
Technical Document

Updated: February 11, 2015

NiagaraAX-3.x oBIX Guide

NiagaraAX oBIX Guide
Copyright © 2015 Tridium, Inc.
All rights reserved.
3951 Westerre Pkwy, Suite 350
Richmond
Virginia
23233
U.S.A.

Confidentiality Notice
The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation (“Tridium”).
Such information, and the software described herein, is furnished under a license agreement and may be used only in
accordance with that agreement.
The information contained in this document is provided solely for use by Tridium employees, licensees, and system own-
ers; and, except as permitted under the below copyright notice, is not to be released to, or reproduced for, anyone else.
While every effort has been made to assure the accuracy of this document, Tridium is not responsible for damages of any
kind, including without limitation consequential damages, arising from the application of the information contained herein.
Information and specifications published here are current as of the date of this publication and are subject to change with-
out notice. The latest product specifications can be found by contacting our corporate headquarters, Richmond, Virginia.

Trademark Notice
BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Conditioning Engi-
neers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL Server are registered
trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Mozilla and
Firefox are trademarks of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trade-

marks of Echelon Corporation. Tridium, JACE, Niagara Framework, NiagaraAX Framework, and Sedona Framework are

registered trademarks, and Workbench, WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product
names and services mentioned in this publication that is known to be trademarks, registered trademarks, or service marks
are the property of their respective owners.

Copyright and Patent Notice
This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of
those products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written
consent from Tridium, Inc.
Copyright © 2015 Tridium, Inc.
All rights reserved. The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

CONTENTS

Preface . v
Document Change Log . v

Compatibility and Installation . 1–1
Compatibility . 1–1

Specification compatibility . 1–1
NiagaraAX platform compatibility . 1–1

License requirements . 1–1

Installation . 1–1

oBIX Quick Start . 2–1
Add the ObixNetwork . 2–1

Add an ObixNetwork . 2–1
To add an ObixNetwork in the station . 2–1

Add ObixClient devices . 2–1
To add ObixClients in the network . 2–2

Independent oBIX server verification . 2–2

Create Obix proxy points . 2–2
To add Obix proxy points . 2–2

Import oBIX histories . 2–3
To import oBIX histories . 2–3

Server operations . 2–4
Enable oBIX server operation . 2–4

To enable the station for oBIX server operation . 2–4
Expose writable control points for external link (input) control . 2–4

To expose writable control points for external link control . 2–4

NiagaraAX Obix Concepts. 3–1
oBIX terms . 3–1

About Obix Architecture . 3–1

About the Obix Network . 3–2
Obix Network status notes . 3–2
Obix Network monitor notes . 3–3
Obix Network tuning policy notes . 3–3
Obix Network views . 3–3

Obix Server Operation . 3–3
Reserving writable inputs for oBIX client access . 3–3
Serving history queries from oBIX clients . 3–5

ObixDriver Plugin Guides . 4–1
ObixDriver Plugin Guides Summary . 4–1
NiagaraAX-3.x

oBIX Guide
iii

February 11, 2015
obixDriver-ObixAlarmManager . 4–1
obixDriver-ObixClientManager . 4–2
obixDriver-ObixExportManager . 4–2
obixDriver-ObixHistoryManager . 4–3
obixDriver-ObixPointManager . 4–4
obixDriver-ObixScheduleManager . 4–5

ObixDriver Component Guides. 5–1
ObixDriver Component Guides Summary . 5–1

obixDriver-ObixAlarmDeviceExt . 5–1
obixDriver-ObixAlarmImport . 5–1
obixDriver-ObixClient . 5–2
obixDriver-ObixClientFolder . 5–2
obixDriver-ObixExport . 5–2
obixDriver-ObixExportFolder . 5–3
obixDriver-ObixHistoryDeviceExt . 5–3
obixDriver-ObixHistoryImport . 5–3
obixDriver-ObixNetwork . 5–3
obixDriver-ObixPointDeviceExt . 5–3
obixDriver-ObixPointFolder . 5–4
obixDriver-ObixPollScheduler . 5–4
obixDriver-ObixProxyExt . 5–4
obixDriver-ObixScheduleExport . 5–4
obixDriver-ObixServer . 5–4
obixDriver-ObixThreadPool . 5–5
obixDriver-OBixTuningPolicy . 5–5
obixDriver-ObixTuningPolicyMap . 5–5
obixDriver-R2AlarmDeviceExt . 5–5
obixDriver-R2AlarmImport . 5–5
obixDriver-R2ObixClient . 5–5
obixDriver-R2PointDeviceExt . 5–5
obixDriver-R2ObixScheduleDeviceExt . 5–6
NiagaraAX-3.x

oBIX Guide
iv

PREFACE

Preface
This documents usage of the oBIX driver (obixDriver) for the NiagaraAX platform.

Document Change Log
Updates (changes/additions) to this NiagaraAX oBIX Guide document are listed below.
• Updated: February 11, 2015

Minor corrections to long-standing errors in “Component Guides” and Plugin Guides” summary de-
scriptions about Obix driver client support for schedules. Only the specialized R2ObixClient has a
Schedules device extension (R2ScheduleDeviceExt), which has an ObixScheduleManager view,
which you use to add ObixScheduleExport components. A summary description for an “ObixSched-
uleDeviceExt” was removed, and edits were made in the descriptions of the items listed above.

• Updated: February 15, 2008
Changed document to reference the NiagaraAX Drivers Guide, a new document created from sec-
tions formerly in the NiagaraAX User Guide.

• Updated: June 25, 2007
Minor updates. Changes in the section “License requirements” on page 1-1, reflecting client opera-
tion change in “foreign limits” of devices, points, and so on. Additional details were added in the
“Obix Server Operation” concepts section, including a new subsection “Serving history queries from
oBIX clients” on page 3-5. The “Beta Draft” header and change bars were removed from the PDF ver-
sion of this document.

• Updated: May 23, 2007
Generally minor updates. Throughout, mentioned driver support in AX-3.2. More information in
“License requirements” on page 1-1, and a few more conceptual details in the “NiagaraAX Obix
Concepts” section, in subsections “About the Obix Network” on page 3-2, and “Obix Server Opera-
tion” on page 3-3. In “ObixDriver Component Guides” section, added subsection on new
R2PointDeviceExt component (applies to R2ObixClient only). Note that in the PDF version of this
document update, magenta “change bars” appear in page margins, to denote changed or new text.

• Updated: April 18, 2007
Completely reworked as a “single-source” document, replacing the previous PDF-only NiagaraAX
oBIX User Guide. Includes more details throughout, although more conceptual details will be added
a later date.

• Revised: October 9, 2006
New cover design with flyleaf (including copyright and trademark notices), as well as other minor
formatting changes.

• Revised: August 31, 2006
Only content change was “should” changed to “must” in the Href description found in the section
about the “ObixProxyExt.” Other minor formatting changes.

• Initial draft document: August 23, 2006
Initial publication as PDF-only document.
NiagaraAX-3.x

oBIX Guide
v

Document Change Log Preface

February 11, 2015
NiagaraAX-3.x

oBIX Guide
vi

1CHAPTER

Compatibility and Installation
Currently, this section has the following subsections:
• Compatibility
• License requirements
• Installation

Compatibility
NiagaraAX oBIX software meets the following compatibility criteria:
• Specification compatibility
• NiagaraAX platform compatibility

Specification compatibility
At the time of this document, the NiagaraAX oBIX driver meets “Committee Specification 1.0.” using the
specification document identifier of obix-1.0-cs-01. Specification documents are currently found
at OASIS at this URL: http://www.oasis-open.org/committees/documents.php?wg_abbrev=obix.

NiagaraAX platform compatibility
NiagaraAX oBIX software will function on all NiagaraAX release 3.1 and above (AX-3.2) host platforms.

License requirements
To use the NiagaraAX obixDriver, you must have a target NiagaraAX host (JACE, AxSupervisor) that is
licensed with the “obixDriver” feature. This provides the station with oBIX client operation.

Note: To also operate as an oBIX server, note the obixDriver license feature must contain the attribute
“export=true”. For an example see below.
<feature name="obixDriver" expiration="never" device.limit=none export=true
foreignDevice.limit=500 foreignHistory.limit=500 foreignPoint.limit=500 foreign-
Schedule.limit=500 history.limit=none point.limit=none schedule.limit=none

parts="ENG-WORKSTATION"/>

In addition, oBIX server operation requires the host to have the web module installed, and so be licensed
for the “web” feature.

Note: Note that for oBIX client operation, limits on “foreign” devices, histories, proxy points, or schedules may
exist in your license’s obixDriver feature. Such “foreign limits” apply only to external oBIX servers
mapped as ObixClients that are not Niagara stations (either NiagaraAX or Niagara R2).
In other words, Niagara oBIX servers mapped into the station’s ObixNetwork (usually Niagara R2 stations)
are not counted in these foreign limits, only in the “regular” limits, which are typically unlimited (have
values of “none”) as shown in the license example above.

Installation
From your PC, use the Niagara Workbench 3.n.nn installed with the “installation tool” option (checkbox
“This instance of Workbench will be used as an installation tool”). This option installs the needed distri-
bution files (.dist files) for commissioning various models of remote JACE platforms. The dist files are
located under your Niagara install directory under a “sw” subdirectory.
For details, see “About your software database” in the Platform Guide.
NiagaraAX-3.x

oBIX Guide
1–1

http://www.oasis-open.org/committees/documents.php?wg_abbrev=obix
http://www.oasis-open.org/committees/documents.php?wg_abbrev=obix

Installation Chapter 1 – Compatibility and Installation
NiagaraAX platform compatibility February 11, 2015
Apart from installing the 3.n.nn version of the Niagara distribution in the JACE, make sure to also install
the obix and obixDriver modules, plus any modules shown as dependencies. If the JACE will be operating
as an oBIX server, make sure the web module is installed (and that feature is licensed). Upgrade any
modules shown as “out of date”.
For details, see “Software Manager” in the Platform Guide.
Following this, the remote JACE is now ready for Obix configuration in its running station, as described
in the rest of this document. See the next section “oBIX Quick Start”for a series of task-based procedures.
NiagaraAX-3.x

oBIX Guide
1–2

2CHAPTER

oBIX Quick Start
This section provides a collection of procedures to use the NiagaraAX obixDriver to build an
ObixNetwork with proxy points and other components. Like other NiagaraAX drivers, you can do most
configuration from special “manager” views and property sheets using Workbench.

Note: First see “Compatibility and Installation” on page 1-1 for licensing and software requirements.
These are the main quick start subsections:
• Add the ObixNetwork
• Client usage:

• Add ObixClient devices
• Create Obix proxy points
• Import oBIX histories

• Server usage:
• Enable oBIX server operation
• Expose writable control points for external link (input) control

Add the ObixNetwork
Only one ObixNetwork is supported (or needed) in a station, regardless of whether you are using oBIX
client or server functions, or both.
To add an ObixNetwork, perform the followings:

Add an ObixNetwork

To add an ObixNetwork in the station
Use the following procedure to add an ObixNetwork component under the station’s Drivers container.

Step 1 Double-click the station’s Drivers container, to bring up the Driver Manager.
Step 2 Click the New button to bring up the New network dialog. For more details, see “Driver Manager New

and Edit” in the Drivers Guide.
Step 3 Select “Obix Network,” number to add: 1 and click OK.

This brings up a dialog to name the network.
Step 4 Click OK to add the ObixNetwork to the station.

You should have an ObixNetwork named “ObixNetwork” (or whatever you named it), under your Drivers
folder, showing a status of “{ok}” and enabled as “true.”

Add ObixClient devices
After adding an ObixNetwork, you can use the network’s default “client manager” view to add the appro-
priate ObixClient and/or R2ObixClient devices.

Note: The general “client/server” naming in this driver follows a “convention” used in some other drivers, for
example the OPC driver and Modbus drivers, where a “client” device actually represents a server device
(here, an oBIX server), and associated NiagaraAX components are named “client” because a client
connection is used to retrieve data.
NiagaraAX-3.x

oBIX Guide
2–1

Create Obix proxy points Chapter 2 – oBIX Quick Start
Independent oBIX server verification February 11, 2015
To add ObixClients in the network
Use the following procedure to add devices in the network.

Step 1 In the Nav tree or in the Driver Manager view, double-click the ObixNetwork, to bring up the device
manager (Obix Client Manager).

Note: For general device manager information, see the “About the Device Manager” section in the Drivers Guide.
Step 2 Click the New button to bring up the New device dialog.

Depending on the target oBIX server type, in Type select either ObixClient or R2ObixClient (where the
latter applies only to a Niagara R2 host running the R2 obix driver).

Note: If using the oBIX driver to integrate Niagara R2 stations in NiagaraAX, refer to the the engineering notes
document Niagara R2 to NiagaraAX via oBIX, which has much more information than this document on
that topic. Note the R2ObixClient is the only valid choice in that case.

Step 3 Select for number to add: 1 (or more, if multiple) and click OK.
This brings up a dialog to name the device(s), enter the lobby URI, as well as any credentials needed for
authentication (user name and password).

Step 4 Click OK to add the client device(s) to the network.
You should see the device(s) listed in the client manager view, showing a state of “Attaching” that
changes to “Attached.”

Note: If a device appears down with a state of “Detached” check the syntax of the lobby URI and credentials. You
can simply double-click a device in the client manager to review settings in an Edit dialog, identical to the
New dialog when you added it. Also see the next section, “Independent oBIX server verification”.
After making any device changes, click Save, then right-click the device and select Actions > Ping.

Independent oBIX server verification
Note you can independently verify if a host is operating as an oBIX server, using a web browser, providing
that you know its lobby’s URI, as well as its login credentials (if needed). Simply open a web browser
connection to that host, using its lobby URI.
For a Niagara R2 or NiagaraAX station operating as an oBIX server, the lobby URI syntax is as follows:
http://<host>[:port]/obix

where <host> is IP address or hostname, and [:port] is optional (if omitted, assumed as 80).
See “Obix Server Operation” on page 3-3 for additional details.
Note that a Niagara R2 or AX station will prompt you for a valid station user login, however, other oBIX
servers may allow access without authentication. Following login, you should see an HTML represen-
tation of the station’s oBIX lobby, including hyperlinks to traverse into the object tree structure.

Create Obix proxy points
As with device objects in other drivers, each ObixClient device has a Points extension that serves as
the container for proxy points. The default view for any Points extension is the Point Manager (and in this
case, the “Obix Point Manager”). You use it to add Obix proxy points under any client device.
For general information, see the “About the Point Manager” section in the Drivers Guide. Also see
“obixDriver-ObixPointManager” on page 4-4.

Note: Like the point managers in many other drivers, the Obix Point Manager offers a “Learn mode” with
a Discover button and pane. Learned oBIX objects are found in the expandable “lobby” after a discover.

To add Obix proxy points
Once a client Obix device is added, you can add proxy points to read and write data.

Step 1 In the Client Manager, in the Exts column, double-click the Points icon in the row
representing the device you wish to create proxy points.
This brings up the Obix Point Manager.

Step 2 (Optional) Click the New Folder button to create a new points folder to help organize points, and give
it a short name, or whatever name works for your application. You can repeat this to make multiple points
folders, or simply skip this step to make all proxy points in the root of Points.
Note that all points folders have their own Obix Point Manager view, just like Points. If making
points folders, double-click one to move to its location (and see the point manager).
NiagaraAX-3.x

oBIX Guide
2–2

Chapter 2 – oBIX Quick Start Import oBIX histories
February 11, 2015 Independent oBIX server verification
Step 3 At the location needed (Points root, or a points folder), click the Discover button in the point
manger.
This launches an Obix Point Discovery job, after which an expandable “lobby” node appears in the
discovered pane.

Step 4 In the discovered pane of the Obix Point Manager, expand the root “lobby” to see the tree organization.
Items of practical interest for proxy points are typically under a “config” branch.
• Items that show a mode of “RW” can be proxied as either a writable point or a read-only point.
• Items that show a mode of “RO” can be proxied as a read-only point only.

Step 5 Double-click an item to add as a proxy point.
The Add dialog appears, in which you select a point “Name” and “Type”, and typically review the other
fields and change only if necessary. For more details, see “obixDriver-ObixProxyExt” on page 5-4.

Step 6 Click OK.
This adds the Obix proxy point to the database, where it is visible in the database pane of the view,
showing the current value of the item.

Step 7 Continue to add proxy points as needed under the Points extension of each ObixClient device.
As needed, double-click one or more existing points for the Edit dialog, similar to the New dialog used
to create the points. This is commonly done for re-editing items like names or facets.

Import oBIX histories
As with device objects in other a few other drivers, each ObixClient device has a Histories extension
that serves as the container for history import descriptors. The default view for any Histories extension
is the History Import Manager (and in this case, the “Obix History Manager”). You use it to add
history imports, which create histories in the local station with data imported from the oBIX server.
For general information, see the “History Import Manager” section in the Drivers Guide. Also see
“obixDriver-ObixHistoryManager” on page 4-3.

Note: Like the history import managers in other drivers, the Obix History Manager offers a “Learn mode”
with a Discover button and pane. Learned oBIX histories are found in the expandable “lobby” after a
discover.

To import oBIX histories
Once an ObixClient is added, you can import its histories into the history space of the station.

Step 1 In the Client Manager, in the Exts column, double-click the Histories icon in the row
representing the device from which you want to import histories.
This brings up the Obix History Manager.

Step 2 Click the Discover button in the history manger.
This launches an Obix History Discovery job, after which an expandable “lobby” node appears in the
discovered pane.

Step 3 In the discovered pane of the Obix History Manager, expand the root “lobby” to see the tree organization.
Items of practical interest for histories are typically under a “histories” branch, and appear with a History
icon .

Step 4 Double-click a history to add a history import descriptor.
The Add dialog appears, in which you select its “Name” and “History Id”, as well as its execution schedule
and (local) collection parameters. For more details, see “obixDriver-ObixHistoryImport” on page 5-3.

Step 5 Click OK.
This adds the import descriptor to the database, where it is visible in the database pane of the view,
showing “null” as last success. To archive locally (create the local history), click to select one or more
import descriptors, then click the Archive button.

Step 6 Continue to add history import descriptors as needed under the Histories extension of each
ObixClient device.
As needed, double-click one or more existing import descriptors for the Edit dialog, similar to the New
dialog used to create the points. This is commonly done for re-editing items like execution times.

Note: An additional device extension Alarms may also exist under an ObixClient. Related “quick start” proce-
dures for these extensions may be added in a later version of this document. See more details in sections
“obixDriver-ObixAlarmDeviceExt” on page 5-1 and “obixDriver-ObixAlarmManager” on page 4-1.
NiagaraAX-3.x

oBIX Guide
2–3

Server operations Chapter 2 – oBIX Quick Start
Enable oBIX server operation February 11, 2015
Server operations
The following tasks apply to server usage of the obixDriver:
• Enable oBIX server operation
• Expose writable control points for external link (input) control

Enable oBIX server operation
Note: First see “License requirements” on page 1-1 for special server license and software requirements.

To enable the station for oBIX server operation
Use the following procedure to enable oBIX server operation.

Step 1 Right-click the station’s ObixNetwork and select Views > Property Sheet.
The Property Sheet appears.

Step 2 Expand the Server slot.
Set its Enabled property to true (if not already). See “Obix Server Operation” on page 3-3 for related
details.

Step 3 Verify its Status property reads “{ok}”.
Step 4 Click the Save button.

The station’s Lobby URI is http://<hostnameOrIP>/obix
The station’s WSDL URI is http://<hostnameOrIP>/obix/wsdl

Expose writable control points for external link (input) control
You can selectively choose writable control points in the station (BooleanWritable, EnumWritable,
NumericWritable, and StringWritable) to expose to external oBIX clients for write access at a particular
control level. Note this includes any writable proxy points in the station.

To expose writable control points for external link control
Use the following procedure to expose writable control points for prioritized input writes.

Step 1 Right-click the station’s ObixNetwork and select Views > Property Sheet.
The Property Sheet appears.

Step 2 Double-click the Exports folder .
The Obix Export Manager view appears

Step 3 Click the Discover button in the export manger.
This opens the station’s Config component tree in the discovered pane, as an expandable node.

Step 4 In the discovered pane of the Obix Export Manager, expand the component tree. Note that only writable
control points are shown (other component types are filtered from view).

Step 5 Double-click a point to add an export descriptor.
The Add dialog appears, in which you select its “Name” and the priority level (Priority) of its input you
wish to expose to oBIX. For details, see “Reserving writable inputs for oBIX client access” on page 3-3.

Step 6 Click OK.
This adds the export descriptor to the database, where it is visible in the database pane of the view,
showing the current value of the writable point. Note this automatically creates a link (nub) on the target
writable control point, such that link contention from within Niagara will not occur.

Step 7 Continue to add Obix Exports as needed under the Exports folder of the ObixNetwork.
NiagaraAX-3.x

oBIX Guide
2–4

3CHAPTER

NiagaraAX Obix Concepts
This section, when completed, will provide conceptual details on the NiagaraAX Obix driver and its
components, including views. These are the main (and planned) subsections:
• oBIX terms
• About Obix Architecture
• About the Obix Network
• Obix Client Manager
• About the ObixClient
• Obix Point Manager
• Obix Proxy Point
• Obix History Manager
• Obix Alarm Manager
• Obix Schedule Manager
• Obix Server Operation

Note: Additional conceptual details about the NiagaraAX Obix driver can be found in the engineering notes
document Niagara R2 to NiagaraAX via oBIX, which is specific to using oBIX for Niagara R2 to NiagaraAX
integrations.

oBIX terms
The following list of terms and abbreviations is specific to oBIX usage in NiagaraAX, and covers entries
used in this document. For the definitive collection of terms found in oBIX publications, refer to OASIS
(at the time of this document) at the following URL:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=obix.

Note: For general NiagaraAX terms, see the Glossary in the User Guide.
lobby The oBIX lobby is the root of a server’s oBIX object tree. The lobby has certain semantics associ-
ated with it, such as how to create watches and batch operations. Therefore it is important that the URI
given the oBIX client is that of the lobby, and not a sub-object.

oBIX The “open Building Information eXchange” is a web services protocol designed to enable commu-
nications between building mechanical and electrical systems, and enterprise applications.

URI A Universal Resource Identifier is the location of an internet resource (for example, web-page, ftp
service, and so on). This term is a more general term for the commonly used Uniform Resource Location
or URL.

watch And watches. oBIX watches are subscriptions. Watches allow a client to maintain a real-time
cache for the current state of one or more objects. They are also used to access an event stream from a
feed in the case of alarms.

About Obix Architecture
Essentially, Obix uses the standard NiagaraAX network architecture. Obix client components are the
station interface to oBIX objects in one or more oBIX servers. See “About Network architecture” in the
Drivers Guide for more details. For example, real-time data is modeled using Obix proxy points, which
reside under an ObixClient “device”, which in turn resides under an ObixNetwork container in the
station’s DriverContainer (Drivers).
Hierarchically, the component architecture is: network, device, points extension, points (Figure 3-1).
NiagaraAX-3.x

oBIX Guide
3–1

http://www.oasis-open.org/committees/documents.php?wg_abbrev=obix

About the Obix Network Chapter 3 – NiagaraAX Obix Concepts
Obix Network status notes February 11, 2015
Figure 3-1 Obix driver architecture

Like a few other drivers, ObixClient devices have a full range of device extensions—including Points,
Alarms, Histories, and Schedules.

Note: You use “Manager” views of Obix device extension components to add all Obix components to your station,
including Obix proxy points. In these views, the Obix driver provides online “discovery” of available data
items (Learn Mode), which greatly simplifies engineering.

About the Obix Network
The ObixNetwork is the top-level container component for “everything oBIX” in a station.

Note: Only one ObixNetwork component is valid in a station—regardless of how many Obix servers the station
will make client connections to.
The ObixNetwork should reside in the station’s DriverContainer (“Drivers”). The simplest way to add an
ObixNetwork is from the “Driver Manager” view, using the New command. Or, you can simply copy the
ObixNetwork from the obixDriver palette into Drivers.
The ObixNetwork component has the typical collection of slots and properties as most other network
components. For details, See “Common network components” in the Drivers Guide. One exception is the
location of poll components (Poll Scheduler), which is not at the network-level, but under each
ObixClient or R2ObixClient (device-level) component.
In addition, the following ObixNetwork property has special importance:
• Thread Pool

Controls the number of threads used to execute all actions of all Obix objects in the network. This
includes most communications with remote devices, which can be multi-threaded. In this case, if
there are performance issues, you can increase the number of threads. The default value is 4.

The following sections provide additional ObixNetwork details:
• Obix Network status notes
• Obix Network monitor notes
• Obix Network tuning policy notes
• Obix Network views

Obix Network status notes
As with most “fieldbus” drivers, the status of an ObixNetwork is either the normal “ok” or less typical
“fault” (fault might result from licensing error). The Health slot contains historical timestamp properties
that record the last network status transitions from ok to any other status. The “Fault Cause” property
further explains any fault status.

Note: As in other driver networks, the ObixNetwork has an available “Alarm Source Info” container slot you can
use to differentiate ObixNetwork alarms from other component alarms in the station. See “About network
Alarm Source Info” in the Drivers Guide for more details.
NiagaraAX-3.x

oBIX Guide
3–2

Chapter 3 – NiagaraAX Obix Concepts Obix Server Operation
February 11, 2015 Obix Network monitor notes
Obix Network monitor notes
The ObixNetwork’s monitor routine verifies child ObixClient component(s)—the “pingable” device in
the Obix driver. For general information, see “About Monitor” in the Drivers Guide.

Obix Network tuning policy notes
The ObixNetwork has the typical network-level Tuning Policy Map slot with a single default Tuning
Policy, as described in “About Tuning Policies” in the Drivers Guide. By default, only a single ObixTun-
ingPolicy exists, however, you can add new tuning policies (duplicate and modify) as needed.

Obix Network views
The ObixNetwork’s default view is the Obix Client Manager, equivalent to the Device Manager in
most other drivers. You use this view to add ObixClient (and/or R2ObixClient) components to the
station. For details, see ObixClientManager.
Other standard views are also available on the ObixNetwork. However, apart from the Obix Client
Manager, you typically access only its property sheet.

Obix Server Operation
If licensed for operation as an oBIX server (see “License requirements” on page 1-1), the station can
expose components and histories accessible to oBIX clients, with access corresponding to the login
credentials used for connection. This includes allowing operation (op) writes on components’ actions.

Note: Obix server operation by a NiagaraAX station is not used in any Niagara R2 to NiagaraAX integration, as
the R2 oBIX driver is server-side only, without client capability.
Note you can quickly verify if a station is operating as an oBIX server. Simply open a web browser
connection to that station, using the syntax
http://<host>[:port]/obix

where <host> is IP address or hostname, and [:port] is optional (if omitted, assumed as 80).
For example: http://192.168.1.94/obix for a typically-configured station at that IP address,
or http://192.168.1.75:85/obix for a station running on Http Port 85 (as configured in its
WebService) at its host IP address.
As shown in Figure 3-2, after you login with station credentials you see an HTML representation of the
station’s oBIX lobby, including hyperlinks to traverse into the object tree structure.

Figure 3-2 Example browser connection to confirm NiagaraAX station oBIX server operation

The following sections provide additional details:
• Reserving writable inputs for oBIX client access
• Serving history queries from oBIX clients

Reserving writable inputs for oBIX client access
The ObixNetwork provides a mechanism to reserve specific input(s) on any writable type points in the
station, for op write access—effectively “linking” to oBIX for continuous control. Configuration is via the
Obix Export Manager view on the Exports folder of the network (Figure 3-3).
NiagaraAX-3.x

oBIX Guide
3–3

Obix Server Operation Chapter 3 – NiagaraAX Obix Concepts
Reserving writable inputs for oBIX client access February 11, 2015
Figure 3-3 Obix Export Manager is default view of ObixNetwork’s Exports folder

As shown in the figure above, a “Learn mode” is available in which you discover local writable points in
the station (BooleanWritable, EnumWritable, NumericWritable, and StringWritable) by expanding the
Config node in the discovered pane. Currently, only those point types (having priority input slots) are
valid candidates for adding.
In the Add dialog for the ObixExport descriptor (that points to the selected writable point), you specify
which priority (input) will be reserved for oBIX clients. See Figure 3-4.

Figure 3-4 Add dialog for ObixExport descriptor specifies priority (input) used

Other properties are automatically configured— although you can change the name of the export
descriptor, it is typically left at default (unless multiple exported source points have the identical name).
After adding the ObixExport descriptor, the specified priority input of the writable point is linked (via a
“nub”) back to the descriptor, and available for link control from oBIX. See Figure 3-4.
NiagaraAX-3.x

oBIX Guide
3–4

Chapter 3 – NiagaraAX Obix Concepts Obix Server Operation
February 11, 2015 Serving history queries from oBIX clients
Figure 3-5 Example ObixExport descriptor and resulting reserved link on target writable point

Use of ObixExports reduces the possibility of write contentions between oBIX and internal station
operation.

Serving history queries from oBIX clients
Starting in obixDriver build 3.2.17 and later, histories exposed to oBIX clients provide a pre-defined set
of query options, available as URIs using the HTTP “GET” mechanism (without an oBIX “op”). The
available pre-defined queries match those provided in time range selections in the History Chart and
History Table views, for example, “Today,” “Last 24 Hours,” “Yesterday,” and so forth. See Figure 3-6.

Figure 3-6 Example history query options for oBIX client connected to NiagaraAX station

Note that for a few pre-defined history queries (Year to Date, Last Year), a default limit for number of
records returned is used. If necessary, a client can modify any of the standard history queries.
NiagaraAX-3.x

oBIX Guide
3–5

Obix Server Operation Chapter 3 – NiagaraAX Obix Concepts
Serving history queries from oBIX clients February 11, 2015
NiagaraAX-3.x

oBIX Guide
3–6

4CHAPTER

ObixDriver Plugin Guides
Plugins provide views of components, and can be accessed many ways—for example, double-click a
component in the tree for its default view. In addition, you can right-click a component, and select from
its Views menu. For summary documentation on any view, select Help > On View (F1) from the
Workbench menu, or press F1 while the view is open.
Summary information is provided here about the different obixDriver views.

ObixDriver Plugin Guides Summary
Summary information is provided on views specific to components in the obixDriver module, with
views listed in alphabetical order as follows:
• ObixAlarmManager
• ObixClientManager
• ObixExportManager
• ObixHistoryManager
• ObixPointManager
• ObixScheduleManager

obixDriver-ObixAlarmManager
 Use the ObixAlarmManager to discover, add, and manage alarm feeds of a selected ObixClient or
R2ObixClient. The ObixAlarmManager is the default view of the Alarms device extension

(ObixAlarmDeviceExt, R2AlarmDeviceExt) under these devices. To view, double-click the Alarms
extension, or right-click and select Views > Obix Alarm Manager.
Although not a standard view in the driver architecture, it is similar to typical point and history manager
views. As in those views, there is a Discovered table (if in Learn mode) and a Database table. In the
discovery pane, objects with a value in the “Feed” column are valid alarm sources, and can be added as
alarm imports (ObixAlarmImport or R2AlarmiImport, depending on parent device type).

Note: During discovery, results are cached. Therefore if the server database is modified after a discovery has
occurred (or while a discovery is in progress), the discovery pane may be inaccurate. Click the Discover
button again to clear the cache.
For details in a Niagara R2 to AX application, see the “R2ObixClient Alarms” section in the engineering
notes document Niagara R2 to NiagaraAX via oBIX.
Discovered table The Discovered table in the ObixAlarmManager view has the following available
columns:
• Obix Name

Name of the object on the oBIX server.
• Href

The URI of the object on the oBIX server.
• Feed

The URI of the object on the oBIX server, with “.alarm” suffix to denote a valid alarm feed.
Database table By default, the following columns appear in the Discovered table of the ObixAlarm-
Manager view:
• Name

Niagara name of the alarm import descriptor, often left the same as its oBIX Name.
• Href

The URI of the object on the oBIX server.
NiagaraAX-3.x

oBIX Guide
4–1

ObixDriver Plugin Guides Summary Chapter 4 – ObixDriver Plugin Guides
obixDriver-ObixClientManager February 11, 2015
• Alarm Class
The local station’s AlarmClass to use to process native alarms received via this alarm feed.

In addition (using the table options control), the following additional data column is available:
• Subscription

Reflects whether the alarm import is Subscribed, Unsubscribed, or Pending subscription.

obixDriver-ObixClientManager
 Use the Obix Client Manager to add, edit, and access Obix device components (ObixClients
and R2ObixClients). The Obix Client Manager is the default view of an ObixNetwork. For general

information, see “About the Device Manager” in the Drivers Guide.
Note: Unlike in some other drivers, there is no “learn” mode (with “Discovered” pane). Instead, you use the New

button to add devices.
Added devices appear in the Database table. For details specific to an Niagara R2 to AX application, see
the “ObixNetwork and R2ObixClient devices” section in the engineering notes document Niagara R2 to
NiagaraAX via oBIX.
Database table By default, the following columns appear in the Discovered table of the ObixClient-
Manager view:
• Name

Name of the device-level component for (client) interface to the oBIX server.
• Lobby

URI to root of the server’s object tree, using format:
http://<hostName or IP address>/obix

• Enabled
Indicates whether the device component is enabled (true) or disabled (false).

• Exts
Provides shortcut access to the manager view for any of the component’s device extensions (Alarms,
Histories, Points, Schedules).

• State
Reflects the client state, which is either attached, attaching, detached, or detaching.

• Fault Cause
String describing the cause of the device status fault, if any.

In addition, using the table options control, the following additional data columns are available:
• Path

Station path of the device-level component, relative to the root.
• Auth User

User name for client access.
• Auth Pass

Passphrase (password) of the Auth User.
• Type

Device-level component type, currently either ObixClient or R2ObixClient.
• State

Reflects the client state, which is either attached, attaching, detached, or detaching.
• Fault Cause

String describing the cause of the device status fault, if any.

obixDriver-ObixExportManager
 Use the ObixExportManager to add and manage export descriptors (ObixExports) for control points
in the local station, such that remote oBIX clients can participate in continuous control applications

(meaning, link into specific prioritized inputs of specific points).
The ObixExportManager is the default view of the ObixExportFolder under the ObixNetwork. To view,
double-click the Exports folder, or right-click and select Views > Obix Export Manager.

Note: Currently in a Niagara R2 to AX oBIX application, this view has no practical use as Niagara R2 stations
running the obix driver do not have oBIX client capabilities.
Although not a standard view in the driver architecture, it is similar to other manager views in that there
is a Discovered table (if in Learn mode) and a Database table.
Discovered table The Discovered table in the ObixExportManager view has the following available
columns:
NiagaraAX-3.x

oBIX Guide
4–2

Chapter 4 – ObixDriver Plugin Guides ObixDriver Plugin Guides Summary
February 11, 2015 obixDriver-ObixHistoryManager
• Name
Name of the component in the local station.

• Path
Station path of the component, relative to the root.

• Type
Component type. Currently, only writable control points (including writable proxy points) can be
added to the database: BooleanWritable, EnumWritable, NumericWritable, and StringWritable.

Database table By default, the following columns appear in the Discovered table of the ObixExport-
Manager view:
• Name

Niagara name of the export descriptor, often left the same as the source control point.
• Point

Ord for the slot in the station for this control point.
• Value

Current out value for the control point.
• Priority

The priority input of the control point exported (linked) to oBIX for remote writes.
• Fault Reason

If export descriptor is in fault, explains why. Typically this reflects misconfiguration, such as select-
ing a Priority level that is already linked on the target control point.

In addition (using the table options control), the following additional data column is available:
• Facets

Shows the facets in use by the target control point.

obixDriver-ObixHistoryManager
 Use the ObixHistoryManager to discover, add, and managing history imports under the Histories
extension (ObixHistoryDeviceExt) of a selected ObixClient or R2ObixClient. The ObixHistory-

Manager is the default view on the Histories extension. To view, double-click the Histories extension, or
right-click and select Views > Obix History Manager.
There is a Discovered table (if in Learn mode) and a Database table. In the discovery pane, objects that
have values in the “Start,” “End,” “Count,” and “Query” columns are valid histories, and can be added as
ObixHistoryImports.

Note: During discovery, results are cached. Therefore if the server database is modified after a discovery has
occurred (or while a discovery is in progress), the discovery pane may be inaccurate. Click the Discover
button again to clear the cache.
For details specific to an Niagara R2 to AX application, see the “R2ObixClient Histories (logs and
archives)” section in the engineering notes document Niagara R2 to NiagaraAX via oBIX.
Discovered table The Discovered table in the ObixHistoryManager view has the following available
columns:
• Obix Name

Name of the history on the oBIX server.
• Href

The URI of the history on the oBIX server.
• Start

Timestamp of the first record in the oBIX history.
• End

Timestamp of the last record in the oBIX history.
• Count

Total number of records in the oBIX history.
• Query

Similar to Href but with “.log” or “query” suffix to describe history query.
Database table By default, the following columns appear in the Discovered table of the ObixHistory-
Manager view:
• History Id

Niagara History Id for the history created by the import descriptor, which defaults to:
 <name of ObixClient or R2ObixClient> / <oBIX history name>

• Status
Status of the history import descriptor.
NiagaraAX-3.x

oBIX Guide
4–3

ObixDriver Plugin Guides Summary Chapter 4 – ObixDriver Plugin Guides
obixDriver-ObixPointManager February 11, 2015
• State
Current state of history import descriptor, as either Idle or In Progress.

• Last Success
Timestamp of when the last successful history import occurred.

• Href
The URI of the query to the history on the oBIX server.

In addition (using the table options control), the following additional data columns are available:
• Name

Niagara name of the history import descriptor, defaulting to the name of the oBIX history.
• Execution Time

Reflects the configured time to execute (re-import history).
• Enabled

Reflects whether history import descriptor is enabled (true) or disabled (false).
• Last Attempt

Timestamp of last attempted history import.
• Last Failure

Timestamp of when last attempted history import failed (could not complete).
• Fault Cause

Reason why last history import failed.
• Full Policy

Full Policy of import descriptor (Roll or Stop).
• Capacity

Configured record capacity of import descriptor (Unlimited, or some specific count).

obixDriver-ObixPointManager
 Use the ObixPointManager to add, edit, and access Obix proxy points under the Points extension of
a selected ObixClient, R2ObixClient, or in an ObixPointFolder. The ObixPointManager is the default

view on all these components. To view, double-click the Points extension or ObixPointFolder, or right-
click and select Views > Obix Point Manager.
As in some other point managers, there is a Discovered table (if in Learn mode) and a Database table.
Every object on the remote server can me modeled as a point in the station. Non-value objects are
modeled as string points, and their value is the oBIX display string.

Note: During discovery, results are cached. Therefore if the server database is modified after a discovery has
occurred (or while a discovery is in progress), the discovery pane may be inaccurate. Click the Discover
button again to clear the cache.
For details specific to an Niagara R2 to AX application, see the “R2ObixClient Points” section in the
engineering notes document Niagara R2 to NiagaraAX via oBIX.
Discovered table The Discovered table in the ObixPointManager view has the following available
columns:
• Obix Name

Name of the object on the oBIX server.
• Value

Value of the object at the time of discovery (expansion of its parent’s leaf in the lobby).
• Mode

Either RO (read-only) or RW (read-writable). Note that an Obix proxy point for a RW item can be
created either as a read-only type (NumericPoint, BooleanPoint, etc.) or as a writable type (Numer-
icWritable, BooleanWritable, etc.).

• Href
The URI of the object on the oBIX server.

Database table By default, the following columns appear in the Discovered table of the ObixPoint-
Manager view:
• Name

Niagara name of the proxy point, if a “root level” point often left the same as the (discovered) object
item name.

• Type
Niagara type of component, as either an Obix Point Folder (for a folder) or a type of control point if
an Obix proxy point (for example, Boolean Point, Boolean Writable, Numeric Point, and so on).

• To String
Last read value of a data item.
NiagaraAX-3.x

oBIX Guide
4–4

Chapter 4 – ObixDriver Plugin Guides ObixDriver Plugin Guides Summary
February 11, 2015 obixDriver-ObixScheduleManager
• Href
The URI of the object on the oBIX server.

• Fault Cause
String describing the cause of the proxy point status fault, if any.

In addition, using the table options control, the following additional data columns are available:
• Enabled

Reflects whether proxy point is enabled (true) or disabled (false).
• Facets

Reflect the facets in use by the proxy point.
• Conversion

Niagara conversion type used by the ObixProxyExt, which is typically Default.
• Tuning Policy Name

Name of the Niagara ObixTuningPolicy that the proxy point is assigned to.
• Device Facets

Reflects the read-only device facets used in the point’s proxy extension.
• Path

Station path of the proxy point component, relative to the root.
• Read Value

Reflects current read value in point’s ObixProxyExt.
• Write Value

Reflects current write value (if any) in point’s ObixProxyExt.
• Subscription

Reflects whether proxy point is Subscribed, Unsubscribed, or Pending subscription.

obixDriver-ObixScheduleManager
 Use the ObixScheduleManager to discover, add, and manage schedule exports under the Schedules
extension (R2ScheduleDeviceExt) of a selected R2ObixClient. The ObixScheduleManager is the

default view on this Schedules extension. To view, double-click the Schedule extension, or right-click and
select Views > Obix Schedule Manager.
As in a other schedule manager views, there is a Discovered table (if in Learn mode) and a Database table.
See “Schedule Export Manager” in the Drivers Guide for general information.

In the discovery pane, objects in the lobby tree that appear with a schedule icon can be added as
schedule export descriptors (ObixScheduleExports). For details specific to a Niagara R2 to AX appli-
cation, see the “R2ObixClient R2 Schedule exports” section in the engineering notes document Niagara
R2 to NiagaraAX via oBIX.
Discovered table The Discovered table in the ObixScheduleManager view has the following available
columns:
• Obix Name

Name of the target schedule on the oBIX server.
• Href

The URI of the schedule on the oBIX server.
Database table By default, the following columns appear in the Discovered table of the ObixSchedule-
Manager view:
• Name

Niagara name for the schedule descriptor, which defaults to same as target oBIX schedule name.
• Subordinate

The URI of the target schedule on the oBIX server in the R2 station..
• Supervisor

Ord of the schedule component in the local station that acts as “master.”
• Enabled

Reflects whether schedule export descriptor is enabled (true) or disabled (false).
• Execution Time

Reflects the configured time to execute (re-export schedule events).
• Fault Cause

Reason why last schedule export failed.
• Href

The URI of the query to the history on the oBIX server.
NiagaraAX-3.x

oBIX Guide
4–5

ObixDriver Plugin Guides Summary Chapter 4 – ObixDriver Plugin Guides
obixDriver-ObixScheduleManager February 11, 2015
In addition (using the table options control), the following additional data columns are available:
• Subordinate Expires

Timestamp of when “mastering” of target oBIX schedule expires, assuming no more executions.
• Supervisor Version

Timestamp of the last configuration change to local “master” schedule component.
• State

Reflects whether inactive (Idle) or executing (In Progress).
• Capacity

Configured record capacity of import descriptor (Unlimited, or some specific count).
• Last Attempt

Timestamp of last attempted history import.
• Last Success

Timestamp of when the last successful history import occurred.
• Last Failure

Timestamp of when last attempted history import failed (could not complete).
• Full Policy

Full Policy of import descriptor (Roll or Stop).
NiagaraAX-3.x

oBIX Guide
4–6

5CHAPTER

ObixDriver Component Guides
These component guides provides summary help on obixDriver components.

ObixDriver Component Guides Summary
Summary information is provided on components specific to the obixDriver module, listed in alpha-
betical order as follows:
• ObixAlarmDeviceExt
• ObixAlarmImport
• ObixClient
• ObixClientFolder
• ObixExport
• ObixExportFolder
• ObixHistoryDeviceExt
• ObixHistoryImport
• ObixNetwork
• ObixPointDeviceExt
• ObixPollScheduler
• ObixProxyExt
• ObixScheduleExport
• ObixServer
• ObixThreadPool
• ObixTuningPolicy
• ObixTuningPolicyMap
• R2AlarmDeviceExt
• R2AlarmiImport
• R2ObixClient
• R2PointDeviceExt
• R2ScheduleDeviceExt

obixDriver-ObixAlarmDeviceExt
ObixAlarmDeviceExt (Alarms) is a frozen device extension of the ObixClient component. It allows
integration of native alarms from the oBIX client into the NiagaraAX alarming subsystem. Its default

view is the ObixAlarmManager.
See “About the Alarms extension” in the Drivers Guide for general information. Alarming is not
configured on this object. An oBIX server can have many alarm sources. Therefore configuration such as
alarm class is done on the ObixAlarmImport object.
The ObixAlarmDeviceExt creates and manages a single watch used for all alarm feeds. The following
properties are unique or have special importance to the ObixAlarmDeviceExt:
• Watch Interval

This is how often the client should poll the alarm watch.

obixDriver-ObixAlarmImport
ObixAlarmImport is a child of the ObixAlarmDeviceExt (Alarms extension of ObixClient), and
represents an alarm feed on the oBIX server.

The following properties are unique or have special importance to the ObixAlarmImport:
NiagaraAX-3.x

oBIX Guide
5–1

ObixDriver Component Guides Summary Chapter 5 – ObixDriver Component Guides
obixDriver-ObixClient February 11, 2015
• Alarm Class
Provides a selection list of local Alarm Classes, from you which you select one to use for all alarms
received from this alarm subject.

• Href
The URI of the alarm feed on the server. This value must be unique among all the ObixAlarmIm-
ports of any given ObixClient.

obixDriver-ObixClient
ObixClient represents the client access to an oBIX server device (note that a special-purpose
variation for a Niagara R2 station also exists, as the R2ObixClient). Each is a “device-level”

component in the NiagaraAX Obix driver architecture.
Note: “Client/server” naming in the Obix driver follows a “convention” used in some other drivers, for example

the OPC driver and Modbus drivers, where a “client” device actually represents a server device (here, an
oBIX server), and associated NiagaraAX components are named “client” because a client connection is
used to retrieve data.
The ObixClient has the standard device component properties such as status and enabled (see “Common
device components” in the Drivers Guide for general information). In addition, the following properties
are unique or have special importance:
• Lobby

The URI to the root of the server's object tree. If the server host changes, only the authority (scheme:/
/host[:port]) here needs to be changed and all sub-objects will work for the new host.

• Auth User
The user name the client should use to access the server. It can be blank if the server supports unau-
thenticated access.

• Auth Pass
The passphrase for the auth user.

• Poll Scheduler
The poll scheduler is only used when watches on the server are not working.

Two actions are available on the ObixClient, as follows:
• Ping

Sends a ping monitor request to verify device “health. “
• Reattach

Attempts to reattach to the oBIX server (detaches, then attaches).

obixDriver-ObixClientFolder
 ObixClientFolder is the Obix driver implementation of a folder under an ObixNetwork. Usage is
optional. Each ObixClientFolder has its own ObixClientManager view.

You can use the New Folder button in the ObixClientManager view to add an ObixClientFolder. It is
also available in the obixDriver palette.

obixDriver-ObixExport
ObixExport is a child of an ObixExportFolder, and is an oBIX server concept that allows remote
clients to have “link” write access to control points. While many NiagaraAX points have some actions

that allow oBIX clients to write a value to them (each action appears as an “op”), an ObixExport defines
a link to an input property of a specific NiagaraAX point, at a particular control level.
The following properties have special importance to an ObixExport:
• Point

The ord to a control point. Set this value and the export will be automatically configured.
• Priority

The priority level for linking to the control point. When changed, the export object will be automat-
ically reconfigured.

• Facets
These should always be a copy of the facets of the target control point. This is automatically config-
ured.

• Status
This is for use in the ObixExportManager view. It will only ever be fault or ok, and does not affect
the value read by oBIX clients. It will be fault if point doesn’t point to a control point, or something
is already linked into the control point at the priority level specified in the Priority property.

• Fault Reason
If status is fault, this explains why.
NiagaraAX-3.x

oBIX Guide
5–2

Chapter 5 – ObixDriver Component Guides ObixDriver Component Guides Summary
February 11, 2015 obixDriver-ObixExportFolder
• WritePoint
This is for oBIX encoding, and should not be modified in any way.

See “Reserving writable inputs for oBIX client access” on page 3-3 for more details.

obixDriver-ObixExportFolder
ObixExportFolder (default name Exports) is a frozen container slot under an ObixNetwork, used
to simplify the addition and management of ObixExport objects. It is not limited to containing

ObixExport objects, and can be duplicated as needed (no restriction on where and how many ObixEx-
portFolders can be in a station database). Each ObixExportFolder has its own ObixExportManager view.

Note: In an ObixNetwork used only for Niagara R2 station integration (all interaction with oBIX devices is
limited to R2 Niagara hosts), the ObixExportFolder and ObixExports are not used, as the Niagara R2
stations operate as oBIX servers only (have no client interface).

obixDriver-ObixHistoryDeviceExt
ObixHistoryDeviceExt (default name Histories) is a frozen device extension of the ObixClient
and R2ObixClient component. It allows the import of historical data from the oBIX server into the

NiagaraAX history space. Use its default ObixHistoryManager view to add ObixHistoryImport
descriptors.
See “About the Histories extension” and “History Import Manager” in the Drivers Guide for general infor-
mation. For details specific to an R2ObixClient, see the “R2ObixClient Histories (logs and archives)”
section in the engineering notes document Niagara R2 to NiagaraAX via oBIX.

obixDriver-ObixHistoryImport
ObixHistoryImport is a “history import descriptor” child of the ObixHistoryDeviceExt (Histories
extension of an ObixClient or R2ObixClient), and corresponds to a history (log or trend) on the oBIX

server.
For details specific to an R2ObixClient, see the “R2ObixClient Histories (logs and archives)” section in
the engineering notes document Niagara R2 to NiagaraAX via oBIX.

obixDriver-ObixNetwork
ObixNetwork represents a tree of oBIX clients and ancillary objects, and is the top-level component
for the Obix driver in a station. This network object is a NiagaraAX Framework convention, and has

no physical correspondence to any oBIX systems.
The ObixNetwork component has the typical collection of slots and properties as most other network
components. For details, See “Common network components” in the Drivers Guide. In addition, the
following slots are unique or have special importance in an ObixNetwork:
• Status

Will be fault if oBIX is not licensed on the host platform, where the license feature is “obixDriver”.
• Thread Pool

See ObixThreadPool on page 5.
• Server

See ObixServer on page 4.
The ObixClientManager is the default view of the ObixNetwork. For details specific to an Niagara R2 to
AX application, see the “ObixNetwork and R2ObixClient devices” section in the engineering notes
document Niagara R2 to NiagaraAX via oBIX.

obixDriver-ObixPointDeviceExt
ObixPointDeviceExt (default name Points) is the container for Obix proxy points under an
ObixClient. It operates as in other drivers; see “About the Points extension” in the Drivers Guide. This

component creates and manages a single watch used for all points that are currently read subscribed.
The following slots are unique or have special importance:
• Watch Interval

How often the client should poll the point watch for changes. See “Watch operation summary”.
• Force Update

This action calls forceUpdate on all ObixProxyExts in this subtree.
The default and primary view for the Points extension is the ObixPointManager. Note that a different
Points extension is used under an R2ObixClient device, the R2PointDeviceExt. It has a few additional
properties related to the discovery of R2 objects.
Watch operation summary Note that a watch is not really “COV.” The basic mechanics of a watch are
as follows:
NiagaraAX-3.x

oBIX Guide
5–3

ObixDriver Component Guides Summary Chapter 5 – ObixDriver Component Guides
obixDriver-ObixPointFolder February 11, 2015
1. The client requests a watch (object) to be created on the server.
2. The client registers (and unregisters) objects included in the server’s watch, using hrefs. The

standard subscription mechanism is used on the NiagaraAX client side to select/deselect objects.
3. The client periodically polls the watch on the server at the defined Watch Interval (above).
4. The server returns a list of any changes in the watched items (since the last poll).

obixDriver-ObixPointFolder
ObixPointFolder is an optional container for Obix proxy points. It provides organizational utility,
and may (or may not) mirror organizational structure within the underlying oBIX server. Points can

be organized in any fashion under the Points device extension (ObixPointDeviceExt).
You can use the New Folder button in the ObixPointManager view to add an ObixPointFolder. It is also
available in the obixDriver palette. Each ObixPointFolder has its own ObixPointManager view.

obixDriver-ObixPollScheduler
 An ObixPollScheduler is a child component of every (device-level) ObixClient. It has the standard
collection of poll scheduler properties, as described in “About poll components” in the Drivers

Guide. The poll scheduler provides a flexible polling algorithm based on four “buckets.”

obixDriver-ObixProxyExt
ObixProxyExt is the proxy extension for any type of Obix proxy point. It has standard proxy
extension properties such as Status and Enabled, among others (see “ProxyExt properties” in the

Drivers Guide for more information).
In addition, the following properties are unique or have special importance:
• Href

The URI to the point on the server. This value must be unique among all the points of any given
ObixClient or R2ObixClient. This value is automatically learned upon a point discover.

• Force Update
This action forces a read, updates the dynamic actions on the control point and updates the device
facets in the ObixProxyExt. Lastly, if the point is supposed to be subscribed but is not, this will at-
tempt to re-subscribe the point.

obixDriver-ObixScheduleExport
ObixScheduleExport is a “schedule export descriptor” child of an R2ScheduleDeviceExt (Schedules
extension of an R2ObixClient), and corresponds to a target schedule in a Niagara R2 station to

receive events from a local NiagaraAX schedule component.
For specific details, see the “R2ObixClient R2 Schedule exports” section in the engineering notes
document Niagara R2 to NiagaraAX via oBIX.

obixDriver-ObixServer
ObixServer (default name Server) is a frozen container slot under the ObixNetwork. Properties
are associated with the station’s oBIX server operation, and are described below.

• Status
(read only) Reflects status of server as either “ok”, “disabled”, or “fault” (fault occurs when the plat-
form’s license does not have ‘export=”true”’ attribute in the obixDriver feature line), yet the
server is enabled. See “License requirements” on page 1-1 for related details.

• Fault Cause
(read only) If status is fault, explains why, such as “Server not licensed”.

• Enabled
• If true (default), remote oBIX clients can access the lobby of the station, following login using

station user credentials (providing host platform’s license has ‘export=”true”’ attribute in the
obixDriver feature line).

• If false, remote oBIX clients cannot access the station’s lobby. The server returns HTTP error
code 410 for all requests.

Note: If enabled, but not licensed for obixDriver export (status is fault), the server returns HTTP
error code 500 to all oBIX client requests.

• Servlet Name
(read only) Currently fixed at: obix

• Debug
Default is false. If set to true this will print debug information to the station’s standard output for
incoming requests from oBIX clients, as well as the server’s outgoing responses.

For more details see “Obix Server Operation” on page 3-3.
NiagaraAX-3.x

oBIX Guide
5–4

Chapter 5 – ObixDriver Component Guides ObixDriver Component Guides Summary
February 11, 2015 obixDriver-ObixThreadPool
obixDriver-ObixThreadPool
ObixThreadPool (Thread Pool) is a frozen slot under the ObixNetwork. A single property is
described as follows:

• Max Threads
Controls the number of threads used to execute all actions of all Obix objects in the network. This
includes most communications with remote devices, which can be multi-threaded. In this case, if
there are performance issues, you can increase the number of threads. The default value is 4.

obixDriver-OBixTuningPolicy
 A tuning policy for the ObixNetwork, with standard NiagaraAX tuning policy properties. For an
explanation of driver tuning policies, see “About Tuning Policies” in the Drivers Guide.

obixDriver-ObixTuningPolicyMap
 A container for one or more ObixTuningPolicy(ies). You might create multiple tuning policies and
assign Obix proxy points as needed, based upon different criteria. For an explanation of driver tuning

policies, see “About Tuning Policies” in the Drivers Guide.

obixDriver-R2AlarmDeviceExt
R2AlarmDeviceExt (Alarms) is a special variant of the ObixAlarmDeviceExt component, as a
frozen device extension under an R2ObixClient. It allows integration of “native Niagara R2 alarms”

from the client into the NiagaraAX alarming subsystem. Its default view is the ObixAlarmManager.
See “About the Alarms extension” in the Drivers Guide for general information. For more specific details,
see the “R2ObixClient Alarms” section in the engineering notes document Niagara R2 to NiagaraAX via
oBIX.

obixDriver-R2AlarmImport
R2AlarmImport is a child of the R2AlarmDeviceExt (Alarms extension of R2ObixClient), and repre-
sents an oBIX alarm feed from the R2 Niagara station. Typically, you create one R2AlarmImport for

each discovered R2 NotificationClass node under the “NotificationService” area of the server’s lobby. For
more details, see the “R2ObixClient Alarms” section in the engineering notes document Niagara R2 to
NiagaraAX via oBIX.

obixDriver-R2ObixClient
R2ObixClient represents client access to a Niagara R2 station (host) running the ObixService,
operating as an oBIX server. It is a special variant of the ObixClient component. Each is a “device-

level” component in the NiagaraAX Obix driver architecture. The R2ObixClient differs by offering
specialized native R2 alarming support (Alarms extension setup) and mastering of R2 schedule objects
(Schedules extension setup).
The R2ObixClient has the standard device component properties such as status and enabled (see
“Common device components” in the Drivers Guide for general information). For more details, see the
“ObixNetwork and R2ObixClient devices” section in the engineering notes document Niagara R2 to
NiagaraAX via oBIX.
Two actions are available on the R2ObixClient, as follows:
• Ping

Sends a ping monitor request to verify device “health. “
• Reattach

Attempts to reattach to the oBIX server (detaches, then attaches).

obixDriver-R2PointDeviceExt
R2PointDeviceExt (default name Points) is the container for Obix proxy points under an
R2ObixClient. It operates as in other drivers; see “About the Points extension” in the Drivers Guide.

This component creates and manages a single watch used for all points that are currently read subscribed.
The following slots are unique or have special importance:
• Watch Interval

How often the client should poll the point watch for changes. See “Watch operation summary”.
• Force Update

This action calls forceUpdate on all ObixProxyExts in this subtree.
• Include Ui Nodes

Either false (default) or true. When left at false, an R2 Points Discovery job does not include Gx ob-
jects under the config branch of the lobby. If you wish to include Gx objects, set this to true and per-
form another Discover.
NiagaraAX-3.x

oBIX Guide
5–5

ObixDriver Component Guides Summary Chapter 5 – ObixDriver Component Guides
obixDriver-R2ObixScheduleDeviceExt February 11, 2015
• Include Internal Props
Either false (default) or true. When left at false, an R2 Points Discovery job globally omits properties
of R2 objects that are typically for internal configuration only (they do not appear in config branch
of the lobby). If you wish to include these properties, set this to true and perform another Discover.

See the “R2ObixClient Points” section in the engineering notes document Niagara R2 to NiagaraAX via
oBIX. The default and primary view for the Points extension is the ObixPointManager.
Watch operation summary Note that a watch is not really “COV.” The basic mechanics of a watch are
as follows:
1. The client requests a watch (object) to be created on the server.
2. The client registers (and unregisters) objects included in the server’s watch, using hrefs. The

standard subscription mechanism is used on the NiagaraAX client side to select/deselect objects.
3. The client periodically polls the watch on the server at the defined Watch Interval (above).
4. The server returns a list of any changes in the watched items (since the last poll).

obixDriver-R2ObixScheduleDeviceExt
R2ObixScheduleDeviceExt (Schedules) is a frozen device extension of the R2ObixClient
component. It allows exporting of NiagaraAX BooleanSchedules events to R2 Schedule objects in the

target R2 station. Use its default Obix Schedule Manager view to export schedules.
See “Schedule Export Manager” in the Drivers Guide for general information. For specific details, see the
“R2ObixClient R2 Schedule exports” section in the engineering notes document Niagara R2 to
NiagaraAX via oBIX.
NiagaraAX-3.x

oBIX Guide
5–6

	Preface
	Document Change Log

	Compatibility and Installation
	Compatibility
	Specification compatibility
	NiagaraAX platform compatibility

	License requirements
	Installation

	oBIX Quick Start
	Add the ObixNetwork
	Add an ObixNetwork
	To add an ObixNetwork in the station

	Add ObixClient devices
	To add ObixClients in the network
	Independent oBIX server verification

	Create Obix proxy points
	To add Obix proxy points

	Import oBIX histories
	To import oBIX histories

	Server operations
	Enable oBIX server operation
	To enable the station for oBIX server operation
	Expose writable control points for external link (input) control
	To expose writable control points for external link control

	NiagaraAX Obix Concepts
	oBIX terms
	About Obix Architecture
	About the Obix Network
	Obix Network status notes
	Obix Network monitor notes
	Obix Network tuning policy notes
	Obix Network views

	Obix Server Operation
	Reserving writable inputs for oBIX client access
	Serving history queries from oBIX clients

	ObixDriver Plugin Guides
	ObixDriver Plugin Guides Summary

	ObixDriver Component Guides
	ObixDriver Component Guides Summary

