
Technical Document

November 5, 2013

NiagaraAX Series Transform Guide

AX-3.8 and AX-3.7

NiagaraAX-3.7/3.8 Series Transform Guide
Copyright © 2013 Tridium, Inc.
All rights reserved.
3951 Westerre Pkwy., Suite 350
Richmond
Virginia
23233
U.S.A.

Confidentiality Notice
The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation ("Tridium").
Such information and the software described herein, is furnished under a license agreement and may be used only in accor-
dance with that agreement.
The information contained in this document is provided solely for use by Tridium employees, licensees, and system owners;
and, except as permitted under the below copyright notice, is not to be released to, or reproduced for, anyone else.
While every effort has been made to assure the accuracy of this document, Tridium is not responsible for damages of any kind,
including without limitation consequential damages, arising from the application of the information contained herein. Infor-
mation and specifications published here are current as of the date of this publication and are subject to change without notice.
The latest product specifications can be found by contacting our corporate headquarters, Richmond, Virginia.

Trademark Notices
BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Conditioning
Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL Server are registered
trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Mozilla and
Firefox are trademarks of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trademarks
of Echelon Corporation. Tridium, JACE, Niagara Framework, NiagaraAX Framework, and Sedona Framework are registered
trademarks, and Workbench, WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and
services mentioned in this publication that is known to be trademarks, registered trademarks, or service marks are the property
of their respective owners.

Copyright and Patent Notice
This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of
those products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written
consent from Tridium, Inc.
© Tridium, Inc. 2013. All rights reserved. The product(s) described herein may be covered by one or more U.S or foreign
patents of Tridium.

CONTENTS

Preface . iii
Document Change Log . iii

Series Transforms concepts . 1–1
Series Transform Graph and the Wire Sheet view . 1–1

About the Series Transform Data Schema . 1–1

Graph node configuration . 1–2

About Graph Functions . 1–3

Test Resolving Graph Nodes . 1–4

About Transform Label Bindings and the cell parameter . 1–4

Series Transform components. 2–1
About the Transform Graph component . 2–2

About the History Source node . 2–3
About Intervals and Date Range . 2–5

About the Terminal node . 2–5

Types of Transform nodes . 2–6
About the Aggregate node . 2–6
About the Composite node . 2–7
About the Rollup node . 2–8
About the Scale node . 2–9

Series Transform Graphs and Px views . 3–1
Create a series transform collection table in a Px view . 3–2
Create a series transform bound table in a Px view . 3–2
Create a series transform chart in Px view . 3–3
Create a series transform bound label in a Px view . 3–4

Series Transform Component Guides . 4–1
Components in the seriesTransform module . 4–1
NiagaraAX-3.7/3.8

Series Transform Guide
i

November 5, 2013
NiagaraAX-3.7/3.8

Series Transform Guide
ii

PREFACE

Preface
Document Change Log

Document Change Log
Updates (changes/additions) to this Series Transform Guide document are listed below.
• NiagaraAX-3.8 release revision, November 5, 2013.

Changes to the document include:
• Added sections describing the TimeShift component, see “About the Time Shift node” on page

2-10 and the FilterNode component, see “About the Filter node” on page 2-11.
• Added sections for TimeShift Node and the Filter Node.

• NiagaraAX-3.7 release revision, August 28, 2012.
NiagaraAX-3.7/3.8

Series Transform Guide
iii

November 5, 2013
NiagaraAX-3.7/3.8

Series Transform Guide
iv

1CHAPTER

Series Transforms concepts
Transform Graphs provide a way to manipulate existing series data, like Niagara History records, in order
to create graphs for reporting. The following sections describe some of the major concepts associated
with the Series Transform Graph components.

Series Transform Graph and the Wire Sheet view
Transform Graphs are comprised of a collection of Graph Nodes contained as properties within the
parent Transform Graph component. The default view of the Transform Graph component is the
wiresheet view, where you work with the various nodes to create your desired report.
Like other components, these graph nodes are interconnected (or 'wired') together using the wiresheet
view. Unlike other components, the wire connections indicate a flow of data from one node to the next
rather than a means of setting property values.

Figure 1-1 Series Transform Graph Wiresheet view and source histories

Typically, you assemble Transform Graphs by interconnecting Graph Nodes in the wiresheet view of the
parent Transform Graph Node, with source nodes and other nodes integrating into a final terminal node.
On the wiresheet, each graph node is connected into the graph by linking the output property of the
component to the input property of the target component. The source tabular data is most likely to be
records that are NiagaraAX histories. Each graph produces a single table result, as represented by the
single terminal node required in each graph.

About the Series Transform Data Schema
Fundamental to the series transform graph is the concept of Data Schema. A data schema defines the
structure of some piece of data. A common example of a data schema is seen in the Table view of a
NiagaraAX history with several columns. For example, in the following table, the columns: Timestamp,
Trend Flags, Status, and Value together are the Schema of the history.

Figure 1-2 History table columns represent the history Schema
NiagaraAX-3.7/3.8

Series Transform Guide
1–1

Graph node configuration Chapter 1 – Series Transforms concepts

November 5, 2013
Each history column has an associated name and data type. The Timestamp column is always an
absolute time (BAbsTime) value. The data type of the Value column is based on what type of data the
history represents. If the history is placed on a Boolean point, the Value column contains Boolean data.
If the point is a Numeric point, the value contains Numeric data.
You configure each graph node on the wiresheet to create an output schema for other graph nodes to use
when setting up the desired data transformation. This is what makes the process of manipulating history
data and other forms of data possible. To manipulate data, such as the data in a history, you must know
the data type (format) of the data. Knowing the data type allows you to assign different value transforma-
tions and calculations to specific pieces of the data.
As an example, imagine that you want to scale the value of a history record by a factor of 3.9. How would
you know that the Value column can be scaled? If the Value column contains Boolean data, you cannot
scale the data by number (what is 3.9 times False?). By knowing both the name and the data type of the
column that you want to manipulate, you can create intelligent data transformations that give you more
information about that data.
When designing the graph node, you only need the output schema of the source graph node to configure
the consuming graph node. By configuring your graph node against the input graph node schema, you
are configuring how the graph node will process the data returned by the source graph node at the time
the graph is executed.

Graph node configuration
You can configure a graph node from its property sheet view, however, it is much easier to use the
associated dialog box editor of the graph node. To open the appropriate dialog box, double click the
component in the wiresheet view. These editors are the best way to configure the graph node, however,
the Property Sheet view is still available for each graph.

Figure 1-3 Node Editor dialog box and property sheet views
NiagaraAX-3.7/3.8

Series Transform Guide
1–2

Chapter 1 – Series Transforms concepts About Graph Functions
November 5, 2013
About Graph Functions
Aggregate nodes and Rollup nodes can apply functions, such as Sum, Average, Max, and others, to the
output. The Function Editor provides a way to configure functions assigned to the output schema field of
either type of node.

Figure 1-4 Function Editor

The function editor consists of three main sections:
• Function selector

The function selector allows you to select which function to assign to an output field. All available
functions are contained in the function option list. Each function includes a function description.

• Parameter selector
The function parameter selector is a table of fields available as argument data sources. Each row of
the table represents a schema field from an incoming schema source. Each row includes the
"namespaced" schema field name, which includes the name of the source graph node component fol-
lowed by the schema field name, and the schema field data type.

Figure 1-5 Function Parameters

When the function cursor executes, the selected schema fields provide the argument data for the se-
lected function.

• Field Assignment editor
When a function executes, it assigns the results to the associated node schema output field. You can
type the field name into the output field text box editor. The function selection determines the field
data type (return type of the selected function).
The assignment field editor includes a facets (BFacets) editor. In cases where the selected input fields
of a function include different units (BUnit facet data) you need to select the unit type for the output
field.

Example Facet assignment As an example, assume you have two schema fields that you wish to use as
data arguments for a Max function. The first field values are defined in units of Celsius, while the second
field units are defined in units of Fahrenheit. In order to compare the two values, you must have a
common unit type. You must also define the unit type of your result so that you can correctly interpret
the data from the assigned function.
NiagaraAX-3.7/3.8

Series Transform Guide
1–3

Test Resolving Graph Nodes Chapter 1 – Series Transforms concepts

November 5, 2013
Figure 1-6 Output field

By assigning the unit type to the output field, you provide the common unit type used for comparison by
the function at time of cursor execution. You also determine the unit type used for the comparison result,
which determines the actual value of the result data.

Test Resolving Graph Nodes
Each Transform Graph Node includes a Resolve Graph menu option in the popup menu of the
transform graph component. For example, select this menu item to test your graph from the workbench
so you know how it’s working before integrating it into a Px view. Select this action to resolve the graph
against the data set as determined by the data source nodes of the graph (for example, the History Source
node).

Figure 1-7 Resolve Graph menu item

The resolved data is displayed in the workbench table view and can be used to see if you get the results
expected from your configuration. If the results are not as expected, you can make changes and resolve
the graph again.

Figure 1-8 Transform Graph resolved in collection table

About Transform Label Bindings and the cell parameter
The Transform Label Binding is similar to other bound label bindings but it has an additional query
property and an ord query which allows you to designate a specific table cell.

Figure 1-9 Transform Label Binding

• Binding query
The query property of the transform binding is used to override select runtime properties of the
graph nodes which make up the target transform graph. Overriding the values allows you to use the
same graph in many Px files without having to change the transform graph itself.
NiagaraAX-3.7/3.8

Series Transform Guide
1–4

Chapter 1 – Series Transforms concepts About Transform Label Bindings and the cell parameter
November 5, 2013
• Cell ord query
The cell ord query allows you to specify column and row in the table that the selected Transform-
Graph creates. If the designated binding does not produce tabular data, an error appears in work-
bench and the ord is not resolved.
Use the cell ord parameters (column value first and the row value second) to specify the column in-
dex and row index respectively. In the Make Widget Wizard you can use the Data Row and Data Col-
umn fields to add the parameters automatically. You can also manually edit an existing cell ord
query, keeping the syntax: |cell:2,0 at the end of the ord.
Note: Both column and row are zero based indices, for example 0,0 specifies the cell defined by the
first column and first row in a table.

Figure 1-10 Bound label displays text from specified table cell
NiagaraAX-3.7/3.8

Series Transform Guide
1–5

About Transform Label Bindings and the cell parameter Chapter 1 – Series Transforms concepts

November 5, 2013
NiagaraAX-3.7/3.8

Series Transform Guide
1–6

2CHAPTER

Series Transform components
Additional nodes may be created by third-party developers using the series transform API. However, with
NiagaraAX-3.7, there are seven individual objects provided on the seriesTransform palette. The following
components can be thought of as comprising four general categories of Series Transform objects:
• Container (Transform Graph node)

The TransformGraph object holds all the other graph nodes and has a ResolveGraph action that
you use to generate the data transformation after you have configured all the nodes as desired.

• Source (HistorySource node)
The HistorySource node is the single object available for identifying the source data for your tran-
formation.

• Terminal (Terminal node)
There is one terminal node that is the final node of any transform graph. Each Transform Graph
must have one and only one terminal node.

• Transforms (Transform nodes)
Transform nodes provided on the palette include the Aggregate, Composite, Rollup, and Scale
nodes.

Figure 2-1 Series Transform Graph palette

By adding components from the seriesTransform palette onto a Transform Graph wiresheet view, you
can create a static definition of how run-time data is transformed into a new single-output set of infor-
mation. The transform graph is created using HistorySource nodes, one or more transform nodes, and a
single terminal node. By configuring the data schema of each transformation you design how the data
flows from one transformation node to the next.

Note: All graph nodes must be contained by a Transform Graph container. All nodes within the Transform
Graph container must be uniquely named.

Figure 2-2 Minimum set of nodes on the seriesTransformGraph wiresheet view

Each of the graph nodes described in the following sections includes a special popup editor that displays
when clicking the graph node component in the wiresheet view. The Property Sheet view is still acces-
sible, but must be selected from the workbench View Selector.
NiagaraAX-3.7/3.8

Series Transform Guide
2–1

About the Transform Graph component Chapter 2 – Series Transform components

November 5, 2013
About the Transform Graph component
A Series Transform Graph is a node container that can hold all other graph nodes. The transform graph
node itself is also a graph node, making it possible for transform graphs to contain other transform
graphs. This allows transform graphs to be created to fulfill very specific data functionality and used as
building blocks to create larger graphs.
After you add a Transform Graph node to your station, you can double-click on it to display the node’s
default wiresheet view for configuration of the graph. When properly configured, the Series Transform
Graph performs a transformation or series of transformations against a set of data to produce a single
result.

Figure 2-3 Transform Graph component

Note the following summary information about Transform Graph Nodes:
• Transform Graph nodes must contain a single Terminal node plus one or more source nodes to de-

fine the schema of the data. Source nodes may be HistorySource nodes or other Transform Graph
nodes.

• Each Transform Graph node returns a single result and thus contains a single Terminal node.
• Transform Graph nodes may contain one or more Transformation-type nodes, such as the Aggre-

gate, Rollup, Scale, or Composite nodes.
• Transform Graphs may be included as transformations within other Transform Graphs.
• To “resolve” a configured Transform Graph node in Workbench (to see a table view of the source

data) right-click on the Transform Graph node in the nav tree and select Resolve Graph from
the popup menu.

• To see a configured Transform Graph node as a chart or as a table in a Px page, use the PxEditor
Make Widget Wizard (refer to “Series Transform components” on page 2-1).

The following illustrations show some example Transform Graph implementations.

Figure 2-4 A graph containing graph nodes

Figure 2-5 A graph containing another graph as a source

Figure 2-6 Two interconnected graphs. The first graph acts as data source for the second.
NiagaraAX-3.7/3.8

Series Transform Guide
2–2

Chapter 2 – Series Transform components About the History Source node
November 5, 2013
About the History Source node
The HistorySource node represents the source data (most often a NiagaraAX history) and defines the
data schema for data that is processed by the Transform Graph. Unlike other graph nodes, this graph
node does not have an input property displayed in the wiresheet. This is because the node itself is a data
source and will use the node configuration to obtain the source data. The HistorySource node should be
placed on a Transform Graph node.

Figure 2-7 HistorySource node

Each graph may have more than one HistorySource node, with each node defining a single input for the
graph. The actual source may be provided at graph resolution time as a graph parameter. The value of
that property must be set when the graph is resolved. The property value can be set manually, by a
program object, or by an interface, such as the transform chart binding.
To use the HistorySource node, select the history source ORD from the HistorySource Source property.
Select the Source ORD by clicking the folder icon next to the text field. The source ord must point to a
data series. Usually this is limited to a history ord. You can also type the ORD path directly in the text field.

Figure 2-8 History Source ORD

When the Source value is set to a valid history ORD, the Source Schema table is automatically populated
with the schema of the ORD's history schema. In Figure 2-8 the schema is the same as the column names
in the corresponding source History Table view. Beside each column name is the data type that the
column represents.
When you set the HistorySource ORD you can also take advantage of the following features:
• Parameterized History ORD

The source ORD uses the BFormat syntax at time of graph resolution. This allows the source ORD
to be parameterized. This is especially useful when creating a transform graph that will be displayed
in a Px file. The history ORD can be set using BFormat syntax to create a transform graph that can
be used in many Px files, or the same Px file set as a view on different components. In the latter case,
the BFormat syntax resolves against the component that contains that Px view.

Figure 2-9 Source Configuration field
NiagaraAX-3.7/3.8

Series Transform Guide
2–3

About the History Source node Chapter 2 – Series Transform components

November 5, 2013
• Just In Time Source ORD
The transform graph can assign values to attributes of a graph node at the time the graph is resolved.
In the case of the HistorySource node, the history ORD for the data source can be given at resolve
time.
If a Source ORD is not set at design time, a Source Schema must be defined for the node. The Source
Schema is the schema of the data that history source represents. This schema data is used by other
graph nodes to create instructions on how to manipulate the data. The schema of a History Source
node can be manually configured using the Schema Source Editor. Click the chevron button next
to the Source Schema table to display the editor.

Figure 2-10 Source Schema Editor

Configure the schema by setting a string field name value and then define the data type for that field
value. You can think of a field value as a column of data. The data type is a baja “Type” that you can
define by selecting (from the first option list) the module that the data type belongs to (usually baja)
and then (from the second option list) the specific type in the module that the column represents.
Along with the name and data type information, each schema field can be configured with facet in-
formation. This information will tag the data column with important information such as the unit
type associated with the value of the column (for example, Fahrenheit). If you design your own sche-
ma, you must select the key field of the schema. Each schema includes a key field. The key field is
the data field that will include a unique value for each data row at the time that the graph node cursor
is resolved. The key field is similar to the primary key field used in relational databases.

Figure 2-11 Source Schema Editor

In the case of histories, the key field is the Timestamp field. Each record returned by a history has a
unique Timestamp value. By using the Timestamp field as the key field, the transform framework
can perform tasks such as grouping a collection of records together in five minute intervals. This is
possible because key field allows the framework to uniquely identify each cursor record, or “table
row”, as a unique record.
NiagaraAX-3.7/3.8

Series Transform Guide
2–4

Chapter 2 – Series Transform components About the Terminal node
November 5, 2013 About Intervals and Date Range
About Intervals and Date Range
When creating a transform graph, it is important that the data conform to exact intervals to allow data
from different history sources to properly compare and coalesce into larger data sets. To do this, a process
of “quantization” is used to fit the timestamp value of a record to an exact interval.
In the case of histories, the timestamp of each history includes not only the hour, minute, and second that
the history was created, but also the millisecond value. When attempting to align different histories for
comparison, this difference in milliseconds prevents an exact comparison. The History Source
dialog box provides fields that allow you to manually set intervals to predefined increments or choose
predefined increments using the Interval option list.

Figure 2-12 Interval and Date Range fields

The interval can also be set to Automatic so that the current interval of the history collection is used.
For example, if the history is already set to collect at 15 minute intervals, the automatic quantization
interval of the history source node is also set to 15 minutes.

Note: It is important to note that all values are quantized based on a starting time of 0:0:0.000. This means
that an interval of 15 minutes will quantize a record whose timestamp reflects the value of 11:13:52.093
to 11:00:00.000.
Often it is desirable to use only a segment of a History rather than the entire history for a point value. Use
the Date Range property to select the starting and ending date and times for the desired history data. All
history records between these date values, including those histories which fall exactly on those date
values, will be included in the data set at the time the graph is resolved.

About the Terminal node
The Terminal node is used to designate the result schema of a Transform Graph. Each graph must include
one and only one terminal node. The Terminal editor allows the schema fields (data columns) of the graph
result to be reordered. This is especially useful when using the Resolve Graph nav menu option of a
transform graph to test the graph result.

Figure 2-13 Terminal node

The Terminal Editor allows the schema fields (data columns) of the graph result to be reordered.
This is especially useful when using the Resolve Graph nav menu option of a transform graph to test
the graph result.
NiagaraAX-3.7/3.8

Series Transform Guide
2–5

Types of Transform nodes Chapter 2 – Series Transform components
About the Aggregate node November 5, 2013
Figure 2-14 Terminal Editor

To reorder the data columns in the table view of the resolved graph data, click the up and down arrows.
Columns at the top of the editor will appear on the left hand side of the table, while columns at the bottom
of the editor will display on the right side of the rendered table in the table view.

Types of Transform nodes
Transform nodes are located in the Nodes folder of the seriesTransform palette and include the following:

Figure 2-15 Transform nodes located in the seriesTransform palette

• Aggregate node, see “About the Aggregate node” on page 2-6 for details.
• Composite node, see “About the Composite node” on page 2-7 for details.
• Rollup node, see “About the Rollup node” on page 2-8 for details.
• Scale node, see “About the Scale node” on page 2-9 for details.
• TimeShift node, see “About the Time Shift node” on page 2-10 for details.
• Filter node, see “About the Filter node” on page 2-11 for details.

About the Aggregate node
The Aggregate node is used to perform functional operations against each row of data produced by the
node data source. These functional operations do not take into account the order of the parameters, and
so are limited to functions dealing with input values as an aggregate.

Figure 2-16 Aggregate node
NiagaraAX-3.7/3.8

Series Transform Guide
2–6

Chapter 2 – Series Transform components Types of Transform nodes
November 5, 2013 About the Composite node
The Aggregate Editor, like the Composite Node editor, is used to create the output schema of
the aggregate node. The schema is created by adding field names to the schema and assigning functions
to each field.

Figure 2-17 Aggregate Editor

Each aggregate function takes a set of input source fields as parameter values. You select these input
parameters in the Function Editor (see “About Graph Functions” on page 1-3). There is no limit to
the number of parameters that you can select for a function, with the exception of the Pass Through
function, which passes through a single value without altering the value, making the value available for
the next consuming node in the graph.

About the Composite node
The Composite node allows you to combine more than one input source into a single data structure.
Fields of input sources can be included multiple times into the composite schema so long as they are
uniquely named each time. In addition to using multiple HistorySource nodes you can include a single
incoming schema element multiple times in the Composite node.

Figure 2-18 Composite node

Compositing data into larger structures allows for comparing data in tandem, as well as performing
operations over multiple data sets to create new information.
An example of this would be creating a composite of two history sources and using the aggregate node to
determine the Max value between the two value fields for each data row. You can use the composite editor
to configure the composite schema. Do this by adding fields to the composite schema and then setting
the values as fields from one of the source schemas.
NiagaraAX-3.7/3.8

Series Transform Guide
2–7

Types of Transform nodes Chapter 2 – Series Transform components
About the Rollup node November 5, 2013
Figure 2-19 Composite Editor

When you click the Add button , an empty text field and option list display in the editor. To complete
the addition of a field, first type a unique name in the text field for the schema field and then select an
input field from the drop down list. Each field in the option list is a field from one of the incoming
schemas.

The Composite Editor includes an Auto button in the top right corner of the editor. Clicking this
button will populate the composite schema with fields from each incoming schema, automatically
supplying unique field names.

About the Rollup node
Like the Aggregate node, the Rollup node can perform functional operations against each row of data
produced by linked data sources. Unlike the Aggregate node, the Rollup node performs operations
against several rows of data. The number of rows used to collect function argument data is determined
by the rollup interval size.

Figure 2-20 Rollup node

You can use the Rollup Editor to create the output schema of the graph node. You create the schema
by adding field names to the schema and assigning functions to each field.
NiagaraAX-3.7/3.8

Series Transform Guide
2–8

Chapter 2 – Series Transform components Types of Transform nodes
November 5, 2013 About the Scale node
Figure 2-21 Rollup Editor

When you click the Add button , an empty text field and drop down list display in the editor. To
complete the addition of a field, first type a unique name in the text field for the schema field and then
select an input field from the drop down list. Each field in the drop down list is a field from one of the
incoming schemas.

The Rollup Editor includes an Auto button in the top right corner of the editor. Clicking this
button will populate the rollup schema with fields from each incoming schema, automatically supplying
unique field names.
Each function takes a set of input source schema fields as parameter values. You can use the Function
Editor to select parameters to apply. There is no limit to the number of parameters that may be selected
for a function, with the exception of the Pass Through function, which passes through a single value
without altering the value, making the value available for the next consuming node in the graph.
The Rollup interval is an absolute time-based interval that assumes the key field of the incoming data
schema. You can use the Rollup Interval option list to select a rollup interval. The interval selector
provides several predefined settings and also provides a custom setting the includes a custom time editor.

Figure 2-22 Rollup Interval selector

About the Scale node
The Scale node lets you multiply selected numeric input fields from a HistorySource node to create an
Output that is the product of the Input and the Scale factor. You cannot modify non-numeric data (such
as Status). The “scaled” output can then be linked to the Input of a terminal.

Figure 2-23 Scale node

The Scale Editor lets you add a scale value in the value field for any numeric data.
NiagaraAX-3.7/3.8

Series Transform Guide
2–9

Types of Transform nodes Chapter 2 – Series Transform components
About the Time Shift node November 5, 2013
Figure 2-24 Scale Editor

You can use the Scale Editor to assign scale factors for each input. For example, in the following illus-
tration, scale factors are added for three separate history source value inputs. Enter a scale factor in the
value field and click the OK button to save. Non-numeric fields (such as “status”) are not available for
scaling.

Figure 2-25 Scale Editor with three inputs

About the Time Shift node
The TimeShift node lets you adjust the time values of timestamps on a set of data that is generated to a
SeriesTransformTable (using the TransformGraph component).
To use the TimeShift node, drag it from the Series Transform palette onto the wiresheet view and connect
a HistorySource output to the TimeShift Inputs slot. Double-click on the TimeShift component in the
wiresheet view and set the desired time shift value in the TimeShift dialog box.

Figure 2-26 Set the time shift value in the TimeShift dialog box

Connect the output from the TimeShift node to another SeriesTransform input or directly to a Terminal
Node input as desired.

Figure 2-27 TimeSheet node on wiresheet

Resolve the graph and check that the table displays time values that are offset by the value that you set in
your TimeShift dialog box. So, for example, if you shifted your time by setting a 30 minute value in the
TimeShift dialog box, then history records that start at 15:30 hrs in the actual point history table should
be offset by 30 minutes (16:00 hrs) in the resolved graph table.
NiagaraAX-3.7/3.8

Series Transform Guide
2–10

Chapter 2 – Series Transform components Types of Transform nodes
November 5, 2013 About the Filter node
The TimeShift node works with the following data types:
• Numeric Points
• Boolean Points
• Enum Points
• String Points

• COV Type histories
• Interval type histories

About the Filter node
The Filter node (BqlFilter Node) allows you to filter a series of data using a Bql predicate expression. For
example, you can use an expression such as: value > 80 to show only values greater than 80 or
timestamp in bqltime.yesterday to limit values to those recorded on the previous day.
To use the FilterNode component, drag it from the Series Transform palette onto the wiresheet view and
connect a HistorySource output to the Filter Inputs slot. Double-click on the Filter component in the
wiresheet view and use the Filter dialog box to create a custom bql query.

Figure 2-28 Set the Filter values in the Filters dialog box

Connect the output from the Filter node to another SeriesTransform node input or directly to a Terminal
Node input as desired.

Figure 2-29 Filter node on the wiresheet view

Resolve the graph and check that the table displays the expected time values as defined by the query set
in the Filter dialog box.
NiagaraAX-3.7/3.8

Series Transform Guide
2–11

Types of Transform nodes Chapter 2 – Series Transform components
About the Filter node November 5, 2013
NiagaraAX-3.7/3.8

Series Transform Guide
2–12

3CHAPTER

Series Transform Graphs and Px views
You can create Px page views with data from the seriesTransform component. Figure 3-1 shows a single
Px page that uses three different widgets to display the same resolved Series Transform Graph.

Figure 3-1 Series transform graph data in Px view (Collection Table, Chart, Bound Labels)

The following sections describe how to use a Series Transform Graph in a Px view.
• Create a series transform collection table in a Px view
• Create a series transform bound table in a Px view
• Create a series transform chart in Px view
• Create a series transform bound label in a Px view
NiagaraAX-3.7/3.8

Series Transform Guide
3–1

 Chapter 3 – Series Transform Graphs and Px views

November 5, 2013
Create a series transform collection table in a Px view
You can add a series transform collection table view to a Px view using the Make Widget wizard.

Step 1 Drag the SeriesTransformGraph component from the nav tree onto a Px page.
The Make Widget Wizard opens.

Figure 3-2 Choosing a Collection Table to add to a Px view

Step 2 Select the Workbench View option in the Make Widget Wizard, choose Collection Table, and
click the OK button.
The Collection Table view displays in the Px view.

Create a series transform bound table in a Px view
You can add a series transform bound table to a Px view using the BoundTable widget.

Step 1 Drag a BoundTable widget from the bajui palette onto your Px page in the Px Editor view.

Figure 3-3 Add BoundTable from bajaui palette

Step 2 Double-click on the BoundTable component in the WidgetTree palette to open the Properties dialog
box.

Figure 3-4 Add Transform Table Binding
NiagaraAX-3.7/3.8

Series Transform Guide
3–2

Chapter 3 – Series Transform Graphs and Px views
November 5, 2013
Step 3 Click the Add Binding button on the Properties dialog box, choose
seriesTransform:Transform Table Binding from the Add Binding dialog box and click
OK in the Add Binding dialog box only.
This adds the Transform Table Binding to the bottom of the Properties dialog box.

Step 4 In the Transform Table Binding rows of the Properties dialog box, click the edit button on the ord
row.
The ord dialog box opens.

Figure 3-5 Add Transform Table Binding

Step 5 In the ord dialog box, use the Component Chooser option to browse to the desired Transform Graph
component, select the component and click the OK button.
The ord binding is set.

Step 6 In the Transform Table Binding rows of the Properties dialog box, click the Edit button on the
query row.
The Select Ord dialog box opens.

Step 7 In the Select Ord dialog box, use the Component Chooser option to browse to the (same) desired
Transform Graph component, select the component and click the OK button.
The query binding is set and the Graph Parameters fields display with editable fields.

Step 8 Close all dialog boxes to complete the setup and display the Bound Table on Px page.

Create a series transform chart in Px view
You can create a chart view of a resolved seriesTransform graph.

Step 1 Drag the SeriesTransformGraph component from the nav tree onto a Px page in the Px Editor.
The Make Widget Wizard opens.

Step 2 Select the Chart option in the Make Widget Wizard and verify that the Graph ORD field and Graph
Parameters are correct.

Step 3 In the Y Axis Descriptors field, add, delete, or edit Y columns as desired using the edit control buttons to
the right of the field editor. You can only add columns for those values that are already a part of the output
schema.

Figure 3-6 Editing Y Column for Series Transform Chart in Make Widget Wizard

Editing or adding a descriptor requires that you include:
NiagaraAX-3.7/3.8

Series Transform Guide
3–3

 Chapter 3 – Series Transform Graphs and Px views

November 5, 2013
• Series Name
This is the name that is used in the legend of the chart for the axis.

• Y Column Name
This is the axis name and is the name of the target graph’s output schema field.
Note: The Column Name must match the output parameter exactly, including the text case.

Step 4 After adding all the Y columns, click the OK buttons to close all the dialog boxes and complete the chart.

Create a series transform bound label in a Px view
You can create a bound label view of a resolved series transform graph using the Make Widget Wizard.

Step 1 Drag the SeriesTransformGraph component from the nav tree onto a Px page in the Px Editor.
The Make Widget Wizard opens.

Step 2 Select the Bound Label option in the Make Widget Wizard and verify that the Graph ORD field and
Graph Parameters are correct.

Step 3 In the Data Row and Data Column fields enter the row and column numbers that identify the table cell
that you want to display and click the OK button.

Figure 3-7 Adding the row and column to identify the table cell

The bound label displays on the Px page.
NiagaraAX-3.7/3.8

Series Transform Guide
3–4

4CHAPTER

Series Transform Component Guides
These component guides provide summary help on NiagaraAX Series Transform components.

Components in the seriesTransform module
• Series Transform Graph
• History Source Node
• Series Schema
• Series Interval
• seriesTransform-TerminalNode
• Terminal Map
• Aggregate Node
• RollupNode
• Function Map
• Rollup Interval
• Rollup Interval
• Scale Node
• Scale Factors
• Composite Node
• Composite Map
• TimeShift Node
• Filter Node

seriesTransform-TransformGraph
 The TransformGraph object holds all the other graph nodes and has a ResolveGraph action that

you use to generate the data transformation after you have configured all the nodes as desired. See “Series
Transform Graph and the Wire Sheet view” on page 1-1 for more details.

seriesTransform-HistorySourceNode
 The HistorySource node is the single object available for identifying the source data for your tranfor-

mation. See “About the History Source node” on page 2-3 for more details.

seriesTransform-SeriesSchema
 The Data Schema concept is fundamental to the series transform graph. A data schema defines the

structure of some piece of data. See “About the Series Transform Data Schema” on page 1-1 for more
details.

seriesTransform-SeriesInterval
 When creating a transform graph, it is important that the data conform to exact intervals to allow

data from different history sources to properly compare and combine into larger data sets. To do this, a
process of “quantization” is used to fit the timestamp value of a record to an exact interval See “About
Intervals and Date Range” on page 2-5 for more details.

seriesTransform-TerminalNode
 There is one terminal node that is the final node of any transform graph. Each Transform Graph must

have one and only one terminal node. See “About the Terminal node” on page 2-5 for more details.
NiagaraAX-3.7/3.8

Series Transform Guide
4–1

Components in the seriesTransform module Chapter 4 – Series Transform Component Guides

November 5, 2013
seriesTransform-TerminalMap
 The TerminalMap component represents the mapping of source node values to the terminal. You can

use the Terminal Editor to arrange the order these properties, if desired. See “About the Terminal node”
on page 2-5 for more details.

seriesTransform-AggregateNode
 The Aggregate node performs functional operations against each row of data produced by the node

data source. See “About the Aggregate node” on page 2-6 for more details.

seriesTransform-RollupNode
 The Rollup node can perform functional operations against each row of data produced by linked data

sources (similar to the Aggregate node). Unlike the Aggregate node, the Rollup node performs operations
against several rows of data. See “About the Rollup node” on page 2-8 for more details.

seriesTransform-FunctionMap
 The Function Map is associated with the Rollup and the Aggregate nodes. This component represents

the mapping of source values against selected functions. See “About the Aggregate node” on page 2-6 and
“About the Rollup node” on page 2-8 for more details.

seriesTransform-RollupInterval
 The Rollup Interval component holds the exact (custom or default option) time intervals that you

select for a a particular Rollup node. See “About the Rollup node” on page 2-8 for more details.

seriesTransform-ScaleNode
 The Scale node lets you multiply selected numeric input fields from a HistorySource node to create

an Output that is the product of the Input and the Scale factors. See “About the Scale node” on page 2-9
for more details.

seriesTransform-ScaleFactors
 The Scale Factor component holds a number (one scale factor for one input) that you choose to

multiply against a selected input value. See “About the Scale node” on page 2-9 for more details.

seriesTransform-CompositeNode
 The Composite node allows you to combine more than one input source into a single data structure.

Fields of input sources can be included multiple times into the composite schema so long as they are
uniquely named each time. See “About the Composite node” on page 2-7 for more details.

seriesTransform-CompositeMap
 The Composite Map is associated with the Composite node. This component represents the mapping

of the source node values to the composite node. See “About the Composite node” on page 2-7 for more
details.

seriesTransform-TimeShift Node
 The Transform node provides a way for you to adjust the timestamp values that are resolved into a

series transform table. The Time Shift node component is available on the Series Transform palette. See
“About the Time Shift node” on page 2-10 for more details.

seriesTransform-Filter (BqlFilter) Node
 The Transform Filter node provides a way for you to use a predicate query to refine your series

transform graph data output. This component is available on the Series Transform palette. See “About
the Filter node” on page 2-11 for more details.
NiagaraAX-3.7/3.8

Series Transform Guide
4–2

	Preface
	Document Change Log

	Series Transforms concepts
	Series Transform Graph and the Wire Sheet view
	About the Series Transform Data Schema
	Graph node configuration
	About Graph Functions
	Test Resolving Graph Nodes
	About Transform Label Bindings and the cell parameter

	Series Transform components
	About the Transform Graph component
	About the History Source node
	About Intervals and Date Range

	About the Terminal node
	Types of Transform nodes
	About the Aggregate node
	About the Composite node
	About the Rollup node
	About the Scale node
	About the Time Shift node
	About the Filter node

	Series Transform Graphs and Px views
	Create a series transform collection table in a Px view
	Create a series transform bound table in a Px view
	Create a series transform chart in Px view
	Create a series transform bound label in a Px view

	Series Transform Component Guides
	Components in the seriesTransform module

