
Technical Document

Niagara Modbus Driver Guide

March 25, 2025

Legal Notice

Tridium, Incorporated
3951 Western Parkway, Suite 350
Richmond, Virginia 23233
U.S.A.

Confidentiality

The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation
(Tridium). Such information and the software described herein, is furnished under a license agreement and may
be used only in accordance with that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and, except as permitted under the below copyright notice, is not to be released to, or
reproduced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for
damages of any kind, including without limitation consequential damages, arising from the application of the
information contained herein. Information and specifications published here are current as of the date of this
publication and are subject to change without notice. The latest product specifications can be found by
contacting our corporate headquarters, Richmond, Virginia.

Trademark notice

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-
Conditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and
SQL Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON,
LonMark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara
Framework, and Sedona Framework are registered trademarks, and Workbench are trademarks of Tridium Inc.
All other product names and services mentioned in this publication that are known to be trademarks,
registered trademarks, or service marks are the property of their respective owners.

Copyright and patent notice

This document may be copied by parties who are authorized to distribute Tridium products in connection with
distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise,
in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior written consent from Tridium, Inc.

Copyright © 2025 Tridium, Inc. All rights reserved.

The product(s) described herein may be covered by one or more U.S. or foreign patents of Tridium.

For an important patent notice, please visit: http://www.honpat.com.

http://www.honpat.com/

Contents

About this guide ..5

Document change log ..5

Related documentation ..6
Chapter 1. Getting started ..7

Architecture ..7

Modules ..11

Prerequisites ...11

Limits imposed by the Modbus licenses ..11

Installing the Modbus driver ..11

Chapter 2. Network configuration ...13
Adding a Modbus network ..13

Configuring serial properties ...14

Configuring Ethernet properties ...14

Configuring network properties ..14

Chapter 3. Device configuration ...17
Modbus messages ...17

Modbus data ...18
Adding a device ...20

Duplicating devices ..21

Creating proxy points ..21

Configuring a device for polling ..23

Chapter 4. Client (master) operations ..25
Configuring a client device for polling ..25

Adding client presets ...26

Adding file records ...27

Chapter 5. Server (slave) configuration ...29
Modbus registers ...29

Configuring register ranges ...31

Adding server file records ..32

Chapter 6. Troubleshooting ...33
Debugging messages ...33

Exception responses ..33

Chapter 7. Components ...35
ModbusAsyncNetwork ..35

ModbusAsyncDevice ...43
Device Poll Config ...51
Points (client device) ...53
ModbusClientExceptionStatus ...64
ModbusClientPresetRegisters ..65
ModbusClientPresetCoils ..69

Niagara Modbus Driver Guide Contents

March 25, 2025 3

ModbusClientStringRecord ...71
ModbusAsyncDeviceFolder ..73
ModbusClientPointFolder ...73

ModbusSlaveNetwork ..74

ModbusSlaveDeviceFolder ...79
ModbusSlaveDevice ..79
ValidCoilsRange ...84
Points (Server) ...85
ModbusServerPointFolder ..93

ModbusTcpNetwork ...94

ModbusTcpDeviceFolder ..100
ModbusTcpDevice ...100
ModbusTcpGateway ...102

ModbusTcpSlaveNetwork ..111

ModbusTcpSlaveDevice ..115
Chapter 8. Plugins (views) ...119

Modbus Async Device Manager ..119

Modbus Client Point Manager ...119

HTML 5 Modbus Client Point Ux Manager ..121

Modbus Slave Device Manager ...122

Modbus Server Point Manager ..123

HTML 5 Modbus Server Point Ux Manager ...125

Modbus Tcp Gateway Device Manager ...126

Modbus Tcp Slave Device Manager ...127

HTML5- Modbus Tcp Device Ux Manager ...128

HTML5- Modbus Tcp Client Device Ux Manager ..130

HTML5- Modbus Client Device Ux Manager ...131

HTML5- Modbus Async Device Ux Manager ...133

Chapter 9. Windows ..137
New device type window-Modbus ..137

New device properties window ...137

New point type window ...143

New point properties window ...145

Add Preset Register Value window ..148

Add Preset Coil Value window ...149

Contents Niagara Modbus Driver Guide

4 March 25, 2025

About this guide
This topic contains important information about the purpose, content, context, and intended audience for this
document.

Product Documentation
This document is part of the Niagara technical documentation library. Released versions of Niagara software
include a complete collection of technical information that is provided in both online help and PDF format. The
information in this document is written primarily for Systems Integrators. To make the most of the information
in this book, readers should have some training or previous experience with Niagara software, as well as
experience working with JACE network controllers.

Document Content
This document applies to any of the Modbus drivers for any release of Niagara 4.9 and later. The audience is a
knowledgeable Modbus user who is Niagara 4 certified.

Document change log
Updates, changes and additions to this guide are listed by the date the document was released.

March 25, 2025
Added two new properties "Double 64-bit Byte Order" and "Long 64-bit Byte Order" in the "Components"
and "Plugins" Chapter.

• ModbusAsyncSlaveNetwork and ModbusSlaveDevice.

• ModbusSlaveNetwork and ModbusSlaveDevice.

• ModbusTcpNetwork, ModbusTcpDevice, ModbusTcpGateway and ModbusTcpGatewayDevice.

• ModbusTcpSlaveNetwork and ModbusTcpSlaveDevice.

• New Device PrNew Device Propertoperties Wies Windowindow in the "Plugins" Chapter.

Added description of new Data Types available in the ModbusTcpDevice component (ModbusTcpNetwork) as
of Niagara 4.14.

November 1, 2023
Added new topics “HTML5-ModbusServerPointUxManager”,and “HTML5-ModbusClientPointUxManager” to
the “Plugins” chapter.

September 12, 2023
Added new topics “HTML5- ModbusAsyncDeviceManager”, “HTML5- ModbusClientDeviceManager”,
“HTML5- ModbusTcpClientDeviceManager”, and “HTML5- ModbusTcpDeviceManager” to the “Plugins”
chapter.

July 27, 2022
Minor updates to “Limits imposed by the Modbus licenses” topic.

February 9, 2021
Many minor edits throughout.

December 15, 2019
Document reorganized to emphasize tasks with reference material moved to the end of the document. This
document has been updated for Niagara 4.9 and later.

August 25, 2010
Expanded the Preface and legal text. Added details about client Modbus Enum Bits and Numeric Bits proxy
points. Added details about a client component to read function code 07 (exception status).

Niagara Modbus Driver Guide About this guide

March 25, 2025 5

February 14, 2008
Added references to the Drivers Guide.

March 15, 2007
Completely reworked what was formerly a placeholder document providing new main chapters, numerous
content changes, and summary descriptions. Also added terms.

June 24, 2005
Initial document publication.

Related documentation
These documents contain related information.

• Multiple install and startup guides, one for each remote host controller.

• Niagara Drivers Guide

• Niagara Platform Guide

About this guide Niagara Modbus Driver Guide

6 March 25, 2025

Chapter 1. Getting started
Modbus is an open communications protocol originally developed in 1978 by Modicon Inc. for networking
industrial PLCs (programmable logic controllers). (Modicon is now an international brand of Schneider Electric.)
Since its introduction, it has gained popularity with a number of control device vendors to transfer discrete/
analog I/O and register data between control devices.

While the type of Modbus network and the devices it supports change depending on the technology (serial or
TCP/IP), and the purpose of the network and devices change based on their roles as client or server (slave), the
driver procedures for setting up networks, devices and points are basically the same.

Architecture
The driver provides four Modbus modules that support five Modbus network types. Three networks serve as
clients, where the host (controller and station) act as a Modbus master device. In the other two networks, the
controller and station serve as servers (slaves), where the station exposes Modbus data and responds to
Modbus queries. All Modbus networks use the standard Framework network architecture. For more
information, refer to the Niagara Drivers Guide.

Async networks
The Modbus protocol defines the message structure and format used in communication transactions. Modbus
devices communicate using a master-slave relationship in which only the master device can initiate a
communication transaction. A Modbus network supports only one master device. For most integrations
(modbusAsync, modbusTcp), the remote host serves as the master device. Other devices function as Modbus
slaves.

Modbus provides two slave components: modbusSlave or modbusTcpSlave. Either slave station can act as a
server. Usage of these components is expected to be infrequent. When used, basic Modbus principles remain
the same.

Similar to other Framework integrations, the Modbus driver uses proxy points to provide monitoring and
control. To help clarify station configuration, this document describes items specific to Framework
components.

This network requires a serial port (typically, RS-485) on the host platform, which connects to a Modbus RTU
(Remote Terminal Unit) or ASCII network and functions as the Modbus Master. Lighting Control, Meter, VSD
Control and I/O Device function as slaves on the same network.

Communications rates are typically at 9600 baud, and the network transmission mode (protocol) may be either

Figure 1. ModbusAsyncNetwork

Niagara Modbus Driver Guide Getting started

March 25, 2025 7

Modbus RTU or Modbus ASCII (either one is supported). If Modbus RTU over RS-485, up to 31 slave devices
may be attached—or more, if repeaters are used. The address range for Modbus devices on a serial network is
from 1 to 247, however (as noted), networks are typically smaller. Depending on the number of available COM
ports, a host may support multiple ModbusAsyncNetworks.

The station acts as Modbus master to all other Modbus devices on the attached COM port. A
ModbusAsyncDevice represents each child device, and has a unique Modbus address (1 to 247), as well as
other Modbus config data and starting addresses for Modbus data items (coils, inputs, input registers, holding
registers). A Modbus network usually has many child ModbusAsyncDevices.

TCP/IP networks

This Modbus network automatically binds to the TCP/IP setup of the host platform’s Ethernet LAN adapter.
The host appears as the Modbus Master on a network of Modbus TCP slave devices. The Network connectivity
protocol is Ethernet/IP.

In addition to specifying the TCP software port used (typically 502), various global properties on the network’s
property sheet are specific to Modbus TCP. For example, you can configure the default order for float and long
numeric data (overrideable within each child device).

A ModbusTcpDevice represents each child device, and has a unique IP address, as well as other Modbus config
data and starting addresses for Modbus data items (coils, inputs, input registers, holding registers). There are
typically many child ModbusTcpDevices.

TCP/IP gateway networks
A ModbusTCPGateway is a network-level object that also represents a particular device: a Modbus TCP-to-
Serial gateway, where this device has an IP address reachable by the station. On the gateway’s far side are
serially-connected Modbus devices (typically Modbus RTU via RS-485). Child device objects under the gateway
(network) represent each serial Modbus device (RTU or ASCII).

Figure 2. ModbusTcpNetwork

Getting started Niagara Modbus Driver Guide

8 March 25, 2025

This type of network includes a Modbus TCP/Serial gateway between the Modbus Master and the serial
Modbus devices.

In addition to the IP address and TCP port used by the gateway, global properties on the network’s property
sheet specific to Modbus configure TCP gateway devices. For example, you can configure the default order for
float and long numeric data (overrideable within each child device).

The station acts as a Modbus master to the serially-connected Modbus devices on the gateway’s far side. A
ModbusTcpGatewayDevice represents each child device, and has a unique Modbus address (1 to 247), as well
as other Modbus config data and starting addresses for Modbus data items (coils, inputs, input registers,
holding registers). There are typically many child ModbusTcpGatewayDevices.

Figure 3. ModbusTcpGateway

Niagara Modbus Driver Guide Getting started

March 25, 2025 9

Slave networks

This type of network requires a serial port on the host platform, which connects to a Modbus RTU or ASCII
network where the station functions as a Modbus server (slave) to queries received from a serially-connected
Modbus master device. In each uniquely-addressed ModbusSlaveDevice you specify the ranges for available
Modbus data items (coils, inputs, input registers, holding registers). In some cases, only a single child
ModbusSlaveDevice represents the station.

TCP/IP slave networks

This type of network automatically binds to the TCP/IP setup of the host platform’s Ethernet IP LAN adapter,

Figure 4. ModbusSlaveNetwork

Figure 5. ModbusTcpSlaveNetwork

Getting started Niagara Modbus Driver Guide

10 March 25, 2025

assumes the IP address of the station, and functions as a server. The Host (Modbus Slave) can appear as
multiple devices.

The station acts as a Modbus server (slave) to queries received from a Modbus TCP master device. A
ModbusTcpSlaveDevice represents each uniquely-addressed child device. You specify ranges for available
Modbus data items (coils, inputs, input registers, holding registers). In some cases, only a single child
ModbusTcpSlaveDevice represents the station.

Modules
To use this driver, you must have a target host (remote controller) that is licensed for the feature modbus, or a
PC host, which acts as a Modbus Supervisor. The Supervisor must also be licensed for modbus).

The driver provides four Modbus modules. Each supports a different type of network.

Palette name Network component name in
the Nav tree

.jar file names in the
modules folder Function

modbusAsync ModbusAsyncNetwork modbuscore.jar ProvidesModbusAsyncNetworks (serial Modbus RTU
or ASCII over RS-485 or RS-232)

modbusSlave ModbusSlaveNetwork modbusSlave.jar Provides ModbusSlaveNetworks (serial Modbus RTU
or ASCII over RS-485 or RS-232)

modbusTcp ModbusTcpNetwork modbusTcp.jar Provides ModbusTcpNetworks and/or
ModbusTcpGateways (Modbus TCP via Ethernet)

modbusTcpSlave ModbusTcpSlaveNetwork modbusTcpSlave.jar Provides ModbusTcpSlaveNetworks (Modbus TCP via
Ethernet)

Prerequisites
To successfully install and use the Modbus driver your installation needs to meet specific requirements.

• A Niagara license for the Modbus feature(s) for each host including an optional Supervisor station running
on a PC

Other limits on devices and proxy points may exist in your license.

• A target host controller running Niagara 4.9 or later.

• Workbench running on PC.

Limits imposed by the Modbus licenses
This topic documents the limits imposed by the Modbus licenses.

RS-485 limits

<feature name="mstp" expiration="2025-01-31" port.limit="5"/>

port.limit defines the number of MS/TP trunks (RS-485 ports) that can be used. This ranges from 1 to 6, varies
based on the type of host controller and depends on the license purchased.

Due to electrical considerations, the EIA-485 (or RS-485) load factor of connected MS/TP devices determines
how many devices a trunk can physically support. This ranges from 31 (full load) to up to 127 (quarter load)
devices.

Other device or platform limits in the license’s modbus feature also apply.

Installing the Modbus driver
This topic documents how to install the Modbus driver software in a remote host.

Prerequisites:

Niagara Modbus Driver Guide Getting started

March 25, 2025 11

Niagara is installed and configured to be used as an installation tool (check box “This instance of Workbench
will be used as an installation tool” enabled).

1.Step From your PC, commission various models of remote host platforms. The .dist files are located
under your Niagara install directory under a sw subdirectory.

2.Step Install the modbusCore module, plus any specific modbus<type> module needed (for example,
modbusAsync, modbusTcp, and so on).

3.Step Upgrade any modules shown as out of date.

Result
The remote host is now ready for Modbus configuration in its running station.

Getting started Niagara Modbus Driver Guide

12 March 25, 2025

Chapter 2. Network configuration
Some configuration tasks are shared by all the Modbus network types. Modicon introduced a variant of the
Modbus protocol, Modbus TCP. This open protocol is becoming increasingly popular because it supports TCP/
IP/Ethernet connectivity.

NOTE: Modicon also developed a related protocol, Modbus Plus®, which is proprietary. Compared to Modbus
and Modbus TCP, the Modbus Plus protocol is not widely-used. This driver does not support Modbus Plus.

ModbusAsyncNetwork
If the host has multiple RS-485 or RS-232 ports to be used for client (master) access to Modbus networks, add
one ModbusAsyncNetwork for each physical port.

Communications rates are typically at 9600 baud, and the network transmission mode (protocol) may be either
Modbus RTU (Remote Terminal Unit) or Modbus ASCII (either one is supported). If Modbus RTU over RS-485,
up to 31 slave devices may be attached—or more, if repeaters are used. The address range for Modbus
devices on a serial network is from 1 to 247, however, networks are typically smaller. Depending on the number
of available COM ports, a host may support multiple Modbus Async networks.

The station acts as the Modbus master to all other Modbus devices on the attached COM port. Each child
device is represented by a ModbusAsyncDevice, and has a unique Modbus address (1 to 247), as well as other
Modbus config data and starting addresses for Modbus data items (coils, inputs, input registers, holding
registers). There are typically many child ModbusAsyncDevices.

ModbusTcpNetwork
Only one ModbusTcpNetwork is needed, even if the host has two Ethernet ports connected to two different
(non-routed) TCP/IP LANs. The destination IP addresses of child ModbusTcpDevices automatically determine
the Ethernet port.

ModbusTcpGateway
The driver supports one or more ModbusTcpGateways. Often, Modbus TCP/serial gateways are on the same
LAN as other Modbus TCP devices.

Adding a Modbus network
The procedure for adding a network is the same for each network type.

Prerequisites:
The palette for the network type you are adding is open.

1.Step Do one of the following:

• To add a single network, drag the network component from the palette to the StatStationion >
ConfigConfig > DriversDrivers node in the Nav tree; enter a name for the network or accept the default;
and click OKOK.

• To add more than one of the same network type in a single step, double-click the station’s
DriversDrivers container in the Nav tree; click the NewNew button; select the type of network to add;
enter the number of networks to add and click OKOK; name the networks or accept the
defaults and click OKOK.

The Framework creates one or more network node(s) under the DriversDrivers folder in the Nav tree.
Initially the network status is {fault} and enabled as true. After configuring serial port and
transmission mode properties, status should change to {ok}.

2.Step To configure network properties, right-click the network node in the Nav tree and click VViewsiews >

Niagara Modbus Driver Guide Network configuration

March 25, 2025 13

PrProperty Sheetoperty Sheet

Configuring serial properties
For ModbusAsyncNetworks and the ModbusSlaveNetwork you must configure a number of properties to
match the serial communications requirements of the connected Modbus devices. This includes configuring
serial properties and identifying the Modbus transmission mode (RTU or ASCII).

Prerequisites:

You know how the baud rate, data bits, stop bits, parity, and flow control settings the serial network requires.

1.Step If you have not already done so, right-click the network node in the Nav tree and select VViewsiews >
PrProperty Sheetoperty Sheet.

The PrProperty Sheetoperty Sheet opens.

2.Step Scroll down and expand and configure the Serial Port Config to correspond to device
requirements.

3.Step Set the Modbus Data Mode property value, either Rtu (default) or Ascii, depending on network
type.

4.Step Click the SaveSave button.

5.Step While in the property network’s property sheet, review its global Modbus settings.

Configuring Ethernet properties
Ethernet properties include the gateway’s IP address and port. These properties apply to the
ModbusTcpNetwork, ModbusTcpGateway, and ModbusTcpSlaveNetwork components.

Prerequisites:
The network exists in the Nav tree.

1.Step If you have not already done so, navigate to the network node, right-click it and click VViewsiews >
PrProperty sheetoperty sheet.
The PrProperty Sheetoperty Sheet opens.

2.Step In the Ip Address property, enter the Modbus gateway’s unique IP address, replace the
###.###.###.### with the IP address.
Each ModbusTcpDevice you add under a ModbusTcpNetwork requires the IP address used by that
device. Usually, each Modbus TCP device uses this address (only) for communications with its
Modbus address (1-247) often left at 1.

3.Step In the Port property, review the default 502 value and change this port identifier as needed.
This is the standard port used by Modbus TCP.

4.Step While this network’s property sheet is open, review its global Modbus settings.

5.Step Click the SaveSave button.

Configuring network properties
For any of the client Modbus networks (ModbusAsyncNetwork, ModbusTcpNetwork, ModbusTcpGateway),
you need to configure network-level defaults for interpreting/supporting Modbus data. These defaults are on
the property sheet of the network-level component.

Prerequisites:
The network exists in the Nav tree.

1.Step If you have not already done so, navigate to the network node, right-click it and click VViewsiews >

Network configuration Niagara Modbus Driver Guide

14 March 25, 2025

PrProperty sheetoperty sheet.
The PrProperty Sheetoperty Sheet opens.

2.Step Configure Float Byte Order, Long Byte Order, Use Preset Multiple Register, and Use
Force Multiple Coil, and click SaveSave.

Niagara Modbus Driver Guide Network configuration

March 25, 2025 15

Network configuration Niagara Modbus Driver Guide

16 March 25, 2025

Chapter 3. Device configuration
Apart from PLCs (Programmable Logic Controllers), Modbus-capable devices provide both industrial and
commercial applications, such as electric-demand meters and lighting controllers, among many others. The
configuration requirements for these devices vary greatly because the Modbus protocol does not specify which
specific function codes are necessary in a device. The data type and format of register-held data are left up to
the vendor. And, quite commonly, different byte-order storage schemes are used for storing 32-bit data types,
such as float and long (integer).

The driver’s client networks (ModbusAsyncNetwork, ModbusTCPNetwork, and ModbusTCPGateway) provide
four configuration properties, set at the network-level, that act as global Modbus defaults for all devices on the
associated network. If needed, any (or all) of these settings can be overridden at the device-level.

Modbus messages
Modbus communication is built around messages. Each message has the same structure. A master in the
network initiates a conversation with a message, which is known as a query. To any specifically addressed
query, the master expects a response from the slave. A slave never initiates a transaction (sends an unsolicited
message). This query-response cycle is the basis for all communication on a Modbus network. It is always the
master that initiates the query, and the slave that responds.

Device address
Each message has the same structure, which is independent of the type of network. On a plain serial network
the message structure is the same as the structure transmitted over TCP/IP (Ethernet). Messages consist of
four parts: device address, function code, data and error check.

The address field in the query from a master defines which slave device should respond to the message. All
other network nodes ignore the message if it is not addressed to them. The address field in the response from
the slave contains the slave device address, which confirms to the master that the slave is replying to the
query.

A device address of zero (0) indicates a broadcast message, which the master sends to all slaves and does not
require a response from any slave.

Function code
Following each address field in a query is a function code, which identifies the type of information requested
by the master. Function codes are also used for verification in slave responses back to the master device.
Example codes are READ COIL STATUS and READ HOLDING REGISTERS.

The Modbus protocol defines 24 function codes. Few devices support all function codes. A vendor’s
documentation for a Modbus device should state which function codes are supported. The following table
shows the function codes supported by this Modbus driver.

Table 1. Driver-supported Modbus function codes
Code Function Name Operation in a controller master

01 READ COIL STATUS Provide normal data polling of all read-only and writable proxy
points.02 READ INPUT STATUS

03 READ HOLDING REGISTERS

04 READ INPUT REGISTERS

05 FORCE SINGLE COIL Manage change of values at inputs and/or invoked actions of
writable proxy points or client preset components.06 PRESET SINGLE REGISTER

07 READ EXCEPTION STATUS Poll device for exception status, output values and bits set.

15 FORCE MULTIPLE COILS Manage change of values at inputs and/or invoked actions of

Niagara Modbus Driver Guide Device configuration

March 25, 2025 17

Code Function Name Operation in a controller master

16 PRESET MULTIPLE REGISTERS writable proxy points or client preset components.

20 READ FILE RECORD Use ModbusClientStringRecord to read and write file records in
which data are converted to ASCII characters and displayed as a
string.

21 WRITE FILE RECORD

If the slave was able to perform the requested function, it returns an exact copy of the function code originally
sent by the master. If the slave was unable to perform the requested function, it returns an exception
response.

Data
This message field describes the particulars for the function code. For example, it may contain a register
address (and a range) to read, or a coil address to write. Data fields return the information requested by the
master.

Error check
This field confirms the integrity of the message as received from the master. If the slave detects an error in a
query, the slave ignores the query and waits for the next query addressed to it.

In the response from the slave, this field confirms the integrity of the message as received from the slave. If the
master detects an error, the master ignores the response.

The error-checking method depends on the Modbus transmission mode. Modbus RTU, the most prevalent
mode, uses a CRC (cyclical redundancy checksum) method. The Modbus TCP/IP protocol has a similar message
format for query and response messages. However, Modbus TCP/IP is freed from error check routines. Instead,
it uses the error-checking mechanisms built into the lower-level TCP/IP and link layers (that is, Ethernet).

Modbus query and response example
The following is an example query and response message pair from a ModbusAsyncNetwork to a Modbus RTU
(serial) device:

• Query

020300030004B43A
For device 02 , function code 03 , starting address 0003 , number of registers 04 , error checksum
B43A

• Response

02030800510052003C003CA387
From device 02 , function code 03 , number bytes returned 08 , data (00510052003C003C), error
checksum A387

Modbus data
The Modbus protocol supports a wide variety of data. The Modbus driver brings these data into the common
object model in a manner that simplifies the sharing of values.

In Modbus nomenclature, the term data refers to the status of coils and inputs, which can be on or off. In the
common object model these equate to two states: active or inactive (true or false). The Modbus protocol does
not dictate how to format input and holding registers in terms of which data type and numerical encoding to
use. A Modbus device vendor can choose any data type and configure the device with one or more
consecutive 16-bit registers.

NOTE: The device vendor should document the data type used for each input and holding register. It is
important to configure device proxy points accordingly.

Numeric data types
The Modbus protocol provides four numeric data types for input and holding registers. The driver supports

Device configuration Niagara Modbus Driver Guide

18 March 25, 2025

these registers using standard Framework Boolean, Numeric and Enum data types.

• Integer represents an unsigned 16-bit numeral using a single register that ranges from 0 to 65,535. In
some systems (or devices), the term “word” refers to this unsigned, 16-bit integer value.

This is, perhaps, the most popular data type. It is the driver’s data type for an unsigned, 16-bit integer
value, and is the default data type for many newly-created Modbus proxy points.

• Float refers to a floating-point computation using a 32-bit single-precision scaling base, sometimes called
“real.” Very small and large numbers are possible. This data type requires two consecutive registers. In
addition, the driver supports two byte-order schemes for float values (3-2-1-0 or 1-0-3-2).

Proxy points automatically allocate two consecutive registers for each data item whenever you specify a
float or long data type. Keep this in mind when specifying the number of points within any range of
Modbus registers.

• Long represents a signed, 32-bit integer ranging from -2,147,483,648 to 2,147,483,647. This data type
requires two consecutive registers and the same byte-order scheme as float data.

• Signed Integer represents a signed, 16-bit integer ranging from -32,768 to 32,767. This integer is
sometimes called “short.”

You define the Data Type for each NumericPoint or NumericWritable in a proxy point’s proxy extension. You
may configure the byte order scheme for two-register numeric values (float and long) at the device level, or
globally at the network level. When dealing with 32-bit values, such as long or float values, configuration
includes identifying the byte-order scheme for the two consecutive registers as processed in the device.

Bit proxy point extensions
Some vendors use a device’s holding or input registers to represent a number of Boolean statuses (on and off
states) in a single register with each bit indicating (mapping to) a separate status. The Modbus driver provides
a special Register Bit proxy point extension to read and write to such registers, accessing each bit
independently for each proxy point.

String proxy point extensions
Although not common, a Modbus device may use a number of consecutive holding registers to represent a
string of alphanumeric (ASCII encoded) characters. The Modbus driver provides a String proxy point extension
to read the character strings used by these string proxy points.

Driver data
With the exception of the String control point with the Modbus String proxy point extension, the driver
represents all data on proxy point inputs and outputs using these data types:

• Boolean — BooleanPoint and BooleanWritable represent the two-state data identified as Modbus coils
and inputs. Less frequently, Boolean data are mapped into the bits of a single input or holding register. All
Modbus Boolean proxy points provide facets, which you can individually edit to match the vendor's
documented state descriptions, such as on and off, enabled and disabled.

• Numeric — NumericPoint and NumericWritable represent numeric data in holding registers or input
registers, whether a Modbus Float proxy point's selected Data Type is integer, long, float, or signed
integer. All Modbus numeric proxy points provide facets, which you can individually edit to define
minimum and maximum values, precision, and data units.

• Enum — (Modbus 3.5.26 or higher) EnumPoint and EnumWritable represent data in holding registers or
input registers using the integer (ordinal) value that results from a range of consecutive bits, which are
specified by a starting bit and number of bits.

Rounding values
The Modbus driver’s NumericWritable proxy points, which write values to holding registers, round (and
possibly restrict) input values before any write. Rounding depends on the proxy point’s selected Data Type:

• Integer data types round input values up or down to the nearest whole number, and restrict all values to
the range from 0 to 65,535.

Niagara Modbus Driver Guide Device configuration

March 25, 2025 19

• Long data types round input values up or down to the nearest whole number.  The range (-2,147,483,648
to 2,147,483,647) matches the driver’s value range.

• Signed Integer data types round input values up or down to the nearest whole number and restrict all
values to the range from -32,768 to 32,767.

• Float data types do not round. Input values remain as they are.

Adding a device
This procedure documents how to add a single device or a group of devices to any type of Modbus network.
For general device manager information, refer to the Drivers Guide.

Prerequisites:
You have address information for each device as well as its data configuration (coils, inputs, input registers, and
holding registers. The device vendor’s documentation is available.

1.Step In the Nav tree or in the Driver ManagerDriver Manager view, double-click the client network.

The appropriate device manager opens (ModModbus Async Device Managerbus Async Device Manager, ModModbus Tbus Tcp Devicecp Device
ManagerManager, or ModModbus Tbus Tcp Gateway Device Managercp Gateway Device Manager).

NOTE: Device types are specific to a particular parent network type—for example, you cannot
copy a ModbusSlaveDevice under a ModbusTcpSlaveNetwork, or a ModbusTcpSlaveDeviceunder
a ModbusSlaveNetwork. This is not a problem when working in the device manager for either of
the slave networks, as the New function (to add devices) automatically selects the proper child
device component.

2.Step Click the NewNew button.

The NewNew window opens. The driver preselects the Type to Add based on the network type
(ModbusAsyncDevice, ModbusTcpDevice, or ModbusTcpGatewayDevice).

3.Step Enter for number to add: 1 (or more, if multiple) and click OKOK.

A second NewNew window opens with additional properties to configure the Modbus. The default
values should be sufficient at least to start with, except that:

• Async, TCP/IP Gateway and slave devices require a unique Modbus address between 1-247.
This address must be unique from any other physical device on that network.

• TCP/IP devices require a unique IP address (the device’s Modbus address can remain at 1).

• TCP/IP devices that use a TCP port other than the standard 502 port require port definition.

You might leave these properties at their defaults, particularly if different devices use the same
settings—in which case you could adjust them (globally) at the network level.

4.Step Enter the device address in the Starting Address property, and click OKOK.

You should see the device(s) listed in the Modbus device manager view with a status of {ok}
and enabled set to true.

If a device shows {down}, check the configuration of the network and/or the device addresses.

5.Step To confirm or modify device properties, double-click the device row in the device manager view.

6.Step After making any changes, click SaveSave.

7.Step Right-click the device row in the device manager and click ActActionsions > PingPing
Receiving any response from the device, including an exception response, is considered proof of
communication. If the system reported that the device was previously {down}, any ping response
is good news.

The default ping address for a client Modbus device is for the first (40001 Modbus) holding
register value (integer). Often this address works well without an exception response. However,
it is recommended that you confirm this ping address, and, if necessary, change in the device’s
property sheet.

Device configuration Niagara Modbus Driver Guide

20 March 25, 2025

Duplicating devices
Configuring multiple devices at once is useful in cases where all devices in the range require a different set of
proxy points, however, in cases where you have like devices, you might create a single device first, configure its
proxy points and other components, and then duplicate it as many times as needed. You can change the device
address of each duplicate to a unique number.

Prerequisites:
You already added and configured device properties for a single device.

Each proxy point requires a unique address. Configuring a base address in a device provides a way to
customize proxy point addresses in one step.

1.Step Right-click the device in the Nav tree and click Duplicate.
The NameName window opens.

2.Step Define a name for the device and click OKOK.
Each proxy point requires a unique address. Configuring a base address in a new device provides
a way to customize proxy point addresses in one step.

3.Step To locate the base address properties, double-click the new device node in the Nav tree and
expand the base address properties (Input Register Base Address, Holding Register Base
Address, Coil Status Base Address, and Input Status Base Address).

All base address properties of a device default to hexadecimal zero (hex: 0). However, you can
use them as an engineering method (along with multiple device objects) to quickly configure
unique proxy point addresses. This works when a Modbus device has data partitioned into
multiple areas with repeating address patterns. This way, the same device (and child proxy
points) can be replicated, and the only address changes made in the base address.

4.Step Select Hex or Decimal for the Address Format.
In this application, you cannot use the option, Modbus for the base address and child proxy point
addresses.

5.Step Define the base Address.
For example, if a device’s Holding Register Base Address is set to Decimal, and its Address is
set to 100 , each child Modbus proxy point that has a holding register Address Format of
Decimal, and an Address of 13 is effectively addressed as Decimal, 113 (Absolute Address).

6.Step When you are finished configuring properties, click SaveSave.

Creating proxy points
As with device objects in other drivers, each client Modbus device has a PointsPoints extension that serves as the
container for proxy points. The default view for any PointsPoints extension is a Point ManagerPoint Manager. You use it to add
Modbus client and slave proxy points under the appropriate Modbus device.

Prerequisites:
If you are creating server (slave) proxy points, you already created the registers for the points.

NOTE: Unlike the point managers in many other drivers, the Modbus point managers do not offer a learn
mode with a DiscoverDiscover button, DiscoverDiscovereded, and DatabaseDatabase panes. The simplicity of the Modbus protocol renders
this function unnecessary. Instead, you use the NewNew button to create proxy points, referring to the vendor’s
documentation for the addresses of data items in each Modbus device.

1.Step Double-click the network node in the Nav tree, under the Exts column, double-click the Points
icon ().

The Point ManagerPoint Manager view opens.

2.Step (Optional) To help organize your points, click the New FolderNew Folder button and create a new points

Niagara Modbus Driver Guide Device configuration

March 25, 2025 21

folder, giving it a short name that works for your application, then double-click it to open its PointPoint
ManagerManager.
You can repeat this step to make multiple points folders or simply skip this step to make all proxy
points in the root table.

Each points folders has its own point manager view.

3.Step To create a point, do one of the following:

• Drag or copy the appropriate point form the palette to the device in the Nav tree.

• Click the NewNew button and select the type of point(s) to add (Type To Add).

Typically, this is the quickest way to add proxy points, because you can specify a number
of points if they can be consecutively addressed.

The NewNew points window opens.

4.Step Select the type of point to add.

5.Step To configure consecutive register numbers, enter the total number of points to add in Number To
Add.
The screen capture shows eight added points. When you specify more than 1 point, additional
points are automatically assigned consecutive addresses—relative to the Starting Address you
specify for the first point.

6.Step For the Starting Address, as a general rule, choose Modbus addressing for Address Format.
This lets you enter target data addresses directly from the device’s documentation, without having
to subtract 40001, for example, or perform other mental math.

For read-only client points, using the Modbus address format frees you from having to set the
register type property (Reg Type), as the Modbus address automatically sets this property going
by the leading numeral of the full Modbus address (3 for input registers, and 4 for holding
registers).

NOTE: When entering a Modbus formatted address for a coil, the driver ignores leading zeros.
For example, the Modbus address 00109 is the same as entering Modbus 109. Unlike Decimal or
Hex address formats (zero-based formats), the Modbus address format is one-based, meaning
that a coil addressed as Modbus 109 has a Decimal address of 108, and a Hex address of 6D.

7.Step If the point(s) is/are numeric select the Data Type, then click OKOK.

This opens another NewNew window.

8.Step Name the point(s), enter data addresses as well as enter other information, such as point facets
and conversion, and click OKOK.
The driver adds the proxy point(s) to the PointsPoints extension (or to the current points folder) where
each shows as a row in the point manager. If addressed correctly, each point should report a
status of {ok} with a polled value displayed.

9.Step If a point reports a {fault} status, check its ProxyExt Fault Cause property value, which
typically includes a Modbus exception code string, such as Read fault: illegal data
address.

10.Step Continue to add proxy points as needed under the PointsPoints extension of each client Modbus device.

11.Step To edit a point, double-click its row in the manager.

Result
If programming online and the device shows a status of {ok}, you can get statuses and values back
immediately to help determine if point configuration is correct. Modbus server proxy points must fall within the
defined address register ranges of the parent server (slave) Modbus device, otherwise they will retain a fault
status.

Device configuration Niagara Modbus Driver Guide

22 March 25, 2025

Example
A Modbus energy meter device has a number of TOU (Time of Use) parameters, including several for TOU
Tariff Change Time configuration. For the eight possible tariff periods (1 - 8), there is a start hour (0 - 23) and
start quarter of an hour (0 - 3). In the meter device, a single 16-bit holding register holds the setup of all eight
tariff periods, mapped from highest bit (15) to lowest bit (0) as follows:

• Bits 8:15 = 0 - 7 (corresponding to tariff #1 - #8)

• Bits 2:7 = 0 - 23 (tariff start hour)

• Bits 0:1 = 0 - 3 (tariff start quarter of an hour)

Three separate proxy points can be created, using either NumericBitsWritables or EnumBitsWritables
(depending on user interface requirements), to provide read/write access to these bit-mapped values. All three
points will specify the same (register) Data Address, but have different Beginning Bit values and Number Of
Bits values.

Configuring a device for polling
Data polling in a client device may be improved by configuring the use a single message to poll consecutively
addressed values. This reduces network messaging traffic. After adding all proxy points under a device,
configure the device for polling. Typically, this improves polling response due to fewer messages to get the
same amount of data.

Prerequisites:
You have created the device and added proxy points. Device polling should be configured until after proxy
points are created, and typically already receiving values from (individual) point polling.

1.Step Double-click the ModModbusAsyncDevicebusAsyncDevice, ModModbusTbusTcpDevicecpDevice, or ModModbusTbusTcpGatewayDevicecpGatewayDevice in the
Nav tree and expand the Device Poll Config property.
The Modbus Tcp Device property sheet opens.

2.Step Configure the Start Address and Consecutive Points To Poll.

3.Step To organize points, add child DevicePolDevicePollConfigEntrylConfigEntry objects manually in this container or
(optionally) use the container’s right-click action: Learn Optimum Device Poll Config.

Niagara Modbus Driver Guide Device configuration

March 25, 2025 23

Device configuration Niagara Modbus Driver Guide

24 March 25, 2025

Chapter 4. Client (master) operations
The Modbus driver supports three types of client devices: ModbusAsyncDevice, ModbusTcpDevice, and
ModbusTcpGatewayDevice. Each client device component represents a remote Modbus slave. The host station
on a Modbus master network regularly polls these slave devices with requests, which provide Modbus data.
Remote client devices listen for these Modbus queries from the master (host station) and send responses. Each
type of client supports proxy points. Data exchange occurs with both writable and read-only proxy points,
client preset objects, and (if needed) reads and writes to file records, for string data.

Each type of client device is specific to a particular type of parent network. You cannot drag a
ModbusAsyncDevice from a palette to a ModbusTcpGateway or a ModbusTcpGatewayDevice to a
ModbusTcpNetwork. This is not a problem when working in the device manager for any of the three client
networks, as the NewNew window (used to add devices) automatically selects the proper child device component.

The three types of Modbus client devices are similar in that each has a single frozen PointsPoints device extension
managed by the default ModModbus Clbus Client Point Managerient Point Manager view. Each PointsPoints device extension supports the same
type of proxy points, as well as preset and file record objects.

In addition to common PointsPoints slots, all three types of Modbus client devices provide similar properties. This
includes overrides of network level Modbus Config settings, ping address setup for the parent network’s
Monitor ping, device base address configurations for Modbus data items, and slots for configuring device-level
polling.

Configuring a client device for polling
A device-level polling of points permits a single Modbus query message to retrieve a number of consecutive
data values. Device-level polling may help overall polling efficiency by reducing the number of polls necessary
at the point-level. The table of device poll configuration entries under the frozen slots ModbusAsyncDevice
and ModbusTcpGatewayDevice specify the polling properties.

Prerequisites:
All needed proxy points exist under a device.

NOTE: In a few cases, a device-level poll did not improve polling efficiency. The target Modbus device took
more time to assemble a long data response than it did to handle a number of separate responses (no device
poll, point-level polling only) for the equivalent data. While not typical, you should be aware that Modbus
devices vary in performance.

1.Step In the Nav side bar, expand the Modbus device so you see its Device PolDevice Poll Configl Config slot (or, open the
property sheet of the Modbus device to see this same slot listed with other properties and slots).

2.Step To clear any existing polling entries, click ActActionsions > ClearClear.

3.Step To configure polling in a single step right-click Device Poll Config, and select ActActionsions > LearnLearn
OptOptimum Device Polimum Device Poll Configl Config.

The learn algorithm looks for any consecutively addressed Modbus proxy points, and creates a
DevicePollConfigEntry when it finds two or more consecutively addressed points. If you have
small gaps between consecutively addressed Modbus proxy points, you may want to manually
adjust the created DevicePollConfigEntries to poll over the small gaps. You can always create,
configure, and remove DevicePollConfigEntries until you find the most efficient device-polling
scheme. This action-learn is the most common method for setting up polling properties. It lets
you replace existing device poll entries (start over) or append to the existing device polls.

4.Step To manually edit polling properties, duplicate or copy them and edit the copies.

Niagara Modbus Driver Guide Client (master) operations

March 25, 2025 25

Adding client presets
Presets allow writing preset values to the target addressed data items upon right-click action (command). If
needed, you can link the Write action of any preset container to other control logic. For example, you can link
the Trigger slot of a TriggerSchedule into a ModbusClientPresetRegisters container component for periodic
writes to its child preset registers based upon some repeating schedule.

In cases where you want to write preset values to specified coils and/or holding registers in a Modbus device
using a linkable Write action, you can add special Preset components under the device. These are not actually
proxy points—you need to copy them from the modbusAsync or modbusTcp palette. In rare cases, you may
also wish to read/write string data from Modbus files in a device. The palettes also have a component
especially for this application, which you can also copy under the Modbus device.

• The Modbus Client Preset Coils preset contains a single ModbusClientPresetCoil to write to one coil—you
can add additional (consecutive) coils using a built-in action

• The Modbus Client Preset Registers preset contains a single ModbusClientPresetRegister to write to one
holding register—you can add additional (consecutive) registers using a built-in action

NOTE: Modbus client preset components are not proxy points. There is no ProxyExt as data is not polled and
read from the device—only written to it. You do not see them in any ModModbus Clbus Client Point Managerient Point Manager view if you
copy them under a client device’s PointsPoints extension. Presets exist for both Modbus coils and holding registers.
These are the only two Modbus data items to which a Modbus master may write.

Instead of adding presets as described in this procedure, you can copy and paste already configured presets
from another client Modbus device, if appropriate.

1.Step Open the modbusAsyncor modbusTcp palette in the Palette side bar.

2.Step In the Nav side bar, expand the client Modbus network to show the Modbus device of interest.

3.Step Do one of the following:

• To configure coils or holding registers, drag or copy one of the preset container
components to the Modbus device in the Nav side bar (or, to the property sheet view of
that device, if open).

• To configure presets for both coils and holding registers, copy the entire Presets folder from
the palette.

Since preset components are not proxy points, you should locate them elsewhere under the
device.

NOTE: If using multiple preset containers under a client Modbus device, be careful not to overlap
preset addresses. In other words, any specific preset address should be in only one preset
container.

4.Step In the NameName window, accept the default name or enter an alternate name, and click OKOK.

The folder is added under the device. By default it contains two preset containers, each with one
preset entry—one for a preset coil, one for a preset holding register. Either preset container can
be deleted (if not needed), or duplicated, as well as have additional preset entries added.

5.Step In any preset container, configure the Starting Address and other property values, and in its
child preset entries (coil or register types), enter the actual preset values.

NOTE: You do not have to copy the entire Presets folder from the palette—this is just the easiest
way to add both preset containers, each with a single preset entry child. You can locate preset
containers anywhere under the Modbus device. However, be aware that if you copy these
components under the PointsPoints container, they are not visible in any ModModbus Clbus Client Point Managerient Point Manager
view.

6.Step To add a preset to an existing Coil or Preset Register container, right-click the container and click
ActActionsions > Add PrAdd Preset Coil Veset Coil Valuealue or ActActionsions > Add PrAdd Preset Register Veset Register Valuealue.

Client (master) operations Niagara Modbus Driver Guide

26 March 25, 2025

The Add PrAdd Preset ...eset ... window opens.

By default, added client preset components are appended to the bottom of the slot order.

7.Step To change the address order of the child presets relative to the absolute address in the preset
container, right-click on a preset container and select Reorder.

Adding file records
A Modbus client string record provides for the reading and writing of Modbus file records (client side support
for Modbus function codes 20 and 21). The input and output is a string converted to and from a byte array.
Writing occurs when the linkable write action is fired, and reading occurs when the linkable read action is fired.

1.Step Open the modbusAsync or modbusTcp palette in the Palette side bar, if not already opened.

2.Step In the Nav side bar, expand the client Modbus network to show the Modbus device of interest.

3.Step From the palette, drag the Modbus File Records folder onto the Modbus device in the Nav side
bar (or, into the property sheet view of that device, if open).

4.Step In the popup NameName window, accept the default Modbus File Records name or enter an alternate
name, and click OKOK.

The folder is added under the device. By default it contains a single ModbusClientStringRecord
component. You can duplicate it if multiple file record objects are needed.

5.Step Double-click the added component to open its property sheet, and enter appropriate
configuration values per the Modbus device vendor’s documentation.

NOTE: You do not have to copy the entire Modbus File Records folder from the palette—this is
simply the easiest way to add the needed component with a descriptive parent folder. You can
locate ModbusClientStringRecord components anywhere under the Modbus device. However, be
aware if you copy these components under the Points container, they are not visible in any Modbus
Client Point Manager view.

Niagara Modbus Driver Guide Client (master) operations

March 25, 2025 27

Client (master) operations Niagara Modbus Driver Guide

28 March 25, 2025

Chapter 5. Server (slave) configuration
The station acts as a Modbus slave (server) to queries received from a connected Modbus master device. In
each uniquely-addressed ModbusSlaveDevice, you specify the ranges for available Modbus data items (coils,
inputs, input registers, and holding registers). In some cases, only a single child ModbusSlaveDevice may exist
to represent the station.

Modbus server (slave) devices include: ModbusSlaveDeviceand ModbusTcpSlaveDevice. Both represent the
station as a virtual Modbus slave, that is, the station listens for Modbus queries from a remote Modbus master,
and sends responses.

Both Modbus server devices are similar, having a single frozen PointsPoints device extension, with the default
Modbus Server Point Manager view. The same type of Modbus server proxy points are used under PointsPoints
device extensions.

In addition to common device slots, both types of Modbus server devices have similar properties for Modbus
configuration. This includes overrides of network level device data settings and register range configurations
for Modbus data items.

Modbus registers
A Modbus device holds transient (real-time) data and often persistent (configuration) data in addressable
registers. The term “register” implies all addressable data, but this is a loose interpretation.

Using Modbus nomenclature, four available groups of data flags and registers contain all accessible data in a
Modbus server. this includes the Modbus-master access.

• Coil status or, simply, coils are single-bit flags that represent the status of digital (Boolean) outputs from
the server (slave), that is, On/Off output status. A Modbus master can both read from and write to coils.

• Input status or, simply, inputs are single-bit flags that represent the status of digital (Boolean) inputs to the
server (slave), that is, On/Off input status. A Modbus master can only read inputs.

• Input registers are 16-bit registers that store data collected from the field by the Modbus server (slave).
The Modbus master can read (only) input registers.

• Holding registers are 16-bit registers that store general-purpose data in the Modbus server (slave). The
Modbus master can both read from and write to holding registers.

Data addresses
A Modbus device is not required to contain all four groups of data. For example, a metering device may
contain only holding registers. However, for each data group implemented, an address convention is used.
Requests for data (made to a device) must specify a data address (and range) of interest.

Group Address convention

Coils 00000 - 0nnnn decimal, or 0x

Inputs 10000 - 1nnnn decimal, or 1x

Input Registers 30000 - 3nnnn decimal, or 3x

Holding Registers 40000 - 4nnnn decimal, or 4x

Data addressing (at least in decimal and hex formats) is zero-based, where the first instance of a data item, for
example coil 1, is addressed as item number 0. As another example, holding register 108 is addressed as 107
decimal or 006B hex. However, it is common for a vendor to list a device’s data items using a 5-digit Modbus
address, for example, holding registers starting with 40001.

Niagara Modbus Driver Guide Server (slave) configuration

March 25, 2025 29

Table 2. Example device register address documentation (portion)
Modbus Addr. Units Description Data Type

40001 kWH

Energy Consumption, LSW Integer (multiplication required)

40002 kWH

Energy Consumption, MSW Integer (multiplication required)

40003 kW

Demand (power) Integer (multiplication required)

40004 VAR

Reactive Power Integer (multiplication required)

40005 VA

Apparent Power Integer (multiplication required)

40006

— Integer (multiplication required)

40007 Volts

Voltage, line to line Integer (multiplication required)

40008 Volts

Voltage, line to neutral Integer (multiplication required)

40009 Amps

Current Integer (multiplication required)

40010 kW

Demand (power), phase A Integer (multiplication required)

40011 kW

Demand (power), phase B Integer (multiplication required)

40012

Demand (power), phase B Integer (multiplication required)

40013

— Power Factor, phase A Integer (multiplication required)

40014

— Power Factor, phase B Integer (multiplication required)

40015

— Power Factor, phase C Integer (multiplication required)

— — — —

Server (slave) configuration Niagara Modbus Driver Guide

30 March 25, 2025

Modbus Addr. Units Description Data Type

40259 kWH

Energy Consumption Float, upper 16 bits

40260 kWH

Energy Consumption Float, lower 16 bits

40261 kW

Demand (power) Float, upper 16 bits

40262 kW

Demand (power) Float, lower 16 bits

Consecutive address numbering
Within any particular data group (coils, inputs, input registers, holding registers), it is typical for a Modbus
device to use consecutive addresses, particularly for related data. For example, in the example, holding
registers 40001-40015 are used consecutively for integer data, where each is a separate, integer, data point.

Register 40259 begins a consecutive series of holding registers used to access floating point data values.
However, an address gap exists in this case. The address gap (while not necessary), was probably implemented
by the device vendor for clarity.

Also, floating-point data values (being 32-bit based) require the use of two consecutive registers for each data
point.

Modbus messaging supports device queries for data using both a starting address and range, which is
dependent on data items being consecutively addressed. This allows for message efficiency when retrieving
multiple data points, as it can be handled in one message response.

The address range for data in any data group (coils, inputs, input registers, holding registers) received in a
query must be implemented by the receiving device—otherwise, it will generate an exception response. For
example, a read request of holding registers 40003—40015 to the device represented by in the table receives
a normal response (data values), while a similar request to registers 40003-40017 results in an illegal data
address response (as holding registers 40016 and 17 are not implemented).

A Modbus driver integration makes use of consecutively addressed data in two ways:

• The NewNew point window provides a Number to Add property, which assigns point register numbers in
consecutive order.

• Data polling in a client device may be improved by using device polls, where data values in consecutively
addressed items are requested in a single message. This reduces network messaging traffic.

Configuring register ranges
This procedure establishes the register ranges for data items in any Modbus server (slave) device. The device’s
proxy points must fall within these register ranges, or else they will have a fault status. This procedure works
for all four register range tables: VValalid Coils Rangeid Coils Range, VValalid Status Rangeid Status Range (Default), VValalid Holdid Holding Registers Rangeing Registers Range
(Default), and VValalid Input Registers Rangeid Input Registers Range (Default).

As needed, for any data item range you can edit property values, add additional valid range entries, or
perhaps disable ranges. For example, you could disable the VValalid Status Rangeid Status Range entry, so that any Modbus
master queries to the device to read discrete status (inputs) would yield an exception response. As another
example, you could add multiple ranges for holding registers.

1.Step Copy the valid range component you need from the modbusSlave or modbusTcpSlave palette to
the slave device in the Nav tree.

Niagara Modbus Driver Guide Server (slave) configuration

March 25, 2025 31

2.Step Do one of the following:

• In the Nav tree, expand the slave network, double-click the slave Modbus device of interest,
and expand the valid range and Default container.

• Right-click the valid range and click ActActionsions > Add RangeAdd Range

If you expanded the property sheet, you see the four range properties: Enabled, Critical
Data, Starting Address Offset, and Size.

If you used the action, the Add RangeAdd Range window opens.

By default, a slave device copied from the modbusSlave or modbusTcp palette has the same
values for each of the four default register range containers: Enabled, Starting Address Offset: 1,
Size: 64.

3.Step Make whatever range entry changes are needed, and click OKOK.

4.Step To add additional register range entries use the right-click Add RangeAdd Range action on any of the four
register range containers.

5.Step To delete a range, right-click the valid range component in the Nav tree and click ActActionsions > ClearClear.
This action removes all existing Modbus Register Range Entry children.

Register range example
If a holding register range is set to a starting address of 250 with a size of 75, the driver assigns an effective
Modbus address range of 40250 to 40325.

NOTE: If using multiple ranges under any of the register range tables, be careful not to overlap range entries.
In other words, any specific register address should be in only one range entry.

Adding server file records
Rarely, you may also wish to expose string data as Modbus files in a virtual Modbus slave device. The
modbusSlave and modbusTcpSlave palettes have a component especially for this application, which you can
also copy under the Modbus device.

1.Step Open the modbusSlave or modbusTcpSlave palette in the Palette side bar.

2.Step In the Nav side bar, expand the slave Modbus network to show the Modbus device of interest.

3.Step From the palette, drag the Modbus File Records folder onto the Modbus device in the Nav side
bar (or, into the property sheet view of that device, if open).

4.Step In the popup NameName window, accept the default Modbus File Records name or enter an alternate
name, and click OKOK.

The folder is added under the device. By default it contains a single ModbusServerStringRecord
component. You can duplicate it if multiple file record objects are needed.

5.Step Double-click the added component to open its property sheet, and enter appropriate
configuration values needed.

NOTE: You do not have to copy the entire Modbus File Records folder from the palette—this is
just the easiest way to add the needed component with a descriptive parent folder. You can locate
ModbusServerStringRecord components anywhere under the Modbus device. However, be aware
if you copy these components under the Points container, they are not visible in any Modbus
Server Point Manager view.

Server (slave) configuration Niagara Modbus Driver Guide

32 March 25, 2025

Chapter 6. Troubleshooting

When creating points, I get the message: Read fault: illegal data address.
Check the address in the point against the documented address for the data item.

The NumericPoint or NumericWritable I’m creating for a float or long (2-register) value
reports a value of zero (0) or an impossibly large value instead of the expected value, yet
the point still reports a status of {ok}.
Verify that the correct byte order settings exist for float and long values in the parent device.

Debugging messages
By enabling trace logging on a Modbus network you can monitor the query and response message cycle in a
station’s standard output, which results form normal data polling.

1.Step Right-click the station in Nav tree and click SpySpy.
The Spy VSpy Vieweriewer opens.

2.Step Click the stdout (standard output) hyperlink.
The standard output trace log opens.

The trace log breaks out the query to show fields on separate lines, and the received (response)
in a single line (in hex format).

In the case of the ModbusTCPNetwork, trace-level output shows a similar query/response
message cycle from data polling, but with a slightly different format. The driver sends a 6-byte
leading TCP header 000000000006 in each query, and omits the checksum byte in both sent
and response messages.

Exception responses
If a Modbus slave receives a query message correctly (that is, it passes error checking), but cannot perform the
required operation, the slave returns an exception response. This may happen, for instance, if the request is to
read a non-existent register or coil.

An exception response message is formatted differently than a normal response, as it contains an exception
code (instead of requested data). The format used is as follows:

1. Its device address, confirming to the master that it is replying to the query.

2. The function code, modified from the originally-requested function code by adding 80 hex to it (this
signals the master to look for a following exception code, versus the originally-requested data).

3. The exception code number. Refers to the exception code sent by the slave, which indicates why it was
unable to deliver a normal response.

The table lists standard Modbus exception codes (01-08) plus extended codes (09-13). The driver’s
Modbus proxy points that reflect an exception response assume a fault status, and have a Fault Cause slot
in the proxy extension that shows the name of the received exception code.

Table 3. Modbus exception codes, standard and extended
Code Name Meaning

01 ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the slave. For example, if a FORCE
SINGLE COILS (05) is received by a slave without coils, this exception code would be issued.

02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the slave. For example, if a READ
INPUT REGISTERS (04) with an input register address higher than contained in the slave is received, this
exception code would be issued.

Niagara Modbus Driver Guide Troubleshooting

March 25, 2025 33

Code Name Meaning

03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for the slave. For example, if a PRESET
SINGLE REGISTER (06) is received with an implied length that is incorrect, this exception code might be
issued.

04 SLAVE DEVICE
FAILURE

An unrecoverable error occurred while the slave was attempting to perform the requested action. For
example, a READ HOLDING REGISTERS (03) is received on data that is deemed corrupted in the slave. The
slave is still able to reply, however.

05 ACKNOWLEDGE The slave has accepted the request and is processing it, but a delay is necessary before response is ready.
Further polling of the slave may result in a rejected message response (06, next exception code).

06 SLAVE DEVICE
BUSY

The slave is busy processing a long-duration query, or is otherwise occupied. This acknowledges to the
master that the query has been received, but that the slave is too busy to respond to it.

07 NEGATIVE
ACKNOWLEDGE

The slave cannot perform the requested function. An example might occur when attempting to write data in
a holding register that is currently write disabled.

08 MEMORY
PARITY ERROR

The slave attempted to read extended memory, but detected a parity error. A retry from the master may be
successful, but the slave likely needs service.

09 noResponse The slave is not responding to a particular query.

10
(0A)

crcError An error-checking CRC error has been detected.

11
(0B)

otherError The query has resulted in an uncategorized error.

12
(0C)

okNotActive No error/No operation. The normal status of a proxy point that is not configured to poll, or of a proxy point
not yet written.

13
(0D)

unknown The slave has responded, but nothing else is known.

4. An error-check field to confirm integrity of the message, as received from the slave. If the master detects
an error in the response, the master ignores the message.

Troubleshooting Niagara Modbus Driver Guide

34 March 25, 2025

Chapter 7. Components
Components include services, folders and other model building blocks associated with a module. You may drag
them to a PrPropertyoperty or WWirire Sheete Sheet from a palette.
Descriptions included in the following topics appear as context-sensitive help topics when accessed by:

• Right-clicking on the object and selecting VViewsiews > Guide HelpGuide Help

• Clicking HelpHelp > Guide On TGuide On Tarargetget

ModbusAsyncNetwork
This component is the base container for one or more ModModbusAsyncDevicebusAsyncDevice components. This network
component specifies the Modbus data mode (RTU or ASCII) used by the network, and houses other standard
network components, including a Serial Port Config container (SerialHelper) to specify the serial settings
used by a remote host for communications.

You access this component by clicking DriversDrivers > ModModbusAsyncNetworkbusAsyncNetwork in the Nav tree. The default view is the
ModModbus Async Device Managerbus Async Device Manager.

Figure 6. ModbusAsyncNetwork properties

Niagara Modbus Driver Guide Components

March 25, 2025 35

Property Value Description

Status read-only Reports the condition of the
entity or process at last polling.

{ok} indicates that the
component is licensed and
polling successfully.

{down} indicates that the last
check was unsuccessful, perhaps
because of an incorrect property,
or possibly loss of network
connection.

{disabled} indicates that the
Enable property is set to false.

{fault} indicates another
problem. Refer to Fault Cause for
more information.

Enabled true (default) or false Activates (true) and deactivates
(false) use of the object
(network, device, point,
component, table, schedule,
descriptor, etc.).

Fault Cause read-only Indicates the reason why a
system object (network, device,
component, extension, etc.) is
not working (in fault). This
property is empty unless a fault
exists.

Health read-only Reports the status of the
network, device or component.
This advisory information,
including a time stamp, can help
you recognize and troubleshoot
problems but it provides no
direct management controls.

The Niagara Drivers Guide documents
the these properties.

Alarm Source Info additional properties Contains a set of properties for
configuring and routing alarms
when this component is the
alarm source.

For property descriptions, refer
to the Niagara Alarms Guide

Components Niagara Modbus Driver Guide

36 March 25, 2025

Property Value Description

Monitor Ping Monitor Configures a network's ping
mechanism, which verifies
network health. This includes
verifying the health of all
connected objects (typically,
devices) by pinging each device
at a repeated interval.

The Niagara Drivers Guide documents
these properties.

Tuning Policies additional properties Configures network rules for
evaluating both write requests to
writable proxy points as well as
the acceptable freshness of read
requests.

For more information, refer to
the Niagara Drivers Guide.

Poll Scheduler additional properties Configures the frequency with
which the driver polls points and
devices.

“Poll Service properties” in the
Niagara Drivers Guide documents
these properties.

Retry Count number Configures how many times to
repeat a network read request if
no response is received before
the response timeout interval
elapses.

Response Timeout hours, minutes, seconds Defines the length of time to
wait before a communication
times out.

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-
point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most
significant byte first, or big-
endian, it is the default.

Niagara Modbus Driver Guide Components

March 25, 2025 37

Property Value Description

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes
transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian order where the
most significant byte is
transmitted first (from 7

Components Niagara Modbus Driver Guide

38 March 25, 2025

Property Value Description

down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,

Niagara Modbus Driver Guide Components

March 25, 2025 39

Property Value Description

and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes

Components Niagara Modbus Driver Guide

40 March 25, 2025

Property Value Description

and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Use Preset Multiple Register true or false (default) Specifies whether to use function
code 16 (Preset Multiple
Registers) instead of function
code 06 (Preset Single Register)
when writing to registers. The
default is false, where function
code 06 (Preset Single Register) is
used. This property depends on
the Modbus function codes
supported by child devices,
which (if available) provide
alternative options in Modbus
messaging.

Function code 16 support (Preset
Multiple Registers) is available in
devices (true or false). The
default is false, where function
code Preset Single Register is in
place.

Use Force Multiple Coil true or false (default) Specifies whether to use function
code 15 (Force Multiple Coils)
instead of function code 05
(Force Single Coil) when writing
to coils. The default is false,
where function code 05 (Force
Single Coil) is used. This property
depends on the Modbus function
codes supported by child
devices, which (if available)
provide alternative options in
Modbus messaging.

Function code 15 support (Preset
Multiple Coils) is available in
devices (true or false). The
default is false, where function
code Preset Single Coil is in
place.

Max Fails Until Device Down number (defaults to 2) Defines how many times a
communication may fail before
the device with which the system

Niagara Modbus Driver Guide Components

March 25, 2025 41

Property Value Description

is communicating is considered
to be down.

InterMessageDelay hours, minutes and seconds (defaults
to 1 second)

Configures the time delay
between messages.

Serial Port Config additional properties Refer to Serial Port Config

Modbus Data Mode drop-down list (defaults to Rtu) Selects the type of serial
network. Rtu (Remote Terminal
Unit)

Ascii (American Standard Code
for Information Interchange)

Sniffer Mode true or false (default) Usually left at the default unless
there is a particular reason to
change it.

Rtu Sniffer Mode Buffer Size number (defaults to 8) Usually left at the default unless
there is a particular reason to
change it.

Serial Port Config
Specifies the serial port/communications setup required to communicate to the serial Modbus devices.

Property Value Description

Status read-only Reports the condition of the
entity or process at last polling.

{ok} indicates that the

Figure 7. Serial Port Config properties

Components Niagara Modbus Driver Guide

42 March 25, 2025

Property Value Description

component is licensed and
polling successfully.

{down} indicates that the last
check was unsuccessful, perhaps
because of an incorrect property,
or possibly loss of network
connection.

{disabled} indicates that the
Enable property is set to false.

{fault} indicates another
problem. Refer to Fault Cause for
more information.

Port Name text (defaults to none) Defines the communication port
to use: none, COM2 or COM3.

Baud Rate drop-down list (defaults to Baud9600) Defines communication speed in
bits per second.

Data Bits drop-down list (defaults to Data
Bits8)

Defines the number of bits
required to encode a character (a
byte).

Stop Bits drop-down list (defaults to Stop Bit1) Defines the number of bits that
indicate the end of a character.

Parity drop-down list (defaults to None) Defines the odd or even requirement
of a transmitted byte of data for the
purpose of error detection.

Flow Control Mode check box Using the selected Modbus
protocol, manages the efficient
transmission of data between
two devices.

ModbusAsyncDevice
This component represents a Modbus serial (async) device under a ModbusAsyncNetwork, and provides client
access by the station (acting as Modbus master). In addition to the typical device components, it contains
properties to specify the device’s Modbus address, data mode (RTU or ASCII), and other properties, including
slots to specify the base address for Modbus data items (holding registers, input registers, inputs, coils), plus a
DevicePollConfigTable for device polling.

Niagara Modbus Driver Guide Components

March 25, 2025 43

You access these properties by expanding DriversDrivers > ModModbusAsyncNetworkbusAsyncNetwork and double-clicking the
ModModbusAsyncDevicebusAsyncDevice in the Nav tree.

In addition to the standard properties (Status, Enabled, Fault Cause, Health and Alarm Source Info), these
properties support the Modbus async device:

Property Value Description

Device Address number from 1 to 247 Defines the unique number that
identifies the current device
object on the network.

Modbus Config additional properties Refer to Modbus Config .

Ping Address, Address Format Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Figure 8. ModbusAsyncDevice properties

Components Niagara Modbus Driver Guide

44 March 25, 2025

Property Value Description

For an example, refer to Base
addresses [/normalized/
reference/reference/reference/
refbody/properties/property/
propdesc/title {"- topic/title "})
Unique point address example
(title].

Ping Address, Address number Defines the base address to use.

Ping Address Data Type drop-down list Defines the type of numeric data.

Ping Address Reg Type drop-down list Defines the type of register.

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Input Register Base Address,
Address Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.
For an example, refer to Base
addresses [/normalized/
reference/reference/reference/
refbody/properties/property/
propdesc/title {"- topic/title "})
Unique point address example
(title]

Input Register Base Address,
Address

number Defines the base address to use.

Holding Register Base Address,
Address Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.
For an example, refer to Base
addresses [/normalized/
reference/reference/reference/
refbody/properties/property/
propdesc/title {"- topic/title "})
Unique point address example
(title].

Holding Register Base Address,
Address

number Defines the base address to use.

Coil Status Base Address, Address
Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Niagara Modbus Driver Guide Components

March 25, 2025 45

Property Value Description

For an example, refer to Base
addresses [/normalized/
reference/reference/reference/
refbody/properties/property/
propdesc/title {"- topic/title "})
Unique point address example
(title].

Coil Status Base Address, Address text Defines the base address to use.

Input Status Base Address Format Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.
For an example, refer to Base
addresses [/normalized/
reference/reference/reference/
refbody/properties/property/
propdesc/title {"- topic/title "})
Unique point address example
(title].

Input Status Base Address number Defines the base address to use.

Device Poll Config additional properties Device Poll Config

Points additional properties Points (client device)

Base addresses
Defining a base address provides a quick way to configure unique point addresses. For example, assume you
have 10 of the same devices each with 20 points. Configuring a unique address for 200 points could take a
substantial amount of time. To speed configuration, you could configure a single device with all its point
addresses set to 01–20, duplicate that device 10 times, then change the base address(es) for each device. The
result: all points have unique addresses.

Table 4. Unique point address example
Device Base Address Resulting point addresses

1 100 101, 102, 103, ... 120

2 200 201, 202, 203, ... 220

3 300 302, 302, 303, ... 320

4 400 401, 402, 493, ... 420

etc. etc. etc.

This works the same for all the base address properties: Input Register, Holding Register, Coil Status,
and Input Status.

Modbus Config
Each client Modbus device object (ModbusAsyncDevice, ModbusTCPDevice, and ModbusTCPGatewayDevice)
has an associated ModModbus Configbus Config container slot to override these network-wide defaults. These properties
adjust the settings for message transactions to (and from) only that device.

Components Niagara Modbus Driver Guide

46 March 25, 2025

Property Value Description

Override Network true or false (default) Determines which values to use
for these properties: Float Byte
Order, Long Byte Order and Use
Force Multiple Coil.

false selects the network-level
values as configured by the
ModbusAsyncNetwork component.

true selects the values defined by
the ModModbus Configbus Config container slot.

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-
point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most
significant byte first, or big-
endian, it is the default.

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes
transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Niagara Modbus Driver Guide Components

March 25, 2025 47

Property Value Description

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most

Components Niagara Modbus Driver Guide

48 March 25, 2025

Property Value Description

significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,

Niagara Modbus Driver Guide Components

March 25, 2025 49

Property Value Description

switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Use Force Multiple Coil true or false (default) Specifies whether to use function
code 15 (Force Multiple Coils)
instead of function code 05
(Force Single Coil) when writing
to coils. The default is false,
where function code 05 (Force
Single Coil) is used. This property
depends on the Modbus function
codes supported by child
devices, which (if available)
provide alternative options in
Modbus messaging.

Function code 15 support (Preset
Multiple Coils) is available in
devices (true or false). The
default is false, where function

Components Niagara Modbus Driver Guide

50 March 25, 2025

Property Value Description

code Preset Single Coil is in
place.

Use Preset Multiple Register true or false (default) Specifies whether to use function
code 16 (Preset Multiple
Registers) instead of function
code 06 (Preset Single Register)
when writing to registers. The
default is false, where function
code 06 (Preset Single Register) is
used. This property depends on
the Modbus function codes
supported by child devices,
which (if available) provide
alternative options in Modbus
messaging.

Function code 16 support (Preset
Multiple Registers) is available in
devices (true or false). The
default is false, where function
code Preset Single Register is in
place.

Device Poll Config
This frozen slot under a client ModModbusAsyncDevicebusAsyncDevice, ModModbusTbusTcpGatewayDevicecpGatewayDevice contains a table of device poll
configuration entries, which specify the device-level polling of points.

You access these properties by double-clicking the device node in the Nav tree and expanding Device Poll
Config.

Figure 9. Device Poll Config Properties

Niagara Modbus Driver Guide Components

March 25, 2025 51

By default (initially) the Device Poll Config container is empty, but it can hold one or more entry children,
which configure and enable device polling.

Property Value Description

DevicePollConfigEntry additional properties DevicePollConfigEntry

Actions

The Device Poll Config table has two available actions:

• Learn Optimum Device Poll Config automatically creates child DevicePollConfigEntry components
based upon the current collection of Modbus proxy points.

• Clear removes all existing child DevicePollConfigEntry components.

DevicePollConfigEntry

This component configures device-level polling for consecutive proxy points, where one or more of these
components may be under the DevicePolDevicePollConfigTlConfigTableable (Device Poll Config) slot of a client ModModbusDevicebusDevice.
Properties specify the starting Modbus address and number of points to poll.

You access these properties by expanding ModModbusAsyncDevicebusAsyncDevice > DevicePolDevicePollConfiglConfig > DevicePolDevicePollConfigEntrylConfigEntry in
the Nav tree.

Property Value Description

Enabled true (default) or false If set to false, associated proxy
points use individual point polls
instead.

Start Address additional properties Refer to Start Address .

Data Type drop-down list Selects the location of the data in

Figure 10. Device Poll Config Entry properties

Components Niagara Modbus Driver Guide

52 March 25, 2025

Property Value Description

the slave device. Coils store on/
off values. Registers store
numeric values. Each coil or
contact is 1 bit with an assigned
address between 0000 and 270E.
Each register is one word (16
bits, 2 bytes) as well as a data
address between 0000 and 270E.

Consecutive Points to Poll number from 0 to 9999 Indicates how many points to
poll beginning with the Start
Address.

Read Group Size number (1 or 2) (defaults to 1) Usually 1 unless all data items are
2-register types (float or long
values), although a 1 works the
same, provides consecutive
points to poll is really
consecutive registers.

Read Status additional properties Reports a numerical Error Code (0-2),
and a corresponding Error
Description.

Start Address

First data item address, including format and numerical address.

Property Value Description

Address Format Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Address text Defines the base address to use.

Points (client device)
This PointsPoints component extension is the Modbus client implementation of PointDeviceExt, and is a frozen
extension under every ModModbusAsyncDevicebusAsyncDevice and ModModbusTbusTcpDevicecpDevice. Its primary view is the
ModModbusClbusClientPointManagerientPointManager.

Proxy Ext (Client Boolean)

This is the proxy extension for either a ModbusClientBooleanPoint (BooleanPoint) or
ModbusClientBooleanWritable (BooleanWritable). It contains necessary information to poll (read) a status data
value from a client Modbus device.

Niagara Modbus Driver Guide Components

March 25, 2025 53

You access these properties by expanding ModModbusAsynNetworkbusAsynNetwork > ModModbusAsyncDevicebusAsyncDevice > PointsPoints in the Nav
tree and double-clicking the ModbusClientBooleanPoint (BooleanPoint) or ModbusClientBooleanWritable
(BooleanWritable).

In addition to the standard properties (Status, Fault Cause and Enabled), these properties are unique to the
Client Boolean proxy extension.

Property Value Description

Device Facets read-only Determine how values are
formatted for display depending
on the context and the type of
data. Examples include
engineering units and decimal
precision for numeric types, and
descriptive value (state) text for
boolean and enum types.

With the exception of proxy
points (with possible defined

Figure 11. Client Boolean Proxy Ext properties

Components Niagara Modbus Driver Guide

54 March 25, 2025

Property Value Description

device facets), point facets do
not affect how the framework
processes the point’s value.

Besides control points, various
other components have facets
too. For example, many kitControl
and schedule components have
facets. Details about point facets
apply to these components too,
unless especially noted.

You access facets by clicking an
EdEditit button or a chevron >>>>. Both
open an EdEdit Facetsit Facets window.

Conversion drop-down list Selects the units to use when
converting values from the
device facets to point facets.

Default automatically converts
similar units (such as Fahrenheit
to Celsius) within the proxy
point.

NOTE: In most cases, the
standard Default is best.

Linear applies to voltage input,
resistive input and voltage
output writable points. Works
with linear-acting devices. You
use the Scale and Offset
properties to convert the output
value to a unit other than that
defined by device facets.

Linear With Unit is an extension
to the existing linear conversion
property. This specifies whether
the unit conversion should occur
on “Device Value” or “Proxy
Value”. The new linear with unit
convertor, will have a property to
indicate whether the unit
conversion should take place
before or after the scale/offset
conversion.

Reverse Polarity applies only to
Boolean input and relay output

Niagara Modbus Driver Guide Components

March 25, 2025 55

Property Value Description

writable points. Reverses the
logic of the hardware binary
input or output.

500 Ohm Shunt applies to voltage
input points only. It reads a
4-to-20mA sensor, where the Ui
input requires a 500 ohm resistor
wired across (shunting) the input
terminals.

Tabular Thermistor applies to only
a Thermistor input point and
involves a custom resistance-to-
temperature value response
curve for Type 3 Thermistor
temperature sensors.

Thermistor Type 3 applies to an
Thermistor Input point, where
this selection provides a “built-
in” input resistance-to-
temperature value response
curve for Type 3 Thermistor
temperature sensors.

Generic Tabular applies to non-
linear support for devices other
than for thermistor temperature
sensors with units in
temperature. Generic Tabular
uses a lookup table method
similar to the “Thermistor
Tabular” conversion, but without
predefined output units.

Turning Policy Name drop-down list (defaults to Default
Policy)

Specifies the tuning policy to use for
the proxy point.

Read Value read-only Reports the value read by the
driver from the device and
formatted based on device
facets. This value agrees with
point facets.

Write Value read-only Displays the last value written
using device facets.

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Data Address drop-down list (defaults to Modbus) Specifies the address of the

Components Niagara Modbus Driver Guide

56 March 25, 2025

Property Value Description

polled data item (prior to any
offset address change as a result
of using device-level Base
Address), as a combination of the
address format and the numerical
address expressed in the
selected format. The formats are:

Modbus

Hex

Decimal

For example, the following are all
equivalent addresses:

• Modbus, 40012

• Hex, 0B

• Decimal, 11

.

NOTE: If you use the Hex or
Decimal format for most read-only
points you need to specify the
Reg Type property, to clarify
whether you are using a holding
register or an input register.

Absolute Address read-only Differs from Data Address only if
using device Base Addresses. It is
the sum of the Data Address value
and the associated Base Address
value (as configured in the parent
Modbus device). This is the actual
address that will be used when
polling for this discrete data point
from the actual Modbus device. The
address of the polled data item is a
combination of:

• Address Format — either
Modbus (default), Hex, or
Decimal.

• Address — numerical
address, expressed in the
selected Data Address format.

Data Source read-only Identifies where the data came
from, such as “Point Poll.”

Status Type drop-down list Selects between Coil or Input to
define the type to read. Coil is
the only valid option (the master

Niagara Modbus Driver Guide Components

March 25, 2025 57

Property Value Description

cannot write to Modbus inputs).
Selection is only necessary if the
Data Address format is set to Hex
or Decimal. The Modbus Address
Format, if used, automatically sets
this property value.

Out read-only Displays the current value of the
proxy point including facets and
status.

The value depends on the type
of control point.

Facets define how the value
displays, including the value’s
number of decimal places,
engineering units, or text
descriptors for Boolean/enum
states. You can edit point facets
to poll for additional properties,
such as the native statusFlags
and/or priorityArray level.

Status reports the current health
and validity of the value. Status is
specified by a combination of
status flags, such as fault,
overridden, alarm, and so on.
If no status flag is set, status is
considered normal and reports
{ok}.

Proxy Ext (Client Enum Bits)

This is the proxy extension for either a ModbusClientEnumBitsPoint (Enum Bits Point) or
ModbusClientEnumBitsWritable (Enum Bits Writable). It supports reading both Modbus holding register or
input register values, and extracting bits specified by the Beginning Bit and Number of Bits properties.
The combination of these bits is the point’s value, as a StatusEnum. The writable variant writes the point’s
(ordinal, integer) value into the raw register bits at the specified Beginning Bit relative position. Like other
Modbus proxy points, both point-level or device-level polling is supported.

Components Niagara Modbus Driver Guide

58 March 25, 2025

You access these properties by expanding ModModbusAsynNetworkbusAsynNetwork > ModModbusAsyncDevicebusAsyncDevice > PointsPoints in the Nav
tree and double-clicking ModbusClientEnumBitsPoint or ModbusClientEnumBitsWritable.

In addition to the standard properties (Status, Fault Caues and Enabled), these properties are specific to the
Client Enum Bits proxy extension:

Property Value Description

Facets — Boolean trueText (default) or falseText Define the text to display for the
Boolean values:

• trueText is the text to display
when output is true

• falseText is the text to
display when output is false.

For example, the facet trueText

Figure 12. Modbus Client Enum Bits properties

Niagara Modbus Driver Guide Components

March 25, 2025 59

Property Value Description

could display “ON” and the facet
falseText “OFF.”

You view Facets on the Slot
Sheet and edit them from a
component PrProperty Sheetoperty Sheet by
clicking the >>>> icon to display the
Config FacetsConfig Facets window.

Turning Policy Name drop-down list (defaults to Default
Policy)

Specifies the tuning policy to use for
the proxy point.

Read Value read-only Reports the value read by the
driver from the device and
formatted based on device
facets. This value agrees with
point facets.

Write Value read-only Displays the last value written
using device facets.

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Data Address drop-down list (defaults to Modbus) Specifies the address of the
polled data item (prior to any
offset address change as a result
of using device-level Base
Address), as a combination of the
address format and the numerical
address expressed in the
selected format. The formats are:

Modbus

Hex

Decimal

For example, the following are all
equivalent addresses:

• Modbus, 40012

• Hex, 0B

• Decimal, 11

.

Components Niagara Modbus Driver Guide

60 March 25, 2025

Property Value Description

NOTE: If you use the Hex or
Decimal format for most read-only
points you need to specify the
Reg Type property, to clarify
whether you are using a holding
register or an input register.

Absolute Address additional properties Differs from Data Address only if
using device Base Addresses. It is
the sum of the Data Address value
and the associated Base Address
value (as configured in the parent
Modbus device). This is the actual
address that will be used when
polling for this discrete data point
from the actual Modbus device. The
address of the polled data item is a
combination of:

• Address Format — either
Modbus (default), Hex, or
Decimal.

• Address — numerical
address, expressed in the
selected Data Address format.

Data Source read-only Identifies where the data came
from, such as “Point Poll.”

Reg Type drop-down Selects the type of register.

Beginning Bit a number from 0 to 15 Identifies the bit in the register
where status information starts.

Number of Bits number from 1–6 Defines the number of bits used
for this enum point.

Out read-only Displays the current value of the
proxy point including facets and
status.

The value depends on the type
of control point.

Facets define how the value
displays, including the value’s
number of decimal places,
engineering units, or text
descriptors for Boolean/enum
states. You can edit point facets
to poll for additional properties,
such as the native statusFlags

Niagara Modbus Driver Guide Components

March 25, 2025 61

Property Value Description

and/or priorityArray level.

Status reports the current health
and validity of the value. Status is
specified by a combination of
status flags, such as fault,
overridden, alarm, and so on.
If no status flag is set, status is
considered normal and reports
{ok}.

Proxy Ext (Client Numeric)

This is the proxy extension for either a ModbusClientNumericPoint (NumericPoint) or
ModbusClientNumericWritable (NumericWritable). It contains information necessary to poll (read) an integer,
long, float, or signed integer data value from a client ModModbusDevicebusDevice.

You access these properties by expanding ModModbusAsynNetworkbusAsynNetwork > ModModbusAsyncDevicebusAsyncDevice > PointsPoints in the Nav
tree and double-clicking the ModbusClientNumericPoint or ModbusClientNumericWritable.

The ModbusClientNumericPoint or ModbusClientNumericWritable, has the following in addition to other
Modbus client point Proxy Ext properties:

Property Value Description

Reg Type drop-down list Selects the type of register.

Data Type drop-down list Selects the location of the data in
the slave device. Coils store on/
off values. Registers store
numeric values. Each coil or
contact is 1 bit with an assigned
address between 0000 and 270E.
Each register is one word (16
bits, 2 bytes) as well as a data
address between 0000 and 270E.

Proxy Ext (Client Numeric Bits)

This is the proxy extension for either a ModbusClientNumericBitsPoint (Numeric Bits Point) or
ModbusClientNumericBitsWritable (Numeric Bits Writable).
It supports reading both Modbus holding register or input register values, and extracting bits specfied by the
Beginning Bit and Number of Bits properties. The combination of these bits is the point’s value, as a
StatusNumeric. The writable variant writes the point’s value into the raw register bits at the specified
Beginning Bit relative position. Like other Modbus proxy points, both point-level or device-level polling is
supported.

You access these properties by expanding ModModbusAsynNetworkbusAsynNetwork > ModModbusAsyncDevicebusAsyncDevice > PointsPoints in the Nav
tree and double-clicking the ModbusClientNumericBitsPoint or ModbusClientNumericBitsWritable.

The ModbusClientNumericBitsPoint or ModbusClientNumericBitsWritable, has the following in addition to

Components Niagara Modbus Driver Guide

62 March 25, 2025

other Modbus client point Proxy Ext properties:

Property Value Description

Reg Type drop-down list Selects the type of register.

Beginning Bit a number from 0 to 15 Identifies the bit in the register
where status information starts.

Number of Bits number from 1–16 Defines the number of bits used
for this enum point.

Proxy Ext (Client Register Bit)

This is the proxy extension for either a ModbusClientRegisterBitPoint (BooleanPoint) or
ModbusClientRegisterBitWritable (BooleanWritable).
It contains information necessary to poll (read) a single bit value from either an input register or holding
register in client Modbus device.

You access these properties by expanding ModModbusAsynNetworkbusAsynNetwork > ModModbusAsyncDevicebusAsyncDevice > PointsPoints in the Nav
tree and double-clicking the ModbusClientRegisterBitPoint or ModbusClientRegisterBitWritable.

The ModbusClientRegisterBitPoint or ModbusClientRegisterBitWritable, has the followingin addition to other
Modbus client point Proxy Ext properties:

Property Value Description

Reg Type drop-down list Selects the type of register.

Bit Number a number from 0 to 15 Defines the bit in the register
that is associated with the
current point.

Proxy Ext (Client String Point)

This is the proxy extension for a ModbusClientStringPoint (StringPoint). It contains information necessary to
poll (read) a string data value from a client Modbus device.

You access these properties by expanding ModModbusAsynNetworkbusAsynNetwork > ModModbusAsyncDevicebusAsyncDevice > PointsPoints in the Nav
tree and double-clicking the ModbusClientStringPoint.

The ModbusClientStringPoint, has the following in addition to other Modbus client point Proxy Ext properties:

Property Value Description

Number Registers number Specifies the number of consecutive
holding registers to read, starting
with the specified Absolute Address
(The number of registers should not
exceed message limits of the target
slave device). Each register produces
two ASCII characters, using high-to-
low byte order and standard ASCII
encoding. For example, a register

Niagara Modbus Driver Guide Components

March 25, 2025 63

Property Value Description

with a value of 4A41 hex (19009
decimal) returns String characters JA,
where: 4A h = J and 41 h = A.

ModbusClientExceptionStatus
ModModbusClbusClientExceptientExceptionStatusionStatus is a component used to read and expose Modbus function code 07 (Exception
Status) data from a Modbus device.

To use, you copy (drag) from the palette, and paste (drop) directly onto a client Modbus device —it must be a
direct child of the ModModbusAsyncDevicebusAsyncDevice, ModModbusTbusTcpDevicecpDevice or ModModbusTbusTcpGatewayDevicecpGatewayDevice.

Property Value Description

Status read-only Reports the condition of the
entity or process at last polling.

{ok} indicates that the
component is licensed and
polling successfully.

{down} indicates that the last
check was unsuccessful, perhaps
because of an incorrect property,
or possibly loss of network
connection.

{disabled} indicates that the
Enable property is set to false.

Figure 13. ModbusClientExceptionStatus property sheet

Components Niagara Modbus Driver Guide

64 March 25, 2025

Property Value Description

{fault} indicates another
problem. Refer to Fault Cause for
more information.

Enabled true or false (defaults to true) Activates (true) and deactivates
(false) use of the object
(network, device, point,
component, table, schedule,
descriptor, etc.).

Fault Cause read-only Indicates the reason why a
system object (network, device,
component, extension, etc.) is
not working (in fault). This
property is empty unless a fault
exists.

Poll Frequency Configures how frequently the
system polls proxy points.

Bytes Returned number (defaults to 1) Specifies the exception status of the
device whether it uses 1 or 2 bytes,
and also the poll frequency to be
used.

Last Successful Read read-only date and time Reports the last successful read.

Read Status additional properties Provides a numeric Error Code and
Error Description, as well as
timestamps of both the last
successful and last failed read
attempts.

Error Code read-only number Reports the number associated
with a read or write error.

Error Description read-only Reports a short text description
of the read or write error.

Out additional properties Exposes the exception status data as
StatusBooleans on (Bit 0 to Bit 15) as
well as a StatusNumeric Out slot.

ModbusClientPresetRegisters
In this preset container you specify the numerical data type for all child preset registers, and whether individual
child preset register values are written to the Modbus slave upon any change, or only collectively when the
Write action of the ModbusClientPresetRegisters container is invoked.

Niagara Modbus Driver Guide Components

March 25, 2025 65

You access these properties by expanding the Presets folder in the Nav tree and double-clicking the
ModbusClientPresetRegisters.

Property Value Description

Starting Address additional properties
Specifies the address of the first
holding register to write (prior to
any offset address change as a
result of using device-level Base
Address), as a combination of:

• Address Format— either
Hex (default), Decimal, or
Modbus

• Address — numerical
address, expressed in the
selected format.

Absolute Starting Address read-only Differs from Data Address only if
using the device Base Addresses. It
is the sum of the Data Address value
and the associated Base Address
value (as configured in the parent
Modbus device). This is the actual
address that uses when writing the
first register’s preset value.

Status read-only Displays the status of the container
slot—can be fault if a previous write
to a child preset register failed for
some reason.

Write On Input Change true or false (default) Configures when to write a value

Figure 14. ModbusClientPresetRegisters properties

Components Niagara Modbus Driver Guide

66 March 25, 2025

Property Value Description

to the register.

true writes a value when data
coming in changes.

false ignores value changes.

Data Type drop-down Selects the location of the data in
the slave device. Coils store on/
off values. Registers store
numeric values. Each coil or
contact is 1 bit with an assigned
address between 0000 and 270E.
Each register is one word (16
bits, 2 bytes) as well as a data
address between 0000 and 270E.

Actions

Two right-click actions on a Modbus Client Preset Registers container are as follows:

• Write

To write all the preset register values currently in child ModbusClientPresetCoil components.

• Add Preset Register Value

To add an additional child ModbusClientPresetRegister component, specifying its numerical value in the
popup window. The component is added to the end of the existing slot order.

ModbusClientPresetRegister

ModModbusClbusClientPrientPresetRegisteresetRegister is a child component of ModModbusClbusClientPrientPresetRegistersesetRegisters, used to specify a preset
numeric value to write to a holding register in a client Modbus device.

You can add any number of these register components under the ModbusClientPresetRegisters parent, where
each specifies a numeric value to write. Data type can be integer, float, long, or signed integer, as specified by
the configuration of the parent ModModbusClbusClientPrientPresetRegistersesetRegisters container.

Niagara Modbus Driver Guide Components

March 25, 2025 67

You access these properties by expanding ModbusClientPresetRegisters component in the Nav tree and
double-clicking the ModbusClientPresetRegister.

Property Value Description

Value number Specifies a numeric value to write.

Last Successful Write read-only date and time Reports the last successful write.

Last Failed Write read-only date and time Reports the last failed write.

Write Status read-only, writable or ok Reports if the object is read-only or
can be written to.

Read only indicates the proxy
extension cannot be written to.

Writable or ok indicates that the
object can be written to. For
writable objects, this property
indicates either that the last write
occurred within the effective
period or, if a write operation
failed, it provides descriptive
text.

Error Code read-only number Reports the number associated
with a read or write error.

Error Description text Reports a short text description
of the read or write error.

Figure 15. ModbusClientPresetRegister properties

Components Niagara Modbus Driver Guide

68 March 25, 2025

ModbusClientPresetCoils
This component contains one or more preset coil values (ModbusClientPresetCoil components). In this
container, you specify a Starting Address for the first (topmost) child preset coil value. The driver
sequentially addresses any additional child preset coil values relative to this slot. The driver always uses the
Absolute Addressfor actual addressing, which is typically the same as the Starting Address, unless coils in
the parent Modbus device are augmented with a base address.

In this preset container you also specify whether individual child preset coil values are written to the Modbus
slave upon any change, or only collectively when the Write action of the ModbusClientPresetCoils container is
invoked.

You access these properties by expanding the Presets folder in the Nav tree and double-clicking the
ModbusClientPresetCoils.

Property Value Description

Starting Address additional properties
Specifies the address of the first
holding register to write (prior to
any offset address change as a
result of using device-level Base
Address), as a combination of:

• Address Format— either
Hex (default), Decimal, or
Modbus

• Address — numerical
address, expressed in the
selected format.

Absolute Starting Address read-only Differs from Data Address only if
using the device Base Addresses. It
is the sum of the Data Address value
and the associated Base Address
value (as configured in the parent
Modbus device). This is the actual

Figure 16. ModbusClientPresetCoils properties

Niagara Modbus Driver Guide Components

March 25, 2025 69

Property Value Description

address that uses when writing the
first register’s preset value.

Status read-only Displays the status of the container
slot—can be fault if a previous write
to a child preset register failed for
some reason.

Write On Input Change true or false (default) Configures when to write a value
to the register.

true writes a value when data
coming in changes.

false ignores value changes.

Actions

Two right-click actions on a Modbus Client Preset Coils container are as follows:

• Write

To write all the preset coil values currently in child ModbusClientPresetCoil components.

• Add Preset Coil Value

To add an additional child ModbusClientPresetCoil component, specifying its Boolean value in the popup
window. The component is added to the end of the existing slot order.

ModbusClientPresetCoil

ModbusClientPresetCoil is a child component of ModModbusClbusClientPrientPresetCoilsesetCoils. Use it to specify a single preset
Modbus coil data value (false or true) to write to the parent client Modbus device. You can add any number
of these preset coil components under the ModModbusClbusClientPrientPresetCoilsesetCoils parent, where each specifies a Boolean
value to write.

You access these properties by expanding the ModModbusClbusClientPrientPresetCoilsesetCoils container in the Nav tree and double-
clicking the ModbusClientPresetCoil.

Components Niagara Modbus Driver Guide

70 March 25, 2025

Property Value Description

Value true or false (default) Controls if you can specify a value.

true permits value specification.

false prohibits value
specification.

Last Successful Write read-only date and time Reports the last successful write.

Last Failed Write read-only date and time Reports the last failed write.

Write Status addition properties Reports if the proxy extension is
read-only or can be written to.

Error Code read-only Reports the number associated
with a read or write error.

Error Description text Reports a short text description
of the read or write error.

ModbusClientStringRecord
This is a component for reading/writing Modbus file records (client side). The input and output is a string
converted to/from a byte array. Writing occurs when the linkable write action is fired. Reading occurs when the
linkable read action is fired.
As needed, you can copy this component from the modmodbusAsyncbusAsync or modmodbusTbusTcpcp palette into a
ModbusAsyncDevice, ModbusTcpDevice, or ModbusTcpGatewayDevice.

Niagara Modbus Driver Guide Components

March 25, 2025 71

Property Value Description

Data read-only Displays the value of the
converted string as ASCII
characters.

File Number number (defaults to 0) Identifies the source file for the
data as a value from 0 to 65535.

Starting Record Number number (defaults to 0) Displays the record at which the
converted string begins as a
number fro 0 to 9999.

Components Niagara Modbus Driver Guide

72 March 25, 2025

Property Value Description

Record Length number (defaults to 0) Displays the length of the
converted record from 0 to
65535.

Write On Input Change true or false (default) Configures when to write a value
to the register.

true writes a value when data
coming in changes.

false ignores value changes.

Padding drop-down list (defaults to Pad with
spaces)

Indicates the type of characters
used to fill out the record.

Input text box Displays the data coming in as a
string from a byte array.

Output text box Displays the data going out as a
string converted to a byte array.

Last Successful Write read-only date and time Reports the last successful write.

Last Failed Write read-only date and time Reports the last failed write.

Write Status additional properties Reports if the object is read-only or
can be written to.

Last Successful Read read-only date and time Reports the last successful read.

Last Failed Read read-only date and time Reports the last failed read.

Read Status additional properties Reports a numerical Error Code (0-2),
and a corresponding Error
Description.

ModbusAsyncDeviceFolder
This is the ModbusAsync implementation of a folder under a ModbusAsyncNetwork. You can use these folders
to organize ModbusAsyncDevices in the network.
Typically, you add such folders using the New FolderNew Folder button in the ModModbus Async Device Managerbus Async Device Manager view of the
network. Each device folder has its own device manager view. The ModbusAsyncDeviceFolder is also available
in the modmodbusAsyncbusAsync palette.

ModbusClientPointFolder
This is the Modbus client implementation of a folder under the PointsPoints container (ModbusClientPointDeviceExt)
of a ModModbusAsyncDevicebusAsyncDevice and ModModbusTbusTcpDevicecpDevice.
You typically add such folders using the New FolderNew Folder button in the ModModbus Clbus Client Point Managerient Point Manager. Each points
folder also has its own Point Manager view.

Niagara Modbus Driver Guide Components

March 25, 2025 73

ModbusSlaveNetwork
This component configures a Modbus slave network. A slave-type Modbus network allows the station to
appear as one or more virtual Modbus slave devices, each providing some number of Modbus virtual data
items. On the Modbus network the station simply waits for (and responds to) client requests from a master
device. All proxy points are Modbus server types, where point polling monitors for external writes to some
proxy points. Data exchange with the Modbus master occurs in this fashion with proxy points, and in rare cases
with reads and writes to server file records (for string data).

The ModbusSlaveNetwork has the standard collection of network components, such as for status, health,
monitor, tuning policies, and poll scheduler. For more details, refer to the Niagara Drivers Guide.

You can access these properties by double-clicking DriverDriver > ModModbusSlaveNetworkbusSlaveNetwork in the Nav tree.

Property Value Description

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-

Figure 17. ModbusSlaveNetwork property sheet

Components Niagara Modbus Driver Guide

74 March 25, 2025

Property Value Description

point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most
significant byte first, or big-
endian, it is the default.

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes
transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte

Niagara Modbus Driver Guide Components

March 25, 2025 75

Property Value Description

Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian

Components Niagara Modbus Driver Guide

76 March 25, 2025

Property Value Description

format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,

Niagara Modbus Driver Guide Components

March 25, 2025 77

Property Value Description

3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Serial Port Config additional properties Refer to Serial Port Config

Modbus Data Mode drop-down list (defaults to Rtu) Selects the type of serial
network. Rtu (Remote Terminal
Unit)

Ascii (American Standard Code
for Information Interchange)

Sniffer Mode true or false (default) Usually left at the default unless
there is a particular reason to
change it.

Serial Port Config
Specifies the serial port/communications setup required to talk to the attached serial Modbus master.

Figure 18. Serial Port Config properties

Components Niagara Modbus Driver Guide

78 March 25, 2025

In addition to the standard property (Status), these properties are unique to serial port configuration:

Property Value Description

Port Name text Defines the communication port
to use: none, COM2 or COM3.

Baud Rate drop-down list (defaults to Baud9600) Defines communication speed in
bits per second.

Data Bits drop-down list (defaults to Data
Bits8)

Defines the number of bits
required to encode a character (a
byte).

Stop Bits drop-down list (defaults to Stop Bit1) Defines the number of bits that
indicate the end of a character.

Parity drop-down list (defaults to None) Defines the odd or even
requirement of a transmitted
byte of data for the purpose of
error detection.

Flow Control Mode check box Using the selected Modbus
protocol, manages the efficient
transmission of data between
two devices.

ModbusSlaveDeviceFolder
This is the ModbusSlave implementation of a folder under a ModbusSlaveNetwork. You can use these folders
to organize ModbusSlaveDevices in the network.
Typically, you add such folders using the New FolderNew Folder button in the ModModbus Slave Device Managerbus Slave Device Manager view of the
network. Each device folder has its own device manager view. The ModbusSlaveDeviceFolder is also available
in the modmodbusSlavebusSlave palette.

ModbusSlaveDevice
This component configures a Modbus slave device. You can specify many ranges of Modbus data items (coils,
inputs, input registers, holding registers) in any or all ModbusSlaveDevice components.

Niagara Modbus Driver Guide Components

March 25, 2025 79

You access these properties by expanding DriversDrivers > ModModbusSlaveNetworkbusSlaveNetwork and double-clicking the
ModModbusSlaveDevicebusSlaveDevice in the Nav tree.

In addition to the standard properties (Status, Enabled, Fault Cause, Health and Alarm Source Info), these
properties support the Modbus async device:

Property Value Description

Device Address number from 1 to 247 Defines the unique number that
identifies the current device
object on the network.

Modbus Config additional properties Refer to Modbus Config .

Valid Coils Range additional properties Refer to ValidCoilsRange .

Valid Status Range additional properties Refer to ValidCoilsRange for
properties.

Valid Holding Registers Range additional properties Refer to ValidCoilsRange for
properties.

Valid Input Registers Range additional properties Refer to ValidCoilsRange for
properties.

Figure 19. ModbusSlaveDevice properties

Components Niagara Modbus Driver Guide

80 March 25, 2025

Property Value Description

Points additional properties
Provides a container for proxy
points.

Modbus Config
Property Value Description

Override Network true or false (default) Determines which values to use
for these properties: Float Byte
Order, Long Byte Order and Use
Force Multiple Coil.

false selects the network-level
values as configured by the
ModbusAsyncNetwork component.

true selects the values defined by
the ModModbus Configbus Config container slot.

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-
point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most
significant byte first, or big-
endian, it is the default.

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes

Niagara Modbus Driver Guide Components

March 25, 2025 81

Property Value Description

transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes

Components Niagara Modbus Driver Guide

82 March 25, 2025

Property Value Description

are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping

Niagara Modbus Driver Guide Components

March 25, 2025 83

Property Value Description

the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

ValidCoilsRange
This component is one of the frozen container slots available on a Modbus server (slave) device.

Queries received by the device must be for data items within the defined (and enabled) valid address ranges.
Otherwise the station returns an exception response. In addition, server Modbus proxy points under the
device must be configured to fall within these address ranges, or else they will have a fault status.

Components Niagara Modbus Driver Guide

84 March 25, 2025

You can see these range components under the device when expanded in the Nav tree, as well as in the
device’s property sheet.

By default, as copied from the modbusSlave or modbusTcpSlave palette, a Modbus server device has a single
Default-named Register Range Entry in each valid range container, with each having an enabled range of
from 1 to 64, for Valid Coils Range. The same default applies to the Valid Holding Registers Range,
and so on.

Property Value Description

Enabled true (default) or false false sets any associated server
proxy points to fault status causing
any queries received to this address
range to return an exception
response.

Starting Address Offset number Defines the first register in the
specified range.

Size number Defines the number of registers in
the range.

ModbusRegisterRangeEntry

This component configures the valid (usable) Modbus data items by specifying an address range starting from
the offset and ranging through the size.
It is a child of a ModbusRegisterRangeTable (Valid Coils Range, Valid Status Range, Valid Holding Registers,
Valid Input Registers) slot of a server Modbus device.

Points (Server)
This PointsPoints extension is the Modbus server implementation of PointDeviceExt, and is a frozen extension under
every ModbusSlaveDevice and ModbusTcpSlaveDevice.
Its primary view is the ModModbus Server Point Managerbus Server Point Manager.

Figure 20. Modbus Register Range Tables of Modbus server device

Niagara Modbus Driver Guide Components

March 25, 2025 85

Proxy Ext (Server Boolean)

This is the proxy extension for either a ModbusServerBooleanPoint (BooleanPoint) or
ModbusServerBooleanWritable (BooleanWritable). It contains information necessary information to poll (read) a
status data value from a server Modbus device.

You access these properties by expanding ModModbusSlaveNetworkbusSlaveNetwork > ModModbusSlaveDevicebusSlaveDevice > PointsPoints in the Nav
tree and double-clicking the ModbusServerBooleanPoint or ModbusServerBooleanWritable.

In addition to the standard properties (Status, Fault Cause and Enabled), these properties are unique to the
Client Boolean proxy extension.

Property Value Description

Device Facets Config Facets window Determine how values are
formatted for display depending
on the context and the type of
data. Examples include
engineering units and decimal
precision for numeric types, and
descriptive value (state) text for
boolean and enum types.

Figure 21. Proxy Ext (Server Boolean) Properties

Components Niagara Modbus Driver Guide

86 March 25, 2025

Property Value Description

With the exception of proxy
points (with possible defined
device facets), point facets do
not affect how the framework
processes the point’s value.

Besides control points, various
other components have facets
too. For example, many kitControl
and schedule components have
facets. Details about point facets
apply to these components too,
unless especially noted.

You access facets by clicking an
EdEditit button or a chevron >>>>. Both
open an EdEdit Facetsit Facets window.

Conversion drop-down list Selects the units to use when
converting values from the
device facets to point facets.

Default automatically converts
similar units (such as Fahrenheit
to Celsius) within the proxy
point.

NOTE: In most cases, the
standard Default is best.

Linear applies to voltage input,
resistive input and voltage
output writable points. Works
with linear-acting devices. You
use the Scale and Offset
properties to convert the output
value to a unit other than that
defined by device facets.

Linear With Unit is an extension
to the existing linear conversion
property. This specifies whether
the unit conversion should occur
on “Device Value” or “Proxy
Value”. The new linear with unit
convertor, will have a property to
indicate whether the unit
conversion should take place
before or after the scale/offset
conversion.

Niagara Modbus Driver Guide Components

March 25, 2025 87

Property Value Description

Reverse Polarity applies only to
Boolean input and relay output
writable points. Reverses the
logic of the hardware binary
input or output.

500 Ohm Shunt applies to voltage
input points only. It reads a
4-to-20mA sensor, where the Ui
input requires a 500 ohm resistor
wired across (shunting) the input
terminals.

Tabular Thermistor applies to only
a Thermistor input point and
involves a custom resistance-to-
temperature value response
curve for Type 3 Thermistor
temperature sensors.

Thermistor Type 3 applies to an
Thermistor Input point, where
this selection provides a “built-
in” input resistance-to-
temperature value response
curve for Type 3 Thermistor
temperature sensors.

Generic Tabular applies to non-
linear support for devices other
than for thermistor temperature
sensors with units in
temperature. Generic Tabular
uses a lookup table method
similar to the “Thermistor
Tabular” conversion, but without
predefined output units.

Turning Policy Name drop-down list (defaults to Default
Policy)

Specifies the tuning policy to use for
the proxy point.

Read Value read-only Reports the value read by the
driver from the device and
formatted based on device
facets. This value agrees with
point facets.

Write Value read-only Displays the last value written
using device facets.

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Components Niagara Modbus Driver Guide

88 March 25, 2025

Property Value Description

Data Address drop-down list (defaults to Modbus) Specifies the address of the
polled data item (prior to any
offset address change as a result
of using device-level Base
Address), as a combination of the
address format and the numerical
address expressed in the
selected format. The formats are:

Modbus

Hex

Decimal

For example, the following are all
equivalent addresses:

• Modbus, 40012

• Hex, 0B

• Decimal, 11

.

NOTE: If you use the Hex or
Decimal format for most read-only
points you need to specify the
Reg Type property, to clarify
whether you are using a holding
register or an input register.

Data Source read-only Identifies where the data came
from, such as “Point Poll.”

Status Type drop-down list Selects between Coil or Input to
define the type to read. Coil is
the only valid option (the master
cannot write to Modbus inputs).
Selection is only necessary if the
Data Address format is set to Hex
or Decimal. The Modbus Address
Format, if used, automatically sets
this property value.

Out read-only Displays the current value of the
proxy point including facets and
status.

The value depends on the type
of control point.

Facets define how the value
displays, including the value’s

Niagara Modbus Driver Guide Components

March 25, 2025 89

Property Value Description

number of decimal places,
engineering units, or text
descriptors for Boolean/enum
states. You can edit point facets
to poll for additional properties,
such as the native statusFlags
and/or priorityArray level.

Status reports the current health
and validity of the value. Status is
specified by a combination of
status flags, such as fault,
overridden, alarm, and so on.
If no status flag is set, status is
considered normal and reports
{ok}.

Proxy Ext (Server Numeric)

This is the proxy extension for either a ModbusServerNumericPoint (NumericPoint) or
ModbusServerNumericWritable (NumericWritable). It contains information necessary to poll (read) an integer,
long, float, or signed integer data value from a server .

Components Niagara Modbus Driver Guide

90 March 25, 2025

You access these properties by expanding ModModbusSlaveNetworkbusSlaveNetwork > ModModbusSlaveDevicebusSlaveDevice > PointsPoints in the Nav
tree and double-clicking the ModbusServerNumericPoint or ModbusServerNumericWritable.

The ModbusServerNumericPoint or ModbusServerNumericWritable, has the following in addition to other
Modbus serverpoint Proxy Ext properties:

Property Value Description

Reg Type drop-down list Selects the type of register.

Data Type drop-down list Selects the location of the data in
the slave device. Coils store on/
off values. Registers store
numeric values. Each coil or
contact is 1 bit with an assigned
address between 0000 and 270E.
Each register is one word (16
bits, 2 bytes) as well as a data
address between 0000 and 270E.

Figure 22. Proxy Ext (Server Numeric) properties

Niagara Modbus Driver Guide Components

March 25, 2025 91

Proxy Ext (Server Register Bits)

This is the proxy extension for either a ModbusServerRegisterBitPoint (BooleanPoint) or
ModbusServerRegisterBitWritable (BooleanWritable).

It contains information necessary to poll (read) a single bit value from either an input register or holding
register in client Modbus device.

You access these properties by expanding ModModbusSlaveNetworkbusSlaveNetwork > ModModbusSlaveDevicebusSlaveDevice > PointsPoints in the Nav
tree and double-clicking the ModbusServerRegisterBitPoint or ModbusServerRegisterBitWritable.

The ModbusServerRegisterBitPoint or ModbusServerRegisterBitWritable, has the following in addition to other
Modbus client point Proxy Ext properties:

Property Value Description

Reg Type drop-down Selects the type of register.

Bit Number a number from 0 to 15 Defines the bit in the register
that is associated with the
current point.

Figure 23. Proxy Ext (Server Register Bits) properties

Components Niagara Modbus Driver Guide

92 March 25, 2025

ModbusServerPointFolder
This is the Modbus server implementation of a folder under the PointsPoints container ModbusServerPointFolder of
a ModbusSlaveDevice and ModbusTcpSlaveDevice.
You typically add such folders using the New FolderNew Folder button in the ModModbus Server Point Managerbus Server Point Manager. Each points
folder also has its own Point Manager view.

ModbusServerStringRecord

A Modbus Server String Record allows writing Modbus file records (server side support for Modbus function
codes 20 and 21). The input and output is a string converted to/from a byte array. Writing occurs when the
linkable write action is fired.

This component allows you to locally set the value of a string file record, and also accepts read and write
messages for the specified file record. It also converts the data to ASCII characters to display as a string.

To use, copy from the modmodbusSlavebusSlave or modmodbusTbusTcpSlavecpSlave palette and place anywhere under the Modbus server
device

NOTE: it is not a proxy point—if you put under the device’s PointsPoints container it will not be visible in any
ModModbus Server Point Managerbus Server Point Manager view.

Figure 24. ModbusServerStringRecord properties

Niagara Modbus Driver Guide Components

March 25, 2025 93

Property Value Description

Data read-only Displays the value of the
converted string as ASCII
characters.

File Number number (defaults to 0) Identifies the source file for the
data as a value from 0 to 65535.

Starting Record Number number (defaults to 0) Displays the record at which the
converted string begins as a
number fro 0 to 9999.

Record Length number (defaults to 0) Displays the length of the
converted record from 0 to
65535.

Write On Input Change true or false Configures when to write a value
to the register.

true writes a value when data
coming in changes.

false ignores value changes.

Padding drop-down list (defaults to Pad with
spaces)

Indicates the type of characters
used to fill out the record.

Input text box Displays the data coming in as a
string from a byte array.

Output text box Displays the data going out as a
string converted to a byte array.

ModbusTcpNetwork
This component manages a TCP/IP network. In the property sheet of the ModbusTcpNetwork, you review the
default global values for Modbus device data (the network automatically binds to the local TCP/IP address of
the controller).

Components Niagara Modbus Driver Guide

94 March 25, 2025

The ModbusTcpNetwork has the standard collection of network components, such as for status, health,
monitor, tuning policies, and poll scheduler.

Other ModbusTcpNetwork properties such as Retry Count, Response Timeout, and Max Fails Until Device
Down are typically left at defaults, unless particular reasons dictate the change.

You access local device properties by expanding DriversDrivers > ModModbusTbusTcpNetworkcpNetwork in the Nav tree and double-
clicking the ModbusTcpNetwork.

Property Value Description

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-
point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most

Figure 25. ModbusTcpNetwork property sheet

Niagara Modbus Driver Guide Components

March 25, 2025 95

Property Value Description

significant byte first, or big-
endian, it is the default.

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes
transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-

Components Niagara Modbus Driver Guide

96 March 25, 2025

Property Value Description

endian order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.

Niagara Modbus Driver Guide Components

March 25, 2025 97

Property Value Description

Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian

Components Niagara Modbus Driver Guide

98 March 25, 2025

Property Value Description

format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Use Force Multiple Coil true or false (default) Specifies whether to use function
code 15 (Force Multiple Coils)
instead of function code 05
(Force Single Coil) when writing
to coils. The default is false,
where function code 05 (Force
Single Coil) is used. This property
depends on the Modbus function
codes supported by child
devices, which (if available)
provide alternative options in
Modbus messaging.

Function code 15 support (Preset
Multiple Coils) is available in
devices (true or false). The
default is false, where function
code Preset Single Coil is in
place.

Use Preset Multiple Register true or false (default) Specifies whether to use function
code 16 (Preset Multiple
Registers) instead of function
code 06 (Preset Single Register)
when writing to registers. The
default is false, where function
code 06 (Preset Single Register) is
used. This property depends on
the Modbus function codes
supported by child devices,
which (if available) provide
alternative options in Modbus
messaging.

Function code 16 support (Preset
Multiple Registers) is available in
devices (true or false). The
default is false, where function
code Preset Single Register is in
place.

Niagara Modbus Driver Guide Components

March 25, 2025 99

ModbusTcpDeviceFolder
This is the ModbusTcp implementation of a folder under a ModbusTcpNetwork. You can use these folders to
organize ModbusTcpDevices in the network.
Typically, you add such folders using the New FolderNew Folder button in the ModModbus Tbus Tcp Device Managercp Device Manager view of the
network. Each device folder has its own device manager view. The ModbusTcpDeviceFolder is also available in
the modmodbusTbusTcpcp palette.

ModbusTcpDevice
This component represents a Modbus TCP device under a ModbusTcpNetwork, for client access by the station
(acting as Modbus master).

Each client Modbus device object (ModbusAsyncDevice, ModbusTCPDevice, and ModbusTCPGatewayDevice)
has an associated Modbus Config container slot to override these network-wide defaults. These properties
adjust the settings for message transactions to (and from) only that device.

Figure 26. ModbusTcpDevice property sheet

Components Niagara Modbus Driver Guide

100 March 25, 2025

You access these properties by expanding DriversDrivers > ModModbusTbusTcpNetworkcpNetwork and double-clicking the
ModModbusTbusTcpDevicecpDevice in the Nav tree.

In addition to the standard properties (Status Enabled, Fault Cause, Health and Alarm Source Info), these
properties support the Modbus TCP device:

Property Value Description

Device Address number from 1 to 247 Defines the unique number that
identifies the current device
object on the network.

Modbus Config additional properties Refer to Modbus Config .

Ping Address, Address Format Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Ping Address, Address number Defines the base address to use.

Ping Address Data Type drop-down list Defines the type of numeric data.

Ping Address Reg Type drop-down list Defines the type of register.

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Input Register Base Address,
Address Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Input Register Base Address,
Address

number Defines the base address to use.

Holding Register Base Address,
Address Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Holding Register Base Address,
Address

number Defines the base address to use.

Coil Status Base Address, Address
Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Coil Status Base Address, Address text Defines the base address to use.

Input Status Base Address Format Hex (default), Decimal, or Modbus Selects the format of an address

Niagara Modbus Driver Guide Components

March 25, 2025 101

Property Value Description

used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Input Status Base Address number Defines the base address to use.

Device Poll Config additional properties Refer to Device Poll Config .

Points additional properties Provides a container for proxy
points.

IP Address IP address Identifies a device, which is
connected to a network that uses
the Internet Protocol for
communication.

Port number (defaults to 502) Specifies the TCP port used by
Modbus message transactions.
Leave at the default (502) unless the
TCP/Ethernet-side of the Modbus
TCP/serial gateway uses another
TCP port.

Socket Status read-only Reports the current condition of
the TCP/IP socket.

Disable Transaction Id Check true or false (default) Disables (true) and enables (false)
use of the Transaction Id when
synchronizing client/server
messages.

The most important bytes in a
TCP frame are the Unit Identifier,
Function Code and Data bytes. If
your network does not need
Transaction ID, use this property
to disable it.

Max Transaction Id number Defines the largest number to assign
as the Transaction ID.

ModbusTcpGateway
ModModbusTbusTcpGatewaycpGateway is the base container for one or more ModbusTcpGatewayDevice components. This
network-level component specifies the TCP/IP address and port used to connect to the Modbus TCP/serial
gateway, which has Modbus serial devices (typically Modbus RTU, via RS-485) on its far side. Those devices are
represented by its child ModbusTcpGatewayDevices

Components Niagara Modbus Driver Guide

102 March 25, 2025

The ModbusTcpGateway has the standard collection of network components, such as for status, health,
monitor, tuning policies, and poll scheduler. Other ModbusTcpGateway properties such as Retry Count,
Response Timeout, and Max Fails Until Device Down are typically left at defaults, unless particular reasons
dictate the change.

You access these properties by expanding DriversDrivers > ModModbusTbusTcpNetworkcpNetwork > ModModbusTbusTcpDevicecpDevice and double-
clicking theModModbusTbusTcpGatewaycpGateway container in the Nav tree.

Property Value Description

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-
point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most

Figure 27. ModbusTcpGateway property sheet

Niagara Modbus Driver Guide Components

March 25, 2025 103

Property Value Description

significant byte first, or big-
endian, it is the default.

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes
transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-

Components Niagara Modbus Driver Guide

104 March 25, 2025

Property Value Description

endian order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.

Niagara Modbus Driver Guide Components

March 25, 2025 105

Property Value Description

Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian

Components Niagara Modbus Driver Guide

106 March 25, 2025

Property Value Description

format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Use Force Multiple Coil true or false (default) Specifies whether to use function
code 15 (Force Multiple Coils)
instead of function code 05
(Force Single Coil) when writing
to coils. The default is false,
where function code 05 (Force
Single Coil) is used. This property
depends on the Modbus function
codes supported by child
devices, which (if available)
provide alternative options in
Modbus messaging.

Function code 15 support (Preset
Multiple Coils) is available in
devices (true or false). The
default is false, where function
code Preset Single Coil is in
place.

Use Preset Multiple Register true or false (default) Specifies whether to use function
code 16 (Preset Multiple
Registers) instead of function
code 06 (Preset Single Register)
when writing to registers. The
default is false, where function
code 06 (Preset Single Register) is
used. This property depends on
the Modbus function codes
supported by child devices,
which (if available) provide
alternative options in Modbus
messaging.

Function code 16 support (Preset
Multiple Registers) is available in
devices (true or false). The
default is false, where function
code Preset Single Register is in
place.

Niagara Modbus Driver Guide Components

March 25, 2025 107

Property Value Description

Ip Address IP address Identifies a device, which is
connected to a network that uses
the Internet Protocol for
communication.

Port number (defaults to 502) Specifies the TCP port used by
Modbus message transactions.
Leave at the default (502) unless the
TCP/Ethernet-side of the Modbus
TCP/serial gateway uses another
TCP port.

ModbusTcpGatewayDevice

The ModbusTcpGatewayDevice represents a Modbus serial (RTU or ASCII) device on the far side of a
ModbusTcpGateway (network), for TCP client access by the station (acting as Modbus master).

You can access these properties by expanding DriverDriver > ModModbusTbusTcpNetworkcpNetwork and double-clicking the
ModModbusTbusTcpGatewayDevicecpGatewayDevice.

Figure 28. ModbusTcpGatewayDevice property sheet

Components Niagara Modbus Driver Guide

108 March 25, 2025

Property Value Description

Status read-only Reports the condition of the
entity or process at last polling.

{ok} indicates that the
component is licensed and
polling successfully.

{down} indicates that the last
check was unsuccessful, perhaps
because of an incorrect property,
or possibly loss of network
connection.

{disabled} indicates that the
Enable property is set to false.

{fault} indicates another
problem. Refer to Fault Cause for
more information.

Enabled true or false (defaults to true) Activates (true) and deactivates
(false) use of the object
(network, device, point,
component, table, schedule,
descriptor, etc.).

Fault Cause read-only Indicates the reason why a
system object (network, device,
component, extension, etc.) is
not working (in fault). This
property is empty unless a fault
exists.

Health read-only Reports the status of the
network, device or component.
This advisory information,
including a time stamp, can help
you recognize and troubleshoot
problems but it provides no
direct management controls.

The Niagara Drivers Guide documents
the these properties.

Alarm Source Info additional properties Contains a set of properties for
configuring and routing alarms
when this component is the
alarm source.

For property descriptions, refer
to the Niagara Alarms Guide

Niagara Modbus Driver Guide Components

March 25, 2025 109

Property Value Description

Device Address number from 1 to 247 Defines the unique number that
identifies the current device
object on the network.

Modbus Config additional properties Refer to Modbus Config .

Ping Address, Address Format Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Ping Address, Address number Defines the base address to use.

Ping Address Data Type drop-down list Defines the type of numeric data.

Ping Address Reg Type drop-down list Defines the type of register.

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Input Register Base Address,
Address Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Input Register Base Address,
Address

number Defines the base address to use.

Holding Register Base Address,
Address Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Holding Register Base Address,
Address

number Defines the base address to use.

Coil Status Base Address, Address
Format

Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Coil Status Base Address, Address text Defines the base address to use.

Input Status Base Address Format Hex (default), Decimal, or Modbus Selects the format of an address
used to automatically configure
unique register addresses for the
device’s points. The driver merges
this address with the point address.

Input Status Base Address number Defines the base address to use.

Components Niagara Modbus Driver Guide

110 March 25, 2025

Property Value Description

Device Poll Config additional properties Refer to Device Poll Config .

Points additional properties Refer to Points (client device) .

ModbusTcpGatewayDeviceFolder

This is the ModbusTcp implementation of a folder under a ModbusTcpGateway network. You can use these
folders to organize ModbusTcpGatewayDevices in the network.
Typically, you add such folders using the New FolderNew Folder button in the ModModbusTbusTcp Gateway Device Managercp Gateway Device Manager view
of the network. Each device folder has its own device manager view. The ModbusTcpGatewayDeviceFolder is
also available in the modmodbusTbusTcpcp palette.

ModbusTcpSlaveNetwork
This component is the base container for all Tcp Slave components (devices and proxy points). It resides under
the station DriverDriver container. Its default view is the ModModbus Tbus Tcp Slave Device Managercp Slave Device Manager. In the property sheet of
the ModbusTcpSlaveNetwork, you review the default global values for Modbus device data, and specify other
TCP connection settings. You can specify many ranges of Modbus data items (coils, inputs, input registers,
holding registers) in any or all ModbusTcpSlaveDevice components.

You can access these properties by double-clicking DriverDriver > ModModbusTbusTcpSlaveNetworkcpSlaveNetwork.

The ModbusTcpSlaveNetwork has the standard collection of network components, such as for status, health,
monitor, tuning policies, and poll scheduler.

Figure 29. ModbusTcpSlaveNetwork property sheet

Niagara Modbus Driver Guide Components

March 25, 2025 111

In addition, the following properties have special importance.

Property Value Description

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-
point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most
significant byte first, or big-
endian, it is the default.

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes
transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least

Components Niagara Modbus Driver Guide

112 March 25, 2025

Property Value Description

significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

Niagara Modbus Driver Guide Components

March 25, 2025 113

Property Value Description

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most

Components Niagara Modbus Driver Guide

114 March 25, 2025

Property Value Description

significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Port number (defaults to 502) Specifies the TCP port used by
Modbus message transactions. 502 is
the standard Modbus TCP port.
Leave at the default (502) unless the
Modbus TCP master uses another
TCP port.

Socket Timeout In Millis defaults to 30000 (milliseconds, or 30
seconds—the minimum).

You can adjust upwards if necessary.

Maximum Connections number Specifies the maximum connection.

ModbusTcpSlaveDevice
The ModbusTcpSlaveDevice represents a virtual Modbus device to serve data to a Modbus master over a TCP
connection, where station data appears as Modbus data items. It has 4 frozen range containers
(ModbusRegisterRangeTables), which specify what Modbus addresses are available as coils, inputs, holding
registers, and input registers.

Its Points extension (ModbusServerPointDeviceExt) contains Modbus proxy points with server proxy
extensions (ModbusServerBooleanProxyExt, ModbusServerNumericProxyExt,
ModbusServerRegisterBitProxyExt), used to read and write data to the defined data items. The device can also
contain one or more ModbusServerStringRecord components.

Niagara Modbus Driver Guide Components

March 25, 2025 115

You can access these properties by expanding DriverDriver > ModModbusSlaveNetworkbusSlaveNetwork and double-clicking the
ModModbusSlaveDevicebusSlaveDevice.

Property Value Description

Status read-only Reports the condition of the
entity or process at last polling.

{ok} indicates that the
component is licensed and
polling successfully.

{down} indicates that the last
check was unsuccessful, perhaps
because of an incorrect property,
or possibly loss of network
connection.

{disabled} indicates that the
Enable property is set to false.

{fault} indicates another
problem. Refer to Fault Cause for
more information.

Enabled true or false (defaults to true) Activates (true) and deactivates
(false) use of the object
(network, device, point,
component, table, schedule,
descriptor, etc.).

Figure 30. ModbusTcpSlaveDevice property sheet

Components Niagara Modbus Driver Guide

116 March 25, 2025

Property Value Description

Fault Cause read-only Indicates the reason why a
system object (network, device,
component, extension, etc.) is
not working (in fault). This
property is empty unless a fault
exists.

Health read-only Reports the status of the
network, device or component.
This advisory information,
including a time stamp, can help
you recognize and troubleshoot
problems but it provides no
direct management controls.

The Niagara Drivers Guide documents
the these properties.

Alarm Source Info additional properties Contains a set of properties for
configuring and routing alarms
when this component is the
alarm source.

For property descriptions, refer
to the Niagara Alarms Guide

Device Address number from 1 to 247 Defines the unique number that
identifies the current device
object on the network.

Modbus Config additional properties Refer to Modbus Config .

Valid Coils Range additional properties Refer to ValidCoilsRange .

Valid Status Range additional properties Refer to ValidCoilsRange for
properties.

Valid Holding Registers Range additional properties Refer to ValidCoilsRange for
properties.

Valid Input Registers Range additional properties Refer to ValidCoilsRange for
properties.

Points additional properties Provides a container for proxy
points.

Niagara Modbus Driver Guide Components

March 25, 2025 117

Components Niagara Modbus Driver Guide

118 March 25, 2025

Chapter 8. Plugins (views)
Plugins provide views of components and can be accessed in many ways. For example, double-click a
component in the Nav tree to see its default view. In addition, you can right-click on a component and select
from its VViewsiews menu.

For summary documentation on any view, select HelpHelp > On VOn Viewiew (F1F1) from the menu or press F1F1 while the view
is open.

Modbus Async Device Manager
This view creates and edits Modbus async devices.

Columns

To view, double-click the ModModbusAsyncNetworkbusAsyncNetwork node in the Nav tree or right-click this node and click VViewsiews >
ModModbus Async Device Managerbus Async Device Manager.

Column Description

Name Displays the name of the Async device.

Type Displays the type of the Async device.

Exts Displays the point extension.

Status Indicates the condition at the last check.

Enabled Displays the Enabled status of the device.

Health Displays the health of the device.

Device Address Displays the device address.

Modbus Config Displays the settings for message transactions to (and from) the device.

Poll Frequency Displays the poll services that is used in the device.

Ping Address Displays the ping address of the device.

Ping address Data Type Displays the data type.

Buttons
Button Description

New Folder Adds new folder in the Modbus Network

New Adds a new device

Edit Edits the added devices

Modbus Client Point Manager
This view creates and edits proxy points under a client Modbus device. It is the default view on the PointsPoints
container of a ModModbusAsyncDevicebusAsyncDevice, ModModbusTbusTcpDevicecpDevice, and ModModbusTbusTcpGatewayDevicecpGatewayDevice, as well as on any
points folder under these PointsPoints containers.

Figure 31. Modbus Async Device Manager

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 119

Columns

To access this view, expand ConfigConfig > DriversDrivers > ModModbusTbusTcpNetworkcpNetwork or ModModbusAsyncNetworkbusAsyncNetwork , expand
ModModbusAsyncDevicebusAsyncDevice or ModModbusTbusTcpDevicecpDevice and double-click PointsPoints

NOTE: Unlike the point managers in many other drivers, the ModModbus Clbus Client Point Managerient Point Manager offers no learn
mode. The protocol’s simplicity makes these functions unnecessary. Instead, you use the NewNew button to create
proxy points, referring to the vendor’s documentation for the addresses of data items in each Modbus device.

By default, only a few of the available columns in the ModModbus Clbus Client Point Manager arient Point Manager aree enabled for display,
notably Name, Out and Absolute Address. However, you may wish to change this by clicking on the Table
Options menu in the table’s upper right. For example, during the configuration process you may wish to see
Fault Cause and Data Source.

Column Description

Path Displays the ord path of point.

Name Displays the name of point.

Type Indicates the type of point.

Out Reports the current out value, including any point facets. This defaults to the single (configured) property value along
with status for the proxy point.

Enabled Reports if the proxy point is currently enabled for communication.

Tuning Policy
Name

Displays the name of the tuning policy

Absolute Address Displays the actual address that uses when polling for this discrete data point from the actual Modbus device.

Fault Cause Indicates the condition at the last check.

Poll Frequency Displays the poll services that is used in the device.

Data Address Displays the address of the polled data item

Reg Type Displays the register type.

Data Type Displays the location of data.

Status Type Displays the location of points.

Bit Number Displays the bit number.

Beginning Bit Displays the bit in the register.

Number of Bits Displays the number of bits used for point.

Data Source Displays the data source.

Number Registers Displays the number of consecutive holding registers to read.

Device Facets Represents the facets learned from the point.

Facets Displays the facet value.

Conversion Displays the units to use when converting values from the device facets to point facets.

Read Value Displays the value read by the driver.

Figure 32. Modbus Client Point Manager view

Plugins (views) Niagara Modbus Driver Guide

120 March 25, 2025

Column Description

Write Value Displays the value to be written.

Buttons
• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

HTML 5 Modbus Client Point Ux Manager
In Niagara 4.14 and later, there is added browser support for Modbus Tcp Client Device Manager View. The
HTML 5 version of this view is a web-browser-based implementation and it provides the same functions as the
Workbench view. This view creates and edits proxy points under a client Modbus device. It is the default view
on the PointsPoints container of a ModModbusAsyncDevicebusAsyncDevice, ModModbusTbusTcpDevicecpDevice, as well as on any points folder under
these PointsPoints containers.

To access this view, expand ConfigConfig > DriversDrivers > ModModbusTbusTcpNetworkcpNetwork or ModModbusAsyncNetworkbusAsyncNetwork , expand
ModModbusAsyncDevicebusAsyncDevice or ModModbusTbusTcpDevicecpDevice and click PointsPoints

Columns
Column Description

Path Displays the ord path of point.

Name Displays the name of point.

Type Indicates the type of point.

Out Reports the current out value, including any point facets. This defaults to the single (configured) property value along
with status for the proxy point.

Enabled Reports if the proxy point is currently enabled for communication.

Tuning Policy
Name

Displays the name of the tuning policy

Absolute Address Displays the actual address that uses when polling for this discrete data point from the actual Modbus device.

Fault Cause Indicates the condition at the last check.

Poll Frequency Displays the poll services that is used in the device.

Data Address Displays the address of the polled data item

Reg Type Displays the register type.

Data Type Displays the location of data.

Status Type Displays the location of points.

Bit Number Displays the bit number.

Beginning Bit Displays the bit in the register.

Number of Bits Displays the number of bits used for point.

Data Source Displays the data source.

Figure 33. Modbus Client Point Ux Manager

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 121

Column Description

Number Registers Displays the number of consecutive holding registers to read.

Device Facets Represents the facets learned from the point.

Facets Displays the facet value.

Conversion Displays the units to use when converting values from the device facets to point facets.

Read Value Displays the value read by the driver.

Write Value Displays the value to be written.

Buttons
• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

Toolbar for Modbus Tcp Client Point Ux Manager
Toolbar Icon and Name Description

New Folder

It creates a new folder in the database pane.

Trace

Displays all descendants or immediate children of the selected parent proxy point.

Create new objects

It creates new object in the database pane.

Edit objects

Opens the device’s database record for updating.

Undo

Reverses the previous command.

Redo

Restores a command action after the Undo command has removed it.

Multi-selection Mode

Enables you to individually select multiple points without holding down the ctrl key.

Export

Exports the current view or object.

Modbus Slave Device Manager
This view creates and edits Modbus Slave Devices. It is the default view for the ModModbusSlaveNetworkbusSlaveNetwork.

Plugins (views) Niagara Modbus Driver Guide

122 March 25, 2025

Columns

To access this view, double-click a ModModbusSlaveNetworkbusSlaveNetwork node in the Nav tree or right-click and select VViewsiews >
ModModbus Slave Device Managerbus Slave Device Manager.

Column Description

Name Displays the name of the slave device.

Type Displays the type of the slave device.

Exts Displays the point extension.

Status Indicates the condition at the last check.

Enabled Displays the Enabled status of the device.

Health Displays the health of the device.

Device Address Displays the device address.

Modbus Config Displays the settings for message transactions to (and from) the device.

Poll Frequency Displays the poll services that is used in the device.

Ping Address Displays the ping address of the device.

Ping address Data Type Displays the data type.

Buttons
Button Description

New Folder Adds new folder in the Modbus Network

New Adds a new device

Edit Edits the added devices

Modbus Server Point Manager
This view creates and edits proxy points under a server Modbus device. It is the default view on the PointsPoints
container for a ModModbusSlaveDevicebusSlaveDevice and ModModbusTbusTcpSlaveDevicecpSlaveDevice, as well as on any points folder under those
PointsPoints containers.

Figure 34. Modbus Slave Device Manager view

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 123

Buttons

To access this view, expand ConfigConfig > DriversDrivers > ModModbusSlaveNetworkbusSlaveNetwork or ModModbusTbusTcpSlaveNetworkcpSlaveNetwork , expand
ModModbusClbusClientDeviceientDevice or ModModbusTbusTcpClcpClientDeviceientDevice and click PointsPoints

Column Description

Path Displays the ord path of point.

Name Displays the name of point.

Type Indicates the type of point.

Out Reports the current out value, including any point facets. This defaults to the single (configured) property value along
with status for the proxy point.

Enabled Reports if the proxy point is currently enabled for communication.

Tuning Policy
Name

Displays the name of the tuning policy

Absolute Address Displays the actual address that uses when polling for this discrete data point from the actual Modbus device.

Fault Cause Indicates the condition at the last check.

Poll Frequency Displays the poll services that is used in the device.

Data Address Displays the address of the polled data item

Reg Type Displays the register type.

Data Type Displays the location of data.

Status Type Displays the location of points.

Bit Number Displays the bit number.

Beginning Bit Displays the bit in the register.

Number of Bits Displays the number of bits used for point.

Data Source Displays the data source.

Number Registers Displays the number of consecutive holding registers to read.

Device Facets Represents the facets learned from the point.

Facets Displays the facet value.

Conversion Displays the units to use when converting values from the device facets to point facets.

Read Value Displays the value read by the driver.

Write Value Displays the value to be written.

Figure 35. Modbus Server Point Manager view

Plugins (views) Niagara Modbus Driver Guide

124 March 25, 2025

• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

HTML 5 Modbus Server Point Ux Manager
In Niagara 4.14 and later, there is added browser support for Modbus Tcp Client Device Manager View. The
HTML 5 version of this view is a web-browser-based implementation and it provides the same functions as the
Workbench view. This view creates and edits proxy points under a server Modbus device. It is the default view
on the PointsPoints container for a ModModbusClbusClientDeviceientDevice and ModModbusTbusTcpClcpClientDeviceientDevice, as well as on any points folder
under those PointsPoints containers.

To access this view, expand ConfigConfig > DriversDrivers > ModModbusSlaveNetworkbusSlaveNetwork or ModModbusTbusTcpSlaveNetworkcpSlaveNetwork , expand
ModModbusClbusClientDeviceientDevice or ModModbusTbusTcpClcpClientDeviceientDevice and click PointsPoints

Columns
Column Description

Path Displays the ord path of point.

Name Displays the name of point.

Type Indicates the type of point.

Out Reports the current out value, including any point facets. This defaults to the single (configured) property value along
with status for the proxy point.

Enabled Reports if the proxy point is currently enabled for communication.

Tuning Policy
Name

Displays the name of the tuning policy

Absolute Address Displays the actual address that uses when polling for this discrete data point from the actual Modbus device.

Fault Cause Indicates the condition at the last check.

Poll Frequency Displays the poll services that is used in the device.

Data Address Displays the address of the polled data item

Reg Type Displays the register type.

Data Type Displays the location of data.

Status Type Displays the location of points.

Bit Number Displays the bit number.

Beginning Bit Displays the bit in the register.

Number of Bits Displays the number of bits used for point.

Data Source Displays the data source.

Number Registers Displays the number of consecutive holding registers to read.

Device Facets Represents the facets learned from the point.

Facets Displays the facet value.

Conversion Displays the units to use when converting values from the device facets to point facets.

Figure 36. Modbus Server Point Ux Manager

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 125

Column Description

Read Value Displays the value read by the driver.

Write Value Displays the value to be written.

Buttons
• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

Toolbar for Server Point Ux Manager
Toolbar Icon and Name Description

New Folder

It creates a new folder in the database pane.

Trace

Displays all descendants or immediate children of the selected parent proxy point.

Create new objects

It creates new object in the database pane.

Edit objects

Opens the device’s database record for updating.

Undo

Reverses the previous command.

Redo

Restores a command action after the Undo command has removed it.

Multi-selection Mode

Enables you to individually select multiple points without holding down the ctrl key.

Export

Exports the current view or object.

Modbus Tcp Gateway Device Manager
This view creates and edits Modbus Tcp Gateway Devices. It is the default view on the ModModbusTbusTcpGatewaycpGateway.

Plugins (views) Niagara Modbus Driver Guide

126 March 25, 2025

Columns

To access this view, double-click a ModModbusTbusTcpGatewaycpGateway or right-click and select VViewsiews > ModModbus Tbus Tcp Gatewaycp Gateway
Device ManagerDevice Manager.

Column Description

Name Displays the name of the device.

Type Displays the type of the device.

Exts Displays the point extension.

Status Indicates the condition at the last check.

Enabled Displays the Enabled status of the device.

Health Displays the health of the device.

Device Address Displays the device address.

Modbus Config Displays the settings for message transactions to (and from) the device.

Poll Frequency Displays the poll services that is used in the device.

Ping Address Displays the ping address of the device.

Ping address Data Type Displays the data type.

Buttons
Button Description

New Folder Adds new folder in the Modbus Network

New Adds a new device

Edit Edits the added devices

Modbus Tcp Slave Device Manager
This view creates and edits Modbus Tcp Slave Devices. It is the default view on the ModModbusTbusTcpSlaveNetworkcpSlaveNetwork.

Columns
To access this view, double-click a ModModbusTbusTcpSlaveNetworkcpSlaveNetwork or right-click and select VViewsiews > ModModbus Tbus Tcp Slavecp Slave
Device ManagerDevice Manager.

Figure 37. Modbus Tcp Gateway Device Manager view

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 127

Column Description

Name Displays the name of the device.

Type Displays the type of the device.

Exts Displays the point extension.

Status Indicates the condition at the last check.

Enabled Displays the Enabled status of the device.

Health Displays the health of the device.

Device Address Displays the device address.

Modbus Config Displays the settings for message transactions to (and from) the device.

Poll Frequency Displays the poll services that is used in the device.

Ping Address Displays the ping address of the device.

Ping address Data Type Displays the data type.

Buttons
Button Description

New Folder Adds new folder in the Modbus Network

New Adds a new device

Edit Edits the added devices

HTML5- Modbus Tcp Device Ux Manager
In Niagara 4.14 and later, there is added browser support for Modbus Tcp Device Manager View. The HTML 5
version of this view is a web-browser-based implementation and it provides the same functions as the
Workbench view.

To access this view, expand ConfigConfig > DriversDrivers and double-click ModModbusTbusTcpNetworkcpNetwork or right-click
ModModbusTbusTcpNetworkcpNetwork > VViewsiews > ModModbus Tbus Tcp Device Managercp Device Manager.

Columns
Column Name Description

Name Reports the name of the entity or logical grouping.
Type Displays the type of database.

Exts Displays the device extension’s hyperlinks, including: Points, Alarms, Schedules, Trend Logs
and Config.

Enabled Indicates if the network, device, point or component is active or inactive.

Figure 38. ModbusTcpUxDeviceUxManager

Plugins (views) Niagara Modbus Driver Guide

128 March 25, 2025

Column Name Description

Status Reports the current condition of the entity as of the last refresh: {alarm}, {disabled}, {down},
{fault}, {ok}, {stale}, {unackedAlarm}

Health Displays the status of the network, device or component.

Device Address Displays the unique number that identifies the current device object on the network

Modbus Config Displays the settings for message transactions to (and from) only that device.

Poll Frequency Displays how frequently the system polls proxy points.

Ping Address Displays the base address to use.

Ping Address
Data Type

Displays the type of numeric data.

IP Address Displays the Ip address of the device, which is connected to a network that uses the Internet Protocol for
communication.

Port Displays the TCP port used by Modbus message transaction.

Socket Status Displays the current condition of the TCP/IP socket.

Buttons
• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

Toolbar for Modbus Tcp Device Ux Manager
Toolbar Icon and Name Description

New Folder

It creates a new folder in the database pane.

Trace

Displays all descendants or immediate children of the selected parent proxy point.

Create new objects

It creates new object in the database pane.

Edit objects

Opens the device’s database record for updating.

Undo

Reverses the previous command.

Redo

Restores a command action after the Undo command has removed it.

Multi-selection Mode

Enables you to individually select multiple points without holding down the ctrl key.

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 129

Toolbar Icon and Name Description

Export

Exports the current view or object.

HTML5- Modbus Tcp Client Device Ux Manager
In Niagara 4.14 and later, there is added browser support for Modbus Tcp Client Device Manager View. The
HTML 5 version of this view is a web-browser-based implementation and it provides the same functions as the
Workbench view.

To access this view, expand ConfigConfig > DriversDrivers and double-click ModModbusTbusTcpSlaveNetworkcpSlaveNetwork or right-click
ModModbusTbusTcpSlaveNetworkcpSlaveNetwork > VViewsiews > ModModbus Tbus Tcp Clcp Client Device Managerient Device Manager.

Columns
Column
Name Description

Name Reports the name of the entity or logical grouping.
Type Displays the type of database.

Exts Displays the device extension’s hyperlinks, including: Points, Alarms, Schedules, Trend Logs and
Config.

Enabled Indicates if the network, device, point or component is active or inactive.
Status Reports the current condition of the entity as of the last refresh: {alarm}, {disabled}, {down}, {fault},

{ok}, {stale}, {unackedAlarm}
Health Displays the status of the network, device or component.

Device
Address

Displays the unique number that identifies the current device object on the network

Modbus
Config

Displays the settings for message transactions to (and from) only that device.

Buttons
• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

Figure 39. ModbusTcpClientUxDeviceUxManager

Plugins (views) Niagara Modbus Driver Guide

130 March 25, 2025

Toolbar for Modbus Tcp Client Device Ux Manager
Toolbar Icon and Name Description

New Folder

It creates a new folder in the database pane.

Trace

Displays all descendants or immediate children of the selected parent proxy point.

Create new objects

It creates new object in the database pane.

Edit objects

Opens the device’s database record for updating.

Undo

Reverses the previous command.

Redo

Restores a command action after the Undo command has removed it.

Multi-selection Mode

Enables you to individually select multiple points without holding down the ctrl key.

Export

Exports the current view or object.

HTML5- Modbus Client Device Ux Manager
In Niagara 4.14 and later, there is added browser support for Modbus Client Device Manager View. The HTML
5 version of this view is a web-browser-based implementation and it provides the same functions as the
Workbench view.

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 131

To access this view, expand ConfigConfig > DriversDrivers and double-click ModModbusSlaveNetworkbusSlaveNetwork or right-click
ModModbusSlaveNetworkbusSlaveNetwork > VViewsiews > ModModbus Clbus Client Device Managerient Device Manager.

Columns
Column
Name Description

Name Reports the name of the entity or logical grouping.
Type Displays the type of database.

Exts Displays the device extension’s hyperlinks, including: Points, Alarms, Schedules, Trend Logs and
Config.

Enabled Indicates if the network, device, point or component is active or inactive.
Status Reports the current condition of the entity as of the last refresh: {alarm}, {disabled}, {down}, {fault},

{ok}, {stale}, {unackedAlarm}
Health Displays the status of the network, device or component.

Device
Address

Displays the unique number that identifies the current device object on the network

Modbus
Config

Displays the settings for message transactions to (and from) only that device.

Buttons
• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

Toolbar for Modbus Client Device Ux Manager
Toolbar Icon and Name Description

New Folder

It creates a new folder in the database pane.

Trace

Displays all descendants or immediate children of the selected parent proxy point.

Figure 40. ModbusClientDeviceUxManager

Plugins (views) Niagara Modbus Driver Guide

132 March 25, 2025

Toolbar Icon and Name Description

Create new objects

It creates new object in the database pane.

Edit objects

Opens the device’s database record for updating.

Undo

Reverses the previous command.

Redo

Restores a command action after the Undo command has removed it.

Multi-selection Mode

Enables you to individually select multiple points without holding down the ctrl key.

Export

Exports the current view or object.

HTML5- Modbus Async Device Ux Manager
In Niagara 4.14 and later, there is added browser support for Modbus Async Device Manager View. The HTML
5 version of this view is a web-browser-based implementation and it provides the same functions as the
Workbench view.

To access this view, expand ConfigConfig > DriversDrivers and double-click ModModbusAsyncNetworkbusAsyncNetwork or right-click
ModModbusAsyncNetworkbusAsyncNetwork > VViewsiews > ModModbus Async Device Managerbus Async Device Manager.

Figure 41. ModbusAsyncUxDeviceUxManager

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 133

Columns
Column Name Description

Name Reports the name of the entity or logical grouping.
Exts Displays the device extension’s hyperlinks, including: Points, Alarms, Schedules, Trend Logs

and Config.
Enabled Indicates if the network, device, point or component is active or inactive.
Status Reports the current condition of the entity as of the last refresh: {alarm}, {disabled}, {down},

{fault}, {ok}, {stale}, {unackedAlarm}
Health Displays the status of the network, device or component.

Device Address Displays the unique number that identifies the current device object on the network

Modbus Config Displays the settings for message transactions to (and from) only that device.

Poll Frequency Displays the poll services that is used in the device

Ping Address Displays the ping address of the device.

Ping Address
Data Type

Displays the data type.

Buttons
• New FolderNew Folder creates a new folder for devices. Each such folder provides its own set of manager views.

• NewNew creates a new device record in the database.

• EdEditit opens the device’s database record for updating.

Toolbar for Modbus Async Device Ux Manager
Toolbar Icon and Name Description

New Folder

It creates a new folder in the database pane.

Trace

Displays all descendants or immediate children of the selected parent proxy point.

Create new objects

It creates new object in the database pane.

Edit objects

Opens the device’s database record for updating.

Undo

Reverses the previous command.

Redo

Restores a command action after the Undo command has removed it.

Multi-selection Mode

Enables you to individually select multiple points without holding down the ctrl key.

Plugins (views) Niagara Modbus Driver Guide

134 March 25, 2025

Toolbar Icon and Name Description

Export

Exports the current view or object.

Niagara Modbus Driver Guide Plugins (views)

March 25, 2025 135

Plugins (views) Niagara Modbus Driver Guide

136 March 25, 2025

Chapter 9. Windows
Windows create and edit database records or collect information when accessing a component. You access
them by dragging a component from a palette to a Nav tree node or by clicking a button.

Windows do not support On VOn View (F1)iew (F1) and Guide on TGuide on Tarargetget help. To learn about the information each contains,
search the help system for key words.

New device type window-Modbus
This window adds a sequentially-addressed range of multiple Modbus devices.

Property Value Description

Type to Add drop-down list Identifies the network to which the
device is connected.

Number to Add number (defaults to 1) Configures how many devices to
add.

Starting Address number between 1 and 247 Defines the first unique device
number to assign in a group of
Modbus devices.

New device properties window
This window contains the properties for creating a new device.

Figure 42. Example of a New ModbusAsyncDevice window

Niagara Modbus Driver Guide Windows

March 25, 2025 137

Property Value Description

Name text Specifies the name of the object.

Type drop-down list Specifies the type of the object.

Enabled true or false (defaults to true) Activates (true) and deactivates
(false) use of the object
(network, device, point,
component, table, schedule,
descriptor, etc.).

Device Address number from 1 to 247 Defines the unique number that
identifies the current device
object on the network.

Modbus Config additional properties Refer to Modbus Config .

Figure 43. New device window

Windows Niagara Modbus Driver Guide

138 March 25, 2025

Property Value Description

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Ping Address additional properties Defines the base address to use.

Ping Address Data Type drop-down list Defines the type of numeric data.

Modbus Config
Each Modbus client device has a ModModbus Configbus Config container slot with five properties. You access these on the
device’s property sheet, as well as the NewNew or EdEditit windows for a device object when in the device manager
view of the parent network.

The screen capture shows the properties in the NewNew window for a device. These properties allow you to
override the network-level (global) Modbus Config equivalent settings for handling Modbus data from and to
this device.

Property Value Description

Override Network true or false (default) Determines which values to use
for these properties: Float Byte
Order, Long Byte Order and Use
Force Multiple Coil.

false selects the network-level
values as configured by the
ModbusAsyncNetwork component.

true selects the values defined by
the ModModbus Configbus Config container slot.

Float Byte Order drop-down list Specifies the byte-order used to
assemble or receive floating-
point (32-bit) values in messages.
Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 – Most
significant byte first, or big-
endian, it is the default.

• Order1032 – Bytes
transmitted in a 1,0,3,2
order, or little–endian.

• Order0123 – Bytes
transmitted in a 0,1,2,3
order, or little-endian.

Long Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(32-bit) values in messages.

Niagara Modbus Driver Guide Windows

March 25, 2025 139

Property Value Description

Choices reflect two alternate
methods, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte:

• Order3210 - Most
significant byte first, or big-
endian, it is the default.

• Order1032 - Bytes
transmitted in a 1,0,3,2
order, or little-endian.

• Order0123 - Bytes
transmitted in a 0,1,2,3
order, or little-endian.

NOTE: Float or long values
received in incorrect byte order
may appear abnormally big, or
not at all.

Double 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive receives
double-precision floating point
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most
significant byte first, or big-
endian order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of

Windows Niagara Modbus Driver Guide

140 March 25, 2025

Property Value Description

bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Long 64-bit Byte Order drop-down list Specifies the byte-order used to
assemble or receive long integer
(64-bit) values in messages.
Choices reflect in 8
corresponding byte order
options, where numerals 0, 1, 2,
and 3 represent the least
significant byte to most
significant byte. When selecting
the byte order options, it is
required that the Float Byte
Order and Long Byte Order are
both set to Order0123 to
implement this configuration
effectively:

• Order76543210 – Most

Niagara Modbus Driver Guide Windows

March 25, 2025 141

Property Value Description

significant byte first, or big-
endian (BE) order where the
most significant byte is
transmitted first (from 7
down to 0).

• Order 67452301 – Bytes
transmitted in a order
6,7,4,5, etc or big-endian
format involves swapping
the bytes.

• Order54761032 – Bytes
transmitted in a order 5, 4,
7, 6, etc or big-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order45670123 – Bytes
are transmitted in order 4, 5,
6, 7, etc. or big-endian with
both words and bytes
swapped.

• Order01234567 – Bytes
are transmitted in order 0, 1,
2, 3, etc or little-endian (LE)
arrangement where the
bytes are transmitted in
direct order from least
significant to most
significant (from 0 to 7).

• Order10325476 – Bytes
are transmitted in order 1, 0,
3, 2, etc or little-endian
format where the bytes are
swapped during
transmission.

• Order23016745 – Bytes
are transmitted in order 2, 3,
0, 1, etc or little-endian
format but with each pair of
bytes swapped (e.g.,
switching the first two bytes
and the next two bytes).

• Order32107654 – Bytes
are transmitted in order 3, 2,
1, 0, etc or little-endian
format, with both words and
bytes swapped.

Use Force Multiple Coil true or false (default) Specifies whether to use function
code 15 (Force Multiple Coils)

Windows Niagara Modbus Driver Guide

142 March 25, 2025

Property Value Description

instead of function code 05
(Force Single Coil) when writing
to coils. The default is false,
where function code 05 (Force
Single Coil) is used. This property
depends on the Modbus function
codes supported by child
devices, which (if available)
provide alternative options in
Modbus messaging.

Function code 15 support (Preset
Multiple Coils) is available in
devices (true or false). The
default is false, where function
code Preset Single Coil is in
place.

Use Preset Multiple Register true or false (default) Specifies whether to use function
code 16 (Preset Multiple
Registers) instead of function
code 06 (Preset Single Register)
when writing to registers. The
default is false, where function
code 06 (Preset Single Register) is
used. This property depends on
the Modbus function codes
supported by child devices,
which (if available) provide
alternative options in Modbus
messaging.

Function code 16 support (Preset
Multiple Registers) is available in
devices (true or false). The
default is false, where function
code Preset Single Register is in
place.

New point type window
This window creates a new proxy point.

Niagara Modbus Driver Guide Windows

March 25, 2025 143

You access these properties from the point manager view by clicking the NewNew button.

Property Value Description

Type to Add drop-down list Selects the type of point.

Number to Add number Selects the number of instances of
point.

Starting Address number between 1 and 247 Defines the first unique device
number to assign in a group of
Modbus devices.

Data Type drop-down list Selects the location of the data in
the slave device. Coils store on/
off values. Registers store
numeric values. Each coil or
contact is 1 bit with an assigned
address between 0000 and 270E.
Each register is one word (16
bits, 2 bytes) as well as a data
address between 0000 and 270E.

Modbus proxy points
Modbus client and server proxy points are similar to other driver proxy points. The same collection of client
proxy points is used in devices under a ModbusAsync, ModbusTcp, ModbusTcpGateway, ModbusSlave and
ModbusTcpSlave network components. You can find them in the client PointsPoints folder in the palettes
(modmodbusAsyncbusAsync, modmodbusTbusTcpcp, modmodbusSlavebusSlave and modmodbusTbusTcpSlavecpSlave).

Proxy point type Client (master) usage Server (slave) usage

Boolean Writable Reads and writes a Modbus coil. Reads and writes a virtual Modbus coil or input.

Generally, it is unwise to expose any coil as

Figure 44. New point type properties

Windows Niagara Modbus Driver Guide

144 March 25, 2025

Proxy point type Client (master) usage Server (slave) usage

BooleanWritable if the Modbus master may
also write to this same item—otherwise write
contention issues may result.

Boolean Point Reads either a Modbus coil or an input. Reads a virtual Modbus coil that may be written by the
Modbus master.

Numeric Writable Reads and writes a Modbus holding register
value. You must specify the Data Type as either
integer, long, float, or signed integer.

Reads and writes a virtual Modbus holding register value
or input register value. You must specify the Data Type
as either integer, long, float, or signed integer.

Generally, it is unwise to expose any holding
register as NumericWritable if the Modbus
master may also write to this same
item—otherwise write contention issues may
result.

Numeric Point Reads either a Modbus holding register value or
an input register value. You must specify the Data
Type as either integer, long, float, or signed
integer.

Reads a virtual Modbus holding register value that may
be written by the Modbus master device. You must
specify the Data Type as either integer, long, float, or
signed integer.

Register Bit Writable Reads and writes a specific bit in a Modbus
holding register (select Bit Number in setup).

Reads and writes a specific bit in a virtual Modbus
holding register or input register (select Bit Number in
setup).

Generally, it is unwise to expose any holding
register as a RegisterBitWritable if the
Modbus master may also write to this same
item—otherwise write contention issues may
result.

Register Bit Point Reads a specific bit in either a Modbus holding
register or an input register (select Bit Number in
setup).

Reads a specific bit in a virtual Modbus holding register
(select Bit Number in setup) that may be written by the
Modbus master.

String point Reads some number of consecutive Modbus
holding registers and interpret them as an ASCII
string, using a high-to-low byte order. In general,
use of this type is expected to be infrequent.

Reads some number of consecutive virtual Modbus
holding registers that may be written by the Modbus
master, and interpret them as an ASCII string, using a
high-to-low byte order. In general, use of this type is
expected to be infrequent.

Enum Bits Writable Reads and writes some number of consecutive
bits within a holding register, with the resulting
integer as the out (ordinal) value of the Enum
Writable.

N/A

Enum Bits Point Reads some number of consecutive bits within a
holding or input registering the resulting integer
as the out (ordinal) value of the Enum Point.

N/A

Numeric Bits Writable Reads and writes some number of consecutive
bits within a holding registering the resulting
integer as the out value of the Numeric Writable.

N/A

Numeric Bits Point Reads some number of consecutive bits within a
holding or input registering the resulting integer
as the out value of the Numeric Point.

N/A

New point properties window
This window configures the point properties.

Niagara Modbus Driver Guide Windows

March 25, 2025 145

Property Value Description

Name text Shows the name of the point as
reported by the device.

Type drop-down list Selects the type of point.

Enabled true or false (defaults to true) Activates (true) and deactivates
(false) use of the object
(network, device, point,
component, table, schedule,
descriptor, etc.).

Tuning Policy Name drop-down list
Selects a network tuning policy
by name. This policy defines stale
time and minimum and maximum
update times.

Figure 45. New point properties

Windows Niagara Modbus Driver Guide

146 March 25, 2025

Property Value Description

During polling, the system uses
the tuning policy to evaluate
both write requests and the
acceptability (freshness) of read
requests.

Poll Frequency drop-down list Configures how frequently the
system polls proxy points.

Facets-Boolean trueText (default) or falseText Define the text to display for the
Boolean values:

• trueText is the text to display
when output is true

• falseText is the text to
display when output is false.

For example, the facet trueText
could display “ON” and the facet
falseText “OFF.”

You view Facets on the Slot
Sheet and edit them from a
component PrProperty Sheetoperty Sheet by
clicking the >>>> icon to display the
Config FacetsConfig Facets window.

Conversion drop-down list Selects the units to use when
converting values from the
device facets to point facets.

Default automatically converts
similar units (such as Fahrenheit
to Celsius) within the proxy
point.

NOTE: In most cases, the
standard Default is best.

Linear applies to voltage input,
resistive input and voltage
output writable points. Works
with linear-acting devices. You
use the Scale and Offset
properties to convert the output
value to a unit other than that
defined by device facets.

Linear With Unit is an extension
to the existing linear conversion
property. This specifies whether
the unit conversion should occur

Niagara Modbus Driver Guide Windows

March 25, 2025 147

Property Value Description

on “Device Value” or “Proxy
Value”. The new linear with unit
convertor, will have a property to
indicate whether the unit
conversion should take place
before or after the scale/offset
conversion.

Reverse Polarity applies only to
Boolean input and relay output
writable points. Reverses the
logic of the hardware binary
input or output.

500 Ohm Shunt applies to voltage
input points only. It reads a
4-to-20mA sensor, where the Ui
input requires a 500 ohm resistor
wired across (shunting) the input
terminals.

Tabular Thermistor applies to only
a Thermistor input point and
involves a custom resistance-to-
temperature value response
curve for Type 3 Thermistor
temperature sensors.

Thermistor Type 3 applies to an
Thermistor Input point, where
this selection provides a “built-
in” input resistance-to-
temperature value response
curve for Type 3 Thermistor
temperature sensors.

Generic Tabular applies to non-
linear support for devices other
than for thermistor temperature
sensors with units in
temperature. Generic Tabular
uses a lookup table method
similar to the “Thermistor
Tabular” conversion, but without
predefined output units.

Add Preset Register Value window
This window configures a Modbus Client Preset Register.

Windows Niagara Modbus Driver Guide

148 March 25, 2025

Property Value Description

Value number to two decimal places
(defaults to 0.00)

Configures the value of the
register.

Last Successful Write read-only date and time Reports the last successful write.

Last Failed Write read-only date and time Reports the last failed write.

Write Status Additional properties Reports if the object is read-only or
can be written to.

Add Preset Coil Value window
This window configures a Modbus Client Preset Coil.

Figure 46. Add Preset Register Value properties

Niagara Modbus Driver Guide Windows

March 25, 2025 149

Property Value Description

Value number Configures the value of the
register.

Last Successful Write read-only date and time Reports the last successful write.

Last Failed Write read-only date and time Reports the last failed write.

Write Status Additional properties Reports if the object is read-only or
can be written to.

Figure 47. Add Preset Coil Value properties

Windows Niagara Modbus Driver Guide

150 March 25, 2025

	Technical Document Niagara Modbus Driver Guide March 25, 2025
	Niagara Modbus Driver Guide
	Legal Notice
	Confidentiality
	Trademark notice
	Copyright and patent notice

	About this guide
	Product Documentation
	Document Content
	Document change log
	March 25, 2025
	November 1, 2023
	September 12, 2023
	July 27, 2022
	February 9, 2021
	December 15, 2019
	August 25, 2010
	February 14, 2008
	March 15, 2007
	June 24, 2005

	Related documentation

	Getting started
	Architecture
	Async networks
	TCP/IP networks
	TCP/IP gateway networks
	Slave networks
	TCP/IP slave networks

	Modules
	Prerequisites
	Limits imposed by the Modbus licenses
	RS-485 limits

	Installing the Modbus driver

	Network configuration
	ModbusAsyncNetwork
	ModbusTcpNetwork
	ModbusTcpGateway
	Adding a Modbus network
	Configuring serial properties
	Configuring Ethernet properties
	Configuring network properties

	Device configuration
	Modbus messages
	Device address
	Function code
	Data
	Error check
	Modbus query and response example
	Modbus data
	Numeric data types
	Bit proxy point extensions
	String proxy point extensions
	Driver data
	Rounding values

	Adding a device
	Duplicating devices
	Creating proxy points
	Example

	Configuring a device for polling

	Client (master) operations
	Configuring a client device for polling
	Adding client presets
	Adding file records

	Server (slave) configuration
	Modbus registers
	Data addresses
	Consecutive address numbering

	Configuring register ranges
	Register range example

	Adding server file records

	Troubleshooting
	When creating points, I get the message: Read fault: illegal data address.
	The NumericPoint or NumericWritable I’m creating for a float or long (2-register) value reports a value of zero (0) or an impossibly large value instead of the expected value, yet the point still reports a status of {ok}.
	Debugging messages
	Exception responses

	Components
	ModbusAsyncNetwork
	Serial Port Config
	ModbusAsyncDevice
	Base addresses
	Modbus Config
	Device Poll Config
	Actions
	DevicePollConfigEntry
	Start Address

	Points (client device)
	Proxy Ext (Client Boolean)
	Proxy Ext (Client Enum Bits)
	Proxy Ext (Client Numeric)
	Proxy Ext (Client Numeric Bits)
	Proxy Ext (Client Register Bit)
	Proxy Ext (Client String Point)

	ModbusClientExceptionStatus
	ModbusClientPresetRegisters
	Actions
	ModbusClientPresetRegister

	ModbusClientPresetCoils
	Actions
	ModbusClientPresetCoil

	ModbusClientStringRecord

	ModbusAsyncDeviceFolder
	ModbusClientPointFolder

	ModbusSlaveNetwork
	Serial Port Config
	ModbusSlaveDeviceFolder
	ModbusSlaveDevice
	Modbus Config
	ValidCoilsRange
	ModbusRegisterRangeEntry

	Points (Server)
	Proxy Ext (Server Boolean)
	Proxy Ext (Server Numeric)
	Proxy Ext (Server Register Bits)

	ModbusServerPointFolder
	ModbusServerStringRecord

	ModbusTcpNetwork
	ModbusTcpDeviceFolder
	ModbusTcpDevice
	ModbusTcpGateway
	ModbusTcpGatewayDevice
	ModbusTcpGatewayDeviceFolder

	ModbusTcpSlaveNetwork
	ModbusTcpSlaveDevice

	Plugins (views)
	Modbus Async Device Manager
	Columns
	Buttons

	Modbus Client Point Manager
	Columns
	Buttons

	HTML 5 Modbus Client Point Ux Manager
	Columns
	Buttons
	Toolbar for Modbus Tcp Client Point Ux Manager

	Modbus Slave Device Manager
	Columns
	Buttons

	Modbus Server Point Manager
	Buttons

	HTML 5 Modbus Server Point Ux Manager
	Columns
	Buttons
	Toolbar for Server Point Ux Manager

	Modbus Tcp Gateway Device Manager
	Columns
	Buttons

	Modbus Tcp Slave Device Manager
	Columns
	Buttons

	HTML5- Modbus Tcp Device Ux Manager
	Columns
	Buttons
	Toolbar for Modbus Tcp Device Ux Manager

	HTML5- Modbus Tcp Client Device Ux Manager
	Columns
	Buttons
	Toolbar for Modbus Tcp Client Device Ux Manager

	HTML5- Modbus Client Device Ux Manager
	Columns
	Buttons
	Toolbar for Modbus Client Device Ux Manager

	HTML5- Modbus Async Device Ux Manager
	Columns
	Buttons
	Toolbar for Modbus Async Device Ux Manager

	Windows
	New device type window-Modbus
	New device properties window
	Modbus Config

	New point type window
	Modbus proxy points

	New point properties window
	Add Preset Register Value window
	Add Preset Coil Value window

