTU via RS-485), as shown in Figure 4-9.
Those serial Modbus devices (RTU or ASCII) are represented by child devices under the gateway
(network) object.

Figure 4-9 ModbusTcpGateway models Modbus TCP/Serial gateway and serial Modbus devices

In addition to the IP address and TCP port used by the gateway, there are global properties on the
network’s property sheet specific to Modbus, for example the default order for “float” and “long” numeric
data (overrideable within each child device).

Figure 4-10 ModbusTcpGateway in JACE station
NiagaraAX-3.x

Modbus Guide
4-6

Chapter 4 – NiagaraAX Modbus Representation About Modbus TCP Gateway networks
August 25, 2010 Modbus Tcp Gateway configuration
The station acts as Modbus master to the serially-connected Modbus devices on the gateway’s far side.
Each child device is represented by a ModbusTcpGatewayDevice, and has a unique Modbus address (1
to 247), as well as other Modbus config data and starting addresses for Modbus data items (coils, inputs,
input registers, holding registers). There are typically many child ModbusTcpGatewayDevices.
Modbus Tcp Gateway configuration is straightforward, using the property sheet of the network object.

Modbus Tcp Gateway configuration
In the property sheet of the ModbusTcpGateway (Figure 4-11), you configure the TCP/IP address used
to connect to the Modbus gateway, and review other default network values.

Figure 4-11 ModbusTcpGateway property sheet

Note the ModbusTcpGateway has the standard collection of network components, such as for status,
health, monitor, tuning policies, and poll scheduler. For more details, see “Common network compo-
nents” in the Drivers Guide.
In addition, the following properties have special importance:
• “Global” Modbus device defaults, which (as needed) can be overridden in the Modbus Config (client

device level) slot of any child ModbusTcpGatewayDevice:
• Float Byte Order

Specifies the byte-order used to assemble or receive floating-point (32-bit) values in messages.
• Long Byte Order

Specifies the byte-order used to assemble or receive long integer (32-bit) values in messages.
• Use Force Multiple Coil

Specifies whether to use function code 15 (Force Multiple Coils) instead of function code 05
(Force Single Coil) when writing to coils. The default is false, where function code 05 (Force
Single Coil) is used.

• Use Preset Multiple Register
Specifies whether to use function code 16 (Preset Multiple Registers) instead of function code
06 (Preset Single Register) when writing to registers. The default is False, where function code
06 (Preset Single Register) is used.

• Ip Address
Specifies the IP address of the “TCP/Ethernet-side” of the Modbus TCP/serial gateway. Must be
unique from all other devices on the IP network. The default IP address is “###.###.###.###”,
meaning that no IP address is assigned. Initially this as a blank placeholder—enter the IP address
used to reach the TCP side of the Modbus gateway.

• Port
Specifies the TCP port used by Modbus message transactions. 502 is the “standard” Modbus TCP
port. Leave at the default (502) unless the “TCP/Ethernet-side” of the Modbus TCP/serial gateway
uses another TCP port.

Other ModbusTcpGateway properties such as “Retry Count”, “Response Timeout”, and “Max Fails Until
Device Down” are typically left at defaults, unless particular reasons dictate change.
NiagaraAX-3.x

Modbus Guide
4-7

About Modbus Slave networks Chapter 4 – NiagaraAX Modbus Representation
Modbus Tcp Gateway Device Manager notes August 25, 2010
Double-click the ModbusTcpGateway for the default Modbus Tcp Gateway Device Manager
view, which you can use to add new ModbusTcpGatewayDevice children. For general information, see
“About the Device Manager” in the Drivers Guide. See “Modbus Tcp Gateway Device Manager notes”
for additional details.

Modbus Tcp Gateway Device Manager notes
Each ModbusTcpGatewayDevice you add under a ModbusTcpGateway requires the unique Modbus
address (1—247) used by that device on serial “far-side” of that gateway. When using the Modbus Tcp
Gateway Device Manager view to create new devices, the popup dialog allows you to enter this “Starting
Address”, as shown in Figure 4-12.

Figure 4-12 New ModbusTcpGatewayDevice popup dialog

Note this dialog allows you to add a sequentially-addressed range of multiple ModbusTcpGatewayDe-
vices, by setting “Number to Add” more than 1, with the first device using the starting (Modbus) address.
This may be useful in cases where all devices in that range will have a different set of proxy points.
However, in cases where you have “like devices,” you might create a single ModbusTcpGatewayDevice
first, configure its proxy points and other components as needed, and then duplicate it as many times as
needed. Then you can change the “Device Address” of each duplicate to a unique number, as needed.
When you click OK in the dialog shown in Figure 4-12, the next New dialog provides a number of
“standard” new device properties to enter (such as Name and Enabled), and others common to all client
Modbus devices (ModbusAsyncDevice, ModbusTcpDevice, ModbusTcpGatewayDevice). For more
details on these Modbus-related properties, see “About Modbus client devices” on page 4-12.

About Modbus Slave networks
Each ModbusSlaveNetwork requires a serial port on the host JACE platform. The JACE connects on the
Modbus RTU or ASCII network and functions as another Modbus slave (server). If needed, you can make
it appear as multiple Modbus devices, by adding multiple ModbusSlaveDevices under the Modbus-
SlaveNetwork, and assigning each one a unique Modbus address (1—247) for that network.

Figure 4-13 ModbusSlaveNetwork with JACE as slave, here on an RS-485 Modbus RTU network

The station acts as a Modbus slave (server) to queries received from a serially-connected Modbus master
device. In each uniquely-addressed ModbusSlaveDevice, you specify the ranges for available Modbus
data items (coils, inputs, input registers, holding registers). In some cases, only a single child Modbus-
SlaveDevice may exist to represent the station.
Modbus Slave Network configuration is straightforward, using the property sheet of the network object.
NiagaraAX-3.x

Modbus Guide
4-8

Chapter 4 – NiagaraAX Modbus Representation About Modbus Slave networks
August 25, 2010 Modbus Slave Network configuration
Modbus Slave Network configuration
In the property sheet of the ModbusSlaveNetwork (Figure 4-14), you configure the serial port/comm
settings needed to communicate to the attached Modbus master, and review other default values.

Figure 4-14 ModbusSlaveNetwork property sheet

Note the ModbusSlaveNetwork has the standard collection of network components, such as for status,
health, monitor, tuning policies, and poll scheduler. For more details, see “Common network compo-
nents” in the Drivers Guide.
In addition, the following properties have special importance:
• “Global” Modbus device defaults, which (as needed) can be overridden in the Modbus Config (client

device level) slot of any child ModbusSlaveDevice:
• Float Byte Order

Specifies the byte-order used to assemble or receive floating-point (32-bit) values in messages.
• Long Byte Order

Specifies the byte-order used to assemble or receive long integer (32-bit) values in messages.
Note: By default Niagara supports Modbus function codes 15 and 16 (Force Multiple Coils, Preset
Multiple Registers), so you do not see these selections like you do in a client Modbus network.

• Serial Port Config
The container slot in which you specify the serial port/communications setup required to talk to at-
tached serial Modbus master.

• Modbus Data Mode
As either Rtu (the default) or Ascii, depending on the type of networked Modbus master.

The other ModbusSlaveNetwork property “Sniffer Mode” is typically left at default, unless particular
reasons dictate change.
Double-click the ModbusSlaveNetwork for the default Modbus Slave Device Manager view,
which you can use to add one or more ModbusSlaveDevice children. For general information, see “About
the Device Manager” in the Drivers Guide. See “Modbus Slave Device Manager notes” for additional
details.
NiagaraAX-3.x

Modbus Guide
4-9

About Modbus TCP Slave networks Chapter 4 – NiagaraAX Modbus Representation
Modbus Slave Device Manager notes August 25, 2010
Modbus Slave Device Manager notes
Each ModbusSlaveDevice you add under a ModbusSlaveNetwork requires a Modbus address (1—247)
unique from any other physical device on that network. When using the Modbus Slave Device Manager
view to create new devices, the popup dialog allows you to enter this “Starting Address”, as shown in
Figure 4-15.

Figure 4-15 New ModbusSlaveDevice popup dialog

Note this dialog allows you to add a sequentially-addressed range of multiple ModbusSlaveDevices, by
setting “Number to Add” more than 1, with the first device using the starting (Modbus) address. This
technique may be useful in cases where you wish the station to appear as “multiple physical Modbus
devices” (each with a different set of proxy points).
Or, you may wish to have the station appear simply as a single device, in which case you add only one
ModbusSlaveDevice. Note that you can specify many ranges of Modbus data items (coils, inputs, input
registers, holding registers) in any or all ModbusSlaveDevice components.
When you click OK in the dialog shown in Figure 4-15, the next New dialog provides a few “standard” new
device properties to enter (such as Name and Enabled), and others common to all server Modbus devices
(ModbusSlaveDevice, ModbusTcpSlaveDevice). For more details on these Modbus-related properties,
see “About Modbus client devices” on page 4-12.

About Modbus TCP Slave networks
A ModbusTCPSlaveNetwork automatically binds to the TCP/IP setup of the host JACE platform’s
Ethernet adapter, assuming the IP address of the station. The JACE functions as a Modbus slave (server).
If needed, it can appear as multiple Modbus slaves, by adding multiple ModbusTcpSlaveDevices under
the ModbusSlaveNetwork, and assigning each one a unique Modbus address (1—247). However, all
slaves are reachable only via the IP address of the host JACE platform.

Figure 4-16 ModbusTcpSlaveNetwork with JACE as slave

The station acts as a Modbus slave (server) to queries received from a Modbus TCP master device. Each
uniquely-addressed child device is represented by a ModbusTcpSlaveDevice, in which you specify ranges
for available Modbus data items (coils, inputs, input registers, holding registers). In some cases, only a
single child ModbusTcpSlaveDevice may exist to represent the station.
NiagaraAX-3.x

Modbus Guide
4-10

Chapter 4 – NiagaraAX Modbus Representation About Modbus TCP Slave networks
August 25, 2010 Modbus Tcp Slave Network configuration
Modbus Tcp Slave Network configuration
In the property sheet of the ModbusTcpSlaveNetwork (Figure 4-17), you review the default global values
for Modbus device data, and specify other TCP connection settings.

Figure 4-17 ModbusTcpSlaveNetwork property sheet

Note the ModbusTcpSlaveNetwork has the standard collection of network components, such as for
status, health, monitor, tuning policies, and poll scheduler. For more details, see “Common network
components” in the Drivers Guide.
In addition, the following properties have special importance:
• “Global” Modbus device defaults, which (as needed) can be overridden in the Modbus Config (server

device level) slot of any child ModbusSlaveDevice:
• Float Byte Order

Specifies the byte-order used to assemble or receive floating-point (32-bit) values in messages.
• Long Byte Order

Specifies the byte-order used to assemble or receive long integer (32-bit) values in messages.
Note: By default Niagara supports Modbus function codes 15 and 16 (Force Multiple Coils, Preset
Multiple Registers), so you do not see these selections like you do in a client Modbus network.

• Port
Specifies the TCP port used by Modbus message transactions. 502 is the “standard” Modbus TCP
port. Leave at the default (502) unless the Modbus TCP master uses another TCP port.

• Socket Timeout In Millis
Default is 30000 (milliseconds, or 30 seconds—the minimum). You can adjust upwards if necessary.

• Maximum Connections
Default is 5. You can adjust from 1 to 100 as needed.

Double-click the ModbusTcpSlaveNetwork for the default Modbus Tcp Slave Device Manager
view, which you can use to add one or more ModbusTcpSlaveDevice children. For general information,
see “About the Device Manager” in the Drivers Guide. See “Modbus Tcp Slave Device Manager notes”
for additional details.

Modbus Tcp Slave Device Manager notes
Each ModbusTcpSlaveDevice you add under a ModbusTcpSlaveNetwork may have a Modbus address
(1—247), although typically a Modbus TCP device uses only its unique IP address. When using the
Modbus Tcp Slave Device Manager view to create new devices, the popup dialog allows you to enter this
Modbus “Starting Address”, as shown in Figure 4-18.

Figure 4-18 New ModbusTcpSlaveDevice popup dialog
NiagaraAX-3.x

Modbus Guide
4-11

About Master (client) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus client devices August 25, 2010
Note this dialog allows you to add a sequentially-addressed range of multiple ModbusTcpSlaveDevices,
by setting “Number to Add” more than 1, with the first device using the starting (Modbus) address. This
technique may be useful in cases where you wish the station to appear as “multiple physical Modbus TCP
devices” (each with a different set of proxy points)—however, note all devices are reached only through
the station’s (same) host IP address.
More typically, you may wish to have the station appear simply as a single device, in which case you add
only one ModbusTcpSlaveDevice. Note that you can specify many ranges of Modbus data items (coils,
inputs, input registers, holding registers) in any or all ModbusTcpSlaveDevice components.
When you click OK in the dialog shown in Figure 4-18, the next New dialog provides a few “standard” new
device properties to enter (such as Name and Enabled), and others common to all server Modbus devices
(ModbusSlaveDevice, ModbusTcpSlaveDevice). For more details on these Modbus-related properties,
see “About Modbus server devices” on page 4-26.

About Master (client) types
A master-type Modbus network allows the station to regularly poll slave Modbus devices with client
requests, providing Modbus data. Proxy points under each device in the network are Modbus “client”
types. Data exchange occurs with both writable and read-only proxy points, client “preset” objects, and
(if needed) reads and writes to file records, for string data.
See the following sections:
• About Modbus client devices
• About Modbus client proxy points
• About Modbus preset components
• About Modbus (client) file records

About Modbus client devices
Modbus client devices include the ModbusAsyncDevice, ModbusTcpDevice, and ModbusTcpGateway-
Device. Each of these device components actually represents a remote Modbus slave, that is, a remote
device that listens for Modbus queries from a Modbus master (JACE’s station), and sends responses.
All three types of Modbus client devices are very similar, having a single frozen Points device extension,
with the default Modbus Client Point Manager view. The same type of Modbus client proxy points are
used under any Points device extension, as well as any of the “preset” and “file record” objects.

Note: Each device type is specific to a particular parent network type—for example, you cannot copy a
ModbusAsyncDevice under a ModbusTcpGateway, or a ModbusTcpGatewayDevice under a ModbusTcp-
Network. This is not a problem when working in the device manager for any of the three client networks, as
the “New” function (to add devices) automatically selects the proper child device component.
In addition to common device slots (see “Common device components” in the Drivers Guide), all three
types of Modbus client devices have similar properties for Modbus configuration. This includes overrides
of “network level” Modbus Config settings, “ping address” setup for the parent network’s Monitor ping,
device “base” address configurations for Modbus data items, and slots for configuring device-level
polling.
The following sections provide more details on these Modbus device configuration properties:
• Modbus Config (client device level)
• Ping Address properties
• Base Address properties
• Device Poll Config

Modbus Config (client device level)
Each Modbus client device has a “Modbus Config” container slot with 5 properties—you can access them
on the device’s property sheet, as well as the New or Edit dialog for a device object when in the device
manager view (of its parent network). Figure 4-19 shows the properties in the New dialog for a device.
NiagaraAX-3.x

Modbus Guide
4-12

Chapter 4 – NiagaraAX Modbus Representation About Master (client) types
August 25, 2010 About Modbus client devices
Figure 4-19 Modbus Config properties in New/Edit dialog when working in network’s device manager view

These properties allow you to “override” the network-level (global) Modbus Config equivalent settings
for handling Modbus data from and to this device, and are described as follows:
• Override Network

The default, false, means the network-level settings are used. Set this to true whenever you want the
settings below to be used instead of the equivalent network-level values.

• Float Byte Order
Specifies the byte-order used to assemble or receive floating-point (32-bit) values in messages.

• Long Byte Order
Specifies the byte-order used to assemble or receive long integer (32-bit) values in messages.

• Use Force Multiple Coil
Specifies whether to use function code 15 (Force Multiple Coils) instead of function code 05 (Force
Single Coil) when writing to coils. The default is false, where function code 05 (Force Single Coil) is
used.

• Use Preset Multiple Register
Specifies whether to use function code 16 (Preset Multiple Registers) instead of function code 06
(Preset Single Register) when writing to registers. The default is False, where function code 06 (Pre-
set Single Register) is used.

In many cases you might leave these properties at defaults, particularly if different devices used the same
settings—in which case you could adjust them (globally) at the network level.

Ping Address properties
Each Modbus client device has a “Ping Address” container slot with 3 properties—you can access them
on the device’s property sheet, as well as the New or Edit dialog for a device object when in the device
manager view (of its parent network). Figure 4-20 shows ping properties in the New dialog for a device.

Figure 4-20 Ping Address properties in New/Edit dialog when working in network’s device manager view

These properties specify a particular data address (either input register or holding register) to use as the
device status test (meaning “Monitor” ping requests). Ping requests are generated at the network-level by
the configurable network monitor. See “About Monitor” in the Drivers Guide for more details.
NiagaraAX-3.x

Modbus Guide
4-13

About Master (client) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus client devices August 25, 2010
When enabled, a network’s monitor periodically pings (queries) this address. While receiving any
response from the device, including an exception response, this is considered proof of communication,
and the Modbus client device is no longer considered “down” if it had been previously marked “down”.
The device ping address properties are:
• Ping Address

• Address Format — either Hex (default), Decimal, or Modbus
• Address — numerical address, expressed in the selected format (0 is default).
See “Modbus data addresses” on page 3-2 for general information.

• Ping Address Data Type
To specify one of the four numeric data types, either Integer (the default), Long, Float, or Signed In-
teger type. See “Numerical data types” on page 3-6 for general information

• Ping Address Reg Type
To specify either a Holding register (the default) or an Input register

Note: Default device ping address values (first holding register) typically “work,” as even an exception response
from the device is considered OK for device status. While this is considered proof of communications, it is
recommended to configure the ping address to a known data address and type according to the device’s
documentation, to ensure device status monitoring without an exception response.

Base Address properties
Each Modbus client device has four container slots for setting a “base address” on each of the four data
item types (coils, inputs, holding registers, input registers), as follows:
• Input Register Base Address
• Holding Register Base Address
• Coil Status Base Address
• Input Status Base Address
Access these slots on the property sheet of the client Modbus device, as shown in Figure 4-21.

Figure 4-21 Base Address slots of client Modbus device

These properties specify an “address offset” that is added to any child proxy point using a data address
for that data item type. Base addressing of coils and holding registers also affects addressing of “Preset”
components (see “About Modbus preset components” on page 4-21).
Each base address container slot has two properties:
• Address Format — either Hex (default), Decimal, or Modbus (do not select Modbus, see Note).
• Address — numerical address, expressed in the selected format (0 is default).
For example, if a device’s Holding Register Base Address is set to “Decimal, 100”, any child Modbus proxy
point using a holding register “Data Address” of “Decimal, 13” is effectively addressed as “Decimal, 113”
(Absolute Address). See “Modbus client point ProxyExt properties” on page 4-19 for related details.
Typically, all Base Address properties of a device are left at default (hex: 0). However, you can use them
as an engineering method (along with multiple device objects) if a Modbus device has data partitioned
into multiple areas with repeating address patterns. This way, the same device (and child proxy points)
can be replicated, and the only address changes made in the “Base Address” offsets.

Note: If entering Base Addresses in a device, Modbus formatted data addresses cannot be used (select Hex or
Decimal)—and this also applies to Data Address properties of child proxy points.
NiagaraAX-3.x

Modbus Guide
4-14

Chapter 4 – NiagaraAX Modbus Representation About Master (client) types
August 25, 2010 About Modbus client devices
Device Poll Config
Each Modbus client device has a frozen container slot “Device Poll Config,” which you can see under the
device when expanded in the Nav tree, as well as in the device’s property sheet, as shown in Figure 4-22.

Figure 4-22 Device Poll Config container of client Modbus device

By default (initially) the Device Poll Config container is empty, but it can hold one or more “Device Poll
Config Entry” children, which configure and enable device polling. A device poll permits a single
NiagaraAX Modbus query message to retrieve a number of consecutive data values. Device-level polling
may help overall polling efficiency by reducing the number of polls necessary at the point-level.

Note: In a few cases, a device-level poll has actually proven counterproductive, at least for improving polling
efficiency. It was determined that the target Modbus device was taking more time to assemble a long data
response than it did to handle a number of separate responses (no device poll—point-level polling only) for
the equivalent data. While not typical, you should be aware that Modbus devices vary in performance.
Configuring Device Poll Config Based upon the existing child Modbus proxy points, you can configure
“device-level” polls (Device Poll Config) using either of these two methods:
• Automatically, using the right-click “Learn Optimum Device Poll Config” action on the Device Poll

Config container (Figure 4-23). This creates one or more Device Poll Config Entry components, al-
ready configured to produce the needed device polls to query consecutively addressed data items.
Note: The station must be running to use this method (offline station usage not supported).

• Manually, by editing properties in any existing Device Poll Config Entry, and duplicating/re-editing
it (or by coping entries from the modbusAsync or modbusTcp palette and editing as necessary).

Figure 4-23 Action “Learn Optimum Device Poll Config” dynamically adds/configures child components

Typically, you choose the automatic (action) method—note it lets you replace existing device poll entries
(start over), or append to the existing device polls. The Device Poll Config container also has a separate
“Clear” action you can use to remove all existing Device Poll Config Entry children.

Note: For best results, it is recommended that you first create all needed proxy points under a device, before
configuring for device polling.
When executing the learn action, its algorithm looks for any consecutively addressed Modbus proxy points,
and creates a DevicePollConfigEntry if it finds two or more consecutively addressed points. If you have
small gaps between consecutively addressed Modbus proxy points, you may want to manually adjust the
created DevicePollConfigEntries to poll over the small gaps. Remember you can always create, configure,
and remove DevicePollConfigEntries until you find the most efficient device-polling scheme.
NiagaraAX-3.x

Modbus Guide
4-15

About Master (client) types Chapter 4 – NiagaraAX Modbus Representation
Modbus Client Point Manager notes August 25, 2010
Device Poll Config Entry Figure 4-24 shows a Device Poll Config Entry child expanded, and its
properties that were populated from the learn action on the device’s Device Poll Config slot.

Figure 4-24 Expanded Device Poll Config Entry, representing one device poll message

 Properties of a Device Poll Config Entry child are described as follows:
• Enabled — By default, is true. If set to false, associated proxy points use individual point polls instead.
• Start Address — First data item address, including format and numerical address.
• Data Type — Modbus data type: Holding Register, Input Register, Discrete Coil, or Discrete Input
• Consecutive Points to Poll — Number of data items to poll starting from start address
• Read Group Size — 1 or 2, Usually 1 unless all data items are 2-register types (float or long values),

although a 1 works the same, providing “consecutive points to poll” is really consecutive registers.
• Read Status — A numerical error code 0—2, and a corresponding text description.

Modbus Client Point Manager notes
The Modbus Client Point Manager is the default view of the Points extension under any client Modbus
device (ModbusAsyncDevice, ModbusTcpDevice, ModbusTcpGatewayDevice), as shown in Figure 4-27.

Figure 4-25 Modbus Client Point Manager view is default view for Points under client Modbus device

This view is also the default for any “points folder” created with the New Folder button, and operates
like most point manager views for NiagaraAX drivers—see the section “About the Point Manager” in the
Drivers Guide for general details. Note that due to the simplicity of the Modbus protocol, there is no
“Discover, Add, and Match” (Learn process). Instead you make proxy points using the New button, after
studying the vendor’s documentation for Modbus data in each Modbus device. See “About Modbus client
proxy points” on page 4-17 for more details.
NiagaraAX-3.x

Modbus Guide
4-16

Chapter 4 – NiagaraAX Modbus Representation About Master (client) types
August 25, 2010 About Modbus client proxy points
By default, only a few of the available columns in the Modbus Client Point Manager are enabled for
display, notably “Name,” “Out” and “Absolute Address.” However, you may wish to change this by clicking
on the Table Options menu in the table’s upper right, as shown in Figure 4-26.

Figure 4-26 Table Options menu allows you to select additional and/or different data columns

For example, during the configuration process you may wish to see “Fault Cause” and “Data Source.”

About Modbus client proxy points
Modbus client proxy points are similar to other driver’s proxy points. See “About proxy points” in the
Drivers Guide for general details. Note that the same collection of client proxy points is used in devices
under a ModbusAsync, ModbusTcp, and ModbusTcpGateway network—you can find them in the “Client
Points” folder in either palette type (modbusAsync or modbusTcp), as shown in Figure 4-27.

Figure 4-27 Client Points folder is same in modbusAsync palette and modbusTcp palette

Although sometimes you may need to copy components from the palette, note that the same selection of
client point types is available in the New dialog, when adding points in the Modbus Client Point Manager
view of a device (of its Points extension), as shown in Figure 4-28.
NiagaraAX-3.x

Modbus Guide
4-17

About Master (client) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus client proxy points August 25, 2010
Figure 4-28 New dialog from Add in Modbus Client Point Manager provides client point selection

Note: The last four types listed, Enum Bits Writable through Numeric Bits Point, require Modbus 3.5.26 or
higher, or AX-3.6 or later.
Typically, this is the quickest way to add Modbus client proxy points, because you can specify a number
of points if consecutively addressed. See “Consecutive address usage (NiagaraAX)” on page 3-4.
The following sections provide additional details on client Modbus proxy points:
• Types of Modbus client proxy points
• Modbus client point ProxyExt properties

Types of Modbus client proxy points
You can select from the following Modbus client proxy point types:
• Boolean Writable

To read/write a Modbus coil.
• Boolean Point

To read either a Modbus coil or an input.
• Numeric Writable

To read/write a Modbus holding register value.
Note you must specify the Data Type, as either integer, long, float, or signed integer.

• Numeric Point
To read either a Modbus holding register value or an input register value.
Note you must specify the Data Type, as either integer, long, float, or signed integer.

• Register Bit Writable
To read/write a specific bit in a Modbus holding register (select Bit Number in setup).

• Register Bit Point
To read a specific bit in either a Modbus holding register or an input register (select Bit Number in
setup).

• String Point
To read some number of consecutive Modbus holding registers and interpret them as an ASCII
string, using a “high-to-low” byte order. In general, use of this type is expected to be infrequent.

Note: Remaining client point types listed below are available only in Modbus 3.5.26 or higher, or AX-3.6 or later.
See the subsequent Example for a possible application.
• Enum Bits Writable

To read or write some number of consecutive bits within a holding register, with the resulting inte-
ger as the out (ordinal) value of the Enum Writable.

• Enum Bits Point
To read some number of consecutive bits within a holding or input registering the resulting integer
as the out (ordinal) value of the Enum Point.

• Numeric Bits Writable
To read or write some number of consecutive bits within a holding registering the resulting integer
as the out value of the Numeric Writable.

• Numeric Bits Point
To read some number of consecutive bits within a holding or input registering the resulting integer
as the out value of the Numeric Point.

Example A Modbus energy meter device has a number of TOU (Time of Use) parameters, including
several for “TOU Tariff Change Time” configuration. For the eight possible tariff periods (1 - 8), there is
a start hour (0 - 23) and start quarter of an hour (0 - 3). In the meter device, a single 16-bit holding register
holds the setup of all eight tariff periods, mapped from highest bit (15) to lowest bit (0) as follows:
• Bits 8:15 = 0 - 7 (corresponding to tariff #1 - #8)
NiagaraAX-3.x

Modbus Guide
4-18

Chapter 4 – NiagaraAX Modbus Representation About Master (client) types
August 25, 2010 About Modbus client proxy points
• Bits 2:7 = 0 - 23 (tariff start hour)
• Bits 0:1 = 0 - 3 (tariff start quarter of an hour)
Three separate proxy points can be created, using either NumericBitsWritables or EnumBitsWritables
(depending on user interface requirements), to provide read/write access to these bit-mapped values. All
three points will specify the same (register) Data Address, but have different “Beginning Bit” values and
“Number Of Bits” values.

Modbus client point ProxyExt properties
Apart from the standard “core” proxy extension properties (see “ProxyExt properties” in the Drivers
Guide), these ProxyExt properties have special importance in Modbus client proxy points:
• Fault Cause

(Read only) If the point is in fault from an exception response received from the slave device, that
exception string appears here. For example: “Read fault: illegal data address”. See “Excep-
tion codes” on page 3-10 for more details.

• Read Value
(Read only) Shows last polled value as well as the state, for example “71 {ok}” or “false {ok}”.

• Write Value
(Read Only) Shows the last written value, as well as the state and priority level, for example “70
{overridden} @8”.

• Data Address
Specifies the address of the polled data item (prior to any offset address change as a result of using
device-level “Base Address”), as a combination of:
• Address Format — either Modbus (default), Hex, or Decimal
• Address — numerical address, expressed in the selected format.
See “Modbus data addresses” on page 3-2 for general information.
For example, the following are all equivalent addresses:
• Modbus, 40012
• Hex, 0B
• Decimal, 11
Note: If using Hex or Decimal format, for most read-only points you need to specify the “Reg Type”
property, to clarify whether holding register or input register. For related details, see “Data address
format in NiagaraAX” on page 3-5.

• Absolute Address
(Read only) Differs from “Data Address” only if using device “Base Addresses.” It is the sum of the
“Data Address” value and the associated “Base Address” value (as configured in the parent Modbus
device). This is the actual address that will be used when polling for this discrete data point from the
actual Modbus device. The address of the polled data item is a combination of:
• Address Format — as selected, either Modbus (default), Hex, or Decimal
• Address — numerical address, expressed in the selected Data Address format.

• Data Source
(Read only) Displays the type of polling used to collect the value. If it shows “Point Poll” then the Ab-
solute Address is not contained within the range of addresses specified in a Device Poll Config En-
try—thus a separate, individual, point-level poll message is required to collect the value for this
Modbus proxy point (at a poll rate specified by the 'Poll Frequency' property).
If it displays “Device Poll” then the Absolute Address is contained within the range of addresses
specified in a Device Poll Config Entry, and thus the value for this Modbus proxy point is “picked”
from the device-level polling.

Depending on the type of Modbus proxy point, one or more additional properties are used in its
ProxyExt to clarify or confirm the data item needed, as follows:
• ModbusClientBooleanPoint
• ModbusClientBooleanWritable
• ModbusClientNumericPoint
• ModbusClientNumericWritable
• ModbusClientRegisterBitPoint
• ModbusClientRegisterBitWritable
• ModbusClientEnumBitsPoint
• ModbusClientEnumBitsWritable
• ModbusClientNumericBitsPoint
• ModbusClientEnumBitsWritable
NiagaraAX-3.x

Modbus Guide
4-19

About Master (client) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus client proxy points August 25, 2010
ModbusClientBooleanPoint Or “Boolean Point”, has the following in addition to other Modbus client
point ProxyExt properties:
• Status Type

Coil or Input. Specifies whether the point is an Input status type or a Coil status type. Selections only
apply if the “Data Address” format used is Hex or Decimal. (The Modbus address format, if used,
automatically sets this property value).

ModbusClientBooleanWritable Or “Boolean Writable”, has the has the following in addition to other
Modbus client point ProxyExt properties:
• Status Type

(Read only) Always Coil status type for a writable status item.
ModbusClientNumericPoint Or “Numeric Point”, has the following in addition to other Modbus client
point ProxyExt properties:
• Reg Type

Holding or Input. Specifies whether the value is read from an input register or holding register. Se-
lections only apply if the “Data Address” format used is Hex or Decimal. (The Modbus address for-
mat, if used, automatically sets this property value).

• Data Type
Specifies the data type used by the associated data point. Integer and signed integer are 16-bit (single
register) data types; long and float are 32-bit types (with the starting address specified in “Data Ad-
dress”). Values for long and float selections are based upon the network's byte-order config setup (or
may be overridden at the device-level).

ModbusClientNumericWritable Or “Numeric Writable”, has the following in addition to other Modbus
client point ProxyExt properties:
• Reg Type

(Read only) Always Holding register for a writable numeric value.
• Data Type

Specifies the data type used by the associated data point. Integer and signed integer are 16-bit (single
register) data types; long and float are 32-bit types (with the starting address specified in “Data Ad-
dress”). Values for long and float selections are based upon the network's byte-order config setup (or
may be overridden at the device-level).

ModbusClientRegisterBitPoint Or “Register Bit Point”, has the following in addition to other Modbus
client point ProxyExt properties:
• Reg Type

Holding or Input. Specifies whether the bit is read from an input register or holding register. Selec-
tions only apply if the “Data Address” format used is Hex or Decimal. (The Modbus address format,
if used, automatically sets this property value).

• Bit Number
Specifies the bit (numbered 0 - 15, least significant bit first) to read from the specified (16-bit) Mod-
bus register. For example, if the specified register value was “0000000000001000", setting the “Bit
Number” to 3 would read a “1” (True).

ModbusClientRegisterBitWritable Or “Register Bit Writable”, has the following in addition to other
Modbus client point ProxyExt properties:
• Reg Type

(Read only) Always Holding register for a writable bit.
• Bit Number

Specifies the bit (numbered 0 - 15, least significant bit first) to write to the specified (16-bit) Modbus
register. For example, if the specified register value was “0000000000000000”, setting the “Bit Num-
ber” to 3 and writing a True (“1”) would cause the specified register value to become
“0000000000001000”.

ModbusClientStringPoint Or “StringPoint”, has the following in addition to other Modbus client point
ProxyExt properties:
• Number Registers

Specifies the number of consecutive holding registers to read, starting with the specified Absolute
Address (The number of registers should not exceed message limits of the target slave device). Each
register produces two ASCII characters, using high-to-low byte order and standard ASCII encoding.
For example, a register with a value of 4A41 hex (19009 decimal) returns String characters “JA,”
where: 4A h = J and 41 h = A.
NiagaraAX-3.x

Modbus Guide
4-20

Chapter 4 – NiagaraAX Modbus Representation About Master (client) types
August 25, 2010 About Modbus preset components
ModbusClientEnumBitsPoint Or “Enum Bits Point” (build 3.5.26 or higher, or AX-3.6 or later) has the
following in addition to other Modbus client point ProxyExt properties:
• Reg Type

Holding or Input. Specifies whether bits are read from an input register or holding register. Selec-
tions only apply if the “Data Address” format used is Hex or Decimal. (The Modbus address format,
if used, automatically sets this property value).

• Beginning Bit
Specifies the first bit, 0 to 15, used in reading consecutive bits in the specified holding or input reg-
ister, until “Number of Bits” have been read. The integer read is the out value (ordinal portion of the
point’s facets).

• Number of Bits
Specifies the number of bits read in the register, starting with the “Beginning Bit”.

ModbusClientEnumBitsWritable Or “Enum Bits Writable” (build 3.5.26 or higher, or AX-3.6 or later)
has the following in addition to other Modbus client point ProxyExt properties:
• Reg Type

(Read only) Always Holding register for writable bits.
• Beginning Bit

Specifies the first bit, 0 to 15, used in reading or writing consecutive bits in the specified register, un-
til “Number of Bits” have been read or written. The integer read (or written) is the out value (ordinal
portion of the point’s facets).

• Number of Bits
Specifies the number of bits read or written in the register, starting with the “Beginning Bit”.

ModbusClientNumericBitsPoint Or “Numeric Bits Point” (build 3.5.26 or higher, or AX-3.6 or later)
has the following in addition to other Modbus client point ProxyExt properties:
• Reg Type

Holding or Input. Specifies whether bits are read from an input register or holding register. Selec-
tions only apply if the “Data Address” format used is Hex or Decimal. (The Modbus address format,
if used, automatically sets this property value).

• Beginning Bit
Specifies the first bit, 0 to 15, used in reading consecutive bits in the specified holding or input reg-
ister, until “Number of Bits” have been read. The combined integer value is the point’s out value.

• Number of Bits
Specifies the number of bits read in the specified register, starting with the “Beginning Bit”.

ModbusClientNumericBitsWritable Or “Numeric Bits Writable” (build 3.5.26 or higher, or AX-3.6 or
later) has the following in addition to other Modbus client point ProxyExt properties:
• Reg Type

(Read only) Always Holding register for writable bits.
• Beginning Bit

Specifies the first bit, 0 to 15, used in reading or writing consecutive bits in the specified register, un-
til “Number of Bits” have been read or written. The combined integer value is the point’s out value.

• Number of Bits
Specifies the number of bits read or written in the register, starting with the “Beginning Bit”.

About Modbus preset components
Presets allow writing preset values to the target addressed data items upon right-click action (command).
If needed, you can link the “Write” action of any preset container into other control logic. For example,
you can link the “Trigger” slot of a TriggerSchedule into a ModbusClientPresetRegisters container
component for periodic writes to its child preset registers, based upon some repeating schedule.
Preset components can be found in the modbusAsync palette and modbusTcp palette in the “Presets”
folder, as shown in Figure 4-29.

Note: Modbus client preset components are not proxy points; there is no ProxyExt as data is not polled/read from
the device—only written to it. Presets exist for both Modbus coils and holding registers—note these are the
only two Modbus data items to which a Modbus master may write.
NiagaraAX-3.x

Modbus Guide
4-21

About Master (client) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus preset components August 25, 2010
Figure 4-29 Preset components in the modbusAsync and modbusTcp palettes

As needed, copy one or more of the following preset container components anywhere under a client
Modbus device (ModbusAsyncDevice, ModbusTcpDevice, ModbusTcpGatewayDevice):
• Modbus Client Preset Coils

By default, this contains a single ModbusClientPresetCoil to write to one coil—you can add addi-
tional (consecutive) coils using a built-in action (see “Adding client presets”).

• Modbus Client Preset Registers
By default, this contains a single ModbusClientPresetRegister to write to one holding register—you
can add additional (consecutive) registers using a built-in action (see “Adding client presets”).

Note: Preset components are not proxy points—you do not see them in any Modbus Client Point Manager view
if you copy them under a client device’s Points extension. Therefore, it is recommended you locate them
elsewhere under the device. Note also that you can simply copy the entire “Presets” folder from the palette
if you want presets for both coils and holding registers, and then rename/edit as needed. Or, copy and paste
already configured presets from another client Modbus device, if appropriate.

Modbus Client Preset Coils
One of two types of container Modbus preset components, the ModbusClientPresetCoils component
contains one or more preset coil values (ModbusClientPresetCoil components). In this container, you
specify a “Starting Address” for the first (topmost) child preset coil value. Any additional child preset coil
values are sequentially addressed relative to this (slot order). Note the “Absolute Address” is always used
for actual addressing, which is typically the same as “Starting Address,” unless coils in the parent Modbus
device are designated with a base address—see “Base Address properties” on page 4-14.

Figure 4-30 Starting Address in Modbus Client Preset Coils is for first child preset coil

In this preset container you also specify whether individual child preset coil values are written to the
Modbus slave upon any change, or only collectively when the “Write” action of the ModbusClientPreset-
Coils container is invoked.
Properties of the ModbusClientPresetCoils container slot are as follows:
NiagaraAX-3.x

Modbus Guide
4-22

Chapter 4 – NiagaraAX Modbus Representation About Master (client) types
August 25, 2010 About Modbus preset components
• Starting Address
Specifies the address of the first coil to write (prior to any offset address change as a result of using
device-level “Base Address”), as a combination of:
• Address Format — either Hex (default), Decimal, or Modbus

Note if Modbus format, the leading “0s” are dropped for coil addresses, and the first coil is “1”.
• Address — numerical address, expressed in the selected format.
See “Modbus data addresses” on page 3-2 for general information.

• Absolute Starting Address
(Read only) Differs from “Data Address” only if using device “Base Addresses.” It is the sum of the
“Data Address” value and the associated “Base Address” value (as configured in the parent Modbus
device). This is the actual address that will be used when writing the first coil’s preset value.

• Status
(Read only) Displays the status of the container slot—will be fault if a previous write to a child preset
coil failed for some reason.

• Write On Input Change
Either false (default) or true. If set to true, any change to the boolean “value” of a child preset coil is
immediately written to the target coil, in addition to the collective preset coil writes from invoking
the “Write” action of the container. If false, preset coil writes occur only from the “Write” action.

Actions for Modbus Client Preset Coils Two right-click actions on a Modbus Client Preset Coils
container are as follows:
• Write

To write all the preset coil values currently in child ModbusClientPresetCoil components.
• Add Preset Coil Value

To add an additional child ModbusClientPresetCoil component, specifying its boolean value in the
popup dialog. The component is added to the end of the existing slot order.

Modbus Client Preset Registers
One of two types of container Modbus preset components, the ModbusClientPresetRegisters component
contains one or more preset holding register values (ModbusClientPresetRegister components). In this
container, you specify a “Starting Address” for the first (topmost) child preset register value. Any
additional child preset register values are sequentially addressed relative to this (slot order). Note the
“Absolute Address” is always used for actual addressing, which is typically the same as “Starting Address,”
unless holding registers in the parent Modbus device are designated with a base address—see “Base
Address properties” on page 4-14.

Figure 4-31 Starting Address in Modbus Client Preset Registers is for first child preset register

In this preset container you also specify the numerical data type for all child preset registers, and whether
individual child preset register values are written to the Modbus slave upon any change, or only collec-
tively when the “Write” action of the ModbusClientPresetRegisters container is invoked.
Properties of the ModbusClientPresetRegisters container slot are as follows:
• Starting Address

Specifies the address of the first holding register to write (prior to any offset address change as a re-
sult of using device-level “Base Address”), as a combination of:
• Address Format — either Hex (default), Decimal, or Modbus
• Address — numerical address, expressed in the selected format.
NiagaraAX-3.x

Modbus Guide
4-23

About Master (client) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus preset components August 25, 2010
See “Modbus data addresses” on page 3-2 for general information.
• Absolute Starting Address

(Read only) Differs from “Data Address” only if using device “Base Addresses.” It is the sum of the
“Data Address” value and the associated “Base Address” value (as configured in the parent Modbus
device). This is the actual address that will be used when writing the first register’s preset value.

• Status
(Read only) Displays the status of the container slot—will be fault if a previous write to a child preset
register failed for some reason.

• Write On Input Change
Either false (default) or true. If set to true, any change to the numeric “value” of a child preset register
is immediately written to the target register, in addition to the collective preset register writes from
invoking the “Write” action of the container. If false, preset register writes occur only from the
“Write” action.

• Data type
Either Integer (default), Long, Float, or Signed Integer type. Specify to match the data type of the
holding registers in the target Modbus device. Note all child preset registers must use this data type.

Actions for Modbus Client Preset Registers Two right-click actions on a Modbus Client Preset
Registers container are as follows:
• Write

To write all the preset register values currently in child ModbusClientPresetCoil components.
• Add Preset Register Value

To add an additional child ModbusClientPresetRegister component, specifying its numerical value
in the popup dialog. The component is added to the end of the existing slot order.

Adding client presets
For any preset container (Modbus Client Preset Coils, Modbus Client Preset Registers) you can add
additional (consecutively addressed) child preset components using either of these two methods:
• Use the right-click “Add Preset Coil Value” or “Add Preset Register Value” action on either preset

container type (Figure 4-32). This provides a dialog in which you specify another preset component,
added under that preset type container.

• Manually, by duplicating/re-editing preset components (or by coping entries from the mod-
busAsync or modbusTcp palette and editing with a value as necessary).

Figure 4-32 Action “Add Preset Register Value” to create an additional consecutive register with preset value

By default, added client preset components are appended to the bottom of the slot order. If needed, you
can right-click on a preset container and select “Reorder” to change the address order of the child presets,
relative to the absolute address in the preset container.

Note: If using multiple preset containers under a client Modbus device, be careful not to “overlap” preset
addresses. In other words, any specific preset address should be in only one preset container.
NiagaraAX-3.x

Modbus Guide
4-24

Chapter 4 – NiagaraAX Modbus Representation About Master (client) types
August 25, 2010 About Modbus (client) file records
About Modbus (client) file records
A Modbus Client String Record allows reading/writing Modbus file records (client side support for
Modbus function codes 20 and 21). The input and output is a string converted to/from a byte array.
Writing occurs when the linkable “write” action is fired, and reading occurs when the linkable “read”
action is fired.

Note: Use of function codes 20 and 21 in Modbus devices is not typical, and so this object is expected to be infre-
quently used.
Configuration properties specify:
• File Number — From 0 to 65535.
• Starting Record Number — From 0 to 9999.
• Record Length — From 0 to 65535.
• Write On Input Change — Either false (default) or true.
• Padding — Either Pad with spaces (default) or Pad with nulls.
This component allows you to read and write file records in which data is converted to ASCII characters
and displayed as a string.
To use, copy from the modbusAsync or modbusTcp palette and place anywhere under the Modbus client
device (note it is not a proxy point—if you put under the device’s Points container it will not be visible
in any Modbus Client Point Manager view).

About Modbus client exception status
Starting in AX-3.5 and later (or build 3.4.52 or higher), support was added for Modbus function code 07
(read Exception Status). A related component is now on the palette of Modbus client drivers
(modbusAsync, modbusTcp): ModbusClientExceptionStatus, as shown in Figure 4-33.

Figure 4-33 ModbusClientExceptionStatus in the modbusAsync and modbusTcp palettes

Usage is “per device”, where you copy (drag) from the palette, and paste (drop) directly onto a client
Modbus device —it must be a direct child of the ModbusAsyncDevice, ModbusTcpDevice, or
ModbusTcpGatewayDevice.
Slots in this component include a “Bytes Returned” configuration property, where you specify whether
the device uses 1 or 2 bytes for exception status, and also the poll frequency to be used. Read-only “Read
Status” properties provide a numeric “Error Code” and “Error Description”, as well as timestamps of both
the last successful and last failed read attempts.
Other output slots expose the exception status data as StatusBooleans on “Bit0” to “Bit15”, as well as a
StatusNumeric “Out” slot.
Implementation of function code 07 (read Exception Status) varies among devices, but often is at least
one returned byte that maps bits to various “unit status” information. For example, a vendor’s Modbus
standby generator interface may respond to a function code 07 request with a byte of the following
bitmapped data (as applied to any bit that is set):
• Bit 0 — Operative mode Off / Reset
• Bit 1 — Operative mode Manual
• Bit 2 — Operative mode Automatic
• Bit 3 — Operative mode Test
• Bit 4 — Error on
• Bit 5 — (not used)
• Bit 6 — (not used).
• Bit 7 — Global alarm on
Refer to the vendor’s documentation for a Modbus device to see if/how function code 07 is supported.
NiagaraAX-3.x

Modbus Guide
4-25

About Slave (server) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus server devices August 25, 2010
About Slave (server) types
A slave-type Modbus network allows the station to appear as one or more “virtual” Modbus slave devices,
each providing some number of Modbus “virtual” data items. On the Modbus network the station simply
waits for (and responds to) client requests from a master device. All proxy points are Modbus “server”
types, where point polling monitors for external writes to some proxy points. Data exchange with the
Modbus master occurs in this fashion with proxy points, and in rare cases with reads and writes to server
file records (for string data).
See the following sections:
• About Modbus server devices
• About Modbus server proxy points

About Modbus server devices
Modbus server (slave) devices include types ModbusSlaveDevice and ModbusTcpSlaveDevice. Both of
these device components represent the station as a “virtual” Modbus slave, that is, the station listens for
Modbus queries from a remote Modbus master, and sends responses.
Both Modbus server devices are similar, having a single frozen Points device extension, with the default
Modbus Server Point Manager view. The same type of Modbus server proxy points are used under Points
device extensions.

Note: Device types are specific to a particular parent network type—for example, you cannot copy a Modbus-
SlaveDevice under a ModbusTcpSlaveNetwork, or a ModbusTcpSlaveDevice under a Modbus-
SlaveNetwork. This is not a problem when working in the device manager for either of the slave networks,
as the “New” function (to add devices) automatically selects the proper child device component.
In addition to common device slots (see “Common device components” in the Drivers Guide), both
types of Modbus server devices have similar properties for Modbus configuration. This includes
overrides of “network level” device data settings and register range configurations for Modbus data items.
The following sections provide more details on these Modbus server device configuration:
• Modbus Config (server device level)
• Modbus Register Range Tables

Modbus Config (server device level)
Each Modbus server device has a “Modbus Config” container slot with 3 properties—you can access
them on the device’s property sheet, as well as the New or Edit dialog for a device object when in the
device manager view (of its parent network). Figure 4-34 shows the properties in the New dialog for a
device.

Figure 4-34 Modbus Config properties in New/Edit dialog when working in network’s device manager view

These properties allow you to “override” the network-level (global) equivalent settings for handling
Modbus data from and to this virtual device, and are described as follows:
• Override Network

The default, false, means the network-level settings are used. Set this to true whenever you want the
settings below to be used instead of the equivalent network-level values.

• Float Byte Order
Specifies the byte-order used to assemble or receive floating-point (32-bit) values in messages.

• Long Byte Order
Specifies the byte-order used to assemble or receive long integer (32-bit) values in messages.
NiagaraAX-3.x

Modbus Guide
4-26

Chapter 4 – NiagaraAX Modbus Representation About Slave (server) types
August 25, 2010 About Modbus server devices
Typically you leave these properties at defaults, particularly if only one Modbus server device—in which
case you could adjust them (globally) at the network level.

Note: As a Modbus slave (server), by default Niagara supports Modbus function codes 15 and 16 (Force Multiple
Coils, Preset Multiple Registers), so you do not see these selections like you do in a client Modbus device.

Modbus Register Range Tables
Each Modbus server device has four frozen container slots for setting “valid address ranges” for each of
the four “virtual” data item types (coils, inputs, holding registers, input registers), as follows:
• Valid Coils Range
• Valid Status Range
• Valid Holding Registers Range
• Valid Input Registers Range
Queries received by the device must be for data items within the defined (and enabled) valid address
ranges. Otherwise the station generates/sends an exception response back. In addition, server Modbus
proxy points under the device must be configured to fall within these address ranges, or else they will
have a fault status.
You can see these range components under the device when expanded in the Nav tree, as well as in the
device’s property sheet, as shown in Figure 4-35.

Figure 4-35 Modbus Register Range Tables of Modbus server device

By default, as copied from the modbusSlave or modbusTcpSlave palette, a Modbus server device has a
single “Default”-named Register Range Entry in each valid range container, with each having an enabled
range of from 1 to 64, as shown in Figure 4-35 for “Valid Coils Range.” The same default applies to the
“Valid Holding Registers Range,” and so on.
As needed, for any data item range you can edit property values, add additional valid range entries, or
perhaps disable ranges. For example, you could disable the “Valid Status Range” entry, so that any
Modbus master queries to this device to read discrete status (inputs) would yield an exception response.
As another example, you could add multiple ranges for holding registers.
Configuring Valid Register Ranges You add additional register ranges using either of these two
methods:
• Use the right-click “Add Range” action on any Modbus Register Range type (Figure 4-36). This pro-

vides a dialog in which you specify another Modbus Register Range Entry component, added under
that range type container.

• Manually, by duplicating/re-editing Register Range Entry components (or by coping entries from
the modbusSlave or modbusTcpSlave palette and editing as necessary).
NiagaraAX-3.x

Modbus Guide
4-27

About Slave (server) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus server devices August 25, 2010
Figure 4-36 Action “Add Range” to create additional server register range entries

Each Modbus Register Range Table container also has a separate “Clear” action you can use to remove all
existing Modbus Register Range Entry children.
Modbus Register Range Entry Figure 4-37 shows a Modbus Register Range Entry child of one of the
Modbus Register Range Tables expanded, and its properties that were specified.

Figure 4-37 Expanded Modbus Register Range Entry in Modbus server device

 Properties of a Modbus Register Range Entry are described as follows:
• Enabled — By default, is true. If set to false, any associated Modbus server proxy points will have a

fault status, and any queries received to this address range result in an exception response
• Starting Address Offset — The first register in the specified range.
• Size — The number of registers in the range.
For example, if a holding register range is set to a starting address of 250 with a size of 75, it will have an
effective Modbus address range of 40250 to 40325.

Note: If using multiple ranges under any of the Modbus Register Range Tables, be careful not to “overlap” any
range entries. In other words, any specific register address should be in only one range entry.
NiagaraAX-3.x

Modbus Guide
4-28

Chapter 4 – NiagaraAX Modbus Representation About Slave (server) types
August 25, 2010 About Modbus server proxy points
About Modbus server proxy points
Modbus server proxy points are similar to other driver’s proxy points. See “About proxy points” in the
Drivers Guide for general details. Note that the same collection of server proxy points is used in devices
under a ModbusSlave and ModbusTcpSlave network—you can find them in the “Server Points” folder in
either palette type (modbusSlave or modbusTcpSlave), as shown in Figure 4-27.

Figure 4-38 Server Points folder is same in modbusSlave palette and modbusTcpSlave palette

Although sometimes you may need to copy components from the palette, note that the same selection of
server point types is available in the New dialog, when adding points in the Modbus Server Point Manager
view of a device (of its Points extension), as shown in Figure 4-39.

Figure 4-39 New dialog from Add in Modbus Server Point Manager provides server point selection

Typically, this is the quickest way to add Modbus server proxy points, because you can specify a number
of points if consecutively addressed. See “Consecutive address usage (NiagaraAX)” on page 3-4.
The following sections provide additional details on server Modbus proxy points:
• Types of Modbus server proxy points
• Modbus server point ProxyExt properties

Types of Modbus server proxy points
Modbus server proxy points represent “virtual” Modbus data items in the parent Modbus server device.
You can select from the following Modbus proxy point types:
• Boolean Writable

To read/write a “virtual” Modbus coil or input.
Note: Generally, it is unwise to expose any coil as BooleanWritable if the Modbus master may also
write to this same item—otherwise “write contention” issues may result.

• Boolean Point
To read a “virtual” Modbus coil that may be written by the Modbus master.

• Numeric Writable
To read/write a “virtual” Modbus holding register value or input register value.
Note you must specify the Data Type, as either integer, long, float, or signed integer.
Note: Generally, it is unwise to expose any holding register as NumericWritable if the Modbus
master may also write to this same item—otherwise “write contention” issues may result.

• Numeric Point
To read a “virtual” Modbus holding register value that may be written by the Modbus master device.
You must specify the Data Type as either integer, long, float, or signed integer.

• Register Bit Writable
To read/write a specific bit in a “virtual” Modbus holding register or input register (select Bit Num-
NiagaraAX-3.x

Modbus Guide
4-29

About Slave (server) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus server proxy points August 25, 2010
ber in setup).
Generally, it is unwise to expose any holding register as a RegisterBitWritable if the Modbus master
may also write to this same item—otherwise “write contention” issues may result.

• Register Bit Point
To read a specific bit in a “virtual” Modbus holding register (select Bit Number in setup) that may be
written by the Modbus master.

• String Point
To read some number of consecutive “virtual” Modbus holding registers that may be written by the
Modbus master, and interpret them as an ASCII string, using a “high-to-low” byte order. In general,
use of this type is expected to be infrequent.

Modbus server point ProxyExt properties
Apart from the standard “core” proxy extension properties (see “ProxyExt properties” in the Drivers
Guide), these ProxyExt properties have special importance in Modbus client proxy points:
• Fault Cause

(Read only) If the point is in fault due to setup error (not within a Modbus Register Range Entry of
the parent server device) the Fault Cause includes the generated exception string. For example:
“Read fault: Exception during read (com.tridium.modbusCore.ModbusException:
DATA_NOT_AVAILABLE)”. See “Exception codes” on page 3-10 for more details.

• Read Value
(Read only) Shows last polled value as well as the state, for example “71 {ok}” or “false {ok}”.

• Write Value
(Read Only) Shows the last written value, as well as the state and priority level, for example “70
{overridden} @8”.

• Data Address
Specifies the address of the polled data item using a combination of:
• Address Format — either Modbus (default), Hex, or Decimal
• Address — numerical address, expressed in the selected format.
See “Modbus data addresses” on page 3-2 for general information.
For example, the following are all equivalent addresses:
• Modbus, 40012
• Hex, 0B
• Decimal, 11
Note: If using Hex or Decimal format, for most points you need to specify the “Reg Type” property, to
clarify whether holding register or input register. For related details, see “Data address format in
NiagaraAX” on page 3-5.

Depending on the type of Modbus proxy point, one or more additional properties are used in its
ProxyExt to clarify or confirm the data item needed, as follows:
• ModbusServerBooleanPoint
• ModbusServerBooleanWritable
• ModbusServerNumericPoint
• ModbusServerNumericWritable
• ModbusServerRegisterBitPoint
• ModbusServerRegisterBitWritable
ModbusServerBooleanPoint Or “Boolean Point”, has the following in addition to other Modbus server
point ProxyExt properties:
• Status Type

Coil or Input type to read, however Coil is the only valid selection (master cannot write to Modbus
inputs). Selection necessary only if the “Data Address” format used is Hex or Decimal. (The Modbus
address format, if used, automatically sets this property value).

ModbusServerBooleanWritable Or “Boolean Writable”, has the has the following in addition to other
Modbus server point ProxyExt properties:
• Status Type

Coil or Input. Specifies whether the point is read from/written to a coil status or input status type.
Selections only apply if the “Data Address” format used is Hex or Decimal. (The Modbus address for-
mat, if used, automatically sets this property value).
NiagaraAX-3.x

Modbus Guide
4-30

Chapter 4 – NiagaraAX Modbus Representation About Slave (server) types
August 25, 2010 About Modbus (server) file records
ModbusServerNumericPoint Or “Numeric Point”, has the following in addition to other Modbus server
point ProxyExt properties:
• Reg Type

Holding or Input, however Holding is the only valid selection (master cannot write to Modbus input
registers). Selection is necessary only if the “Data Address” format used is Hex or Decimal. (The
Modbus address format, if used, automatically sets this property value).

• Data Type
Specifies the data type used by the associated data point. Integer and signed integer are 16-bit (single
register) data types; long and float are 32-bit types (with the starting address specified in “Data Ad-
dress”). Values for long and float selections are based upon the network's byte-order config setup (or
may be overridden at the device-level).

ModbusServerNumericWritable Or “Numeric Writable”, has the following in addition to other
Modbus server point ProxyExt properties:
• Reg Type

Holding or Input, to specify whether the numeric value is read from/written to a holding register or
input register.

• Data Type
Specifies the data type used by the associated data point. Integer and signed integer are 16-bit (single
register) data types; long and float are 32-bit types (with the starting address specified in “Data Ad-
dress”). Values for long and float selections are based upon the network's byte-order config setup (or
may be overridden at the device-level).

ModbusServerRegisterBitPoint Or “Register Bit Point”, has the following in addition to other Modbus
server point ProxyExt properties:
• Reg Type

Holding or Input, however Holding is the only valid selection (master cannot write to Modbus input
registers). Selections only apply if the “Data Address” format used is Hex or Decimal. (The Modbus
address format, if used, automatically sets this property value).

• Bit Number
Specifies the bit (numbered 0 - 15, least significant bit first) to read from the specified (16-bit) Mod-
bus register. For example, if the specified register value was “0000000000001000", setting the “Bit
Number” to 3 would read a “1” (True).

ModbusServerRegisterBitWritable Or “Register Bit Writable”, has the following in addition to other
Modbus server point ProxyExt properties:
• Reg Type

Holding or Input, to specify whether the boolean value is read from/written to a bit in either a hold-
ing register or input register.

• Bit Number
Specifies the bit (numbered 0 - 15, least significant bit first) to write to the specified (16-bit) Modbus
register. For example, if the specified register value was “0000000000000000”, setting the “Bit Num-
ber” to 3 and writing a True (“1”) would cause the specified register value to become
“0000000000001000”.

About Modbus (server) file records
A Modbus Server String Record allows writing Modbus file records (server side support for Modbus
function codes 20 and 21). The input and output is a string converted to/from a byte array. Writing occurs
when the linkable “write” action is fired.

Note: Use of function codes 20 and 21 in Modbus devices is not typical, and so this object is expected to be infre-
quently used.
Configuration properties specify:
• File Number — From 0 to 65535.
• Starting Record Number — From 0 to 9999.
• Record Length — From 0 to 65535.
• Write On Input Change — Either false (default) or true.
• Padding — Either Pad with spaces (default) or Pad with nulls.
This component allows you to locally set the value of a string file record, and also accepts read and write
messages for the specified file record. It also converts the data to ASCII characters to display as a string.
NiagaraAX-3.x

Modbus Guide
4-31

About Slave (server) types Chapter 4 – NiagaraAX Modbus Representation
About Modbus (server) file records August 25, 2010
To use, copy from the modbusSlave or modbusTcpSlave palette and place anywhere under the Modbus
server device (note it is not a proxy point—if you put under the device’s Points container it will not be
visible in any Modbus Server Point Manager view).
NiagaraAX-3.x

Modbus Guide
4-32

5CHAPTER

Modbus Plugin Guides
There are many ways to view plugins (views). One way is directly in the tree. In addition, you can right-
click on an item and select one of its views. Plugins provide views of components. You can access
documentation on a Plugin by selecting Help > On View (F1) from the menu, or by pressing F1 while
the Plugin is selected.
These Plugin Guides provide summary information on Modbus views, listed alphabetically by module.

Plugin Guides Summary
The following Modbus plugins are available, by module:
• modbusAsync
• modbusCore
• modbusSlave
• modbusTcp
• modbusTcpSlave

modbusAsync plugins
The following views apply to the Modbus Async driver:
• ModbusAsyncDeviceManager

modbusAsync-ModbusAsyncDeviceManager
Use the ModbusAsyncDeviceManager to create, edit, and view Modbus Async Devices. The
ModbusAsyncDeviceManager is a view on the ModbusAsyncNetwork. To view, double-click the
ModbusAsyncNetwork, or right-click and select Views > Modbus Async Device Manager.
For general information, see “About the Device Manager” in the Drivers Guide. See “Modbus Async
Device Manager notes” on page 4-3 for additional details.

modbusCore plugins
The following views are found in multiple types of Modbus networks:
• ModbusClientPointManager
• ModbusServerPointManager

modbusCore-ModbusClientPointManager
Use the ModbusClientPointManager to create, edit, and view proxy points under a client Modbus device.
It is the default view on the Points container of a ModbusAsyncDevice, ModbusTcpDevice, and
ModbusTcpGatewayDevice, as well as on any points folder under these Points containers. To view,
double-click any of those components.
For general information, see the section “About the Point Manager” in the Drivers Guide. See “Modbus
Client Point Manager notes” on page 4-16 for additional details.

modbusCore-ModbusServerPointManager
Use the ModbusServerPointManager to create, edit, and view proxy points under a server Modbus
device. It is the default view on the Points container of a ModbusSlaveDevice and
ModbusTcpSlaveDevice, as well as on any points folder under those Points containers. To view, double-
click any of those components.
NiagaraAX-3.x

Modbus Guide
5–1

modbusSlave plugins Chapter 5 – Modbus Plugin Guides

August 25, 2010
For general information, see the section “About the Point Manager” in the Drivers Guide.

modbusSlave plugins
The following views apply to the Modbus Slave driver:
• ModbusSlaveDeviceManager

modbusSlave-ModbusSlaveDeviceManager
Use the ModbusSlaveDeviceManager to create, edit, and view Modbus Slave Devices. The Modbus-
SlaveDeviceManager is a view on the ModbusSlaveNetwork. To view, double-click a Modbus-
SlaveNetwork, or right-click and select Views > Modbus Slave Device Manager.
For general information, see “About the Device Manager” in the Drivers Guide.

modbusTcp plugins
The following views apply to the Modbus TCP drivers:
• ModbusTcpDeviceManager
• ModbusTcpGatewayDeviceManager

modbusTcp-ModbusTcpDeviceManager
Use ModbusTcpDeviceManager to create, edit, and view Modbus Tcp Devices. The ModbusTcpDevice-
Manager is a view on the ModbusTcpNetwork. To view, double-click a ModbusTcpNetwork, or right-
click and select Views > Modbus Tcp Device Manager.
For general information, see “About the Device Manager” in the Drivers Guide. See “Modbus Tcp Device
Manager notes” on page 4-5 for additional details.

modbusTcp-ModbusTcpGatewayDeviceManager
Use ModbusTcpGatewayDeviceManager to create, edit, and view Modbus Tcp Gateway Devices. The
ModbusTcpGatewayDeviceManager is a view on the ModbusTcpGateway. To view, double-click a
ModbusTcpGateway, or right-click and select Views > Modbus Tcp Gateway Device Manager.
For general information, see “About the Device Manager” in the Drivers Guide. See “Modbus Tcp
Gateway Device Manager notes” on page 4-8 for additional details.

modbusTcpSlave plugins
The following views apply to the Modbus TCP Slave driver:
• ModbusTcpSlaveDeviceManager

modbusTcpSlave-ModbusTcpSlaveDeviceManager
Use ModbusTcpSlaveDeviceManager to create, edit, and view Modbus Tcp Slave Devices. The
ModbusTcpSlaveDeviceManager is a view on the ModbusTcpSlaveNetwork. To view, double-click a
ModbusTcpSlaveNetwork, or right-click and select Views > Modbus Tcp Slave Device
Manager.
For general information, see “About the Device Manager” in the Drivers Guide.
NiagaraAX-3.x

Modbus Guide
5-2

6CHAPTER

Modbus Component Guides
These Component Guides provide summary information on Modbus components, listed alphabetically
by module.

Component Reference Summary
Summary information is provided on components in the following modules:
• modbusAsync
• modbusCore
• modbusSlave
• modbusTcp
• modbusTcpSlave

modbusAsync components
In addition to “client” components in the modbusCore module, the following components apply to the
Modbus Async driver:
• ModbusAsyncDevice
• ModbusAsyncDeviceFolder
• ModbusAsyncNetwork

modbusAsync-ModbusAsyncDevice
 The ModbusAsyncDevice represents a Modbus serial (async) device under a ModbusAsync-
Network, for client access by the station (acting as Modbus master). In addition to the typical device

components, it contains properties to specify the device’s Modbus address, data mode (RTU or ASCII),
and other configuration, including slots to specify the base address for its Modbus data items (holding
registers, input registers, inputs, coils), plus a DevicePollConfigTable for device polling.
Its Points extension (ModbusClientPointDeviceExt) contains Modbus proxy points with client proxy
extensions (ModbusClientBooleanProxyExt, ModbusClientNumericProxyExt, ModbusClientRegister-
BitProxyExt), used to read and write data to the defined data items. The device can also contain one or
more ModbusClientStringRecord components.
For more details, see “About Modbus client devices” on page 4-12.

modbusAsync-ModbusAsyncDeviceFolder
 This is the ModbusAsync implementation of a folder under a ModbusAsyncNetwork. You can use
these folders to organize ModbusAsyncDevices in the network.

Typically, you add such folders using the New Folder button in the ModbusAsyncDeviceManager view
of the network. Each device folder has its own device manager view. The ModbusAsyncDeviceFolder is
also available in the modbusAsync palette.

modbusAsync-ModbusAsyncNetwork
 ModbusAsyncNetwork is the base container for one or more ModbusAsyncDevice components.
This network component specifies the Modbus data mode (RTU or ASCII) used by the network, and

has other standard network components, including a Serial Port Config container (SerialHelper) to
specify serial settings used by the JACE for communications.
See “About Modbus Async networks” on page 4-1 for additional details.
NiagaraAX-3.x

Modbus Guide
6–1

modbusCore Components Chapter 6 – Modbus Component Guides

August 25, 2010
modbusCore Components
Core Modbus components are common to multiple Modbus network types, either the 3 “client” types
(ModbusAsyncNetwork, ModbusTcpNetwork, ModbusTcpGateway) or the 2 “server” types (Modbus-
SlaveNetwork, ModbusTcpSlaveNetwork), and include the following:
• DevicePollConfigEntry
• DevicePollConfigTable
• ModbusClientBooleanProxyExt
• ModbusClientEnumBitsProxyExt (build 3.5.26 or higher, AX-3.6 or later)
• ModbusClientExceptionStatus (build 3.4.52 or higher, or AX-3.5 and later)
• ModbusClientNumericBitsProxyExt (build 3.5.26 or higher, AX-3.6 or later)
• ModbusClientNumericProxyExt
• ModbusClientPointDeviceExt
• ModbusClientPointFolder
• ModbusClientPresetCoil
• ModbusClientPresetCoils
• ModbusClientPresetRegister
• ModbusClientPresetRegisters
• ModbusClientRegisterBitProxyExt
• ModbusClientStringProxyExt
• ModbusClientStringRecord
• ModbusRegisterRangeEntry
• ModbusRegisterRangeTable
• ModbusServerBooleanProxyExt
• ModbusServerNumericProxyExt
• ModbusServerPointDeviceExt
• ModbusServerPointFolder
• ModbusServerRegisterBitProxyExt
• ModbusServerStringRecord

Note: There is no “modbusCore palette”—core Modbus components are in the various other Modbus palettes.

modbusCore-DevicePollConfigEntry
 DevicePollConfigEntry is used to configure device-level polling for consecutive proxy points, where
one or more of these components may be under the DevicePollConfigTable (Device Poll Config) slot

of a client Modbus device. Properties specify the starting Modbus address and number of points to poll.
For more details, see “Device Poll Config Entry” on page 4-16.

modbusCore-DevicePollConfigTable
 This is a frozen slot under a client Modbus device (ModbusAsyncDevice, ModbusTcpDevice, or
ModbusTcpGatewayDevice). It can contain a table of DevicePollConfigEntrys for specifying device-

level polling of points within the device. The Device Poll Config table has two available actions:
• Learn Optimum Device Poll Config — To automatically create child DevicePollConfigEntry compo-

nents based upon the current collection of Modbus proxy points.
• Clear — To remove all existing child DevicePollConfigEntry components.
For more details, see “Device Poll Config” on page 4-15.

modbusCore-ModbusClientBooleanProxyExt
 This is the proxy extension for either a ModbusClientBooleanPoint (BooleanPoint) or
ModbusClientBooleanWritable (BooleanWritable). It contains information necessary infor-

mation necessary to poll (read) a status data value from a client Modbus device.
For more details, see “Types of Modbus client proxy points” on page 4-18.

modbusCore-ModbusClientEnumBitsProxyExt
 (build 3.5.26 or higher, or AX-3.6 and later) This is the proxy extension for either a ModbusCli-
entEnumBitsPoint (Enum Bits Point) or ModbusClientEnumBitsWritable (Enum Bits

Writable). It supports reading both Modbus holding register or input register values, and extracting bits
specified by the “Beginning Bit” and “Number of Bits” properties. The combination of these bits is the
point’s value, as a StatusEnum. The writable variant writes the point’s (ordinal, integer) value into the raw
register bits at the specified “Beginning Bit” relative position. Like other Modbus proxy points, both
point-level or device-level polling is supported.
For more details, see “Types of Modbus client proxy points” on page 4-18.
NiagaraAX-3.x

Modbus Guide
6-2

Chapter 6 – Modbus Component Guides modbusCore Components
August 25, 2010
modbusCore-ModbusClientExceptionStatus
 (build 3.4.52 or higher, or AX-3.5 and later) ModbusClientExceptionStatus is a component used to
read and expose Modbus function code 07 (Exception Status) data from a Modbus device. To use,

you copy (drag) from the palette, and paste (drop) directly onto a client Modbus device —it must be a
direct child of the ModbusAsyncDevice, ModbusTcpDevice, or ModbusTcpGatewayDevice.
Slots in this component include a “Bytes Returned” configuration property, where you specify whether
the device uses 1 or 2 bytes for exception status, and also the poll frequency to be used. Read-only “Read
Status” properties provide a numeric “Error Code” and “Error Description”, as well as timestamps of both
the last successful and last failed read attempts. Other output slots expose the exception status data as
StatusBooleans on “Bit0” to “Bit15”, as well as a StatusNumeric “Out” slot.
For more details, see “About Modbus client exception status” on page 4-25.

modbusCore-ModbusClientNumericBitsProxyExt
 (build 3.5.26 or higher, or AX-3.6 and later) This is the proxy extension for either a ModbusCli-
entNumericBitsPoint (Numeric Bits Point) or ModbusClientNumericBitsWritable

(Numeric Bits Writable). It supports reading both Modbus holding register or input register values, and
extracting bits specfied by the “Beginning Bit” and “Number of Bits” properties. The combination of
these bits is the point’s value, as a StatusNumeric. The writable variant writes the point’s value into the
raw register bits at the specified “Beginning Bit” relative position. Like other Modbus proxy points, both
point-level or device-level polling is supported.
For more details, see “Types of Modbus client proxy points” on page 4-18.

modbusCore-ModbusClientNumericProxyExt
 This is the proxy extension for either a ModbusClientNumericPoint (NumericPoint) or
ModbusClientNumericWritable (NumericWritable). It contains information necessary infor-

mation necessary to poll (read) an integer, long, float, or signed integer data value from a client Modbus-
device.
For more details, see “Types of Modbus client proxy points” on page 4-18.

modbusCore-ModbusClientPointDeviceExt
 This Points extension is the Modbus client implementation of PointDeviceExt, and is a frozen
extension under every ModbusAsyncDevice and ModbusTcpDevice. Its primary view is the

ModbusClientPointManager.
For more details, see “Types of Modbus client proxy points” on page 4-18.

modbusCore-ModbusClientPointFolder
 This is the Modbus client implementation of a folder under the Points container (ModbusClient-
PointDeviceExt) of a ModbusAsyncDevice and ModbusTcpDevice. You typically add such folders

using the New Folder button in the ModbusClientPointManager. Each points folder also has its own
Point Manager view.

modbusCore-ModbusClientPresetCoil
 ModbusClientPresetCoil is a child component of ModbusClientPresetCoils. Use it to specify a
single preset Modbus coil data value (false or true) to write to the parent client Modbus device. You

can add any number of these preset coil components under the ModbusClientPresetCoils parent, where
each specifies a boolean value to write.

modbusCore-ModbusClientPresetCoils
 ModbusClientPresetCoils is a container used for writing preset Modbus coil (boolean) data values
to a client Modbus device. As copied from the palette, a single child ModbusClientPresetCoil entry

exists in this component, where you can enter a preset value (false or true) for that coil. Also, you can add
additional (consecutive) preset coil entries, each with its own value, by using the “Add Preset Coil Value”
action (or by duplicating or by copying from the palette).
ModbusClientPresetCoils configuration requires specifying the Starting Address of the first coil.
Writing occurs when the linkable “write” action is fired. Values specified in the dynamic children are
written to the device using the specified starting (absolute) address, and the slot order of the children
determines what (consecutive) address is assigned to their values.
As needed, you can copy these components from the modbusAsync or modbusTcp palette into a
ModbusAsyncDevice, ModbusTcpDevice, or ModbusTcpGatewayDevice.
NiagaraAX-3.x

Modbus Guide
6-3

modbusCore Components Chapter 6 – Modbus Component Guides

August 25, 2010
Note: Presets (registers and coils) provide write-access only, and are not proxy points—they do not produce
polling activity. If copied under the Points container of the client Modbus device, they will not be visible in
the Point Manager. You may wish to add a “Presets” container under the device to keep any preset objects.
For more details, see “Modbus Client Preset Coils” on page 4-22.

modbusCore-ModbusClientPresetRegister
 ModbusClientPresetRegister is a child component of ModbusClientPresetRegisters, used to specify
a preset numeric value to write to a holding register in a client Modbus device. You can add any

number of these register components under the ModbusClientPresetRegisters parent, where each
specifies a numeric value to write. Data type can be integer, float, long, or signed integer, as specified by
the configuration of the parent ModbusClientPresetRegisters container.

modbusCore-ModbusClientPresetRegisters
 ModbusClientPresetRegisters is a container used for writing preset Modbus holding register data
values to a client Modbus device. As copied from the palette, a single child ModbusClientPresetReg-

ister entry exists in this component, where you can enter a preset value for that register. Also, you can add
additional (consecutive) preset register entries, each with its own value, by using the “Add Preset Register
Value” action (or by duplicating or by copying from the palette).
ModbusClientPresetRegisters configuration requires specifying the Starting Address of the first register,
and also the Data Type (Integer, Float, Long, Signed Integer). All child preset register components must
use this data type.
Writing occurs when the linkable “Write” action is fired. Values specified in the dynamic children are
written to the device using the specified starting (absolute) address, and the slot order of the children
determines what (consecutive) address is assigned to their values.
As needed, you can copy these components from the modbusAsync or modbusTcp palette into a
ModbusAsyncDevice, ModbusTcpDevice, or ModbusTcpGatewayDevice.

Note: Presets (registers and coils) provide write-access only, and are not proxy points—they do not produce
polling activity. If copied under the Points container of the client Modbus device, they will not be visible in
the Point Manager. You may wish to add a “Presets” container under the device to keep any preset objects.
For more details, see “Modbus Client Preset Coils” on page 4-22.

modbusCore-ModbusClientRegisterBitProxyExt
 This is the proxy extension for either a ModbusClientRegisterBitPoint (BooleanPoint) or
ModbusClientRegisterBitWritable (BooleanWritable). It contains information necessary

to poll (read) a single bit value from either an input register or holding register in client Modbus device.
For more details, see “Types of Modbus client proxy points” on page 4-18.

modbusCore-ModbusClientStringProxyExt
 This is the proxy extension for a ModbusClientStringPoint (StringPoint). It contains infor-
mation necessary to poll (read) a string data value from a client Modbus device.

For more details, see “Types of Modbus client proxy points” on page 4-18.

modbusCore-ModbusClientStringRecord
 This is a component for reading/writing Modbus file records (client side). The input and output is
a string converted to/from a byte array. Writing occurs when the linkable “write” action is fired.

Reading occurs when the linkable “read” action is fired.
As needed, you can copy this component from the modbusAsync or modbusTcp palette into a
ModbusAsyncDevice, ModbusTcpDevice, or ModbusTcpGatewayDevice. For more details, see “About
Modbus (client) file records” on page 4-25.

modbusCore-ModbusRegisterRangeEntry
 ModbusRegisterRangeEntry is used to configure the valid (usable) Modbus data items by specifying
an address range starting from the offset and ranging through the size. It is a child of a ModbusReg-

isterRangeTable (Valid Coils Range, Valid Status Range, Valid Holding Registers, Valid Input Registers)
slot of a server Modbus device.
If needed, more than one register range entry can be added under any register table. For more details, see
“Modbus Register Range Entry” on page 4-28.
NiagaraAX-3.x

Modbus Guide
6-4

Chapter 6 – Modbus Component Guides modbusSlave components
August 25, 2010
modbusCore-ModbusRegisterRangeTable
 ModbusRegisterRangeTable is used to define the data constructs of a server Modbus device, where
each device (ModbusSlaveDevice or ModbusTcpSlaveDevice) has four frozen instances of these

tables: one each for valid coils, status (inputs), holding registers, and input registers.
Each register range table can have one or more child ModbusRegisterRangeEntry components, which
define the address offset and range of the data item. For more details, see “Modbus Register Range Tables”
on page 4-27.

modbusCore-ModbusServerBooleanProxyExt
 This is the proxy extension for either a ModbusServerBooleanPoint (BooleanPoint) or
ModbusServerBooleanWritable (BooleanWritable) in a server Modbus device. The server

BooleanPoint acts as an “input,” where coil values are written by the master. The server BooleanWritable
acts as an “output,” where station values can be written as either coil or input (status) values.
For more details, see “About Modbus server proxy points” on page 4-29.

modbusCore-ModbusServerNumericProxyExt
 This is the proxy extension for either a ModbusServerNumericPoint (NumericPoint) or
ModbusServerNumericWritable (NumericWritable) in a server Modbus device. The server

NumericPoint acts as an “input,” where holding register values are written by the master. The server
NumericWritable acts as an “output,” where station values can be written as either input register or
holding register values.
For more details, see “About Modbus server proxy points” on page 4-29.

modbusCore-ModbusServerPointDeviceExt
 This Points extension is the Modbus server implementation of PointDeviceExt, and is a frozen
extension under every ModbusSlaveDevice and ModbusTcpSlaveDevice. Its primary view is the

ModbusServerPointManager.
For more details, see “About Modbus server proxy points” on page 4-29.

modbusCore-ModbusServerPointFolder
 This is the Modbus server implementation of a folder under the Points container (ModbusServ-
erPointFolder) of a ModbusSlaveDevice and ModbusTcpSlaveDevice. You typically add such folders

using the New Folder button in the ModbusServerPointManager. Each points folder also has its own
Point Manager view.

modbusCore-ModbusServerRegisterBitProxyExt
 This is the proxy extension for either a ModbusServerRegisterBitPoint (BooleanPoint) or
ModbusServerRegisterBitWritable (BooleanWritable) in a server Modbus device. The server

BooleanPoint acts as an “input,” where an individual bit in a holding register can be written by the master.
The server BooleanWritable acts as an “output,” where a station boolean value can be written as an
individual bit in either an input register or a holding register.
For more details, see “About Modbus server proxy points” on page 4-29.

modbusCore-ModbusServerStringRecord
 ModbusServerStringRecord is a component for reading/writing Modbus file records (server side).
The input and output is a string converted to/from a byte array. Writing occurs when the linkable

“write” action is fired. Reading occurs when the linkable “read” action is fired.
For more details, see “About Modbus (server) file records” on page 4-31.

modbusSlave components
In addition to “server” components in the modbusCore module, the following components apply to the
Modbus Slave driver:
• ModbusSlaveDevice
• ModbusSlaveDeviceFolder
• ModbusSlaveNetwork

modbusSlave-ModbusSlaveDevice
 The ModbusSlaveDevice represents a “virtual” Modbus device to serve data to a Modbus master
over a serial connection, where station data appears as Modbus data items. It has 4 frozen “range”

containers (ModbusRegisterRangeTables), which specify what Modbus addresses are available as coils,
inputs, holding registers, and input registers.
NiagaraAX-3.x

Modbus Guide
6-5

modbusTcp components Chapter 6 – Modbus Component Guides

August 25, 2010
Its Points extension (ModbusServerPointDeviceExt) contains Modbus proxy points with server proxy
extensions (ModbusServerBooleanProxyExt, ModbusServerNumericProxyExt, ModbusServerRegister-
BitProxyExt), used to read and write data to the defined data items. The device can also contain one or
more ModbusServerStringRecord components.
For more details, see “About Modbus server devices” on page 4-26.

modbusSlave-ModbusSlaveDeviceFolder
 This is the ModbusSlave implementation of a folder under a ModbusSlaveNetwork. You can use
these folders to organize ModbusSlaveDevices in the network.

Typically, you add such folders using the New Folder button in the ModbusSlaveDeviceManager view
of the network. Each device folder has its own device manager view. The ModbusSlaveDeviceFolder is
also available in the modbusSlave palette.

modbusSlave-ModbusSlaveNetwork
 ModbusSlaveNetwork is the base container for one or more ModbusSlaveDevice components. This
network component specifies the Modbus data mode (RTU or ASCII) used by the network, and has

other standard network components, including a Serial Port Config container (SerialHelper) to specify
serial settings used by the JACE for communications.
See “About Modbus Slave networks” on page 4-8 for additional details.

modbusTcp components
In addition to “client” components in the modbusCore module, the following components apply to the
Modbus TCP driver:
• ModbusTcpDevice
• ModbusTcpDeviceFolder
• ModbusTcpGateway
• ModbusTcpGatewayDevice
• ModbusTcpGatewayDeviceFolder
• ModbusTcpNetwork

modbusTcp-ModbusTcpDevice
 The ModbusTcpDevice represents a Modbus TCP device under a ModbusTcpNetwork, for client
access by the station (acting as Modbus master). In addition to the typical device components, it

contains properties to specify the device’s Modbus address, and other configuration including slots to
specify the base address for its Modbus data items (holding registers, input registers, inputs, coils), plus
a DevicePollConfigTable for device polling.
Its Points extension (ModbusClientPointDeviceExt) contains Modbus proxy points with client proxy
extensions (ModbusClientBooleanProxyExt, ModbusClientNumericProxyExt, ModbusClientRegister-
BitProxyExt), used to read and write data to the defined data items. The device can also contain one or
more ModbusClientStringRecord components.
For more details, see “About Modbus client devices” on page 4-12.

modbusTcp-ModbusTcpDeviceFolder
 This is the ModbusTcp implementation of a folder under a ModbusTcpNetwork. You can use these
folders to organize ModbusTcpDevices in the network.

Typically, you add such folders using the New Folder button in the ModbusTcpDeviceManager view
of the network. Each device folder has its own device manager view. The ModbusTcpDeviceFolder is also
available in the modbusTcp palette.

modbusTcp-ModbusTcpGateway
 ModbusTcpGateway is the base container for one or more ModbusTcpGatewayDevice compo-
nents. This network-level component specifies the TCP/IP address and port used to connect to the

Modbus TCP/serial gateway, which has Modbus serial devices (typically Modbus RTU, via RS-485) on its
“far side.” Those devices are represented by its child ModbusTcpGatewayDevices.
In addition to standard network components, other Modbus settings are specified in this component. Its
primary view is the ModbusTcpGatewayDeviceManager, used to add and manage devices. See “About
Modbus TCP Gateway networks” on page 4-6 for additional details.
NiagaraAX-3.x

Modbus Guide
6-6

Chapter 6 – Modbus Component Guides modbusTcpSlave components
August 25, 2010
modbusTcp-ModbusTcpGatewayDevice
 The ModbusTcpGatewayDevice represents a Modbus serial (RTU or ASCII) device on the “far side”
of a ModbusTcpGateway (network), for TCP client access by the station (acting as Modbus master).

In addition to the typical device components, it specifies its Modbus address plus other settings,
including slots to specify the base address for its Modbus data items (holding registers, input registers,
inputs, coils), and a DevicePollConfigTable for device polling.
Its Points extension (ModbusClientPointDeviceExt) contains Modbus proxy points with client proxy
extensions (ModbusClientBooleanProxyExt, ModbusClientNumericProxyExt, ModbusClientRegister-
BitProxyExt), used to read and write data to the defined data items. The device can also contain one or
more ModbusClientStringRecord components.
For more details, see “About Modbus client devices” on page 4-12.

modbusTcp-ModbusTcpGatewayDeviceFolder
 This is the ModbusTcp implementation of a folder under a ModbusTcpGateway network. You can
use these folders to organize ModbusTcpGatewayDevices in the network.

Typically, you add such folders using the New Folder button in the ModbusTcpGatewayDeviceM-
anager view of the network. Each device folder has its own device manager view. The ModbusTcpGate-
wayDeviceFolder is also available in the modbusTcp palette.

modbusTcp-ModbusTcpNetwork
 ModbusTcpNetwork is the base container for one or more ModbusTcpDevice components. This
network component specifies certain Modbus settings used by the network, and has other standard

network components. Its primary view is the ModbusTcpDeviceManager, used to add and manage
devices.
See “About Modbus TCP networks” on page 4-4 for additional details.

modbusTcpSlave components
In addition to “server” components in the modbusCore module, the following components apply to the
Modbus TCP Slave driver:
• ModbusTcpSlaveDevice
• ModbusTcpSlaveDeviceFolder
• ModbusTcpSlaveNetwork

modbusTcpSlave-ModbusTcpSlaveDevice
 The ModbusTcpSlaveDevice represents a “virtual” Modbus device to serve data to a Modbus master
over a TCP connection, where station data appears as Modbus data items. It has 4 frozen “range”

containers (ModbusRegisterRangeTables), which specify what Modbus addresses are available as coils,
inputs, holding registers, and input registers.
Its Points extension (ModbusServerPointDeviceExt) contains Modbus proxy points with server proxy
extensions (ModbusServerBooleanProxyExt, ModbusServerNumericProxyExt, ModbusServerRegister-
BitProxyExt), used to read and write data to the defined data items. The device can also contain one or
more ModbusServerStringRecord components.
For more details, see “About Modbus server devices” on page 4-26.

modbusTcpSlave-ModbusTcpSlaveDeviceFolder
 This is the ModbusTcpSlave implementation of a folder under a ModbusTcpSlaveNetwork. You can
use these folders to organize ModbusTcpSlaveDevices in the network.

Typically, you add such folders using the New Folder button in the ModbusTcpSlaveDeviceManager
view of the network. Each device folder has its own device manager view. The ModbusTcpSlaveDevice-
Folder is also available in the modbusTcpSlave palette.

modbusTcpSlave-ModbusTcpSlaveNetwork
 ModbusTcpSlaveNetwork is the base container for one or more ModbusTcpSlaveDevice compo-
nents. This network component specifies the TCP connection settings used to expose the virtual

devices to Modbus, and assumes the IP address of the Niagara station.
For more details, see “About Modbus TCP Slave networks” on page 4-10.
NiagaraAX-3.x

Modbus Guide
6-7

modbusTcpSlave components Chapter 6 – Modbus Component Guides

August 25, 2010
NiagaraAX-3.x

Modbus Guide
6-8

	Preface
	About this document
	Modbus terms
	Document change log

	Modbus Driver Installations
	Modbus license requirements
	Installing Modbus software

	Modbus Quick Start
	Configure the client Modbus network
	Add a ModbusAsyncNetwork
	Configure the serial port parameters and transmission mode

	Add a ModbusTcpNetwork
	Add a ModbusTcpGateway
	Review network-level Modbus client configuration

	Add client Modbus devices
	Create Modbus client proxy points
	Add other client Modbus components
	Configure the slave Modbus network
	Add a ModbusSlaveNetwork
	Configure the serial port parameters and transmission mode

	Add a ModbusTcpSlaveNetwork
	Review network-level Modbus server configuration

	Add server (slave) Modbus devices
	Create Modbus server proxy points
	Add other server Modbus components

	Modbus Meets NiagaraAX
	Brief History
	Modbus key concepts
	Modbus registers
	Modbus data addresses
	Organization and addressing of data
	Consecutive addresses
	Consecutive address usage (general)
	Consecutive address usage (NiagaraAX)
	Data address format in NiagaraAX

	Modbus data types
	Data in Modbus
	Numerical data types
	NiagaraAX data representation

	Modbus function codes
	Supported function codes

	Modbus messages
	Message structures
	NiagaraAX debug example

	Exception responses
	Exception response format
	Exception codes

	Device-to-device differences
	Network-level settings
	Device-level Modbus Config properties

	NiagaraAX Modbus Representation
	About Modbus Async networks
	Modbus Async Network configuration
	Modbus Async Device Manager notes

	About Modbus TCP networks
	Modbus Tcp Network configuration
	Modbus Tcp Device Manager notes

	About Modbus TCP Gateway networks
	Modbus Tcp Gateway configuration
	Modbus Tcp Gateway Device Manager notes

	About Modbus Slave networks
	Modbus Slave Network configuration
	Modbus Slave Device Manager notes

	About Modbus TCP Slave networks
	Modbus Tcp Slave Network configuration
	Modbus Tcp Slave Device Manager notes

	About Master (client) types
	About Modbus client devices
	Modbus Config (client device level)
	Ping Address properties
	Base Address properties
	Device Poll Config

	Modbus Client Point Manager notes
	About Modbus client proxy points
	Types of Modbus client proxy points
	Modbus client point ProxyExt properties

	About Modbus preset components
	Modbus Client Preset Coils
	Modbus Client Preset Registers
	Adding client presets

	About Modbus (client) file records
	About Modbus client exception status

	About Slave (server) types
	About Modbus server devices
	Modbus Config (server device level)
	Modbus Register Range Tables

	About Modbus server proxy points
	Types of Modbus server proxy points
	Modbus server point ProxyExt properties

	About Modbus (server) file records

	Modbus Plugin Guides
	Plugin Guides Summary
	modbusAsync plugins
	modbusCore plugins
	modbusSlave plugins
	modbusTcp plugins
	modbusTcpSlave plugins

	Modbus Component Guides
	Component Reference Summary
	modbusAsync components
	modbusCore Components
	modbusSlave components
	modbusTcp components
	modbusTcpSlave components

