Technical Document

Niagara Tagging Guide

December 19, 2024

niac_;jara4

Legal Notice

Tridium, Incorporated

3951 Western Parkway, Suite 350
Richmond, Virginia 23233

U.S.A.

Confidentiality

The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation
(Tridium). Such information and the software described herein, is furnished under a license agreement and may
be used only in accordance with that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and, except as permitted under the below copyright notice, is not to be released to, or
reproduced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for
damages of any kind, including without limitation consequential damages, arising from the application of the
information contained herein. Information and specifications published here are current as of the date of this
publication and are subject to change without notice. The latest product specifications can be found by
contacting our corporate headquarters, Richmond, Virginia.

Trademark notice

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-
Conditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and
SQL Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON,
LonMark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara
Framework, and Sedona Framework are registered trademarks, and Workbench are trademarks of Tridium Inc.
All other product names and services mentioned in this publication that are known to be trademarks,
registered trademarks, or service marks are the property of their respective owners.

Copyright and patent notice

This document may be copied by parties who are authorized to distribute Tridium products in connection with
distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise,
in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior written consent from Tridium, Inc.

Copyright © 2025 Tridium, Inc. All rights reserved.

The product(s) described herein may be covered by one or more U.S. or foreign patents of Tridium.

For an important patent notice, please visit: http://www.honpat.com.

http://www.honpat.com/

Niagara Tagging Guide Contents

Contents

ADbOoUL this GUIAEc.cooiiiiiiiiii ettt sttt ettt ne e 7
Document change 10g c...coocuiiieiiiirieiieeeteeetee ettt 7
Related dOCUMENTESc.eiciiiiiiiiiiiiiiiiertcectcte ettt 9

Chapter 1. Tagging OVEIVIEWcccceeiiiiiiiiiiiieitentteete et eeite st estesreeseeesreesmeessseesmeeeeneenas 11
License requUIremMeNntscccueiiiniiiiiiiiiiiiiiiiii i 11
Tagging PrOCESS ..ccuviiiiiiiiiiiiiiicec e s 11

Chapter 2. Common tagging taskscccccoiiiiiiiiiiiiiieccrccee e 13
Creating a tagged deViCecoceiiiiiiiiiiiieteeeeeeete ettt ettt 13
AddINg Ad HOC 1aGS -eeuuvieiiiiiiiieiicetencete ettt ettt ettt st ne e e 14
REMOVING @ 18Q weiiiiiiiiiiiiiiiiiiiiitii ittt srae s s 14
Add tags to objects in the Discovered paneccccoviiviiniiniiiiniiniiiinnii 15
Add tags in the Database paneccccoivviiiiiiiiiniiniiii e 16
Adding a Tag Group to @ COMPONENTcceevviiiiiiiiiiiiiiee e 16
Creating a cUStOmM tag groUpPcoccceviiiiiiiiiiiniiiiiiie ittt 17
Adding a tag to an existing tag groupcccceeeviiniiniiniiniinini 18
Adding tags using Batch Editorccccciviiiiiiiiinenieeeeeeeeeestee et 19
Editing tags in @ template ..o 20
View implied tags using Edit Tags dialogc.cccecevirniiniiniinniiniiniiniciiicnicnecieneens 21
Viewing implied tags using SPY VIEWccccvviiniiiiiniiniiiiniiiiiicn 22
Selecting or exiting tag mode (Manager VIEWS)cocceeevierrierieeennenieeenneeeseeeeeeeneens 23
Exporting and importing tag dictionariesc.cccovviiniiiiiniiininniinii, 24

Creating @ new tag dictionaryccccceeeeeerieriiennienreenee et 24
Editing a tag dictionary exported to CSVccccocviiniiviiniininiiniiiciie 25
Importing a tag dictionary in CSV formatc.cceeerieviiniinieninnenicnicneceneene 28
Exporting a tag dictionaryccccevviiniiniiniiniiiini 30

Chapter 3. Tag dictionary SErviCec.cccoovieiiiiiiiiiiiniieteeeeteee ettt e s enee e 33
Smart tag diCtiONArYcoccueivieiiiiiieeeteeete ettt 33
Haystack smart tag dictionarycceceeeieeririieniienieneeneeee ettt 33

Modifying the Haystack tag dictionarycccceceeeerreerernienieninieneecieneeene 35
Creating the Haystack tagsImportFile and equiplmportFilec........ 36
Editing tags in the Haystack tagsimportFile and equiplmportFile 37
Configuring the Haystack dictionary to auto-import modifications 39
haystack-HsTagDictionaryccoccceveerieenieniiieieeeeeececee e 39
Haystack Tags Import File formatccccooivviininniinniiniininiciienicicnecee 40
Haystack Equip Import File formatccocoviiiiininiiiccs 42
haystack-EQUIPREIationc..coceviiviiiiiiniiiiiiiiiiiictcicecececee s 43
haystack-SiteRelationcc.cooiiriiiiiiiiieeee e 43
HATagDiCtioNArYccocviiiiiieiiieiiteeetteeteeett ettt rae e ssae e snaee s 43
Migrating to Haystack 4 ..o 44
Migrating Haystack 3 it€mMSccceeeviiiiieniieiieiteeeee et 44
Haystack 4 importcooieiiiiiii 47

December 19, 2024 3

Contents

Chapter 4.

Niagara Tagging Guide

TGS coiiiiiiiii e 48
CROICE TAGS -eeeuveenieriienieeite ettt ettt et et et e st e bt e see e smee s st e smeeemeeseeeeneeeas 48
TaG GrOUP et 49
REIGEIONS ...ovviiiiiiiiiiiictc e 51
TaG TUIES ettt ettt 53
Updating an existing H4 tag dictionarycccceeerieniiniinicninnienicncnnecnnennn 55
Brick tag diCtionaryc.coocueiiiniiiieeicecee e 57
Updating Brick tag dictionarycceeveeviiniiiniiniiniiniiiiniciienecicsecneenne 59
Brick cUSTtOmM rulescooiiiiiiiiieieett e 63
Tagging referencecoccoiiiiiiiiiiiieeee ettt 67
ADOUL TAGS -.eeiuvieiiiiiiiiicitee ettt sttt ettt s at e s re e st s st e sne s eme e sae e e ne e s ae s nee e 67
Online tagging versus offline tagging . ..cccccceeueriieiieriienceceetee e 68
About the Edit Tags dialogccccceeiiiiiriiiniiiiieniceeeecrec e 68
Relation Managercocuieiiiiiiirieteeteee ettt ettt ettt e s e e s as 70
Components and views in the tagdictionary moduleccceeiiniiiiniiniiiiniinnnn. 72
tagdictionary-TagDictionaryServiceccccceoerneerrennienneenseeeeecee e 73
Neqlize OPLIONScouiivieiiiiiciiciccc 76
Tag RUIE INAEX ettt ettt 77
Implied tags INeXccveiiiiiiiiiiicicc 80
NiagaraTagDiCtioNarycccoeceeieieiniiiiniieeniterreeeeee et see e e 82
About tag diCtionariescc.cceveeriiiiiiiirtceececeeree e 82
tagdictionary-SmartTagDictionarycceccceeerreenneniiennenceeeeeecee e 83
tagdictionary-SystemINdexcccccecereierniiiieriiinerteeeeee e 84
Tag Definitions (TagINfoList)c.ccevvueriiinnirrieeieneeeeee et 85
Tag Group Definitions (TagGroupInfoList)cccceeviviiiiniviiniiiiicciee, 87
Relation Definition (RelationInfo)cccooiviiiiiiiiiiiiiiiiieeeeeeeee e 88
Tags (SimpleTaginfo) ... 89
SMAMT TAGS eveeerriiiiiiieiiie ettt sttt st e s rae e sba e s s seeesbae e smaeesnaes 90
tagdictionary-NameTagccoceeeieeereienreeeneeteeeteee et 90
tagdictionary-DisplayNameTagccceeiiviiniininniiniiniiiicniciinneneeresecneeane 91
tagdictionary-TypeTagcccceeiiriiiiniiniiiiiiii 91
tagdictionary-historyldTagcceeoeeereriiennierieeeeeeeee et 91
tagdictionary-HistoryMarkerTagccccceeeereerieiinicriieneeeeeeeeceeeeee e 91
tagdictionary-ScopedTagc.cccocivviirniiniiiniinieniiii e 92
SystemDb usage example ... 93
Hierarchy QueryLevelDef usage examplecccccervieviiniiniininnicninncnnecnnenne 95
tagdictionary-SingletonTagInfoListcccceeveerirreneesenreneeeeee e 97
tagdictionary-TagRUIELIScccceiiiriiriienieceteee et 97
Tag Rule cOMPONENtSccooiiiiiiiiiciei s 98
CONAILIONS ..ottt 102
tagdictionary-AlWaysc.cccoeerrieeieriieterteee ettt s 102
1agdictionary-And ..c...coccoeiieeeeeee et s 102
tagdictionary-BooleanFilterccccooiiiiiiiinniniiiieeeceeeeee 102
tagdictionary-HasANCEStOrccccoeiiiiiiniinieeete et 103
tagdictionary-HasRelationc...cccceiiiiiiiniiininiiicececece e 103
tagdictionary-ISTYPecccocevirviiriiiiiiiiici e 103

December 19, 2024

Niagara Tagging Guide

Chapter 5.

December 19, 2024

Glossary

Contents

1agICtioNArY-OFcooiiiiieiiiteeeeteee ettt s 104
tagdictionary-OrdSCopecoceviiniiiniinieniinienicieirce e 104
tagdictionary-DataPoliCyccoceveieriiiiiiniiininreeeeeee e 105
Tag Dictionary Manager VIEWccovviiiiiiiiiiiiiiiiiiiciiieeccieee e 107
HTMLS Tag Manager VIeWcocuiiiiiiiiiiiiiniiiiniiiicinieccieeee e, 108
Tag Manager VIEWccciiiiiiiiiiiiiiiiiiiiccintces e iee e seiase e siaee s 109
Relation Manager VIEWc.cceouiieiiriiieienieeieeeeeee e 111
... 113

December 19, 2024

Niagara Tagging Guide About this Guide

About this Guide

This topic contains important information about the purpose, content, context, and intended audience for this
document.

Product Documentation

This document is part of the Niagara technical documentation library. Released versions of Niagara software
include a complete collection of technical information that is provided in both online help and PDF format. The
information in this document is written primarily for Systems Integrators. To make the most of the information
in this book, readers should have some training or previous experience with Niagara software, as well as
experience working with JACE network controllers.

Document Content
This guide explains to the Systems Integrator how to use the Tagging feature.

Document change log

Updates (changes and additions) to this document are listed below.

December 19, 2024
Added "Updating an existing H4 tag dictionary" to "Haystack 4 import" chapter.

Added "Relation Manager" to "Tagging reference" (as of Niagara 4.15)

Added "Relation Manager view" to "Components and Views" (as of Niagara 4.15)

Updated "Brick tag dictionary" topic (as of Niagara 4.15)

April 10, 2024
¢ Added new “NotRule” to “Tag Rule components” topic (Niagara 4.14).

October 5, 2023
* Added new “Brick tag dictionary” and “Updating Brick tag dictionary” topics (as of Niagara 4.14).
* Added “tagdictionary-SmartTagDictionary” component (as of Niagara 4.14).

October 4, 2022
* Added new ” H4TagDictionary” topic to the “Haystack smart tag dictionary” chapter.

July 19, 2022
* Added new topic “ Tag Manager” to the “Tagging Reference” chapter.

April 26, 2022

* In the “Tag Dictionary Manager” view, added that the list of tag dictionaries displays version information
and the New button limits the creation of a new tag dictionary to a “smart tag dictionary”.

November 2, 2020
* Added information on the HTML5 Tag Manager view.

* To support online help, updated ID values on “Rules” and “Tag Rule Component” topics and combined
the child component details in the “Tag Rule Component” topic.

February 4, 2020

e Edited the “TagDictionaryService” component topic to add information on several new properties related
to tag-based NEQL Ords functionality (in Niagara 4.9 and later).

August 6, 2019

* Edited Haystack component topics to add information on changes in Haystack tag dictionary import

December 19, 2024 7

About this Guide Niagara Tagging Guide

functionality (in Niagara 4.4U3, Niagara 4.7U1, Niagara 4.8 and later), and changes in the components
provided in the palette.

May 23, 2019

* Edited the component topics, “tagdictionary-HasAncestor” and “tagdictionary-HasRelation”, to provide
additional details.

* In the Tagging Reference chapter, added separate component topics for “haystack-EquipRelation” and
"haystack-SiteRelation” to support online help.

November 30, 2018

¢ Added several procedures on working with Haystack tagdictionary import files.

¢ Edited the component topics, “tagdictionary-TagDictionaryService” and “tagdictionary-ScopedTag”,
added information on SingletonTaglInfoList frozen properties and usage examples of same to the
“tagdictionary-ScopedTags"” topic.

¢ Added the component topic, “haystack-HsTagDictionary” and reference topics, “Haystack Tags Import
File format” and “Haystack Equip Import File format”.

¢ Edited the “Tag Dictionary Manager” view topic.

Updated: March 26, 2018
Updated for functional changes in Niagara 4.6:

* Added note to the “tagdictionary-TagDictionaryService” topic describing two new smart tag dictionaries
which can be used to exclude portions of the station from the system indexing process.

* Added component topics, “tagdictionary-SystemIndex” and “tagdictionary-scopedTag”.

Updated: October 24, 2017
Updated for functional changes in Niagara 4.4:

* Many changes throughout, all to do with the removal of the TagDictionary component and the frozen slot
on the TagDictionaryService named Monitor (and related functionality) from the tagdictionary module.

* Removed the following component topics from this guide: “tagdictionary-TagDictionary” and
“tagdictionary-TagGroupMonitor”.
Updated: August 30, 2017

* In the topics, “Tag Rule Index” and “Implied Tags Index,” there are added notes clarifying the type of
memory used, and type of tags that may be indexed.”

e This update includes many structural changes throughout the “Tagging Reference” section.

* In the “Tagging components” section of this guide, added several new component topics.

Updated: January 12, 2017
Updated for Niagara 4.3:

¢ Edited the topic, “About the Tag Dictionary Service”, added content describing the new Tag Rule Index
feature .

¢ Edited the topic, “Tag Rules”, added a section describing the new functionality in tag rules, includes new
topics on the “Tag Rule Index”, “Implied Tags Index”, and “Scoped Tag Rule” features.

e Added glossary entries on these features.

Updated: November 3, 2016

* Edited the topic, “Creating a custom tag group”, to provide information on best practices in tag group
naming.

* Edited “Tag Definitions” topic to provide Tag component property descriptions.
* Edited the “Tag Group Definitions” topic to add section on tag group handling when editing tags from

8 December 19, 2024

Niagara Tagging Guide About this Guide

within various views.

Updated: July 26, 2016
Added the procedure, “Creating a custom tag group”.

Updated: July 14, 2016

Added information on changes for Niagara 4.2, which include the following:

* Incorporated minor changes throughout to support branding.

* In the “Tag Rules” topic, added new information on TagRules in the tagdictionary palette.

November 29, 2015

Added information on changes supporting the Tag Dictionary Service functionality for Niagara 4.1. The
following topics have been modified as described.

¢ Creating a tagged device: edited content in steps 4 and 5. Results info explains that tags in added tag
groups are replaced with an implied relation.

e "“Editing tags in a template”, added note to step 5.

e “About the Edit Tags dialog”, deleted duplicate content in 2nd paragraph and added note at end that
describes changed handling of tags in tag groups.

e "“Tag Definitions”, added note that about data policy in tag definitions.

* "“Tag Group Definitions”, added content that describes changed handling of tags in tag groups, data
policies, and other instances.

* The following topics have been added to this guide: “Adding a Tag Group to a component”, “Adding a
tag to an existing Tag Group”, “Data Policies”, “Tag Group Monitor”.

Initial publication: August 31, 2015

Related documents
Following documents provide information related to using tags.

¢ Niagara Hierarchies Guide
¢ Niagara Relations Guide
* Niagara Templates Guide

December 19, 2024 9

About this Guide Niagara Tagging Guide

10 December 19, 2024

Niagara Tagging Guide Tagging Overview

Chapter 1. Tagging Overview

Adding tags to your data model can streamline the process of setting up a system, especially large or
enterprise systems. Instead of manually mapping data into the application point by point, trend by trend,
systems integrators can use tags to facilitate the process. Tag information can also facilitate and improve
search results and hierarchical navigation design. Tagging is a form of semantic modeling that assigns
information (one or more tags) to objects. The tag information can help integrators and users significantly
when searching for objects, designing system structures or navigating hierarchies.

If you add tags to station objects using standard Tag Dictionaries, other applications can discover station
content without having to understand the naming convention used by the installer or system integrator. Typical
station tagging might include things such as: networks, devices, points, control blocks, and more. You can also
map all of these example objects to domain-specific semantic entities such as, buildings, systems, equipment
to further indicate how they relate to each other. Tagging can identify a device and indicate where it is
physically located. By identifying and locating devices, tags provide a context for the device that can be used
in many different ways. When you use tags, you can reduce or eliminate the requirement to manually map
objects directly to a desired application.

License requirements

The tags license is required to use the TagDictionaryService and tag dictionaries on a station. The
Dictionary.limit attribute limits the number of tag dictionaries available for the system. Any dictionaries
added above the limit for the license will be in fault. When a dictionary is in fault, the tags in that dictionary are
not available in the Edit Tags dialog. By default, you are limited to the first two tag dictionaries. However, the
Dictionary.limit attribute is configurable on the license in the same manner as are device limits.

For more licensing information, see licensing topics in the Niagara Platform Guide.

Tagging process

This section describes the basic tagging process. Before adding tags, make sure that you have the dictionaries
that you need to complete the process.
The basic process for tagging involves the following:

1. Identify your purpose. Possible uses could be one or more of the following examples:

e Enterprise structure navigation: In this case you may want to focus on using tags that include
geographical information.

¢ Systems maintenance views: In this case you may need to use tags that include device or equipment
information.

e End user navigation: In this case you may use functionally related tags.
2. Make sure you have the dictionaries you need.

In many cases, the Niagara Tag Dictionary may be sufficient. By default, it is in the
TagDictionaryService folder in a new station. You can add the Haystack dictionary from the haystack
palette if needed. You can also create Ad Hoc tags or create your own custom dictionary if you wish to.

NOTE: For new stations, you may need only the Niagara and Haystack Smart Tag Dictionaries. However,
you can reduce or eliminate your tagging efforts by looking for Smart Tag Dictionaries developed by the
Niagara community.

3. Add tags to your components.

You can add tags one at a time or you can use Tag Groups (containers of various tags) to add multiple tags
with each Add action. You can add tags during or after a discovery process and you can also use the Batch
Editor to add tags.

December 19, 2024 11

Tagging Overview Niagara Tagging Guide

NOTE:

Adding a tag group adds a relation between the component and the tag group definition. The tags in the
group are implied on the component. If you change the tags in the group, the revised set of tags are
implied on the component.

12 December 19, 2024

Niagara Tagging Guide Common tagging tasks

Chapter 2. Common tagging tasks

The following sections include descriptions of some common ways to use tagging.

Creating a tagged device

You can add Direct Tags to a device (or other station objects) to provide additional semantic information. You
may add more than one type of tag to a device to support multiple hierarchical navigation schemes. You can
also use Tag Groups to add a predefined collection of tags to the device in a single add action.

Prerequisites:

* One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TagDictionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

This task describes how to use the Edit Tags dialog box to add individual tags or tag groups from an installed
tag dictionary.
Step 1. Right-click on the device that you want to tag and select Edit Tags from the popup menu.

Step 2. In the Edit Tags dialog box, select a dictionary from the option list in the top left corner

@ Miagara

TIP: In the Search field, you can use a shortcut to designate the dictionary. Type hs: for
Haystack, n: for Niagara, and similarly for other dictionaries.

The top half of the dialog box shows a list of tags available from the selected dictionary.

Step 3. Use the filter fields as needed to limit the number of tags displayed. For example:
e Type in the Search field

aa |

to filter by tag name. Tags are filtered immediately as you type.

* Select an option from the option list

%/ Show Al B

to filter based on validity options (Show 211, Valid Only, or Best Only).
Step 4. Add any number of tags to suit your needs (for example, n:device, hs:geoState, my:bldgRef) using
either of the following methods:

* To add an individual tag from a tag dictionary, select one or more tags in the Tag Dictionary
(upper) pane and click Add Tag to assign the selected tag(s) to the device.

¢ To add a predefined collection of tags from a tag dictionary, in the Tag Dictionary (upper)
pane in the dialog, scroll down to Tag Groups and select a tag group, and click Add Tag to
assign the selected collection of tags at once.

NOTE:

Adding a tag group adds a relation between the component and the tag group definition.
The tags in the group are implied on the component. If you change the tags in the group,
the revised set of tags are implied on the component.

December 19, 2024 13

Common tagging tasks Niagara Tagging Guide

The assigned individual tags and added tag groups are listed on the Direct Tags tab in the lower
half of the dialog.

Step 5. Edit any tag value fields, as appropriate, and click the Save button to save the added tag
assignments.

Step 6. Optional: For tags that have Ord type values such as hs:siteRef, refer to the following steps as an
example of how to add a link to your tag.
a. Click the option list arrow located to the right of the tag value field.
b. Select the appropriate link type from the options menu.
c. Browse to the desired link and select it.
d. Select the Handle option and click OK.

Result
The device is now tagged.

Adding Ad Hoc tags

You can add Ad Hoc Tags to any station object to provide additional semantic information without using an
installed tag dictionary. Ad Hoc tags are tags that you create directly from the Edit Tags dialog box. These tags
are not found in any tag dictionary.

Ad Hoc tags are useful for development or testing purposes, allowing you to test without adding or modifying
tag dictionaries and without using the tags that are already in use by active production applications. However,
when applying tags that are used by applications, best practice is to use tags from standardized tag
dictionaries that are applied system-wide.

Step 1. Right-click the component that you want to tag and select Edit Tags from the popup menu.

Step 2. In the Edit Tags dialog box, and without making any selections click the AddTag button.
The Add Tag dialog box appears.

Step 3. In the Tagld field, enter a new tag name using the following syntax: namespace:tagname.
For example, my:datalogs. For best practices, use a consistent naming convention. Also, it is
important to use a namespace that does not conflict with that of other installed tag dictionaries.
Step 4. In the Type field, use the option list to select the tag type from the options available.

NOTE: In your Ad Hoc tag, do not use a namespace that is identical to an existing tag dictionary.
For example, do not use hs:, n:, or other namespace characters that would conflict with
existing tag dictionaries.

For an Ad Hoc tag with the Tagld my:datalogs you could select a type called baja:Stringto
determine that the tag value be a String type of data.

Step 5. To assign the tag to your selected component, click OK.
The new tag is added and appears in the Direct Tags table in lower half of the dialog box.

Step 6. Edit any tag value fields (for example, String, Ord,), as appropriate, and click Save to save the tag
assignments.

Result
The component is now tagged.

Removing a tag

You can remove direct tags from individual station objects using the Remove dialog box.

NOTE: This task does not apply to implied tags.

14 December 19, 2024

Niagara Tagging Guide Common tagging tasks

Step 1. Right-click the object that you want to edit and choose Edit Tags from the menu.

Step 2. From the Edit Tags dialog box, click Remove Tag.
The Remove dialog box appears showing a list of all the Direct Tags that are assigned to the
selected component.

Remove >

] dioffice
] diequip
[# difloor
O] hzlights
[removeall

OK | Cancel

Step 3. Select the individual tags that you want to remove or choose Remove All and then click OK.
The selected tags are removed from the table listing under the Direct Tags tab in the lower half of
the dialog.

NOTE: Check that the appropriate tags are now listed in the Edit Tags lower pane, under the
Direct Tags tab. Your deletions are not complete until you click Save. If you want to revoke the
delete action, click Cancel.

Step 4. To complete the task, click Save.

Result
The tag is removed from the selected object.

Add tags to objects in the Discovered pane

Tagging is integrated into the Station Manager and Point Manager views to make it easier to tag editable
stations or points in the Discovered pane before adding them to the Database pane.

Prerequisites:
Device Manager or Point Manager view is active with Tag Mode selected. Points or devices are discovered and
listed in the Discovered pane.

Tagging during discovery is optional but it is a convenient way to add metadata as you add points or devices.
This task describes how to add tags only. It does not describe all point or device fields that need to be
reviewed or edited during an add process.

Step 1. From the Point Manager or Station Manager view, in the Tag Dictionary pane, select the desired
tag dictionary.

Step 2. Select one or more discovered objects in the Discovered pane.
Step 3. In the Tag Dictionary pane, select one or more tags to add and click Add.

Step 4. Inthe Add dialog box, check that the appropriate tags are added (table in top pane) and add
values to any tags that have editable fields.

Step 5. Click OK and verify that your tags appear with the desired objects in the Database pane.

Result
Devices or points are added to the station with tags.

December 19, 2024 15

Common tagging tasks Niagara Tagging Guide

Add tags in the Database pane

Tagging is integrated into the Station Manager and Point Manager views to make it easier to tag editable
stations or points that are in the Database pane.

Prerequisites:

¢ Device Manager or Point Manager view is active with Tag Mode selected.
* Points or devices are listed in the Database pane.

Tagging objects that are in the Database pane of a manager view is a convenient way to add metadata to your

points or devices. This task only describes how to add tags, it does not describe point or device fields that may
be edited from the manager view.

Step 1. From the Point or Station Manager view, in the Tag Dictionary pane, select the desired tag
dictionary.

Step 2. Select one or more objects in the Database pane.

Step 3. Inthe Tag Dictionary Pane, select one or more tags to add and click the Taglt button.
Depending on the type of tag you are adding, one of the following happens:

* If one or more tags have a value field, an Tags Edit dialog box opens and displays all fields.

* If no tags have value fields, a Tags Added dialog box displays a confirmation message
indicating how many tags are added.

Step 4. Depending on the type of tags you have added, do one of the following:
Option Description

Edit tag values and click OK in the Tags Edit

. (W direct (Component)
dialog box. @ nnode & moier

@l nbindHints ||
@l ntemplate o marker
@l n:vendor

ol n:version

[[] save ‘ (@ AddTag ‘ ¥ RemoveTag | M Cancel ‘

If this dialog box displays, then you have tag
values to edit. Edit the value fields and click ok.

Click OK in the Tags Added dialog box.

2 tags have been added to the selected object.

If this dialog box displays, no tag values are
available. Click ok.

Adding a Tag Group to a component

Adding a Tag Group allows you add a predefined collection of tags to a component in a single action. Typically,
tags are in a tag group because it is common for each of the tags to be assigned to the same component. The
Device Manager and Point Manager views of a driver, and the Edit Tags dialog are the primary methods for
adding a tag group to a component. This procedure describes how to use the Edit Tags dialog to add a tag
group.

Prerequisites:

16 December 19, 2024

Niagara Tagging Guide Common tagging tasks

® One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TagDictionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

Step 1. Right-click on the component that you want to tag and select Edit Tags from the popup menu.

Step 2. In the Edit Tags dialog box, select a dictionary from the option list in the top left corner

@ Miagara .

The top half of the dialog box shows a list of individual tags available from the selected dictionary.
Step 3. Scroll down to see the list tag groups in the dictionary.

TIP: To limit the number of tags displayed, use the Search and the Filter fields as needed.

Step 4. To assign the selected collection of tags, select the desired tag group and click Add Tag.
The assigned tag group displays as an Ord on the Direct Tags tab (lower half).

Step 5. To save the added tag assignments. click Save.

Result
Once you save the added tag assignments, the set of tags in the tag group are implied tags on the
component.

Creating a custom tag group

Use the tagdictionary palette to create a custom tag group in a tag dictionary. This procedure describes how
to edit an existing tag dictionary, add a custom tag group and configure it with tags.

Prerequisites:
e Existing tag dictionary
* The tagdictionary palette is open.

Once a tag group is applied to an object, it implies all of the individual tags in its tag list, as well as implying a
marker tag that bears the name of the tag group. This allows you to easily define a NEQL search for the
marker tag for that tag group rather than define a search by concatenating each of the tags in the tag group’s
tag list.

Note that a recommended best practice for naming tag groups is to use a name that reflects its intended
usage. For example, the Haystack outsideAirTempSensor tag group is typically applied to points representing
outside air temperature.

Additionally, for tags that you add to a tag group a best practice is to use only “fully qualified” tag names. This
means, add tags from a tag dictionary’s existing tag definitions and include the namespace of the source tag
dictionary in the added tag’s name. This ensures that the tags will resolve correctly for NEQL queries.

Step 1. Expand the TagDictionaryService node, double-click the tag dictionary you intend to edit to open
the Property Sheet view.

Step 2. From the palette, drag a TagGroup component onto the dictionary’s Tag Group Definitions
property and in the resulting popup, enter a name for this tag group (see recommended best
practices above) and click OK.

Step 3. Expand your new tag group and proceed with the following steps:

a. Drag any previously defined tag one at a time from any tag dictionary’s tag definitions to
the TagList sub-property in the new tag group.

b. In the Name popup, edit the tag name to prepend its source dictionary’s namespace (ex.:
change site to hs:site, as shown).

December 19, 2024 17

Common tagging tasks Niagara Tagging Guide

Name

@ ha:aite|
Cancel

c. Click OK.
Repeat the steps a—c until you are finished adding tags to this tag group.

Result

On completion, the new custom tag group is immediately available for use. Changes made in this procedure
are automatically saved to the tag dictionary (selected in step 1).

When applying the new tag group to an object, the multiple tags included in the group are implied at once on
the object, as well as a marker tag bearing the name of that tag group.

Adding a tag to an existing tag group

You can add a tag from a different tag dictionary to an existing tag group. Optionally, you can add a tag from
the tagdictionary palette. Shown in the following image, the hs:hvac tag (copied from the Haystack
tagdictionary) is added to MyTagGroup in the Building tagdictionary.

- Nawv

|:=~’:j O @ My Metwork

o Building
O Tag Definitions
O Tag Group Definitions

L‘ MyTagGroup

[validity

O TagList
‘ hs:hvac
‘ building
‘ operMode

‘ unoccupied
™) Relatian Definitinns

Prerequisites:
® At least two tag dictionaries are installed.
* One of tag dictionaries contains a TagGroup.

Step 1. Inthe Nav tree, expand the tag dictionary to the TagGroup that you wish to edit.

Step 2. Expand the second tag dictionary to select a Marker tag that you wish to add to the TagGroup in

18 December 19, 2024

Niagara Tagging Guide Common tagging tasks

the first tag dictionary.

Step 3. Drag (or right-click and copy) the selected tag, and drop it (or right-click and paste it) on the
TaglList folder of the Tag Group Definition that you edit.
NOTE: An alternative is to add a Marker tag from the tagdictionary palette.

Step 4. Inthe Name window, enter the tag's desired name as a fully qualified tag name including the
namespace with the colon separator. For example: hs:hvac.

NOTE: There is no verification that the tag name entered is actually defined in a tag dictionary. If
it is not defined in a tag dictionary, the added tag is an "ad hoc" tag. While you can certainly use
ad hoc tags, the recommended tagging best practice is to use tags that are contained in a
standardized tag dictionary that is applied system-wide.

Changes to the tag group are saved automatically.

Result

This namespace overrides the application of the parent dictionary's defined namespace. The added tag
automatically becomes an n: tagGroup relation (an implied tag) from the component to the corresponding
tagdictionary's TagGrouplinfo.

Adding tags using Batch Editor

You can add Direct Tags to large numbers of objects using the Program Service, Batch Editor view. Use the
Batch Editor to locate objects that need tagging and use the Add Tags button in the Batch Editor view to add
tags.

Prerequisites:

® One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TagDictionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

This task describes how to use the Edit Tags dialog box to add individual tags or tag groups from a dictionary
that is installed in the station Services folder.

NOTE: If you are using tags to support multiple hierarchical navigation schemes, you may add more than one
type of tag to a component. You can use tag Ggroups for adding multiple tags in a single add action.

Step 1. In the station Nav tree, expand the Station > Config > Services and double-click Program Services.

Step 2. In the Batch Editor view, click Find Objects and use the Bql Query Builder to produce a list of
objects that you want to tag.

December 19, 2024 19

Common tagging tasks

Niagara Tagging Guide

4% Bqgl Query Builder

w-M ¢

m -

[Q oftype: [Component
o
OK Cancel
The search produces a list of matching components.
|C) Jsitejwesterre I/AHU-1
|C) Jsitejwesterre IT/AHU-1
&2 Add Tag

Step 3. Select and remove the unwanted components in the table and click Add Tag.

Step 4. Select one or more tags from the Tag Dictionary (top) pane (or you may select Add Tag from this
dialog window to apply custom tags) and click AddTag to assign the selected tags to all

components.

NOTE: Select a Tag Group, if appropriate, to add several tags at once.

The selected tags are added and appear in the Direct Tags table in the lower half of the dialog
box. Finally, the BatchEditor Results dialog opens with all tag actions listed.

BatchEditor Results

-

=

[ADD] station:|slot:/Site/Westerref20I/AHUS2d] .mm:mynewtag -> M
[ADD] station:|slot:/Site/Weaterref20IIl/AH052d4] .mm:mynewtag —-> M

Result
The components are tagged.

Editing tags in a template

You can edit an existing template to add additional direct tags to the objects in it, or to remove or modify the
existing tags. These changes are made on the template Configuration tab

20

December 19, 2024

Niagara Tagging Guide Common tagging tasks

Prerequisites:
* An existing template
® One or more installed tag dictionaries

This task describes using the Template sidebar to access an existing template and invoke the Edit Tags window
from the template Configuration tab.

Step 1. To locate a template, open the Template side bar by clicking Window > Side Bars > Template.

Step 2. Inthe Template side bar, click the pull down menu and select either: the Template or Module.

NOTE: To see templates stored in a template module, select the myModule folder and expand
the module. You cannot edit a template stored in a module. When you open it, ReadOnly appears
in the top left corner of the Template View. To make changes you must first click Save As and save
it as a new template in the templates folder.

Step 3. Double-click on the template.
The Template View opens that displays the template tabs with the Template Info tab selected.

Step 4. Click the Configuration tab in the Template view, right-click the object you want to change in the
left pane, and select Edit Tags.
The Edit Tags dialog displays.

Step 5. Proceed to add tags, remove tags, or modify values of existing tags and click Save to close the
Edit Tags dialog.

Step 6. To save your changes to the template when finished, click Save or, click Save As to create a new
variation of the template with a different filename (leaving the original template unchanged).

Next steps

NOTE: For more details on using the Template view Configuration tab, refer to the Template Guide sections
“Creating a template” and “Template reference”.

View implied tags using Edit Tags dialog

Viewing implied tags can be useful when designing a custom tag dictionary to confirm that certain objects are
getting the desired tags, or when designing a NEQL query for a hierarchy definition or search. Implied tags do
not appear in an object Property Sheet or other typical views. One way to view these tags is on the Implied
Tags tab in the Edit Dialog box.

Prerequisites:

® One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TagDictionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

Implied tags are automatically assigned to objects by Smart Tag Rules in the installed tag dictionaries.

Step 1. Right-click the object whose tags you want to examine and choose Edit Tags from the popup
menu.

Step 2. To view the Implied Tags, select the Implied Tags tab in the lower pane of the dialog box.

December 19, 2024 21

Common tagging tasks Niagara Tagging Guide

Direct Tags Implied Tags
@ implied (Component)
i n:name Door
@l n:displayName | Door
i n:itype control:BooleanWritable

i n:ordinSession station: |h:aaée

Save AddTag Removelag B cCancel

For example, in the above image, you can see five tags that are implied based on the dictionary
rules for a Component object: The first four tags are implied from the Niagara tag dictionary
rules:

® n:name

® n:displayName

® n:type

® n:ordInSession

The final tag is implied based on Haystack tag dictionary rules:

® hs:id

Viewing implied tags using Spy view

Implied tags and implied relations are automatically assigned to objects by rules in the installed Smart Tag
Dictionaries. The implied tags and implied relations do not appear in the Property Sheet view or other more
commonly used views. Spy view shows all of the direct and implied tags and relations on an object as well as
other detailed data. Although intended to be used for diagnostic purposes, you can use Spy view to identify
implied tags and/or relations already assigned to a component. This can be useful when developing
hierarchies. Once identified, you can then create queries for those tags/relations in your hierarchy definition.

Prerequisites:

® You are connected to your station.

* One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TagDictionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

This procedure describes how to open the Spy view on a station component to see its implied tags:

NOTE: Invoking the Edit Tags window is another method for viewing the direct and implied tags assigned to a
component.

Step 1. Inthe Nav tree, right-click the component of interest and click Views > Spy Remote from the
popup menu.
Spy information displays in the Web Browser View.

Step 2. Scroll down to Tags Implied.
The implied tags assigned to the selected component are listed. Scroll up or down to view all of
the tags and relations assigned to the component.

22 December 19, 2024

Niagara Tagging Guide

Common tagging tasks

The Spy view pictured here lists the different types of tags and relations assigned to the AHU 2 component.

. station

slotPathOrd
navOrd

Tags Implied
n:name
n:displayName
n:type
n:ordinSession
n:device
hs:device

hs equip
hs:hvac

hs:id

- Drivers

. BacnetNetwork Vd

T

slot:/Drivers/BacnetMetwork/AHU 2
local:|station:|slot/Drivers/BacnetMetwork/AHU 2

AHU_2

AHU-2
bacnet:BacnetDevice
station:|hrata2

Web BrowserView ~

Tags Direct
hs:ahu
brfloor

hs:air
hs:equip
brgraphic

Relations implied

n:parent
n-child
n-child
n-child
n:child
n:child
n:child
n:child

n:parentNetwork

I
Floor 2
M
I
I

(Cut) local:|station:|slot:/Drivers/BacnetNetwork
(Cuf)

local:|station:|slot/Drivers/BacnetNetwork/AHU _2/alarmSourcelnfo

Out) local:|station:|slot:/Drivers/iBacnetNetwork/AHU _2/points
Cut) local:|station:|slot:/Drivers/iBacnetNetwork/AHU_2/virtual

Cut) local:|station:|slot:/Drivers/iBacnetMNetwork/AHU _2/alarms

Out) local:|station:|slot:/Drivers/BacnetNetwork/AHU _2/trendLogs

Cut) local:|station:|slot:/Drivers/BacnetNetwork/AHU _2/config

(
(
(
(Cut) local:|station:|slot:/Drivers/BacnetNetwork/AHU_2/sched
(
(
(Cut) local:|station:|slot:/Drivers/BacnetNetwork

|virtual:/

ules

Selecting or exiting tag mode (manager views)

Station Manager and Point Manager views have a Tag Mode available for adding tags to devices or points as

they are added.

Prerequisites:

* Tag Mode is only available in the Station Manager or Point Manager views.

Tagging is integrated into the driver manager views to help you add tags when devices or points are

discovered and added. You can select and exit Tag Mode using either the Manager menu or the
in the Toolbar.

&

Tag icon

While in the Station Manager or Point Manager view, click Manager > Tag Mode from the Workbench main
menu to select or exit Tag Mode.

December 19, 2024

23

Common tagging tasks Niagara Tagging Guide

Result

When selected, Tag Mode appears as a single pane across the top or as a second pane in the upper pane
depending on whether or not you also have Learn Mode selected. The following image shows Tag Mode and
Learn Mode selected simultaneously.

R % © 0 B X E h [(= a e
I Config - Drivers MiagaraNetwark K Station Manager -|
@ # station Discovery success 3 [¥] & Miagara * Y |Bestonly
Discovered Dobjects Tag Dictionary 8 objects
Station Mame Scheme Address Version Host Model B MName Type iz}
= ‘Tags

‘bdeints String

‘ device Marker

‘ node Marker

‘tdrgetSlUtHint String

‘template Marker

‘vendor String

‘verslon String

‘Tﬂg Groups

Database 2 objects
Name Exts Address Host Model Version Status Health Client Conn 5e®
a station 817 D OOODO®O i TITAN 413020 {unackedAlarm} Ok[21-Apr-222:50PMEDT] Connected Notec
a station 35 BOO0OOOO i TITAN 413020 {ok} Ok [21-Apr-22 2:49 PMEDT] Connected Not e

New Folder ‘ E New | Edit n Discover Cancel Add Match Taglt Template Conf

Exporting and importing tag dictionaries

The Tag Dictionary Manager view provides a method to import and export tag dictionaries (or smart tag
dictionaries) in a standard CSV file format, compatible with Excel (or other CSV-compatible spreadsheet
software). This facilitates creating custom tag dictionaries, which you then import to your station. Working in
the exported CSV file, you can easily edit the correctly structured tag dictionary, populating it with your
custom tag definitions, tag rules, etc. When finished, save the revised CSV file and import it using the Tag
Dictionary Manager view.

Use case

It may suit your purposes to create a custom tag dictionary (or dictionaries) for a specific customer, for an
OEM, or for a specific application. You may use a custom tag dictionary as you would other tag dictionaries, to
apply tags to objects, create hierarchy definitions, as well as search the station for tagged objects.

NOTE: By default, the license for the Tag Dictionary Service limits the number of tag dictionaries available for
the system to the first two. Any dictionaries added above the limit for the license will be in fault and unusable.
However, the Dictionary.limit attribute on the license is configurable in the same manner as are device
limits.

Creating a new tag dictionary

Creating a new tag dictionary results in a correctly structured, “empty” tag dictionary, which you can export to
a CSV file format for editing.

Prerequisites:
You have a license to use tags and have installed the TagDictionaryService under the Services folder. You have
an online or offline connection to an open Station.

Step 1. To open the Tag Dictionary Manager view, double-click the TagDictionaryService in the Nav tree or

24 December 19, 2024

Niagara Tagging Guide Common tagging tasks

use the right-click menu to open this view.

Step 2. Click New, in the New window, select Smart Tag Dictionary and click OK.
A second New window opens.

Name Enabled MNamespace &
0 MyTagDictionary true mt
[Name MyTagDictionary

| . Enabled @ true

| '-Namespace mt KE

0K Cancel

Step 3. Enter a Name and Namespace for the dictionary and click OK.
Name could be your company name or some other unique name to identify the dictionary.

Namespace should be a short mnemonic to identify the dictionary, similar to the “hs” that stands
for Haystack. The shorter, yet meaningful, the better. NEQL predicates require this ID.

The database table of the Database pane and the TagDictionaryService node in the Nav tree list
this custom tag dictionary.

Next steps

Instead of using the Tag Dictionary Manager’s New button to create a new tag dictionary, you could drag a
SmartTagDictionary component from the tagdictionary palette to the TagDictionaryService in the Nav tree. The
Tag Dictionary Manager displays the resulting row in {fault} because its Namespace is not defined. To
remove the {fault} condition, select the row, click Edit and assign a Namespace.

Editing a tag dictionary exported to CSV

You can open an exported tag dictionary (CSV format) in Microsoft Excel or other CSV-compatible spreadsheet
software, or even a text editor. The file is structured correctly, ready for you to enter a namespace and add tag
definitions and other types of definitions, as needed.

Prerequisites:
¢ Tag dictionary exported to CSV format
e CSV-compatibile spreadsheet software

Step 1. Open the exported CSV file ,which should resemble the one shown here.

December 19, 2024 25

Common tagging tasks

Niagara Tagging Guide

A B

namespace I .I

TagDefinitions

#
#
#
#

Wl |~ o bW e

#

=
=]
£

11 |#

12 #

13 |#

14 |#

15 |#

16 (#

17 |#

18

19 TagGroupDefinitions
20 (#

21

22 #(tags)

23

24 |RelationDefinitions
25 |#

26

27

28

M 4 » M| MyTags -~ ¥J

Section Rule Name Group Name Tagname

name

name

name

E F G H I

Validity Rules
Type Smart Type hasTags hasAncestor IsType

type module:class opt opt opt
AbsTime
Boolean
Marker
Double
Float
Integer
Long

Ord
RelTime
string
TimeZone
Unit

opt opt opt

Relation

] K L f

hasRelation hasRelationFilter Units

opt opt opt

opt opt

m 0

Step 2. In cell B1, enter a Namespace for this tag dictionary, typically only a few characters, for example:

MyTags .

NOTE: Avoid using a namespace that conflicts with that of other installed tag dictionaries, such as
“n" (NiagaraTagDictionary) or “hs” (HaystackTagDictionary).

Step 3. Starting under the Tag Definition section, in Row 18, enter the first of your tagDefinition entries
(one per row). Be be sure to note the following information:

Row Description

Row 4

Row 5

Row 6-17

Tag Definition section: define the tags for your dictionary in this area.

Rows that begin with # are comment lines which show examples or explanatory
comments which may be helpful to retain in the file.

Row 5 is an example of the pattern to use to define a tagDefinition entry. You
must define tag name and tag type.

Row 6-17 show valid tag types that can be used.

Validation Rules columns: Validation rules are optional. These columns are
used to define NEQL query predicates that will be used to suggest where the
tag can be applied. For a particular tag definition entry, if more than one of
these columns have values, they will be wrapped in a tagdictionary:And
function.

* hasTag: This tag may be applied if the target component also matches
this NEQL tag query.

* hasAncestor: This tag may be applied if the target component has an
ancestor that matches this NEQL tag query.

26

December 19, 2024

Niagara Tagging Guide Common tagging tasks

Row Description

¢ isType: This tag may be applied to the target component if it is one of
these types. Value must be entered in the "module:ClassName" form.

If more than one type is entered separated by a space, it will be treated
as an "or" function. Example: driver:Device driver:PointFolder: The tag is
valid on a BDevice or a BPointFolder.

* hasRelation: This tag may be applied if the target component has this
relation and has the tags that are listed in the hasRelationFilter (3.c.v)
column.

hasRelationFilter: This is a tag filter used with hasRelation (3.c.iv)
validation check.

Units: Units are optional and can be used to define a measurement unit used
for a tag that has a value. The value entered is used as the unitName
argument in the BUnit.getUnit(String unitName). Example: "square foot" for a
tag whose value is an area.

Step 4. Under the TagGroupDefinitions section (optional), add a row for each TagGroup, defining a
GroupName that will be used to represent this collection of tags.

a. Add one or more tag rows under the TagGroup one row for each tag in the group.
NOTE: Tags included in a TagGroup must also be defined in the TagDefinitions section.

Step 5. Under the RelationDefinitions section (optional), add a row for each relation defining a
RelationName and enter Relation inthe Type column.

Step 6. Under the RuleDefinitions section (SmartTagDictionaries only), define the rules for implied tags
and relations.

a. Add a row for each TagRule, enter a RuleName and one or more validation rule column
values. See information on Validation Rules listed under Step 3.

b. Under the tag rule row, add a row for each implied tag for this rule entering a name, type
and a smart type. The smart type should be in the module:class format.

c. If there are any implied tag groups for this rule add a row for each with the GroupName
entered in the groupName column.

d. [If there are any implied relations for this tag rule, add a row for each with the RelationName
in the name column and enter Relation inthe type column.

Result

Your edited tag dictionary is complete and ready to import. An example of an edited tag dictionary in CSV file
format, shown here.

December 19, 2024 27

Common tagging tasks

Niagara Tagging Guide

A B D E F G | il L
1 namespace
2 L Validity Rules
3 |Section Rule Name Group Name Tagname Type Smart Type hasTags hasAncestor isType hasRelation hasRelationFilter Units
4 TagDefinitions
5 |# name type opt opt opt opt opt opt
6 |# AbsTime
7 |# Boolean
8 |# Marker
9 |# Double
10 |# Float
11 |# Integer
12 |# Long
13 |# ord
14 |# RelTime
15 |# string
16 |# TimeZone
17 |# Unit
18 building Marker
19 area Double my:building square foot
20 outside Marker
21 air Marker
22 temp Marker fahrenheit
23 TagGroupDefinition
24 & groupName opt opt opt opt opt
25 #(tags) name
26 oaTemp control:NumericPoint
27 outside
28 air
29 temp
30 RelationDefinitions
31 |# ? name Relation
|32 buildingRef Relation |

@

o

Namespace = my

Tag Definitions — notice tagDefinitions, area and temp are configured with Validity Rules

Tag Group Definitions — notice caTemp tagGroup is configured with a Validity Rule and the group contains

three tagDefinitions. (outside, air,and temp).

Relation Definitions — defines one Relation, buildingRef

Importing a tag dictionary in CSV format

After editing a tag dictionary outside of Niagara this procedure brings the dictionary back into the framework.

Prerequisites:

The tag dictionary in CSV format is in your Workbench user home.

Step 1. Open the Tag Dictionary Manager view of the TagDictionaryService.

Step 2. Select the tag dictionary to update and click Import.

28

December 19, 2024

Niagara Tagging Guide Common tagging tasks

Database 2 objects
Name Type Status MNamespace FaultCause R
‘ Miagara Miagara Tag Dictionary {ok} n

‘ MyTagDictionary TagDictionary {ok} MyTags

[5] New ‘ & Edit | Import | Export |

A window confirms that the Import action will overwrite the selected tag dictionary.

-

Confirm @

® Thizwill overwrite MyTagDictionary. Are you sure?

Step 3. To replace the dictionary, click Yes.
A File Chooser opens.

Current Path
~shared / exported TagDictionaries

(oA E||Ez o8

D MyTags-example.csv
D MyTags.csv

D MyTags2.csv

MyTags-example.csv
407 bytes
27-Jul-15 10:13 AM EDT

Filename: MyTags-example.csv Open

Files of type: |csv Files Cancel

Locate and select the CSV file to import, and click Open.

NOTE:
By default, the function prompts for a CSV file. This behavior can be modified programmatically.

Step 4.

29

December 19, 2024

Common tagging tasks Niagara Tagging Guide

A Results window notifies you that the CSV file imported successfully.

Results @

Processed 5 tag definitions

Processed 1tagGroup definitions

-

Processed 1 relation definitions

MyTagDictionary was loaded from MyTags-example.csv

Step 5. To continue, click OK.

NOTE: In the event that the framework detects an error in the CSV file, an Error window opens
indicating the error and its location by row or line number.

Step 6. To open the dictionary’s Property Sheet, expand the TagDictionaryService node in the Nav tree
and double-click (or right-click) on the imported/updated tag dictionary.
The Property Sheet opens.

Property Sheet
‘ MyTagDictionary (Tag Dictionary)
. Status {ok]
(@l Fault Cause
[l Mamespace myTags
. Enabled .trLE
(Ml Frozen @ fals=
0 Tag Definitions Tag Info List
& building Marker
& arca Double
& outside Marker
& air Marker

& temp Marker

© TagGroup Definitions Tag Group Info List
‘ caTemp TagGroup Info

O Relation Definitions Relation Info List
. buildingref Relation Info

':', Refresh Save

Step 7. Review its properties and verify your changes.

Exporting a tag dictionary
You would export a custom tag dictionary to edit it outside of Niagara. You could export any tag dictionary as
an example or as a template.

Prerequisites:
You have a license to use tags and have installed the TagDictionaryService under the Services folder. You have
an online or offline connection to an open Station.

Step 1. To open the Tag Dictionary Manager view, double-click the TagDictionaryService in the Nav tree or

30 December 19, 2024

Niagara Tagging Guide Common tagging tasks

use the right-click menu to open this view.
The Tag Dictionary Manager view opens.

Step 2. Select a tag dictionary and click Export.
The File Chooser window opens.

File Chooser

I File Spaces Current Path (el
~tagDictionaries

) My File System _

« O A E| = O-HFBF

N Bookmarks

Filename: MyTags Save

Files of type: |csv Files Cancel

Step 3. Select a location to save the file, enter the desired file name (as shown), and click Save.
A Results message confirms the export.

-

Results @

m MyTagDictionary was exported to MyTags.csv

Result

The exported structured tag dictionary is empty at this point. You can edit the file, as well as use it as a
template to develop additional tag dictionaries.

NOTE: You can also export the Niagara and Haystack dictionaries to use as examples.

December 19, 2024 31

Common tagging tasks Niagara Tagging Guide

32 December 19, 2024

Niagara Tagging Guide Tag dictionary service

Chapter 3. Tag dictionary service

The Tag Dictionary Service, located in a station’s Services directory, is the container for all tag dictionaries
installed in the station.

Smart tag dictionary

The Smart tag dictionary automatically applies the implied tags and relations to objects. Technically, implied
items, the implied tags and implied relations, are not added to the station, and the station size is not increased
as a consequence. To create a new Smart tag dictionary, drag the SmartTagDictionary component to the Tag
Dictionary Service. In addition to tag definitions, tag group definitions, and relation definitions present in a
simple tag dictionary, a Smart tag dictionary contains a list of tag rules that determine the implied tags and
implied relations for each and every object in the station.

Figure 1. Example tag rule

© TagRules (TagRule List)

(W schedule tags schedule tags
(@ Condition I5 schedule:AbstractSchedule
. Object Type schedule AbstractSchedule
© TagList Tag Info List

& schedule Marker
O Tag Group List Tag Group Info List
O Relation List Relation Info List

Examples of smart tag dictionaries:

* NiagaraTagDictionary, whose namespace (<n:>) is the 'n’ character followed by a colon. It is included by
default in all stations created using the New Station Wizard

* Haystack tag dictionaries, indicated by <hs : > namespace (Haystack/Haystack3) or <h4 : > namespace
(Haystack 4). These dictionaries are available from the haystack palette, which is included in the Niagara
installation. The Haystack dictionaries are a result of the work of the Haystack community hosted on
http://project-haystack.org.

¢ Brick tag dictionary, indicated by <bk: > namespace. This dictionary is available from the brick palette,
which is include in the Niagara 4.14 and later installations. To learn more about the Brick tag dictionary,

see https://brickschema.org.
For more details on tag rules see the topic, tagdictionary-TagRulelList.

Haystack smart tag dictionary

This module provides the Niagara Haystack smart tag dictionary.

The Haystack dictionary is indicated by the hs or h4 namespace followed by a colon character (:). The haystack
module contains the types of components typically present in any smart tag dictionary (tag definitions, tag
group definitions, relation definitions, and tag rules). ProjectHaystack.org created and maintains the Haystack
tags and equipment point tag groups. As part of that, the organization frequently adds and removes tag
definitions. Periodically, a new or updated Niagara release provides the updated haystack module. However,
an alternative is available for customers who do not want the updated module or who cannot upgrade
software for their whole station.

December 19, 2024 33

https://brickschema.org/

Tag dictionary service Niagara Tagging Guide

NOTE: In Niagara, when a Haystack tag dictionary is already installed in a station it is no longer imported
automatically when the station starts after upgrading the haystack module. This change prevents any new
implied equipRef and siteRef relations from appearing in the station and affecting hierarchies and NEQL
results. The latest tag, tag group, and relation definitions can be imported by invoking the Import Dictionary
action on the HsTagDictionary component.

Figure 2. Haystack palette contains 2 versions of the dictionary

- Palette
- E E i haystack

‘ Haystackd
Q Haystack3
'I:l' Standard items only

'I:l' Includes smart relations (recommended)

In Niagara, the haystack palette provides two versions of the dictionary: one contains only standard items
while the other contains the implied equipRef and siteRef smart relations. When adding a new Haystack tag
dictionary to a station, the latter dictionary is the recommended one to use to benefit from the smart relations
functionality of the dictionary.

The version that includes smart relations has the Tags Import File property pre-configured with a file Ord
(module://haystack/com/tridium/haystack/data/smartRefsImport.csv) pointing to a file included
with the haystack module, as shown here.

Figure 3. Tags Import File field in dictionary that includes smart relations

Property Sheet

0 Haystack (Hs Tag Dictionary)
(@ status {ok}
[l Fault Cause

[Namespace hs

. Enabled . true

(@l Frozen @ e

© Tag Definitions Tag Info List

© TagGroup Definitions Tag Group Info List

© Relation Definitions Relation Info List

© TagRules Tag Rule List

(@ version 3.0.2 N.2 w/ SmartRefs (import)

. Tags Import File module://haystack/com/tridium/haystack/data/smartRefsImport.(| il ~ 1 2
[l Equip Import File null [IR

In latest version of Niagara a jar for the haystack-rt module is available, which allows you to modify tag
definitions in the haystack dictionary using an external . csv file. The patch jar provides two added properties

34 December 19, 2024

Niagara Tagging Guide Tag dictionary service

in the dictionary for this purpose. Using the Tags Import File and Equip Import File properties, you can
point to an external file, or a file within a module, to import tag values overriding those originally in the
dictionary.

The installed official haystack dictionary version number is visible in the property sheet. Periodically, the
software installation will provide an updated version of the dictionary. Otherwise, if making your own
modifications to the dictionary, edit the version number prior to importing your changes. If the version is the
same, the import will still accept changes from the TagsimportFile. “ (import) " is appended to the version
found in the TagsimportFile but that version could be identical to the base version (“3.0.2", for example). For
more details on making modifications, see the section on “Modifying the Haystack tag dictionary”.

Figure 4. Haystack Tag Dictionary property sheet view

o Haystack (Hs Tag Dictionary)

[status [ok}

[l Fault Cause

[Namespace hs

(M Enabled @ true

[l Frozen @ tne

© Tag Definitions Tag Info List

© TagGroup Definitions Tag Group Info List

O Relation Definitions Relation Info List

O Tag Rules Tag Rule List

. Version 3.0.2 (import)

@ Tags Import File file:*ImportFiles/tagsMerge.csv -)
. Fquip Import File file:~ImportFiles/equipMerge.csv -)

NOTE: To use these import files, you must always specify a Tags Import File that contains a specified version
number even if there are no tags to be modified. If no modifications are made to equipment tagGroups, then
the Equip Import File is optional.

Importing changes allows you to modify a tag’s type, validity rule, and implied tag rule. In doing this, the tag
name is key. You must use the same tag name to override an original tag. You can specify a different value for
anything except the original tag name.

You can also add new tag names to add tags to the haystack dictionary, and remove a tag name to remove the
tag from the dictionary. To remove a tag, the TagslmportFile must have a row with the tag name and set the
value in the Kind column to “Remove”. Simply omitting the tag from the TagsimportFile will not remove it from
the dictionary. For more details, see the section on “Modifying the Haystack tag dictionary”.

Modifying the Haystack tag dictionary

If you wish to create a customized version of the Haystack tag dictionary, you can create haystack import files
that you can edit using a CSV-compatible spreadsheet program such as MS Excel. On completion, you can
configure the installed tag dictionary to import your changes when the Import Dictionary action is manually
invoked.

The following procedures describe the steps to create the Haystack tagsimportFile and equipImportFile, edit
tags in those import files, and to configure the Haystack dictionary to import your modifications.

For more information on the haystack dictionary in the “HsTagDictionary” topic, see the components section
of this guide.

December 19, 2024 35

Tag dictionary service

Creating the Haystack tagsimportFile and equiplmportFile

Niagara Tagging Guide

The Haystack dictionary has a Make Import Files action that can be used to create a tagsMerge. csv file and
an equipMerge. csv file. These files are copies of the master tags. csv file from the haystack-rt module.

Prerequisites:
* You have an open station connection (local or remote)
* The Haystack tag dictionary is installed in the station.

Step 1. Inthe NavTree navigate to the station’s TagDictionaryService, right-click on the Haystack

dictionary and click Actions > Make Import Files.

. Station (NewSta001)

Station (NewSta001)

C;) My Network Name Description
- A Alarm Alarm Database
0 TagDictionaryService -
‘ Niagara e Config The station config.
» @ Files File System accesse

inform
iews of
TemplateSe () History History database

T PlatformServifaine
ﬂ Mrivars

Step 2. Inthe Make Import Files window, click on the Browse icon to open a Directory Chooser window,
navigate to the desired location, select the folder to save the files in, and click Choose. In the

Make Import Files window, click OK.

36

December 19, 2024

Niagara Tagging Guide Tag dictionary service

file:~ImportFiles [M

Directory Chooser

LI File Spaces A e N

QFileson Station (NewSta001) @ Files
OMyModulc—s D ImpaortFiles
O
O template

M Bookmarks A

Choose | Cancel |

The tagsMerge.csv and equipMerge. csv files are created and saved to the chosen folder in
the station file space.

NOTE: Optionally, if you invoke the action from the Workbench haystack palette with the local
station closed, the Directory Chooser opens on the local PC file system.

Editing tags in the Haystack tagsimportFile and equiplmportFile

The following steps describe how to remove, modify, and/or add a tag to the file. The example in this
procedure describes how to edit the tagsMerge. csv file using MS Excel (or another CSV-compatible
spreadsheet program).

Prerequisites:
* You have already created the tagsimportFile and equiplmportFile.
NOTE: If the import files are saved to a remote station, you need to transfer them to a PC to edit them

with Excel. On the remote platform, use the File Transfer Client to copy the files to the local PC file system.

® MS Excel (or other CSV-compatible spreadsheet program) is installed on your PC.
NOTE: Optionally, you can edit the import files using a text editor, but editing is far easier using a
spreadsheet program.

Step 1. Navigate to the previously created tagsMerge.csv file (or equipMerge. csv) and double-click
to openit.

Step 2. In the first row of the tagsMerge.csv (not the equipMerge.csv), edit the version value, for
example change the number to “3.0.2 MyCompany.1".

NOTE: You must include the version row of the Tags Import File (tagsMerge.csv). Thisis
true even when all other changes that you make occur in the Equip Import File
(equipMerge.csv).

December 19, 2024

37

Tag dictionary service

Step 3.
Step 4.

Niagara Tagging Guide

A B C

| 1 |version 3.0.2.1 | Initial version 10/12/2018

2 implie

3 name kind SmartType hasTe
| 4 |absorption Remove |

5 ##ac Marker

6 |## active Marker

7 ## ahu Marker

8 [## ahuRef Ref

Locate the data row containing the tag you wish to remove or modify.

For any row that you wish to modify, uncomment the row by removing the “##" prefix from the

name column, leaving just the tag name.

NOTE: Initially, all data rows are commented-out (rows start with “**" or “##" characters), and as
such they will be ignored on import. To edit a row, you must remove the comment characters so
that your changes will be recognized and imported.

Step 5. Inthe uncommented row, edit any of the tag values as needed. For example, you might make any

the following changes:

"

* To remove the absorption tag, select the tag type, Marker, and enter “ Remove '

* To change the tag type for ac, active, andair, select the Marker value for each and enter a

different value, such as ” Double ”, ” String ” or “ NameTag ".

* To add a tag name to the list, simply insert a row (or copy/paste a row) and enter a unique
name for this tag, the tag kind (type), and other values as needed.

NOTE: When making changes, the tag name is important. You must use the exact same tag name
to overwrite an existing tag. You can specify a different value for anything except the original tag
name. Of course, the exception is when you intend to add a new tag name to the list.

A C D E F
1 mpliedTagRules
2 _name ad smartType hasTags hasAncestors hasRelat
absorption Marker |
. 7
4 |ac Marker B3 - Jr Remove
£ 5
5| |active Marker B C
5| [ahu Marker .
7] |ahuRef Ref al ! I
= anune “1 2 |name kind SmartType has
8| |air Marker .
- — 3 |absorption | Remove !
W_ﬂ irCooled ll:w::. ke 4 lac Double
0 lan Narker : h
Y angie viarke 5 |active String
11 | annarant Marlkar
6 |ahu Marker
7 |ahuRef Ref aystack:RefTag
8 |air NameTag
9 |airCooled Marker

L
=

anala

Marlar

Step 6. When finished making changes, click File > Save and File > Close.

Result

IMPORTANT: To use the import files you must copy them to a folder on a target station. On a remote
platform, use the File Transfer Client to copy the files from the PC to the station’s “shared” folder.

38

December 19, 2024

Niagara Tagging Guide Tag dictionary service

Configuring the Haystack dictionary to auto-import modifications

Set the Haystack dictionary’s Tags Import File and Equip Import File properties to reference your
modified tagsMerge.csv and equipMerge. csv files and import the changes when you invoke the Haystack
dictionary’s Import Dictionary action.

Prerequisites:
* The Haystack tag dictionary is installed in the station.

* You have already created the Tags Import File and Equip Import File and modified the files as
needed.

* The modified import files are copied to the target station’s file space.
Step 1. Open a Property Sheet view on the a Haystack dictionary.

Step 2. Inthe Tags Import File field, enter the file Ord for your tagsMerge. csv file (use the Browse
icon to locate and select to the file).

Step 3. Inthe Equip Import File field, enter the file Ord for your equipMerge.csv file.
Step 4. Click Save

Result
The next time you invoke the Haystack dictionary’s Import Dictionary action it loads the changes described in
the tagsMerge.csv and equipMerge.csv files.

NOTE: To use these import files, you must always specify a Tags Import File that contains a specified version
number even if there are no tags to be modified. If no modifications are made to equipment tagGroups, then
the Equip Import File is optional.

NOTE: When editing tagsMerge.csv or equipMerge. csv, you must include the version row (in
tagsMerge. csv). Otherwise, your changes will not be recognized and imported to the dictionary.

haystack-HsTagDictionary

This module provides the Niagara Haystack smart tag dictionary. The Haystack dictionary is indicated by the hs
namespace followed by a colon character (:). The haystack module contains the types of components typically
present in any smart tag dictionary (tag definitions, tag group definitions, relation definitions, and tag rules).

Properties
Besides the standard smart tag dictionary properties, the haystack dictionary contains the following
configuration properties.

Name Value Description

Version 3.0.2 (default) Version number for the installed
haystack tag dictionary. When the
number is appended with
"(import)”, this indicates that
dictionary modifications have been
included from the TagsimportFile
and/or EquiplmportFile.

Tags Import File null (default) A file Ord for a CSV file that can be
edited using MS Excel (or other
spreadsheet program). The file is
used to add a new tag or relation,
modify an existing tag or relation, or
remove an existing tag or relation
to/from the haystack dictionary. The
file contents are imported to the
dictionary when you invoke the

December 19, 2024 39

Tag dictionary service Niagara Tagging Guide

Name Value Description

haystack dictionary’s Import Dictionary
action.

Equip Import File null (default) A file Ord for a CSV file that can be
edited using MS Excel (or other
spreadsheet program). The file is
used to add a new tagGroup, modify
an existing tagGroup or remove an
existing tagGroup to/from the
haystack dictionary. The file contents
are imported to the dictionary when
you invoke the haystack dictionary's
Import Dictionary action.

Actions

e Import Dictionary — imports tag, tag group, relation, and tag rule definitions from a standard definition
tags.csv file and from the optional TagsimportFile and EquiplmportFile files.

* Make Import Files — creates example files (tagsMerge.csv and equipMerge. csv) that can be specified
as the TagsimportFile and EquiplmportFile respectively to modify the tags, tag groups, and relations in
the installed Haystack tag dictionary.

Haystack Tags Import File format

The Tags Import File (tagsMerge. csv) is created by the Make Import Files action on the Haystack tag

dictionary. This file is used to add a new tag or relation, modify an existing tag or relation, or remove an

existing tag or relation to/from the haystack dictionary.

The Tags Import File is a CSV file that can be edited using MS Excel (or other CSV-compatible software).

IMPORTANT: For editing purposes, the import files can be located anywhere on your PC. However, to use the
import files you must copy them to a folder on the target station.

About the rows

Version row: Row 1 — The file must start with “version” in the first column and version string in second
column.

Header rows: Rows 2 and 3 — Header rows that contain the column headings.

Data rows: Rows 4 and beyond — Each data row has 12 columns. In a text editor each column is separated

" on

with a “,” (comma). The column definitions follow. Each row defines an individual tag or relation (Ref kind).
NOTE: Initially, all data rows are commented-out (rows start with “**” or “##" characters), and as such they

will be ignored on import. To edit a row, you must remove the comment characters so that your changes will
be recognized and imported.

40 December 19, 2024

Niagara Tagging Guide Tag dictionary service

Figure 5. tagsimportFile data in comma-delimited CSV format

version,3.0.2..,,,,...,

...impliedTagRules, ., ,Validity Rules,,,,units

name,kind,SmartType, hasTags, isType, hasAncestors,filter, hasTags, isTvpe,hasAncestor, filter,
absorption,Marker,,,.,,equip chiller,,,,

Figure 6. tagsimportFile data as it appears in MS Excel

A B C D E F G H I J K L
1 version 3.0.2
2 \ impliedTagRules [Validity Rules [units
3 name kind SmartType | hasTags [isType |asAncesto] filter | hasTags | isType hasAncesto] fiter |
4 ## absorption Marker equip chiller

Data columns:

Column Description

Name Name of the tag defined by this row. If the tag with this name already exist in the haystack dictionary, the
tag’s definition will be overwritten by the definitions in this row. If the tag with this name does not exist in the
haystack dictionary, a new tag will be added with this row’s tag definitions.

Kind Defines the tag kind (e.g. Marker, Bool, Number, Str, URI, Ref, Date, Time, Datetime, Obj, Coord).
Note: Ref kind will be defining a relation and not a tag.

Note: Remove in the Kind column will cause this tag to be removed from the haystack
dictionary.

Smart Type If the row is defining a smart tag or smart relation this will define the class for the smart type. It is in the form
of module:typeName.

If no type is entered and there are no implied tag rules, the tag type will be
SimpleTaglnfo.

If no type is entered and there are implied tag rules, the type will be SmartTaglnfo

If Kind is “Ref” and no type is defined, the relation type will be Relationinfo

impliedTagRules (columns) Used in defining a TagRule in the TagRules section of the Haystack dictionary.

These colums are used to define the condition rules for a smart tag. If more that one
column is used then it will use a "and" function to evaluate the combined condition
rules.

Not used if the Kind is Ref.

ValidityRules (columns) These columns are used to define the validity for a tag or relation. The validity is used by user interface
components to filter tags or relations that may be added to Niagara components. Used in the creating the
Taglnfo entry for the tag in the TagDefinitions of the Haystack dictionary.
NOTE: If the Kind value is “Ref” then it is used in creating the RelationInfo entry in the
RelationsDefinitions of the Haystack dictionary.

hasTags Contains a list of space delimited tags. It will generate a Boolean filter with an "or" between each tag. It is

December 19, 2024 41

Tag dictionary service Niagara Tagging Guide

Column Description

indicating that this tag may be implied if the given component has one of these tags. If a haystack tag, only
enter the tag name.

isType Generates a IsTypeCondition using the type provided. In the form of module:typeName. This tag may be
implied if the given component is of this type.

hasAncestor Generates a HasAncestorCondition using the tag specified. If more that one tag is specified then an Or
function is used to evaluate. This tag may be implied if the given component has an ancester with one of
these tags. If haystack tag, only enter tag name.

filter Generates a BooleanFilter using the contents of this filter. The filter must be a fully qualified NEQL predicate.
NOTE: You must include nameSpace for tag entries.

Units Defines the units for the given tag. The value is the unit long name and must be contained in the

UnitsDatabase. The value appears as a defaultFacet Facet property added to the Taginfo entry for the tag in
the TagDefinitions of the haystack dictionary.

Haystack Equip Import File format

The Equip Import File (equipMerge. csv) is created by the Make Import Files action on the Haystack tag
dictionary. This file is used to add a new tagGroup, modify an existing tagGroup or remove an existing
tagGroup to/from the haystack dictionary.

The Equip Import File is a CSV file that can be edited using MS Excel (or other CSV-compatible software).

IMPORTANT: For editing purposes, the import files can be located anywhere on your PC. However, to use the
import files you must copy them to a folder on the target station.

About the rows

Header rows: Rows 1 and 2 — Header rows that contain the column headings.

Data rows: Rows 3 and beyond — Each row has 12 columns. In a text editor each column is separated with a
“," (comma). The column definitions follow. Each row defines an individual tag or relation (Ref kind).

1

NOTE: Initially, all data rows are commented-out (rows start with “**” or “##" characters), and as such they
will be ignored on import. To edit a row, you must remove the comment characters so that your changes will
be recognized and imported.

Figure 7. tagsimportFile data in comma-delimited CSV format

.,Validity Rules,,, . tagbroup,units)
name,Remove, hasTags,isTvpe, hasfincestor,filter, tags, . .
activePowerPhaseSensorf, ,point,control:ControlPoint,elecPanel hs:equipRef->hs:elecPanel,active power phase(A) sensor,

Figure 8. tagsimportFile data as it appears in MS Excel

A B i D E F G
1 | Validity Rules | tagGroup
2 [name Remove [hasTags [isType [hasAncestor [filter | tags
3 ## activePowerPhaseSensorA point control:ControlPoint elecPanel hs:equipRef->hs:elecPanel active power phase(A) sensor

Data columns:

42 December 19, 2024

Niagara Tagging Guide Tag dictionary service

Column Description

Name Name of the tagGroup defined by this row. If the tagGroup with this name already exists in the haystack
dictionary, the tagGroup definition will be overwritten by the definitions in this row. If the tagGroup with this
name doesn’t exist in the haystack dictionary, a new tag will be added with this row’s tag definitions.

Remove Entering the word “Remove” in this column causes this tagGroup to be removed from the haystack
dictionary.
ValidityRules (columns) This group of columns is used to define the validity for a tagGroup. The validity is used by Ul components to

filter tagGroups that may be added to a component. Used in creating the TagGrouplnfo entry for the
tagGroup in the TagGroupDefinitions of the Haystack dictionary.

hasTags Contains a list of space delimited tags. It generates a Boolean filter with an “Or” between each tag. It
indicates that this tagGroup may be valid to be applied to the given component if it has one of these tags. If
haystack tag, only enter the tag name.

isType Generates the IsTypeCondition using the type provided. Written in the form of moduIe:typeName. This
tagGroup may be valid to be applied to the given component is of this type.

hasAncester Generates a HasAncesttorCondition using the tag(s) specified. If more that one tag is specified then an Or
function will be used to evaluate. This tag may be valid to be applied to the given component if it has an
ancestor with one of these tags. If it is a haystack tag, only enter the tag name.

filter Generates a BooleanFilter using the contents of this filter. The filter must be a fully qualified NEQL predicate.
It is typically used to traverse a hs:equipRef relation to validate that this point is related to a specific type
of equipment.

NOTE: You must include the nameSpace for tag and relation entries.

TagGroup Tags Contains a space delimited list of discrete tags that are associated with this tagGroup. Most of these tags will
be Marker tags. If a tag is a value tag, a value can be specified by using tagName(tagValue) format.
Example: cool stage(2) cmd specifies tagGroup tags : cool stage cmd with the stage tag having a
value of 2.

haystack-EquipRelation
Haystack tag dictionary is the addition of the smart equipment relation (hs:equipRef).

Typically you create an explicit direct relation between all points that belong to an equipment object and the
component in the station that represents the equipment. Instead, you can use this smart equip type relation to
automatically create an implied relation between a point and its ancestor if that ancestor has the hs:equip tag

applied.

The smart EquipRef relation implies an hs:equipRef between a Control Point and the nearest ancestor with the
hs:equip tag. This relation is not implied on a Control Point whose proxy extension is the NullProxyExt. This
relation is not implied on a Control Point if the point already has a direct hs:equipRef relation.

haystack-SiteRelation

Haystack tag dictionary is the addition of the smart site relation (hs:siteRef).

The haystack module supports a smart site relation (hs:siteRef) that is valid for ControlPoints. If a ControlPoint
has an hs:equipRef relation (direct or implied) to a component with the hs:equip tag and that equip component
has an hs:siteRef relation to a component with the hs:site tag, an hs:siteRef relation is implied from the
ControlPoint to that site component.

H4TagDictionary

With the Haystack 4 tag dictionary, most items come directly from the unaltered Project Haystack source files
(see https://project-haystack.org/download). This provides the benefit that it does not require post-processing
of Project Haystack sources to supply information necessary to Niagara. The latest version of these source files
at the time of the release of Niagara is packaged with the haystack-rt module. Newer versions that were
released later by Project Haystack may be used instead of the packaged versions.

As of Niagara 4.13, the Haystack 4 tag dictionary primarily uses defs. json and protos. json files produced
by Project Haystack to generate the dictionary’s tags, tag groups, relations, and tag rules.

December 19, 2024 43

Tag dictionary service Niagara Tagging Guide

Defs. json contains information about all tags, all relations, and tag groups based on conjuncts. It also
contains the tag hierarchy that is used to create most tag rules.

Protos. json contains additional tag groups.

An additional configuration file is used to assist with the dictionary generation, and add tag rules as well as
smart tag types that enable some tagging convenience features. A default file is packaged with haystack-rt,
but you can reference your own, if required. For stations already tagged in Haystack 3, a migration action adds
Haystack 4 items that are equivalent to the Haystack 3 versions.

The Haystack 4 tag dictionary’s namespace is h4.

Migrating to Haystack 4

The Haystack 4 tag dictionary contains an action that adds Haystack 4 equivalents for Haystack 3 tags, tag
groups, and relations. The Haystack 3 items are not removed. The equivalent tags and relations are mostly
copies of the Haystack 3 versions with the distinction of the Haystack 4 h4 namespace. To see the required
item modifications, see “Changes3to4 — Project Haystack” at https:// project-haystack.org/doc/docHaystack/
Changes3to4.

Tag groups

These modifications are captured in a configuration file packaged with the haystack-rt module.
There are no exact equivalents for Haystack 3 tag groups. Some require only an additional “
the Haystack 3 dischargeAirTempSensor group that results in adding the Haystack 4 proto
dischargeAirTempSensorPoint. Others require an explicit mapping such as energyNetSensor to
totalNetAcElecActiveEnergySensorPoint. Some Haystack 3 tag groups, such as steamEnteringFlowSensor,
cannot be mapped and Haystack 4 equivalent tags are added for those tag group tags.

point” tag such as

Value tags are not included in Haystack 4 tag groups. Therefore as an example, the voltAnglePhaseSensorAB
tag is equivalent to the acElecVoltAngleSensorPoint tag plus a “phase” tag set to “AB".

Migrating Haystack 3 items
For stations already tagged in Haystack 3, a migration action adds Haystack 4 items that are equivalent to the
Haystack 3 versions.

Prerequisites:
* You have an open station connection (local or remote).
¢ The Haystack 4 tag dictionary is installed.

Step 1. To invoke the migration action, under TagDictionaryService, right-click Haystack4 and select
Actions > Migrate Haystack3 Items.

44 December 19, 2024

Niagara Tagging Guide

l.global.ds.hon

Tag dictionary service

= Nav al o yserviee |)
E f# O () My Network Database
R oo ppe———
¥ @ Programservice Hame Type Status
» D searchservice & Nisgara Nisgara TagDictionary [0k}
v © ToghictionaryService & roystack Hs Tag Dictionary fok)

4 ‘ Niagara
b P Haystack
3 ‘ HaystackCustom

‘ Hay stackCustom

& Haystacks

Smart Tag Dictionary [k

Haystackd Tag Dictionary [ok]

mport Dictionary

Migrate Haﬁ\lack} Items

B Emallservic]
wor PlatformsSe

[
[]
»
»
»
Make
b orivers -

The Migrate Haystack3 Items window opens.

@ Hapstack @ Hoystacks

Version

15

3.0.2 N.2w/ SmartRefs (import)

Undefined

30

Namespace Fault Cause

n

hs

hsc

5 Migrate Haystack3 ltems

[l Haystack3 Tod Migration Params

1&t/ /hayatack/c

[l Migration File Path

(M Haystackd Namespace

ok | cancet |

B/ eEldiumn/ hayatack/ data/hay

The migration action accepts a customized namespace. By default the module://haystack/
com/tridium/haystack/data/haystack3MigrationConfig.csv configuration file path is

selected. You can find the config file under the Haystack module.

December 19, 2024

45

Tag dictionary service Niagara Tagging Guide

= Mav
E 1 O [x % uyNetwork

- l: tridium

b b D haystack
- D data
b O haystack-4-defs
D eI
[haystackamigrationConfig.csv
[Hsseonajson

D smartRefsimport.cav
™.

If desired, you can make changes to the configuration file. The configuration file consists of the
following columns: haystack3 name, type (tag, tagGroup, or relation), optional NEQL query,
corresponding h4 name(s), and h4 type (tag, tagGroup, or relation).

¢ = 1 hiliame,hiType, n3Guery, hilamds, haTyoe
= Nav T 2 shuRef,relation,,sirfef relation
3 apparent,tag,(
E 4 O ” ﬁ}u‘u.:non & bparometric
== 5 chilleduater ant, taglrous
= . f—— & ehilleckater e, relation, chilleguaterRed, relation
. T ge TR, oelont
v Dcom g
w» Q) tridiam 12
11 dew, tag, air cewPoint,tag
v O oy 12 eleceteriond,relation seleche, 1on
» Q) data 13 elecMeterded relation, ,eleched, relation
18 elecPanel, tag, ,elecPanel, taglroup
» D-"Bﬂmk-t-uﬁg 15 elecPanelds, elecRef, relation
Dfﬂmmv 16 gasMeterioad uralGashef, relaticn
17 nigInterpole sInterpelate = ~"linesr="" hisode=sampled | RisMocescov,tag
) haystackamgrationcantipes 18 hotiaterPlant,tag,,notHaterslant, tagGroun
15 hotdaterPlantief,relation, hotwater®es, relation
D) wssatia;ian 20 humigity,teg,,sir humidity,tsg
el 21 ligntLevel,tag,,illuminance, tag
D) smertactimportar 2 lignts,te vel, taglroe
D'-dﬁﬂ'\' 23 ligreslroun, tef,, lightingloneion ce, tagiroup
— 2 SAF.thE. BARAITUAS TAF

- Nav [Orolders Tagoutionryservice o Haystack 4 Haystacke 3]

| O] @myrenok Selected Components. lobjects ¥ Available Tags & Niagora ~ A W showAll v lobjects ¥
" -

@ Programsenvice Name Location Tag Tag Type
© sardservie O Folderl slotFolderl [~ Tags
O Tagpictionarysenice
» @ ogars
b @ stk
b @ Hapstadcuston
b @ aystocks
@) Templateservice
© viebserice
& satchsobsenvice
B emaisenvice
b o plaormsences
» Bomen
» @ noos
» O roider
» O roident
» @i
b @ Herachy
» @ oy Togld TagMName Value
hs:ac ac & Marker

‘

Showing tags on: | Folderl EDirect Dimplied 4 objects -

- Palette %]
CRCEEN T

N T
» O Heysacs

hs:apparent apparent @ Marker
hdiac ac @ Marker

VAR

hd:ggparent apparent @ Marker

December 19, 2024

Niagara Tagging Guide

Result

The migration action kicks off a job that logs the actions taken on each component in the station. Any errors

Tag dictionary service

are also logged. Once you take action to correct these errors, they can re-run the job as required until the

migration is complete.

o /"' Haystack3 To4 Migration
&
Status Timestamp

Q) Running 09-Aug-22 1:27 AM COT
m Message 09-Aug-22 1:2TAM CDT
[ﬂ Message 09-Aug-22 1:27TAMCDT
m Message 09-Aug-22 1:2TAM CDT
m Message 09-Aug-22 1:2TAMCDT
m Message 09-Aug-22 1:27 AM CDT
[[] Message 09-Aug-221:27AM COT
[i] Message 09-Aug-221:27AM COT
[[] Messsge 09-Aug-22 1:27 AM COT
[[] Message 09-Aug-221:27TAM COT
m Message 09-Aug-22 1:27AM CDT
[i] Message 09-Aug-221:27AM COT
[[] Message 09-Aug-221:27AMCOT

[i] Message 09-Aug-221:27AM COT

success| p | [X]

Message =
Starting Haystack 3 to Haystack & migration with configuration file: module://haystack/com/tridium/haystack/data/
Relations added to "slot:/TestPoints/AllHaystack3Relations/NumericWritable®; [(OUT) slot:/TestPoints/AllHaystack
Relations added to "slot:/TestPoints/HaystackRelation 17/NumericWritable™: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to "slot:/TestPoints/HaystackRelation 18/NumericWritable™: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to “slot:/TestPoints/HaystackRelation 16/NumericWritable®: [(QUT) slot:/TestPoints/HaystackRelat
Relstions added to "slot:/TestPoints/HaystackRelation 11/NumericWritable™: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to “slot:/TestPoints/HaystackRelationT/NumericWritable®: [(OUT) slot:/TestPoints/HaystackRelatic
Relations added to "slot/TestPoints/HaystackRelation 12/NumericWritable™: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to "slot:/TestPoints/HaystackRelation 14/NumericWritable®: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to "slot:/TestPoints/HaystackRelation 10/NumericWritable™: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to "slot:/TestPoints/HaystackRelation 13/NumericWritable™: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to "slot:/TestPoints/HaystackRelation 15/MumericWritable™: [(OUT) slot:/TestPoints/HaystackRelat
Relations added to "slot:/TestPoints/HaystackRelationd/NumericWritable™: [(OUT) slot/TestPoints/HaystackRelatic

Relations added to "slot:/TestPoints/HaystackRelationS/NumericWritable™: [(OUT) slot:/TestPoints/HaystackRelatic

Haystack 4 import

For the Haystack 4 tag dictionary, the haystack-rt.jar is packaged with the latest versions of Project Haystack
source at the time of the Niagara release. There is a small set of items defined in a Niagara configuration file

that you can customize, if necessary.

Figure 9. The Tag Dictionary Service with the Haystack 4 dictionary

1 (brick) : Config : TagDictionaryService / TagDictionary Manager -
- Nav 1 Database 2 objects
E # O [& MyNetwork Name Type Status Version Mamespace FaultCause "
- é ey & Niagara NiagaraTagDictionary {ok} 15 n
» O Alarmsenvice & Haystack4 Haystack4 Tag Dictionary {ok} 3.0 h4

» @ BackupService

» @ca tegoryService
» @ Jobservice

» W SecurityService
»_ @ RoleService

The following sections give you a detailed overview of the Haystack 4 tag dictionary import.

December 19, 2024

47

Tag dictionary service

Tags

Niagara Tagging Guide

All tags in the Niagara Haystack 4 tag dictionary come from the Project Haystack’s defs. json file.
Most defs in the Project Haystack core library (lib:ph) are excluded unless they meet the following

requirements:

* The entity or geoPlace defs

* Subtypes of entity

e Defs that are a tag on entity or geoPlace or one of their subtypes

e Defs listed in the Niagara configuration file: min, max, input, and output

For remaining defs, the supertype tree of each def is traversed and if a mapped Haystack 4 type is found, a tag
of the corresponding Niagara type will be added to the dictionary.

Figure 10. Haystack 4 tag definitions

D Caation | Superadsosd]
= Maw

E # O E®

) suditrnistoryService
D) LogHistorySenvice

'g FProgramSenyice

D) sesechieniie

O TagmeionaryService
E TemplateSerdce

S veebitervice

& ButchlobSenvice

& UserPrototypel

4 CleudConnector_Sentie
'. GoogltiuthenticationS
':;'l SytemDESarvice

"i:' HEtp Py Senver

&R Hrtpcientserice

B emaitservice

Palette
Bl teadc

b) TagictionaryService
b o SmanTagDictionary

Choice tags

: Config Sefvio I Tagictianary Service

Tag Definitions
Display Mame

& absorption

x

F active

F actuator

& ahu

& ahuZoneDelivery

& air

#F airCooling

airHandlingEquip

& airQuality

¥ airQualityfonePoints
& airRef

& airTerminalUnit

airvolumeadjustability

& alarm

Tag Dedinitians # Property Sheet -
C} Actiond & Topets Shat Detasls

Value Commands

Marker

MarkeEr

Marker

Marker

Marker

DynamicEnum

Marker

Marker

Marker

Marker

Marker

String

Marker

DhymamicEnum

Marker

All of the choice values for a choice def subtype are added as separate tags in the dictionary.

If a choice def has an “of” value, such as pipeFluid where “of” is the fluid def, the choice values are all
descendants of that “of” def. Otherwise, the choice values are simply the descendants of the choice def.

48

December 19, 2024

Niagara Tagging Guide

Figure 11. Haystack 4 choice tags

Tag dictionary service

Selected Components Available Tags & Haystacks v MR pipe Y ShowAll v
Name Location Tag Tag Type
QO Pipe slot:/Pipe e Tags
& pipe Marker
pipeFluid DynamicEnum
< pipeSection DynamicEnum
o Tag Groups
Showing tagson: |Pipe B Direct Bimplied 13 objects v
TagId Tag Name Value
& h4:pipeFluid pipeFluid water
By
&
By
&
&
» -
B remove ® add

Components

The choice def is added as a BDynamicEnum tag with the choice values included in the value’s BEnumRange.
Tag rules are added to imply the corresponding choice value tag based on the selected enum value.

For example, if the pipeFluid tag on a component is set to “water,” a water marker tag will be implied on that

component.

Tag group

The first set of tag groups in the Niagara Haystack 4 tag dictionary are derived from the conjuncts (for

example, ac-elec) defined in the defs. json file.

December 19, 2024

49

Tag dictionary service

Figure 12. Example of conjunct tag groups

Tag Group Definitions

oo LInuTu Yy aLsi wriL U

@ chilledwaterPlant
& chillerAbsorption
@ chillerCentrifugal
& chillerReciprocal
& chillerRotaryScrew
& coConcentration

& co2Concentration

(@ Validity Always

O Tag List Tag Info List
& co2 Marker
& concentration Marker

» & co2Emission

& coldWater

rag Ivup U
Tag Group Info
Tag Group Info
Tag Group Info
Tag Group Info
Tag Group Info
Tag Group Info

Tag Group Info

Tag Group Info

Tag Group Info

O Actions & Topics E Slot Details

Niagara Tagging Guide

7 -

O O0O0O0O0O0O0

The co2-concentration conjunct becomes a co2Concentration tag group that contains the co2 and

concentration tags.

50

December 19, 2024

Niagara Tagging Guide

Figure 13. Example of protos tag group

Tag Group Definitions

& acElecVoltimbalanceSensorPoint
& acElecVoltMagnitudeSensorPoint
& acElecVoltThdSensorPoint
& activeAcElecPowerSensorPoint
& airCo2ConcentrationSensorPoint
(M Validity
O Tag List
& air
& co2
& concentration
& sensor
point
& airCo2ConcentrationSpPoint

‘ airDewPointSensorPoint

Always

Tag Info List
Marker
Marker
Marker
Marker

Marker

Tag Group Info
Tag Group Info
Tag Group Info
Tag Group Info

Tag Group Info

Tag Group Info

Tag Group Info

Tag dictionary service

CJ Actions & Topics @ Slot Details

O -

O OO0 O

O

The next set of tag groups are created for all protos in Project Haystack's protos. json file that are not
already a tag or conjunct. For example, the “point” and “humidifier equip” protos are skipped because there is
already a point tag and humidifierEquip conjunct tag group.

Relations

For all defs that are a subtype of the ref def, a string value tag is added.

You can add these tags directly to station components and set their value manually to the ID of the entity to
which they refer. If the ID of that referenced entity changes, the values of these ref tags must be manually
updated. Alternatively, Niagara relations can be used. For ref def subtypes except for ID, a relation is added to
the dictionary. These relations are exported by the nhaystack service as ref tags with their value set to the ID

of the relation endpoint.

December 19, 2024

51

Tag dictionary service Niagara Tagging Guide

Relation Definitions O Actions & Topics [H] Slot Details

Display Name

1. airRef

‘4. blowdownWaterRef
k. chilledWaterRef

. condensateRef

‘| condenserWaterRef

Value

Relation Info
Relation Info
Relation Info

Relation Info

Relation Info

Commands

1. deviceRef Relation Info
‘B domesticWaterRef Relation Info
L elecRef Relation Info
‘§. equipRef Relation Info
14 fuelOilRef Relation Info
1 gasolineRef Relation Info
1. hotWaterRef Relation Info
1. makeupWaterRef Relation Info
4. naturalGasRef Relation Info
14 networkRef Relation Info
L refrigRef Relation Info -

The Niagara configuration file also defines tag rules that imply smart equipRef, spaceRef, and siteRef relations.
The smart equipRef relation works exactly as the Haystack 3 version, which is that an outbound relation is
implied from non-null proxy points to a component ancestor with the equip tag and inbound relations are
implied from that ancestor back to the points.

Unlike Tridium’s Haystack 3 tag dictionary, the equip tag is not implied on all BDevices, so it needs to be added
where appropriate.

If an equip component has a spaceRef relation to a space component, the smart spaceRef relation will imply
outbound spaceRef relations from that equip’s points to that space and will imply inbound relations from the
space component back to those points.

If an equip or space component has a siteRef relation to a site component, the smart siteRef relation will imply
outbound siteRef relations from the sub-equips, sub-spaces, and equip points to that site and will imply
inbound relations from the site component back to those items. The following figure shows an automatically
generated hierarchy based upon these implied smart relations.

52 December 19, 2024

Niagara Tagging Guide

[‘}] - Display Name
k3] Site:
B sis {H Status
O shel =
O Sitad m Enabled
O Site3
o - & Foult Causc
8 Sreoor &3 Health
8 AL © Alarm Source Info
| v & VAVI01A
0L i T M Address
O Fancmd
vl Client Connectio
& VAVLO © Client Connection
o e B Server Connection Ord
& VAV102
O Fo 1 M Host Model
=) Sitekquips B Host Model Version
&) space En
B Version
Tag rules

Value

down

true @

Fail [03-Aug-22 423 PM COT
Alarm Source Info

ro

Fox Client Connection

h:117ec

The following gives you an overview of standard and custom tag rules.

Standard

Tag dictionary service

1] it @ PopemyShest v [x]

O Actions & Topics Shot Details

] javaz.bajanaming. NullOrd Exception

Rules for the choice value tags are automatically generated based on the choice values found in the
defs.json file. Another set of rules is automatically generated based on the def type inheritance tree in

Haystack 4.

For example, water is a subtype of liquid, which is a subtype of fluid, which is a subtype of substance, which is
a subtype of phenomenon. As a result, there is a tag rule that implies the liquid tag if a component has the
water tag, or a tag rule that implies the fluid tag if a component has the liquid tag (direct or implied).

December 19, 2024

53

Tag dictionary service Niagara Tagging Guide

Figure 14. Inheritance tree tag rules

< B : -
— — ” -
B equip equip
M fcu fou
B floor Hloor
M fluid fluid
' Condition Boolean Filter
m Filter h4:gas or h4:liquid or h4:refrig
O Tag List Tag Info List
& fluid Marker
o Tag Group List lag Group Info List
Q) Relation List Relation Info List
m freq freq
Custom

The Niagara configuration file defines tag rules that unlock some tagging convenience features in the
framework. There are rules that imply simple tags based on the component'’s type such as the point tag on
BControlPoints and the bacnet tag on BBacnetNetworks. There are rules implying smart tags that derive their
value from something else such as the unit tag whose value is based on the component’s units facet. An
alternate configuration file can be specified if you wish a different set of tag rules and/or if you want to change
the tag types they imply.

54 December 19, 2024

Niagara Tagging Guide

Figure 15. Custom tag rules

M dis

M equipRef
- his

B hisErr

‘M hisMode
.l hisStatus
. id

‘H kind

"l maxVal
‘M minVal

M network

Updating an existing H4 tag dictionary

dis
equipRef
his

hisErr
hisMode
hisStatus
id

kind
maxVal
minVal

network

Tag dictionary service

Actions & Topics a Slot Details

You can update an existing Haystack 4 tag dictionary on a running station with each tag dictionary update that

Haystack releases.

Step 1. Go to the "Project Haystack" website at https://project-haystack.org/download and download the

definitions and prototypes.

December 19, 2024

55

Tag dictionary service

= Nav

E

™
L

& Alarm
© config

2 My Netwaork

- @ Files

Q update
O defs
0 defs.json
Q protos
0O protos.json
[haystack4niagaraConfig.json
Hierarchy
@ History

Niagara Tagging Guide

Move the defs.json and protos.json files into a folder in the station's shared folder. Move
the defs.json file into a defs folder and the protos.json into a protos folder.

NOTE: If you have customized your Haystack dictionary tag rules, for example, removed a
default tag rule, the configurations for those customizations are contained in the third file, which
is named haystack4NiagaraConfig.json. If no customization is done, the default tag rule
configuration is used. You can find the default tag rule configuration file HS4toN4. json in the

haystack

-rt module.

Step 2. To perform the tag dictionary update, right-click on the Haystack dictionary in the Tag Dictionary
Manager

view and select Import Dictionary from the drop-down menu.

. Station (brick) ! Config : Services :© TagDictionaryService # TagDictionary Manager -
- Nav [1 Database 2 objects
E tt O B My Network Mame Type Status Version Namespace FaultCause [
- és;rw'ces # Niagara Niagara Tag Dictionary |mnort Rictionary

O alarmsService

» @ BackupService

» @ categoryService
© Jobservice

» W securityService
D Roleservice

Haystack4 Haystack4 Tag Dictiond Export

Migrate Haystacks Items

The Import Dictionary window opens.

Step 3. In the upper right corner of the Import Dictionary window, click the down arrow and select
Dictionary Ord Chooser from the drop-down menu.

56

December 19, 2024

Niagara Tagging Guide Tag dictionary service

My.. : Station(brick) : Config :© Services @ TagDictionaryService # TagDictionary Manager =
- Nav (1 Database 2 abjects
ts " ol Lol A% ssccdtammsnmads SN0 L Ml Taswmam Chambiim \laaminm Aba eslja(e Fdl]lr Cau_gﬂ:\ [..]

£ Import Dictionary X

local:|file:~shared

T | Cancell Bgl Query Builder

Component Chooser

O Jobservice C t Grid O Edit

- - Lomponent Lnd Query caitor
W SecurityService 2SI PONIETL G SREsyeCD
M roleservice Directory Ord Chooser

O userservice

© AuthenticationSer
& Debugservice

@® Boxservice Orion Ord Chooser

File Ord Chooser

History Ord Chooser

Step 4. To run the import, navigate to the files in the station, select the folders containing the defs.json
and protos. json files, and click OK.

Step 5. In the Directory Chooser window, select the update folder located in the station.

% Directory Chooser X
. = [=)
2 File Spaces
e
&Files on Station (bri O help
O myModules o loggmg
() registry
Q reports
Q security
R Bookmarks [O shared
(] updw
Q defs
Q protos
O stations

Step 6. After import completion, you can open the directory entry in the property sheet view to confirm
that the import was successful and that the tags, groups, relations, and rules are updated as
intended.

Brick tag dictionary

The Brick tag dictionary is an instance of the standard Niagara Smart Tag Dictionary and does not contain any
custom properties or actions. There are no custom views associated with this dictionary. The dictionary
contains a collection of definitions for tags, tag groups, relations, and tag rules.

To create a Brick tag dictionary, establish a Fox connection to the station. In the brick palette, select the Brick
component and add it to the TagDictionaryService container on the station.

Starting with Niagara 4.15, you have three tag dictionary components available for installation from the brick
palette:

December 19, 2024 57

Tag dictionary service Niagara Tagging Guide

- Palette 7
] IEl ,E] i brick
‘Elrin:k

O AlternateBrickTagDictionaries
0 BrickHasTags0nly
‘ BrickSubclassesOnly

e The main Brick tag dictionary includes tag groups that contain tags derived from the Brick schema
subclass and hasAssociatedTag information.

* The BrickHasTagsOnly dictionary in the AlternateBrickTagDictionaries folder contains tag groups with tags
derived only from the hasAssociatedTag information .

* The BrickSubclassesOnly dictionary in the AlternateBrickTagDictionaries folder contains tag groups
with tags derived only from subclass information.

Overview
A Brick schema organizes entities of a building into a class hierarchy, where each level is a more specific
version of its parent. In Brick, the types are defined as a hierarchy of classes.

The Brick tag dictionary contains a library tag groups, relations, and rules that enable a Niagara station to be
modelled using Brick semantics defined in the Brick ontology. As a station is being constructed, these
dictionary elements can be applied, or they can be applied to components of an existing station. The Brick tag
dictionary does not contain any custom properties or actions, and it has no custom views associated.

Module information: The brick-rt module, which needs to be installed on your station, implements a Niagara
Smart tag dictionary to support modelling a system using the Brick schema. This module has a dependency in
the tagdictionary-rt module, which is required for any tag dictionary.

The Brick tag dictionary contains the following definitions for tag groups, relations, and tag rules:

e Brick subclasses: Brick schema entities can be declared a subclass of another entity. These are modeled as
tag groups in the dictionary. The subclass hierarchy elements are included as tags in a tag group. For
example, the airHandlingUnit tag group includes subclass entries for hvacEquipment, equipment, and
entity.

* Brick hasAssociatedTag: Many Brick schema entities have a hasAssociatedTag property. These are
modeled in the dictionary as tag groups. For example, the airHandlingUnit tag group includes tags for
air, equipment, handler, handling, and unit.

* Brick aliasOf: A few Brick schema entities are declared as an alias of another entity. For example, the Brick
AHU entity is an alias of the Air_Handling_Unit entity. Alias entities are included in the Brick dictionary as
tag groups with the same contents as the originating entity tag group.

* Brick class: Each tag group includes a class tag with a String value of the Class name declared in the Brick
schema. For example, the airHandlingUnit tag group contains a class tag with the value
"Air_Handling_Unit".

® Brick Id: Starting in Niagara 4.15, the id tag has been removed from the dictionary.

* Brick inverse relations: Most of the relationships defined in the Brick schema have associated inverse
relationships. For example, if one entity has a bk:isPartOf relationship to another entity, there is an

associated inverse bk:hasPart relationship. In these cases, when you apply one of these relations between
two entities in a station, the dictionary rules will imply the inverse relation between those two entities.

58 December 19, 2024

Niagara Tagging Guide

Tag Group Definitions
& airHandlingUnit
[l Validity
O Tag List
& ahu
& air
& asset
& entity
& equipment
& handler
& handling
& hvacEquipment
& resource
& unit
& class
(M Validity

(M Default Value

Always

Tag Info List
Marker
Marker
Marker
Marker
Marker
Marker
Marker
Marker
Marker
Marker
String

Always

Air_Handling_Unit

O Actions & Topics

Tag Group Info

Slot Details
@]

Tag dictionary service

NOTE: The Haystack smart tag dictionary and the Brick tag dictionary can run simultaneously.

Updating Brick tag dictionary

You can update the Brick tag dictionary version outside of the official Niagara release schedule. When the Brick
consortium releases a new version of the ontology, Tridium will generate a new version of the Brick tag
dictionary as a JSON file and make it available for customers. The Niagara Brick tag dictionary supports the
most recent version of the ontology with each Niagara release.

Prerequisites:

The Brick tag dictionary is installed on the station.

Step 1. Inthe Workbench Nav tree panel, locate the JSON file and copy it to the station by dragging it to
the station’s Files container.

December 19, 2024

59

Tag dictionary service

60

Qc

QD sw
O tagDictionaries
D bki3.json
D) ridettt
O templates
O test
D prEditor.properties

trash

'B' My Modules

{,0 My Tools

@& Platform

j! Station (brick)
._. Alarm

¢ O config

v @Fnle:.

[bkizgson

E] Hierarch ¥

Niagara Tagging Guide

Step 2. To load the file into a Brick tag dictionary on a station, from the view selector open the AX Slot
Sheet view on the Brick tag dictionary in the TagDictionaryService, right-click on the

importDictionary action row and select Config Flags.

O Property
O Property
O Property
O Action
O Action

C]I Property

O Property

9 tagDefinitions

10 tagGroupDefinitions

11 relationDefinitions

12 importDictionaryOrd

13 importDictionary
14 exportDictionary

15 tagRules

Tag Definitions

Tag Group Definitions
Relation Definitions
Import Dictionary Ord
Import Dictionary
Export Dictionary

Tag Rules

Frozen
Frozen
Frozen
Frozen
Frozen
Frozen

Frozen

Step 3. Unselect the Hidden flag for the importDictionary action, and click OK.

tagdictionary:TaginfoList
tagdictionary:TagGroupinfolist
tagdictionary:RelationinfolList

baja:0rd

R 2dd Slot

Ciri+A

Config Flags

December 19, 2024

Niagara Tagging Guide Tag dictionary service

-

] Operator [Mo Audit

| [] Readonly [] composite

] Confirm Required [| Remove O Clone
[] Execute On Change [] Metadata

1 Trensient [] LinkTareet
[summary O] Non-Critical
[eRm [UserDetined i
[] Fanin [] UserDefined:
ﬁnrﬁﬂ‘l_‘ [| UeerDefined 2
] DefaultOn Clone [] User Defined 4

| | [Asyne |

Step 4. Navigate back to the Tag Dictionary Manager view on the TagDictionaryService, and on the Brick
tag dictionary, right-click and select Actions > Import Dictionary.

Views

. Station (Clouc

Actions

Export Dictionary

New

Version MNamespace

@ My Network Name

= & iz Edit Tags 15 n
¥ Foxservice

@ Hicrorchysenice E A-UEY Make Template 13.0 bk
@ HistoryService Cut Ctri+X

o AuditHistoryService

Copy Ctri+C
Q) LogHistoryService

Paste Ctrl+v
@ ProgramService

o SearchService

Paste Special

° TagDictionaryService
& niagara
& enick

The Import Dictionary window opens.

Step 5. Click the down-arrow next to the folder icon and select File Ord Chooser.

December 19, 2024 61

Tag dictionary service

Step 6.

62

Niagara Tagging Guide

4% Import Dictionary ped

module://brick/com/tridium/brick/data/brick.json - -

Bgl Query Builder
oK Cancel

Component Chooser

Component Grid Query Editor
Directory Ord Chooser

File Ord Chooser

History Ord Chooser

QOrion Ord Chooser

The File Chooser window opens.

42 File Chooser »
DFilespaces [_
lﬁFllle".'cn:n":l.atlu\:l. | brick] ———
{ D ARE = 0-B88

ﬂH;.' Modules

[bkiz.jsen

bkil.json
= 401 KB
M Bookmarks [20-Jun-23 8:42 AM EDT
Filename: bkl3.jscn Open
Files of type: AllFiles {*." Canecsl

From the File Chooser > Files on Station, select the JSON file already copied to the station and
click Open.

The Brick tag dictionary import process runs as a job on the station. You can view the results of
the import process by opening the Job Service Manager on the station’s Job Service and clicking
the double arrow icon on the right side of the Tag Dictionary Import row.

Status Timestamp Message Details]

|
) Running 26-Jul-238:15AMEDT Startingimpart of tag dictionary *Brick™ using file *file:*bk13.json”
m Message 26-Jul-23B8:15AMEDT Brick it up-to-date.

@ Success 26-JubZ3B1SAMEDT JobSuccess

x|

December 19, 2024

Niagara Tagging Guide Tag dictionary service

Brick custom rules

The JSON file loaded as part of the import process contains a list of rules to be included in the Brick tag
dictionary. If desired, you can add to or override the default rules with a custom rule set.

To add or override the default rules with a custom rule set, you create their own JSON rules file and select it in
the Select a JSON file for custom rules (optional) field in the Generate Brick Dictionary dialog window.

The brick module contains the default JSON file brickCombinedAsGroupsPlusClassTag.json. You can view it in
Workbench by opening it in the Nav tree.

* Nav Bk,
n 'l o S AW B
i brick]
D o : '.I:I. ’
[=n.
Q) vidium
L::l brick
aeds
O daza :
apdictionar -
|:| brsckClasseshsbroups json
[brckcisssestsga saaTag s
Dl:-:i-:. sseshsTag 50
Dl.:.i-:-.'l:'ll. LT s Rt TR T EPLT,
D brickCombinedsGroupsPlusClass Tag Feon
D brickHasTags.jsom ¥s
[brickHasTagsPlustlassTag json e”: “hasAssociatedTag™,
L] beickertlexicon U L . N
- §) TAgCUICTIONAry I ALlWaYS
@ madule.palette s
D types b
B n
. chast
B dienCertauth
i COMMAN L O Mmipress da

The existing Brick tag rules are defined in the rules object. The custom rules are defined as a JSON object with
that same format. There is one JSON element for each Niagara property in a tag rule. Each tag rule has an

entry for “name”, “condition”, and then at least one entry for “tags”, “tagGroups”, or “relations”. These in
turn have JSON elements for each of their respective Niagara properties.

NOTE: It is possible to declare a tag rule to be assigned to a specific Niagara type, which allows you to
develop any custom rules necessary as JAVA classes.

December 19, 2024 63

Tag dictionary service Niagara Tagging Guide

An example of a custom rules file for three custom rules:

{

"rules": [
{
Ilname": "id"’
"condition": {

"type": "tagdictionary:lsTypeCondition",

"objectType": "control:ControlPoint"
"tags": [
{
"name": "id",
"type": "brickTest:BrickCustomldTag",
"validity": {
"type": "tagdictionary:lsTypeCondition",

"objectType": "control:ControlPoint"
}

]
12
{
"name": "enableStatus",
"condition": {
"type": "tagdictionary:lsTypeCondition",
"objectType": "control:BooleanPoint"
)
“tagGroups": [
{
"name": "enableStatus",
"tags": [
{
"name": "enable"
)
{
"name": "point"
)
{

"name": "status"

"name": "hasQUDTReference",
"condition": {
"type": "tagdictionary:Always"
"relations": [
{
"name": "hasQUDTReference",
"type": "brickTest:BrickCustomQUDTRelation"
}
]
}
]

64 December 19, 2024

Niagara Tagging Guide Tag dictionary service

}

e The first id rule declares the condition as any ControlPoint, and the tag id will be applied. This tag has a

custom JAVA implementation declared as a BrickCustomld type in a brickTest module. The JAVA class for
this would be named BBrickCustomid.

* The second enableStatus rule has a Boolean Point condition and adds a tag group that contains the
enable, point, and status tags.

* The third hasQUDTReference rule has an Always condition and adds a relation with a custom
BrickCustomQUDTRelation type in a brickTest module.

December 19, 2024 65

Tag dictionary service Niagara Tagging Guide

66 December 19, 2024

Niagara Tagging Guide Tagging reference

Chapter 4. Tagging reference

Tagging is a form of semantic modeling that assigns information (one or more tags) to objects. The tag
information can help integrators and users significantly when searching for objects, designing system
structures or navigating hierarchies.

Tagging can identify a device and indicate where it is physically located. By identifying and locating devices,
tags provide a context for the device that can be used in many different ways. When you use tags, you can
reduce or eliminate the requirement to manually map objects directly to a desired application.

About tags

Tags assign additional information to objects in order to make the objects more accessible and flexible for
search and system design. Tags also facilitate the design and use of hierarchical organization in a station user
interface, whether you are working with an Enterprise Supervisor station or a single controller station.

NOTE: The tags available for use are defined in the tag dictionaries installed on your station.

Tag structure
A tag contains different parts that, together, make the tag useful as additional information on objects in a
station. The following diagram shows the four basic parts of a tag.

Figure 16.Parts of a Tag

1

SR S

d:tenant Acme
| [

2 3 4

The following table provides definitions of the different parts of a tag:

ltem Tag Element Description

1 Tag Id The tag Id is comprised of a dictionary and name, generally displayed as two
pieces of text separated by a colon: dictionaryNamespace:name.

2 Tag dictionary The dictionary string is used to link or assign a tag to a particular "namespace”
(tag dictionary). This is typically a very short string of only a few characters.
NOTE: If the dictionary is not defined (empty string), the Id is displayed with
just the name.

3 Tag name The name string provides the semantic information and is often paired with the
tag value.
4 Tag value A string value assigned to the tag for more information, for example: building

name, device name, location, or other.

Types of tags
The following table describes types of tags that may be used on the system:

December 19, 2024 67

Tagging reference Niagara Tagging Guide

Tag type
Description

Direct tags

Direct tags are tags that you add intentionally to a component using an installed tag dictionary or an Ad
Hoc tag. In its simplest form, a tag on a component is a component “property”, with a non-component
value and a metaData flag set. The property name is a string form of the tag Id. In the Edit Tags dialog

box, direct Ttags are listed under the Direct Tags tab.
Implied tags

Implied tags are tags that are not directly stored in the component, but are implied by tag rules that are
defined in installed Smart Tag Dictionaries. These tags are typically the remapping of existing component

properties to the semantic naming convention defined in a tag dictionary. In the Edit Tags dialog box.
Implied tags are listed under the Implied Tags tab.

Ad Hoc tags

An Ad Hoc tag, also a direct tag, is one that you create in the Add Tag dialog box just before adding it to
a component. Ad hoc tags are not included in any tag dictionary.

Online tagging versus offline tagging

There are three separate scenarios in which you apply tags:
[]

Online tagging: The installed tag dictionaries in TagDictionaryService take effect.

Offline tagging in a station with tag dictionaries: The installed tag dictionaries in the
TagDictionaryService take effect. You will also see implied tags in the Edit dialog.

Offline tagging in a station when no dictionaries are found: The system searches for tag dictionaries in
the following locations:

e all palettes of installed tag dictionary modules

® inthe user-home/tagDictionary folder where custom tag dictionaries are stored
e also searches for implied tags

About the Edit Tags dialog

The Edit Tags dialog as well as the station and point manager views are the primary methods for adding a tag
or a tag group to a component. The dialog lets you add individual tags or tag groups to the object, as well as

remove them from the object. The lower half of the dialog provides tabs to view the direct and implied tags
assigned to the object.

Invoke the Edit Tags dialog box by right-clicking an object and selecting Edit Tags.

68 December 19, 2024

Niagara Tagging Guide Tagging reference

Figure 17. Edit Tags dialog

Edit Tags: OAT (225
&) Haystack | S’ Showall

Tag Dictionary 2 objects

MName Type &

‘Tags
OTagGruups

Direct Tags = Implied Tags

Ll direct (Component)

-

i hs:outsideAirTempSensor naryService/Haystack/tagGroupDefinitions/outsidehirTempSensor

Save @AddTag | x RemoveTag B Cancel

. . . . - i
In the Edit Tags dialog box, select a dictionary from the option list in the top left corner @ agars

TIP: You can use this shortcut to select a dictionary. In the Search field type hs: for Haystack, n: for
Niagara, or enter the namespace for another dictionary.

The top half of the dialog box shows a list of tags available from the selected dictionary. Once a tag is
assigned to the active object, the tag icon appears dimmed.

To facilitate making selections, the dialog box includes filters that help by narrowing the list of tags from which
you can choose. This is most useful when selecting from a dictionary containing a huge number of tags, such as
the Haystack Tag Dictionary.

Type in the Search field H | to filter by tag name. Tags are filtered immediately as you type.
e If the list has only a single item, it is selected by default.
* If atag name is a subset of another tag, adding a space selects the shorter tag by name.

For example, if you have both “chiller” and “chillerPlant” tags, typing "chiller" shows both tags. Adding a
space after “chiller” filters out “chillerPlant” and shows the “chiller” tag only.

* Entering a colon ":" filters for the tag dictionary that has the prefixed namespace.

For example, if you enter "hs:temp" you select the “hs” (Haystack) dictionary and the "temp" tag.

December 19, 2024 69

Tagging reference Niagara Tagging Guide

7 Show All

You can also select an option from the option list * IZI to filter based on validity options.
e Show All: no filtering applied when this option is selected.
® Valid Only: shows just the tags that are valid based on rules defined in the tag dictionary.

* Best Only: filters tags in appropriate manager views based on the identity of the component; for
example, whether it is a point or device.

Methods for adding tags include the following:

* Add an individual tag from a dictionary.

e Add a tag group (predefined collection of tags) from a dictionary.
* Add a unique ad hoc tag which you create.

After clicking Add Tags, the selected tags are added and appear in the Direct Tags table in lower half of the
dialog box.

After editing any tag value fields as needed, click Save to save the tag assignments.

For tags that have Ord type values such as “hs:siteRef”, refer to the following image and steps as an example
of how to add a link to your tag.

| Select Ord
T 2
[rsstemer B 2
Bgl Query Builder

Component Chooser

Comnonent Grid Cuery Fdih

1. Click the option list arrow located to the right of the tag value field.
2. Select the appropriate link type from the options menu.

3. Browse to the desired link and select it.

4. Select the Handle option.

5. Click OK.

Relation Manager
The Relation Manager is an HTML5 view that you can use to add, edit, and delete relations and links (as of
Niagara 4.15).

It is available as a view on all components. You can select it using the View Selector in the top-right corner of
the screen.

70 December 19, 2024

Niagara Tagging Guide Tagging reference

W Nritable & 0 [Relation Manager v &
H b Shw B show 1. show i S 1 = show
Frolk Ext
o cwe
r
k ,
= i i
&) ke e
= 1
ComponentsFalder
Outbound elation Component Redation Inbecrumd Tags T objects -
HumericWritable | out 1 Conwersion Link Numericiritabled [ind #
Humetic Writable | out T Link Config fink2 #
HumericWritable [inll 'l- Link HumsenicWritable] 7 out #
3
*
¥
i
o™

To view it, you can also right-click on a component and select Views > Relation Manager.

Property Sheet
Show on Wire Sheet Wire Sheet

Actions AX Property Sheet

New
Tag Manager

Edit Tags Category Browser

Cut AX Slot Sheet
Copy Chart

It is equivalent to the Relation Sheet in Workbench and offers the following features:
* Display implied and direct relations

e Show knobs and relation knobs

e Apply filters

* Visualize the relations

¢ Navigation using the visualization

e Edit relations and links

December 19, 2024 71

Tagging reference Niagara Tagging Guide

[l Relation Id n:childPoint T o)
[Relation Tags ams:MonthTag=April n:geoCountry=444 n:geoCity=TT77 4
(M Source Ord h:1dbod »

oK Cancel

* Drag and drop a component from the Nav tree to the relation table to add a component. The dialog box
that opens when you drop the component auto-populates with the Ord that you have dragged.

Add Relation

| {8 Relation Id n:childPoint o)
[l Relation Tags ra
(W Source Ord local:|station:|slot:/ComponentsFolder/NumericWritable2 3 rd

% Cancel

e Show slot location by hovering over it

Outbound Relation

slot:/CompanentsFolder/NumericWritable1

NumericWritT%Irel n:childDevice > Nun

Related documentation, see "Relation Sheet view" in Niagara Relations Guide.

Components and views in the tagdictionary module

Components include services, folders, and other model building blocks associated with a module. You drag
them to a property or wire sheet from a palette. Views are plugins that can be accessed by double-clicking a
component in the Nav tree or right-clicking a component and selecting its view from the Views menu.

The component topics that follow appear as context sensitive help topics when accessed by:

¢ Clicking Help > On View (F1) while the view is open.
¢ Clicking Help > Guide On Target
Components in the tagdictionary palette are described in the following sections.

72 December 19, 2024

Niagara Tagging Guide Tagging reference

Figure 18. The tagdictionary palette

- Palette EA
W (X B |§ teedictionary

o TagDictionaryService
0 SmartTaghictionary

0 SystemindexDictionaries
‘ TagGroup

P relation

0 Tags

0 Smart Tags

0 Rules

0 Conditions

0 Scopes

0 DataPolicies

tagdictionary-TagDictionaryService

The Tag Dictionary Service, located in a station’s Services directory, is the container for all tag dictionaries
installed in the station.

Tag Dictionary Service

The Tag Dictionary Manager is the main view for the Tag Dictionary Service. The service has a property for
defining adefault namespace so that queries that do not specify a namespace are resolved on this default
namespace. For example, if you execute a NEQL query for " point " (instead of " n:point "), and the default
namespace ID is set to " n ", your query returns all objects tagged with " n:point ".

Note the following information about the Tag Dictionary Service:

® The tags license is required to use the TagDictionaryService and tag dictionaries on a station.
* A station can support only one tag dictionary service.

* Neither the tag dictionary service nor any tag dictionaries are strictly required for tagging or for performing
NEQL queries. However, without tags or tag dictionaries, a station is not be able to take advantage of most
of the functions available from tagging objects. Tags and tag dictionaries are fairly lightweight and
therefore are included by default in all stations created by the new station wizard.

¢ Installed tag dictionaries belong under the TagDictionaryService. They are not allowed anywhere else in
the station.

December 19, 2024 73

Tagging reference Niagara Tagging Guide

Figure 19. TagDictionaryService is located in the Services directory

| -;“é?? Services

[s TagDictionaryService

Tagging enhancements include added support for tag-based Px bindings which resolve NEQL query Ords
instead of slot path Ords. The purpose of this is to enable you to create reusable graphics that can be installed
on any component in any station where the bound components are properly tagged and related correctly to
the base component. Tag-based Px bindings use a NEQL query and a new single scheme that resolves the
query result to a single entity. The TagDictionaryService includes new configuration properties to support this
functionality. For details, see the “Neglize options” section.

NOTE: The tagdictionary palette includes two smart tag dictionaries that support the System Database and
System Indexing features. The dictionaries allow you to easily exclude portions of a NiagaraStation from
indexing operations, which you might want to do for licensing reasons. This dictionary has a smart tag, the
scoped tag. If you add this dictionary to your station, you can drop a systemindex:excluded marker tag on a
component and any descendants will have this same tag implied on them. To prevent implying this tag on all
descendants, you can apply a systemIndex:included marker tag where necessary. This dictionary has a scoped
tag rule that can be configured to imply the systemIndex:excluded tag on portions of the station as specified in
one or more Ord scopes.

The Tag Dictionary Service includes the following indexing features both of which reduce the amount of re-
evaluation of tag rules, which improves response time for obtaining results of NEQL searches and traversing
hierarchies:

¢ Tag Rule Index, enabled by default. For complete details, see Tag Rule Index.
¢ The Implied Tags Index, disabled by default, can be configured for user-selected implied tags. For
complete details, see Implied tags index.

Tag Dictionary Service properties

Property Values Description
Enabled true or false Activates and deactivates use of the
function.
Status Text, read-only Indicates the condition of the

component at last polling.

e {ok} indicates that the
component is polling
successfully.

* {down} indicates that polling
is unsuccessful, perhaps
because of an incorrect
property.

e {disabled} indicates that the
Enable property is set to
false.

74 December 19, 2024

Niagara Tagging Guide Tagging reference

Property Values Description

e fault indicates another
problem.

Fault Cause Text, read-only Indicates why the network,
component, or extension is in fault.

Default Namespace Id Text, string This TagDictionaryService property
provides a field that is used to
indicate a default tag namespace
(tag dictionary), which is used if there
is no namespace provided as part of
a query. For example, if the default
namespace is set to “hs"”, a search
query that includes only “ahu” would
return all objects that are tagged
with “hs:ahu”.

Tag Rule Index Enabled true (default) or false Enabled by default, the Tag Rule
Index is an index on the Tag
Dictionary Service which improves
performance in evaluating tag rules
for implied tags during NEQL
searches. Setting the property to
false automatically clears the index,
as do any changes in the service.

Indexed Tags text string Entering tag ids in this field enables
those tags to be indexed for each
component in the station. Use a
semi-colon separated list for multiple
tag ids that should be indexed. This
field can be cleared to clear the
implied tag index and prevent any
further indexing.

Neglize Options additional details Contains sub-properties that list
default excluded relations and tags,
enable/disable use of the default
exclusions, custom excluded
relations and tags. You can specify
whether to use the default
exclusions along with any custom
exclusions or to use only the your
custom exclusions. For details, see
the following section on “Neglize
Options”.

Actions
¢ Clear Tag Rule Index allows you to manually clear the Tag Rule index.

NOTE: Typically, you would not need to invoke this Clear Tag Rule Index action because the index is
cleared automatically whenever changes are made in the Tag Dictionary Service. It is provided so that you
can reset everything when you are not seeing the expected results.

¢ Invalidate All Tag Indexes resets (clears) all tag indexes.

¢ Invalidate Single Tag Index resets (clears) the specified tag indexes.

December 19, 2024 75

Tagging reference Niagara Tagging Guide

NOTE: These actions do not discontinue indexing for the tagIDs listed in the Indexed Tags property. The
index will be rebuilt the next time a search for one of the indexed taglIDs is executed.
Neglize options

There is added support for tag-based NEQL query Ords. The TagDictionaryService features several added

properties to specify certain tags and relations to be excluded when converting slot path Ords to NEQL query
Ords.

Figure 20. Neglize Options properties on the TagDictionaryService

. Neqglize Options Neqglize Options

n:child, n:parent, n:tagGroup

(Ml Default Excluded Relations

(Ml Use Default Excluded Relations | @@ true (Append Custom to Default

(Ml Custom Excluded Relations

:bindHints, n:displayName,
:history, n:name, n:node,
:ordInSession, n:station,
:targetSlotHint, n:type, n:vendor,
:version

[= ===l

(@l Default Excluded Tags

(Ml Use Default Excluded Tags @ true (Append Custom to Default

(Ml Custom Excluded Tags

O Refresh Save

For example, a tag-based NEQL query Px Ord binding using the n:name tag would hurt the reusability of a
graphic because the bound component would have to be named the same under a different base component.
Using the n:ordInSession or Haystack hs:id tag would be equivalent to using an absolute slot path Ord.
Using the parent or child implied relations would be somewhat more limiting than relative slot path Ord.

The Default Excluded Relations and Default Excluded Tags values are collected from each installed tag

76 December 19, 2024

Niagara Tagging Guide Tagging reference

dictionary. Custom Excluded Relations and Custom Excluded Tags values can be optionally specified and
be either appended to or replace the default values. User values for Excluded Relations and Excluded Tags
can be specified in the Px Editor Workbench Options and either appended to or replace these
TagDictionaryService values.

Name Value Description

Default Excluded Relations string Default values collected from
installed tag dictionaries for relation
pattern filters used to exclude
relations when converting slot path
Ords to traverse NEQL query Ords.

Use Default Excluded Relations true (default), false When true, the custom values for
relation pattern filters will be
appended to the default values.
Otherwise, the custom values will be
used exclusively and the default
values will be ignored.

Custom Excluded Relations string Custom values for relation pattern
filters used to exclude relations when
converting slot path Ords to traverse
NEQL query Ords.

Default Excluded Tags string Default values collected from
installed tag dictionaries for tag
pattern filters used to exclude tags
when converting slot path Ords to
NEQL query Ords.

Use Default Excluded Tags true (default), false When true, the custom values for tag
pattern filters will be appended to
the default values. Otherwise, the
custom values will be used
exclusively and the default values will
be ignored.

Custom Excluded Tags string Custom values for tag pattern filters
used to exclude tags when
converting slot path Ords to NEQL
query Ords.

Tag Rule Index

The tag rule index, which is enabled by default, is an index on the Tag Dictionary Service. The index improves
performance in evaluating tag rules for implied tags during NEQL searches. The index, which is built as NEQL
queries are executed, maps tags to the tag rules that imply those tags. This index should not require a
significant amount of system memory.

NOTE: The type of memory being used by the tag rule and implied tag indexes is heap memory. So these
indexes are not stored persistently but are built dynamically after every station reboot when NEQL queries are
submitted.

December 19, 2024 77

Tagging reference Niagara Tagging Guide

Figure 21. Tag Rule Index Enabled property

Property Sheet
o Taghict onur;.-f;-?_r'»'lre (Tag Dictionary Sarvice)
M Status jok}
. Fault Cauge
(@ Enabled $ e
[l Default Hamespace id
Q Manitar Tag Group Monitor
» o Hiagara Miagara
M TagRule Index Enabled | true I

To ensure that the index is kept up-to-date, it is cleared automatically whenever changes are made in the Tag
Dictionary Service. For example, if you delete a tag from the tag list under a tag rule, the index is automatically
cleared. This prevents incorrect or incomplete results from occurring in your hierarchies, searches, and anything
else that uses NEQL queries. As you execute subsequent searches the index is rebuilt.

Although cleared automatically, there is an added Clear Tag Rule Index action on the Tag Dictionary Service
which allows you to manually clear the index. Typically, you would not need to invoke this action. It is provided
so that you can reset everything when you are not seeing the expected results. It is not likely that the tag rule
index would be the cause of the problem but the action is available just in case.

Figure 22. Clear Tag Rule Index action

Praperty Sheet

Mew

Edit Tags

B Make Template

Additionally, within the Spy Remote view, there is an added “Tag rule index info” section, which lists details of
the index. Specifically, it shows the following:

* the number of implied tags, technically, tagIDs in the index referred to as “# of indexed tags”

* the number of tag rules in the index implying those tags; a single rule may appear many times in the index
and indicates via these values whether the index has been cleared. For example, when the index is cleared
or disabled both the "# of indexed tags" and "# of tag rules" values on the Spy page will be zero.

78 December 19, 2024

Niagara Tagging Guide

Figure 23. Tag rule index info section in Spy Remote view

AT L | IV R

deepOrCategoryMask

Tag rule imndex info

#of imdexed tags 4

of tag rules

Imply tags in a different tag dictionary

4

Tagging reference

Tag rule index allows you to imply tags in a different tag dictionary than the one containing the tag rule doing
the implying. Stated another way, this permits you to use tags from other tag dictionaries with a different
namespace, such as the Niagara tag dictionary which is frozen in the tag rules of your custom smart tag

dictionaries. Frozen means that you cannot add rules that persist through a station restart.

For example, the following image shows the property sheet for a custom smart tag dictionary in which a tag
rule contains several tags, one of which is a marker tag for “isBooleanWritable”. Notice that this tag is not fully
qualified, meaning that the tag name does not include the namespace of the source tag dictionary. In this
situation the tag automatically assumes the namespace of the dictionary in which it is being used, in this case
the “Custom” tag dictionary: c:isBooleanWritable. The other tags in the tag rule are fully qualified and
reference a completely different tag dictionary, the Niagara tag dictionary as indicated by the namespace, n:.

Figure 24. Tag dictionary property sheet followed by implied tags in Edit Tags dialog

é Miagara

M Tag Rule Index Enabled
~ o Custom Custom

(@ status Jok)
(M Fault Cause
[Mamespace [
8 Enabled I
-'. Frozen . false

F 0 Tag Definitions Tag Info Lt

Q Tag Group pefinitions
b D Relation Definitions

Tag Group Info List

Relation infa List

* (O TagRules Tag Rule List
3 -- IsBaoleanWdtsble IsBooleanritable
+ (M Condition Is cantrol:BooleanWiritable
* D) TagList Tag Infio List
o isBooleanWritable Marker
j nigeslountry String
F ngeostate String
b ngeotity String
b IO TagGroupList Tag Group Info List
¥ D Relation List Relation Info List

TEERUrmvar ILail

Right-clicking a boolenWritable point in the station allows you to select the Edit Tags dialog box. On the
Implied Tags tab, you can see that the tags in the example tag rule are implied on this object. Also, you can
confirm that the tag rule has implied tags from the parent smart tag dictionary (Custom, c:isBooleanWritable)

as well as tags from a different tag dictionary (Niagara, n:geo*).

December 19, 2024

79

Tagging reference Niagara Tagging Guide

Figure 25. Implied Tags tab in Edit Tags dialog

Direct Tags Implisd Tags

@l implied [Component)

a hHRF 185 EcoleanWzitakble
@l nidisplaydame EooleanWeicakle
@ nitype cancrol :Basleankritable
ol nordinSession staticn: |h:222
@ mipoint o mader
= ;:isEnu.-.—*L}*ul‘-.'ui:Jh'.r: o marker
&l npsoCountry TsA
& nigenstate VI
ol nigeality Richmend
e () AddTag X RemoveTas B Cancel

More significantly, when you search for "n:geoCountry", for example, you will get booleanWritable points in
the results.

Implied tags index

Implied tags index improves performance of NEQL searches and hierarchy traversal. Implied tags originate
from evaluating the tag rules in smart tag dictionaries and evaluating direct tag groups on an entity. Indexing
implied tags limits the amount of tag rule re-evaluation that occurs on subsequent NEQL queries.

For example, a NEQL search on an unindexed tag (ex.: c:city) requires that every tag rule that contains this tag
be evaluated; every component throughout the station be evaluated for this tag; and this evaluation must be
done every time a search for this tag is initiated. All of which adds up to a significant drain on performance.

JACE is constrained not only by processor power but also by memory availability. To control the impact on
memory, the Implied Tags Index is disabled by default.

NOTE: The type of memory being used by the tag rule and implied tag indexes is heap memory. So these
indexes are not stored persistently but are built dynamically after every station reboot when NEQL queries are
submitted.

You can enable specific tags for indexing by entering those individual tagIDs in the Indexed Tags field in the
Tag Dictionary Service property sheet. Entering taglDs in this field enables those tags to be indexed for each
component in the station. Use a semi-colon separated list to enter multiple tagIDs to be indexed. Tags that are
not enabled for indexing will use normal tag rule and direct tag group evaluation.

To stop indexing from occurring on some or all taglDs and reduce the memory used by this index, remove
taglDs from the Indexed Tags field in the Tag Dictionary Service property sheet.

Although there is no mechanism for clearing the index, you can reset the index whether a tag definition is
implied or not via the following actions on the Tag Dictionary Service. These actions do not discontinue
indexing for the taglDs listed in the Indexed Tags field but reset the index in regards to some or all of the
taglDs being indexed. The index will be rebuilt the next time a search for one of the indexed taglDs is
executed.

* Invalidate All Implied Tags Indexes
* Invalidate Single Implied Tags Index

80 December 19, 2024

Niagara Tagging Guide Tagging reference

CAUTION: Memory use is strongly influenced by the number of components in the station and then also
influenced by the number of tags being indexed. The implied tags index has the potential to grow large
enough to exceed available memory. To avoid this, limit the number of tags enabled for indexing.

Either direct or implied tags can be added to the Indexed Tags field. If an object contains an indexed tag as a
direct tag, the index will not be used at all. If the entity does not contain the indexed tag as a direct tag, a
search through the rules will be executed to determine if the tag is implied and the index will store whether or
not the tag is implied.

NOTE: The implied tag index is most helpful for tags that are implied (rather than direct tags), because the re-
evaluation of any tag rules can be skipped.

Implied tags that are safe for indexing are those tags that will be implied and whose values will not change
regardless of changes to the station. For example, tags that are related to the type of a component, which can
never change, are very safe to index. Tags related to type of a component include:

®* nitype

* n:point

* niinput

* n:output

* n:device

* n:network
* n:schedule
* hs:connection
* hs:cur

* hs:device
* hs:equip

¢ hs:kind

* hs:network
¢ hs:point

¢ hs:writable

Tags used in GroupLevelDefinitions are good candidates for indexing because they are used frequently.
However, that does not necessarily make them safe tags to index.

Other implied tags may be riskier because rule conditions and contents can be changed and the changes might
not be reflected in the index. Tags that are implied using the HasAncestorRule or HasRelationRule conditions
depend on the station configuration and, if the station configuration changes, might affect whether or not tags
are implied.

Also, it is not the value of the tag that is indexed but the tag definition. So, if the value of the tag depends on
something that changes, those changes will be reflected in the value of the tag when the tag is retrieved from
the index. For example, if the history ID of a history extension changes, the new value will be reflected in the
value of the n:history tag when it is retrieved.

Tags whose values are derived based on component and/or properties of the station are called smart tags.
Other smart tags that are safe to index include the following:

® n:name

n:displayName
* n:ordInSession
* n:station

® hs:curErr

* hs:curStatus

December 19, 2024 81

Tagging reference Niagara Tagging Guide

e hs:curVal

® hs:enum

¢ hs:his

¢ hs:hisErr

¢ hs:hisInterpolate

¢ hs:hisStatus

¢ hs:id

e hs:maxVal

® hs:minVal

* hs:tz

¢ hs:unit

e hs:writeErr

e hs:writeLevel

¢ hs:writeStatus

e hs:writeVal

NOTE: If you find that the JACE is at the limit of memory usage, it is best to clear any tags from the Indexed
Tags field in the Tag Dictionary Service so that the indexing no longer occurs. If the station crashes before the
Indexed Tags field can be cleared, the station can be started with the system property
niagara.tagdictionary.disableTagindexing set to true. This will prevent any indexing and allow the Indexed

Tags field to be cleared. Then, this system property can be cleared and the station restarted to allow indexing
again.

NiagaraTagDictionary

The NiagaraTagDictionary is a frozen slot of the Tag Dictionary Service.

This property is a smart tag dictionary containing a collection of tags developed for Niagara systems that are
used for semantic modeling of specific building control entities, that is, networks, devices, equipment, points,
sites, buildings, geo-location, histories. Since this is a smart tag dictionary, it applies implied tags and implied
relations to components and links throughout the station. This allows queries to find these components based
on type, linkage, hierarchy or combinations of these. The Niagara Tag Dictionary is indicated by the <n: >
namespace (the letter <n> followed by the colon character).

About tag dictionaries

The tagdictionary module contains tag dictionary components which you can use to create custom tag
dictionaries. A tag dictionary is the container for a collection of tag definitions, tag group definitions, and
relation definitions. The tags in a tag dictionary may be associated with devices, components, and points.
Typically, these associations are established when the device is discovered, registered, and fully subscribed but
tags can be added to an object at any time. Tags also provide a vocabulary for searching.

NOTE: The tags license is required in order to use the TagDictionaryService and tag dictionaries on a station.

The Tag Dictionary Manager, the primary view of the Tag Dictionary Service, displays the dictionaries that are
installed on the station. You can create and add custom tag dictionaries to the station via this view (or by
dragging from the tagdictionary palette). For example, you may create one or more custom dictionaries for a
specific customer, for an OEM, or for a specific application.

Tag dictionary composition
A tag dictionary is composed of the following:

* A unique namespace, normally 1- or 2-characters, for example “n"” for Niagara, “hs” for Haystack
¢ Tag definitions (contain individual Tag components added to the dictionary). This is the collection of

82 December 19, 2024

Niagara Tagging Guide Tagging reference

standardized tags with an Id.name that has semantic meaning for the given domain or namespace. The
dictionary also defines tag default values and any validation rules for applying tags.

* TagGroup definitions (optional and contain individual TagGroups components added to the dictionary).
This is a collection of standardized groupings of tags (tag groups) that have semantic meaning for the
given domain or namespace. The dictionary also defines any validation rules for applying these tag
groups.

* Relation efinitions (optional and contain individual relation components added to the dictionary). This is a
collection of standardized relation Ids with semantic meaning for the given domain or namespace.

* TagRules (optional and in a smart tag dictionary only; they contain individual TagRule components added
to the dictionary)

tagdictionary-SmartTagDictionary

The Smart tag dictionary automatically applies the implied tags and relations to objects. Implied items, that is,
the implied tags and implied relations, are not added to the station, and the station size is not increased as a
consequence.

Smart tag dictionary properties
To create a new Smart tag dictionary, drag the SmartTagDictionary component to the Tag Dictionary Service.

: Station (Supervisor_414) . Config . TagDictionaryService : SmartTagDictionary / AX Property Sheet -

Property Sheet
& SmartTagDictionary (Smart Tag Dictionary)

E t# O

@ My Metwark

@ HistoryService
O suditHistoryservice
o LogHistoryService
@ ProgramService
0 SearchService
° TagDictionaryService
‘ Miagara
‘ Brick
‘ Haystacks
0 Haystack3
& smartTagDictionary
TemplateService
@ WebService
$ BatchJobService
T PlatformServices
e Drivers
Apps
@ Files

- Palette
[] E] E itagdictwunary

° TagDictionaryService

M cractTachictinnan:

Property

Namespace

Version

December 19, 2024

m Status
(@ Fault Cause
m MNamespace
m Version

@ Meglize Excluded Tags

M Meglize Excluded Relations

[Enabled
ﬁ Frozen

© TagDefinitions
© Tag Group Definitions
Q© Relation Definitions

© TagRules

Values

text

read-only

[fault}

namespace cannot be empty

Undefined

.true
.false

Tag Info List
Tag Group Info List
Relation Info List

Tag Rule List

Description

This field indicates the default tag
namespace “bk" (tag dictionary).

Displays the Smart tag dictionary
version.

83

Tagging reference Niagara Tagging Guide

Property Values Description

Neqlize Excluded Tags text string Displays default values collected
from installed tag dictionaries for tag
pattern filters used to exclude tags
when converting slot pathOrds to
NEQL query Ords.

Neglize Excluded Relations additional details Displays default values collected
from installed tag dictionaries for
relation pattern filters used to
exclude relations when converting
slot path Ords to traverse NEQL
query Ords.

Enabled true (default) or false Enabled by default, the Tag Rule
Index is an index on the Tag
Dictionary Service which improves
performance in evaluating tag rules
for implied tags during NEQL
searches. Setting the property to
false automatically clears the index,
as do any changes in the service.

Frozen true or false (default) If true, you cannot add rules that
persist through a station restart.

Tag Definitions additional details, tag info list See “Tag Definitions (TaglnfoList)"
Tag Group Definitions additional details, tag group info list See “Tag Group Definitions
(TagGrouplnfolList)"
Relation Definitions additional details, relation info list See “Relation Definition
(Relationinfo)”
Tag Rules additional details, tag rule list See “Tagdictionary-TagRuleList"
Actions

Export Dictionary: Exports the contents of a tag dictionary to a CSV or JSON file to view and edit externally.

tagdictionary-SystemIndex

Added smart tag dictionaries in the tagdictionary palette provide support for the system database and system
indexing features. Located in the SystemIndexDictionaries folder, the Systemindex dictionary has a scoped tag
to assist with excluding certain objects from system indexing operations.

Once you add the Systemindex dictionary to your station, you can drop a systemIndex:excluded marker tag on
a component and this tag will be implied on all of the component's descendants. In cases where you want to
prevent implying this tag on some of the component's descendants, you can drop a systemIndex:included
marker tag where necessary and those portions of the tree will not have the systemIndex:excluded marker tag
implied and will not be excluded from system indexing.

For stations running prior versions

For stations running on older versions of Niagara, use the SystemIndex dictionary located in the Pre 4.6
folder (shown).

84 December 19, 2024

Niagara Tagging Guide Tagging reference

Figure 26. SystemIndex smart tag dictionaries

o TagDictionaryService

0 SmartTagDictionary

O SystemindexDictionaries
0 Systemindex
Q press

0 Systemindex
y . E—

This pre 4.6 SystemIndex dictionary has a scoped tag rule that can be configured to imply the
systemIndex:excluded tag on portions of the station as specified in one or more ord scopes. The pre-4.6
Systemindex dictionary only implies the systemIndex:excluded tag through ord scopes. The
systemIndex:excluded marker tags will not be implied automatically when using the pre-4.6 SystemIndex
dictionary.

Name Value Description

systemIndex:excluded Marker When applied to a component and
when the SystemIndex dictionary for
Niagara is enabled and installed, all
descendants will have the same
marker tag implied on them (except
for descendants of a component
with the systemIndex:included
marker tag applied). This results in
these components being excluded
from system indexing.

systemIndex:included Marker When applied to a component, it
prevents the
systemIndex:excluded marker tag
from being implied on that
component or any of its descendants
even if an ancestor of the
component has the
systemIndex:excluded marker tag.
This results in the component and its
descendants being included in
system indexing.

Tag Definitions (TagInfoList)

The Tag Definitions folder in a tagdictionary contains the collection of standardized tags that have semantic
meaning for that namespace (tag dictionary). Each tag in this TaglnfoList can be used to add specific metadata
to objects in a station, assigning additional semantic information, which provides a basis for searching. Tags
typically contain a Validity slot with conditions such as, Always, IsType.

Tag properties

The following implementations of Simple Tag Info are available in the Tags folder of the tagdictionary palette.
When creating a custom tag dictionary, drag and drop tags from the palette to the Tag Definitions folder in the
tag dictionary’s property sheet to create the tag definitions for that dictionary.

December 19, 2024 85

Tagging reference

Niagara Tagging Guide

Tag components available in the palette are listed in the following table.

Tag Name
Marker

String
Integer
Long

Float
Double

Ord
DynamicEnum
EnumRange
AbsTime
RelTime
Unit

TimeZone

Value
Marker (default)

String value
0 (default)

0 (default)
0.00 (default)
0.00 (default)
null (default)
0 (default)

date/time
00000h 00m 00s

uTC

Description

Tag name only. The Marker tag does not require a value. The fact
that a component has the tag applied is sufficient to convey
semantic information (the tag name, that is, “device” or “input”).

Tag name and string value

Tag name and numeric value

Tag name and numeric value

Tag name and numeric value

Tag name and numeric value

Tag name and Ord value

Tag name and numeric value

Tag name and numeric value

Tag name and date/time relative to given time zone
Tag name and time

Tag name, type and unit of measure

Tag name and timezone

Figure 27. Example tag properties

BAL (TestStationl)

. Station (TestStationl) . Config

. TagDictionaryService - Miagara

. TagDefinitions . displayName

Netwark

OTagDEfinitions
& bindHints
‘ device

‘ dizplayMame

& displayName (Simple Tag Info)

Property Sheet

(@ validity
(@ Obiject Type

Is baja:Complex

Complex e

(@ Default value

G} My Metwark

] DTagDEfinitions

Property Sheet

& zeoAddr (Simple Tag Info)

Boolean Filter

And

‘ bindHints ha:asite
‘ device Is baja:Component
‘ displayName E Object Type baja Component
‘ geoAddr
- (@ Default value

Following is a list of common properties for tag (Simple Tag Info) components

Name

Validity

Condition

86

Value

Always, And, BooleanfFilter,

Description

A tag's validity property reflects
criteria specified in the condition
property, providing a "hint" as to
which objects the tag may be
applied.

A validity subproperty used to

December 19, 2024

Niagara Tagging Guide Tagging reference

Name Value Description

HasAncestor, HasRelation, IsType, Or specify criteria to be met in order for
the tag to be applied to an object.
Used in conjunction with the Filter
subproperty. There may be one or
more conditions under the validity

property.

Filter A tag name A condition subproperty used to
further specify objects to which the
tag may be applied. The Filter value
indicates tag(s) that must already be
assigned to an object.

Default Value Assigns a default value. Often
present when validity specifies that
the tag may be applied only to a
baja:Component.

defFacets Configurable facets applied to the
default value property.

NOTE: Tag dictionaries support adding a single DataPolicy to a Taglnfo or a TagGroupinfo component. Also,
the Taginfo and TagGrouplnfo components have an Add DataPolicy action. For details, see “Data Policies”.

Tag Group Definitions (TagGrouplInfolList)

Although not required, a tag dictionary may contain tag groups. The Tag Group Definitions folder in a
TagDictionary property sheet contains the collection of TagGroups for that dictionary. A tag group provides
a structure that lets you add multiple tags to an object with a single action. Typically, tags are in a group
because it is common for each of the tags to be assigned to a single component.

For example, in the Haystack Tag Dictionary, there is a tag group for “discharge air temp sensor” that contains
the following set of individual tags:

e discharge

® air

e temp

® sensor

Once a tag group is applied to an object, it implies all of the individual tags in its tag list, as well as implying a
marker tag that bears the name of the tag group. This allows you to easily define a NEQL search for the

marker tag for that tag group rather than defining a search by concatenating each of the tags in the tag
group’s tag list.

The Device Manager and Point Manager views of a driver, and the Edit Tags dialog are the primary methods
for adding a Tag Group to a component.

NOTE: When creating or editing a tag group, include only those tags that have a corresponding tag definition
in the parent tag dictionary. One way to guarantee it is to populate the tag group’s tag list with tags copied
only from the tag definitions list in the tag dictionary.

TagGroup properties

When using the Edit Tags dialog to add a tag group, the tag group displays in the Direct Tags tab as an Ord to
the tag group itself, and once the change is saved the individual tags of the tag group display in the Implied
Tags tab.

December 19, 2024 87

Tagging reference Niagara Tagging Guide

A tag group can contain tags from other tag dictionaries. You can add a tag to a tag group that overrides the
namespace of the parent tag dictionary. This allows you to define a tag group that contains tags from multiple
tag dictionaries.

NOTE: There is no verification that a tag name entered in the Add Tag dialog box is actually defined in a tag
dictionary. If the tag definition does not exist, the added tag is an ad hoc tag. It is possible to use ad hoc tags,
although a tagging best practice is to include only those tags that have a corresponding tag definition in the
parent tag dictionary.

You can add a single “Data Policy” to a Tag Group Definitions folder (or to a Tag Definitions folder). A data
policy provides additional metadata that can be associated with a tagged component. For more details see
“Data Policies”.

Type Value Description
Validity Specifies criteria to be met in order
for this tag group to be applied to an
object.
Taglnfolist Contains the collection of tags that
make up this tag group.

Relation Definition (Relationlnfo)

Tag dictionaries often contain a collection of relation definitions, which are standardized relation Ids with
semantic meaning for that namespace. These relation definitions come into play when adding a relation to a
component. In the Relation dialog, your choices are limited to the relations that are defined in any of the tag
dictionaries installed on your system.

Figure 28. Relation Definitions in custom TagDictionary (left) provide choices seen in the Relation dialog (righ

‘ nBuilding (Tag Dictionary)

‘M Status {ok} X

.—i Mamespace nBld n:parent
i Enabled ' true n:parent
¥ © TagDefinitions Tag Info List L n:child i

¥) TagGroup Definitions Tag Group Info List L n:link

+ @ Relation Definitions Relation Info List P

» J. buildingRef Relation Info e L

neld:campusfef

'._ campusRef Relation Info
nBldrequipRef

1. cquipref Relation Info)
nBld:floorRef

¥

¥

» . floorRef Relation Info
nBld:spaceRef

» . spaceref Relation Info

» 'l. tenantRef Relation Info

b ﬁ wralid T amDulas Tam Buala | ic

nBld:tenantRef

NOTE: For devices containing child points that have a Null Proxy extension, the childNullProxyPoint relation is
implied on each of those points.

88 December 19, 2024

Niagara Tagging Guide

Tags (SimpleTaglinfo)

Tagging reference

Several Simple Tag Info components, also known as “simple tags” or “tags”, are available in the Tags folder of
the tagdictionary palette. Use these when creating a custom tag dictionary to populate the tag definitions list.

Drag these tags from the palette to the Tag Definitions folder in the tag dictionary’s property sheet to create
the tag definitions for that dictionary.

Tags properties

Tag components and properties are listed below.

- Palette

W X B | § teedictionary

DTags
‘ Marker
‘ String
‘ Integer
‘ Long
‘ Float
‘ Double
‘ Boolean
‘ Ord
‘ DynamicEnum
‘ EnumRange
‘AbsTimE
‘ RelTime
& unit

‘TimeZonE

Name

Marker

String
Integer
Long
Float
Double
Boolean

Ord

December 19, 2024

Value

Marker (default)

text

0 (default)

0 (default)

0.00 (default)

0.00 (default)

true, false (default)

null (default)

Description

Tag name only. The Marker tag does
not require a value. The fact that a
component has the tag applied is
sufficient to convey semantic
information (the tag name "“device”
or “input”).

Tag name and string value

Tag name and numeric value
Tag name and numeric value
Tag name and numeric value
Tag name and numeric value
Tag name and boolean value

Tag name and Ord value

89

Tagging reference Niagara Tagging Guide

Name Value Description

DynamicEnum 0 (default) A DynamicEnum is an ordinal state
variable whose range can be
specified by an EnumRange.

EnumRange null (default) An EnumRange stores a range of
ordinal/name pairs.

AbsTime 31-Dec-1969 07:00 AM/PM EST An AbsTime is an absolute point in
(default) time relative to a given time zone.
RelTime +00000h 00m 00s (default) A RelTime is relative amount of time.
Unit micsc() null(null) (default) Tag name and unit of measure
Timezone UTC (+0) (default) A TimeZone value tag specified by

an EnumRange.

Smart Tags

The Smart Tag components, with the exception of historyMarker and scoped, are already included in the tag
lists of rules of the NiagaraTagDictionary, which causes those tags to be implied throughout the station as long
as the NiagaraTagDictionary is installed and enabled. While SimpleTagInfo components are tags that have just
a static value, smart tags are tags whose values are based on some code and the values are usually derived
from the objects on which they are applied. A smart tag dictionary includes tag rules that imply tags (both
simple tags and smart tags) to components based on the conditions of the rules.

Smart Tag components are available in the tagdictionary palette.

NOTE: Although not recommended, it is possible to replace the NiagaraTagDictionary with your own custom
tag dictionary. In that situation, you could drop the smart tag components into the tag list of the rules in your
custom tag dictionary so that the tags would be implied throughout your station.

You can add smart tag components to a tag dictionary by dragging them to the tag definitions list, and then
drag them onto individual components using the Edit Tags dialog box. However, the tags would not be
implied, only included in the tag definitions list. To be implied, the smart tags must be included in the tag lists
of tag rules. As a rule, these tags are more effectively applied by including them in the tag lists of tag rules.

tagdictionary-NameTag

The Name smart tag is available in the tagdictionary palette under the Smart Tags folder. The value of the name
tag is set to the name of the baja:Complex object to which it is applied (either directly or implied by a rule).

& Hame (Name Tag)
@ validity Is baja:Complex
[Object Type |bais Complex o -

Note that the Name smart tag is included in the object tags rule of the NiagaraTagDictionary. This rule applies
to all objects that are type baja:Complex. The value type of this tag is string.

90 December 19, 2024

Niagara Tagging Guide Tagging reference

tagdictionary-DisplayNameTag

The Display Name smart tag is available in the tagdictionary palette under the Smart Tags folder. The value of
the Display Name tag is set to the display name of the baja:Complex object.

& Display Name (Display Name Tag)
[validity Is baja:=Complex
(@i Object Type bais Complex m -~

Note that the Display Name smart tag is included in the object tags rule of the NiagaraTagDictionary. This rule
applies to all objects that are type baja:Complex. The value type of this tag is string.

tagdictionary-TypeTag
The Type smart tag is available in the tagdictionary palette under the Smart Tags folder. The value of the type
tag is set to the type of the baja:Complex object.

@ Type (TypeTag)
(@ validity Is baja:Object
(M Object Type |baia Object n -

Note that the Type smart tag is included in the object tag rules of the NiagaraTagDictionary. This rule applies
to all objects that are type baja:Complex. The value type of this tag is string.

tagdictionary-historyldTag
The historyId smart tag is available in the tagdictionary palette under the Smart Tags folder.

& historyld (History Id Tag)
(@ validity Is control:DailyTriggerModeFE

. Object Type control DailyTriggerModeFE fL) -

The historyId smart tag is included in the point tags rule of the NiagaraTagDictionary. This rule applies to all
objects that are type control:ControlPoint. The value type of this tag is string and its value is set to the
historyld of the first enabled history extension on the control:ControlPoint object.

tagdictionary-HistoryMarkerTag

The historyMarker tag is available in the tagdictionary palette under the Smart Tags folder.
The historyMarker smart tag, if included in a rule, is a marker tag that is applied to a control:ControlPoint
object if it has an enabled history extension.

& historyMarker (History Marker Tag)
[l validity Is control:ControlPoint

[l Object Type control ControlPoint mn -

December 19, 2024 91

Tagging reference Niagara Tagging Guide

tagdictionary-ScopedTag

The scoped smart tag is available in the tagdictionary palette under the Smart Tags folder. The scoped smart
tag can be applied to a baja:Component object.

Figure 29. Scoped smart tag

& scoped (Scoped Tag)

[validity s baja:Component
[l Object Type bajs Component m -
© search Tag List Singleton Tag Info List

O out Of Scope TagList Singleton Tag Info List
© value Source TagList Singleton Tag Info List

When applied to a component, either directly or implied by a tag rule, the smart tag searches the component's
ancestors looking for a tag with the "search ID". This tag is called the matching tag and the ancestor on which
it is found is called "the matching ancestor".

Without specifying anything in the scoped tag's frozen properties, the basic behavior of this smart tag is as
follows:

* The search ID will be the same as scoped tag itself.

* If found, a tag with the scoped tag ID will be added to the component. The value of the added tag will be
copied from the matching tag. If the matching tag is a marker tag, the added tag will be a marker tag. If
the matching tag is a value tag, the added tag will have the same value as the matching tag.

This basic behavior can be modified by adding a TagInfo to the scoped tag's frozen properties. Usage is
optional and each can contain only a single tag. Only the ID of the TagInfo added to these properties is of
consequence and its type is ignored.

e Search Tag List property

If a TagInfo is added to Search Tag List property, the ID of this TagInfo will be used as the search ID
instead of the ID of the scoped tag. If a matching tag is found, the tag added to the component will still
have the same ID as the scoped tag. If this property is empty or the TagInfo has the same ID as the
scoped tag, only direct tags will be considered when searching the component's ancestors. Otherwise,
both direct and implied tags will be considered.

* Out Of ScopeTag List property

If a TagInfo is added to the Out Of Scope Tag List property, the ID of this TagInfo is called the "out-
of-scope ID". The scoped tag will not be added to the component if the component itself, the matching
ancestor, or any ancestors between the component and the matching ancestor have a tag with the out-of-
scope ID. If the out-of-scope ID is the same as the scoped tag ID, only direct tags will be considered.
Otherwise, both direct and implied tags will be considered. If the out-of-scope ID is the same as the
scoped tag ID, the scoped tag will never be added to a component.

¢ Value Source Tag List property

If a TagInfo is added to the Value Source Tag List property, the ID of this TagInfo is called the
"value-source ID". If a tag exists on the matching ancestor with the value-source ID, called the "value-
source tag", the value of the added tag will be copied from that tag instead of the matching tag. If a
value-source tag does not exist on the matching ancestor, the value of the added tag will be copied from
the matching tag. If the value-source ID is the same as the scoped tag ID, only direct tags will be
considered for the value-source tag. Otherwise, both direct and implied tags will be considered.

92 December 19, 2024

Niagara Tagging Guide Tagging reference

For example, if the tag with the search ID is a double value tag set to 5.0, then a double value tag set to
5.0 with the scoped tag ID will be added to descendant components. If a TagInfo is added to the
ValueSourceTagList property, the value of the scoped tag added to a component will be copied from
the direct or implied tag with the same ID as the ValueSourceTagList Taginfo (the value source ID) on
the matching ancestor. Only direct tags (and not implied tags) will be used if the ValueSourceTagList
TaglInfo has the same ID as the scoped tag. If the matching ancestor does not have a tag with the value
source ID, the value of the scoped tag will be copied from the tag with the search ID.

In another example using the namespace of the custom dictionary is "c:". The Search Tag List is populated
so c:stateRoot will be used as the search ID instead ofhs:geoState, which is the ID of the scoped tag. The out
Of Scope Tag Listis empty. The Value Source Tag List is populated so the value-source ID is n:name. If a
direct or implied tag with the ID c:stateRoot is found on an ancestor of a component, a hs:geoState tag will be
added to that component with a value set to the n:name tag on the matching ancestor.

Figure 30. Example scoped tag: hs:geoState

& hs:geostate (Scoped Tag)

(@ Validity s baja:Component
O search TagList Singleton Tag Info List
& stateRoot Marker

O out Of Scope TaglList Singleton Tag Info List
O value Source TagList Singleton Tag Info List

& nname Marker

SystemDb usage example

Provides a usage example for the scoped smart tags in the SystemIndex tag dictionary.

Note that the excluded scoped smart tag is available in the tag rules of the Systemindex tag dictionary. When
a systemIndex:excluded marker tag is added to a component, a systemIndex:marker tag becomes implied on
all of the component's descendants except those that contain or are descendants of a component with a
systemIndex:include marker tag. The presence of the systemIndex:excluded tag, whether direct or implied,
excludes the component from system indexing operations. Alternately, to prevent implying the excluded tag
on some of the descendants you can apply the included tag where necessary.

December 19, 2024 93

Tagging reference

Figure 31.Excluded and included smart tags in SystemIndex dictionary

0 TagDictionaryService
‘ Miagara
‘ Systemindex
GTagDeﬂnitinns
GTEgGrnup Definitions
D Relation Definitions
DTagRulES
l_i lsComponent
r‘ Condition
O tasList
‘ excluded
[l validity
© out0f Scope Tag List
J included
DTagGrDup List
© Relation List

E‘I [y e [P . —— —

Niagara Tagging Guide

This usage example shows a components tree where a direct systemIndex:excluded marker tag is added to A1
and a direct systemIndex:included marker tag is added to B12. If the SystemIndex tag dictionary is installed,
the resulting implied systemIndex:excluded tags are shown in parentheses. Due to the systemindex:included
(the OutOfScope id) tag on B12, a systemIndex:excluded marker tag is not implied on B12 or its descendants

(C121 and C122).

94

December 19, 2024

Niagara Tagging Guide Tagging reference

Figure 32. SystemDB included/excluded example

¥ station root
4 Al: systemIndex:excluded |
Bll: (systemIndex:excluded)
* C111: (systemIndex:excluded)
* Cl112: (systemIndex:excluded)
HBl12: systemTndex:included
* Cl21
¥ 122
* Bl3: (systemIndex:excluded)
* C131: (systemIndex:excluded)
C132: (systemIndex:excluded)
* B2
* B2l
¥ c211
* C212
¥ B2Z
* 221
¥ C222

If A1 contains a direct or implied systemIndex:excluded tag and the OutOfScope id (as shown below), the
systemIndex:excluded tag is not added to any of A1's descendants.

Figure 33.

* station root
)| 21: systemIndex:excluded| systemIndex:included
* Bl11
¥ Cl111
v cllz
* Bl2: systemIndex:included
* Cl21
* clzz
¥ Bl13
¥ Cl3l
* 132
¥ A2
* B21
* 211
* c2lz2
* B22
¥ cazl
* c222

Hierarchy QuerylLevelDef usage example

Provides a usage example for scoped smart tags in a hierarchy QueryLevelDefinition.

To add a c:parentName tag with the value of the n:name tag to all descendants of a component with a

December 19, 2024 95

Tagging reference Niagara Tagging Guide

"c:parent” tag, create a scoped tag with the ID c:parentName, set the Search Tag List property to c:parent,
and set the Value Source Tag List property to n:name.

Figure 34. parentName becomes an implied tag on the descendant

Edit Tagt Childl ==
ﬁ Custom Eid ? Sk All
Tag Dictionary # objects
Hame Type =
B8 ‘Tag;:

F stateron Marker

& cuiRoot Marker

lesationRoot

Marker

! parentiame

Cireet Tage
(@ implied (Confpanent)
&l nname Childl
ol mdisplaytifne Childl
i nitype baja:Folder

i meordinSesdi statien: |h:ddTe -

i nstation scopedlaglenod

-~ h:ddTe

higd
I @l cparentdame Pareatl

You can use this by setting up a hierarchy to first query for all objects in the station that have a c:parent tag,
and then using a query facet, to query for all objects in the station that have both a c:child tag and a
c:parentName tag that is the same name as the parent component.

96 December 19, 2024

Niagara Tagging Guide Tagging reference

Figure 35. Hierarchy utilizing scoped tags

Edit Tags Child] [===]
File Edit Search Bookmarks Tools Window Help & Custo] Y showal

< » O-onfa SO0 O =~ r} Tag Dictionary Babjects

HostVASILTHYCVS2.glabalds honeywelcom scopedTagnemo2) © Station (scopedTogiemoz) : config [T Type =

* Mav sl © config | ¢ cuzt

Property Sheet

chilal
e |catldl

baja:Fcldes

n |stazien:|h:désh
- Palette

W X B | § eedicionsy

O s
o Marker

scopsdlagens?

hiddab

When defining a hierarchy, one advantage to using QueryLevelDefs rather than GroupLevelDefs is that you can
attach a graphic view to a QueryLevelDefinition. On expanding the resulting hierarchy, the graphic view
displays for that level.

tagdictionary-SingletonTaglInfolList

The Singleton Tag Info Listis a frozen property in a ScopedTag smart tag component, available in the
tagdictionary palette under the Smart Tags folder. Usage is optional.

Each singleton Tag Info List has a particular use, and each can contain only a single tag. For more details,
see tagdictionary-ScopedTag

tagdictionary-TagRuleList

The Tag Rules used in a Smart Tag Dictionary are the primary mechanism for implying tags and relations. It is
the tag rules defined in the installed tag dictionaries that determine which implied tags and implied relations
are assigned to each object (entity).

A tag rule defines certain criteria that determines if one or more tags and/or relations are implied on an object.
In addition to the Condition property, tag rules contain three definition lists: Tag List, Tag Group List, and
Relation List.

When a “tag-able” object is evaluated, the process determines if the object meets the criteria specified in the
Condition property of each tag rule. If the criteria is met, it will return a tag (or relation, or tag group) with the
value set (if other than a Marker tag). If the criteria is not met, then the implied tag does not apply and a null
value is returned. Eventually, the results from the tag rules in all of the smart tag dictionaries in the station are
merged to form the complete set of implied tags and implied relations for an object.

The Validity slot of a definition (Taginfo, RelationInfo, or TagGrouplnfo) is not evaluated in a tag rule or in a
tag group definition. It is only evaluated in the Tag Definitions of a tag dictionary.

Any definition (tag, tag group, or relation) that exists in a Tag Rule or Tag Group Definition is required to have a
corresponding definition in the main lists of the tag dictionary (Tag Definitions, Tag Group Definitions, Relations

Definitions).

Added scoped tag rules provide a means of focusing tag rule evaluation in specific areas of the station tree.

December 19, 2024 97

Tagging reference Niagara Tagging Guide

Tag Rule components

The tagdictionary palette contains the default TagRule, TagForType which has the IsType condition, however
the Condition slot is frozen, uneditable, limiting its usage. In also contains additional Rule components
allowing you to add custom TagRules (with different Conditions) to smart tag dictionaries. These new TagRule
components in the palette cover all possible conditions (except Never), which means that tags can be implied
using more complex logic.

For additional information, see “tagdictionary-TagRuleList” in this guide.

Figure 36. Example tag rule (Haystack Tag Dictionary)

[l hvac TagRule
. Condition Boolean Filter
. Filter |hs:ahu or hs:vav or hs:chiller or hs:chi]
© TagList Tag Info List
& hvac Marker
O Tag Group List Tag Group Info List
O Relation List Relation Info List

The tag rule shown here is the BooleanFilterRule. The rule’s Condition slot has a Filter field containing the
NEQL predicate which queries for the following tags: hs:ahu or hs:vav or hs:chiller or
hs:chillerPlant or hs:coolingTower or hs:heatExchanger or hs:boiler or hs:boilerPlant. Also,
the rule’s Tag List is configured with the hvac marker tag. This tag rule queries objects in the station, filtering
for those that have one or more of the tags specified in the condition Filter field. If the query returns true for
any object (as having one of more of the queried tags), then the rule applies the hvac implied tag to the object
as well.

Each of the TagRule components is configured for a certain condition. If these conditions are met (present in
station objects) then the specified tag(s) and/or relation(s) become implied for those objects.

tagdictionary-ScopedTagRule

Tag rules may have a scope in which they apply. This means that an entity will only have tags implied by a rule
if the entity is in the tag rule's scope. The effect of this is to focus evaluation of NEQL queries on applicable
entities, which may reduce the amount of time it takes to complete a search or to perform hierarchy traversal.
Several Scopes components are available in the tagdictionary palette.

Regular tag rules do not have a scope container in which to drop scope components, so they cannot be
scoped. The special ScopedTagRule type has a Scope List container in which scopes may be dropped from the
palette. A scoped tag rule is targeted to a particular place in the station via the Scope Ord property. Also,
within a custom smart tag dictionary, you can create multiple scoped tag rules, each with a different root
Scope Ord. Moreover, a single ScopedTagRule may have multiple scopes defined in its scope container — if an
entity is in any of these scopes, the rule applies.

NOTE: For tag rules that are not targeted to a particular place in the station, it is better to use a “regular”
TagRule rather than a Scoped Tag Rule because the scoping mechanism requires some time to complete the
evaluation so it may slow performance if everything is in scope.

The reason to use a scoped tag rule is to speed up certain kinds of tag rule evaluations. In particular, using a
hasAncestor condition to specify a particular part of a station (such as, hasAncestor with n:name =
Building1Folder) in a tag rule is slow and this new scoping mechanism speeds up those kinds of rules.
However, if the rule is something that does not require checking an entity's ancestors, then a regular TagRule
should be used instead.

For example, suppose you are using a rule to tag components by their name, say a rule with a BooleanFilter

with n:name like "Lighting.*East", and you know that those components will only live in a particular part of the
station, say under a folder called "Campus". You might think that using a scoped tag rule would make the

98 December 19, 2024

Niagara Tagging Guide Tagging reference

queries faster because it would not have to check outside the Campus folder. That is not the case though. It
still has to check every component and decide if it is in scope or not. In this case, determining if a component
is in scope is probably slower than just checking the name of the component, so using the scoped rule could
hurt performance slightly.

Basically, the scoped tag rule exists as an alternative to using the slower hasAncestor condition to check for a
component's scope in the station. A best practice is to consider if you did not use a scoped tag rule, would you
use a hasAncestor condition to accomplish the same thing. If so, use a scoped tag rule. If not, use a regular
TagRule.

AlwaysRule
If the AlwaysRule is present in an installed tagdictionary, the condition is true for all station objects and so the
specified tag(s) may be applied to each and every object.

Description
Condition true (default) There is no criteria to be met. The condition is always “true” so a filter is not necessary.
Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.
Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.
Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.
AndRule

The specified tag definitions may be applied if the target object has all of the conditions listed under the
Condition property.

Name Value Description

Condition true (default) There is no criteria to be met. The condition is always “true” so a filter is not necessary.
Condition tagdictionary; Add slots under Condition property or drag any of the Condition components (Always, And,
sub- . conditionName null BooleanFilter, HasAncestor, HasRelation, IsType, Never, Or) from the palette.

properties (default)

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group tag group(s) Tag Group Info List contains the list of tag groups to be applied.

List

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

BooleanFilterRule
The specified tags may be applied if the target object has a tag listed in the Filter property.

Figure 37. Example BooleanFilter tag rule

(@ hvac TagRule
(@ condition Boolean Filter
. Filter | hs:ahu or hs:vav or hs:chiller or hs:chi]
O Tag List Tag Info List
& hvac Marker
'D' Tag Group List Tag Group Info List
© Relation List Relation Info List

Description

Condition Criteria to be met by target objects.
Condition sub-properties baja;stringfalse (default) Target object must meet the filter criteria (NEQL query).

December 19, 2024 99

Tagging reference Niagara Tagging Guide

Description

Tag Info List contains the list of tag(s) to be applied.

Tag List tag(s)
Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.
Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

HasAncestorRule
The specified tag definition(s) may be applied if the target object, or one of its ancestors, has the tags listed in

the Filter property.

Description
Criteria to be met by target objects.

Condition

Filter baja:stringfalse (default) Target object or one of its ancestors must meet the filter criteria (NEQL query).
Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Info List contains the list of tag(s) to be applied.

Relation List relation 1d(s) Relation Info List contains the relation Ids to be applied.

HasRelationRule
The specified tag definition(s) may be applied if the target object, or an object along the relation specified in

the Relation Id field, has the tags listed in the Filter property and has the relation specified in the Relation
1Id field.

Name Value Description

Condition Criteria to be met by target objects.

Filter baja:stringfalse (default) Target object must meet the filter criteria (NEQL query).

Relation Id baja:string Relation along which objects will be searched for one that meets the Filter criteria.
Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

IsTypeRule

The specified tag definition(s) may be applied if the target object is one of the specified object type.

Description

Criteria to be met by target objects.

Condition

Is Type Condition (sub-property) baja:TypeSpec Target object must be or extend this specified type.

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.
Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

NotRule
The specified tag definition(s) may be applied if the child condition of the Not tag rule condition evaluates to

false. The tag definition(s) will not be applied if the Not tag rule condition has no child condition.

100 December 19, 2024

Niagara Tagging Guide Tagging reference

Figure 38. NotRule tag rule

(@l WotRule ({TagRule)

(@l Condition Mot
Ol IsType Isnull
(@l Object Type o -
QO TagList Tag Info List

Q Tag Group List Tag Group Info List
O Relation List Relation Info List

Name Value Description

Condition Criteria to be met by target objects.

(Not)

Child tagdictionary:TagRuleCondition Target object must be or extend this specified type. The NotRule condition only
Condition accepts a single child tag rule condition. The IsType condition is shown but the child
(sub- condition can be any subclass of BTagRuleCondition.

property)

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group tag group(s) Tag Group Info List contains the list of tag groups to be applied.

List

Relation relation Id(s) Relation Info List contains the relation Ids to be applied.

List

OrRule

The specified tag definition(s) may be applied if the target object has any of the conditions listed under the
Condition property.

Figure 39. Example OrRule tag rule

(@il OrRule (TagRule)
(@l Condition or
(Ml condl Is control:ControlPoint

. Dbject Type control ControlPoint

(Ml Cond2 Has Ancestor
(@ Filter |hs:ahu

™ Taclist Tac Infn st
Name Value Description
Condition Criteria to be met by target objects.
Condition tagdictionary; Add slots under Condition property or drag any of the Condition components (Always, And,
sub- . conditionName null BooleanFilter, HasAncestor, HasRelation, IsType, Never, Or) from the palette.
properties (default)
Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.
Tag Group tag group(s) Tag Group Info List contains the list of tag groups to be applied.
List
Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

December 19, 2024 101

Tagging reference Niagara Tagging Guide

Conditions

Condition is a validity subproperty used to specify criteria to be met in order for a parent definition’s tag to
be applied to an object. It is used in conjunction with the Filter subproperty. There may be one or more
conditions under the Validity property.

The validity property of a tag definition is primarily used to filter out tags in the Edit Tags dialog that should
not be applied to an object. The criteria contained in this property does not prevent applying the tag to any
object.Some smart tags, however, do not operate properly if they are applied to an object that does meet the
criteria in the Validity property. The Validity property can be any tag rule condition including And and Or,
which allow for combining other conditions.

The validity conditions are located in the tagdictionary palette.

tagdictionary-Always

Always is one of several possible validity conditions properties. If the Always condition property is present in a
tag definition, there is no criteria to be met. The condition is always true and so the parent definition's tag(s)
and/or relation(s) become implied for every object in the station.

Property Sheet

& hvac (Simple TagInfo)
. Validity Always
(@ Default Value & marker

The validity conditions are located in the tagdictionary palette.

tagdictionary-And
And is one of several possible validity conditions properties. If all of the specified criteria are present in the
queried object, the parent definition's tag(s) may be applied.

For example, you can drag an AndRule onto the rule definitions of a smart tag dictionary. Then, drag the And
condition (or other conditions) under the condition And for that rule, as shown here.

(M AndRule AndRule
(@ Condition And

(M And And
- NamedLikeWhatever Boolean Filter
. Filter n:name like "Whatever"
(@l HasHistory Boolean Filter
(Ml Filter n:history

The validity conditions are located in the tagdictionary palette.

tagdictionary-BooleanFilter

BooleanFilter is one of several possible validity conditions subproperties, which are used to specify a certain
criteria to be met in order for a tag to be applied to an object.

102 December 19, 2024

Niagara Tagging Guide Tagging reference

For example, the BooleanFilter condition slot has a Filter subproperty containing the NEQL predicate which
queries objects in the station for the tags: hs:equip or hs:chiller. If the query returns true for any object
(as having one of more of the queried tags), the validity criteria has been met. So the parent definition's tag(s)
and/or relation(s) become implied for those objects.

Property Sheet
& airCooled (Simple Tag Info)
[validity Boolean Filter

|l Filter | hs:equip or ha:chiller
(@ DefaultValue P marker

tagdictionary-HasAncestor
HasAncestor is one of several possible TagRule conditions, which are used to specify a tag rule or tag validity
criteria.

Figure 40. Example HasAncestor Condition slot with Filter

Property Sheet
. condl (Has Ancestor)

. Filter | hs:ahu or hs:vav

In the example shown, the HasAncestor condition slot has a Filter subproperty containing the NEQL
predicate which queries ancestor entries in the station: hs:ahu or hs:vav. If the Filter NEQL predicate is
true for the target object or one of its ancestors, the HasAncestor criteria is met. If an object is a component
and has a parent component, its ancestor is that parent. If an object is not a component or is a component
without a parent component, the endpoint of the first outbound n:parent relation is its ancestor.

tagdictionary-HasRelation

HasRelation is one of several possible TagRule conditions which are used to specify a tag rule or tag validity
criteria.

The Filter subproperty contains a NEQL predicate. If this predicate is t rue for the target object or a related
object, the HasRelation criteria is met. A related object is the endpoint of any inbound or outbound relations
where the relation Id matches the one specified in the Relation Id field. Endpoints of the endpoints,
endpoints of those endpoints, and so on are also tested.

If the target object, or an object along the relation specified in the Relation Id field, has the tags listed in the

Filter property and has the relation specified in the Relation Idfield, then the parent definition's tag(s) may
be applied.

tagdictionary-IsType

IsType is one of several possible validity conditions subproperties, which are used to specify a certain criteria
to be met in order for a tag to be applied to an object.

If the queried object is of the specified object type, then the parent definition's tag(s) may be applied.

December 19, 2024 103

Tagging reference Niagara Tagging Guide

Property Sheet

(@ Condition (Is Type Condition)
(@il Object Type |baja Complex n -

The validity conditions are located in the tagdictionary palette.

tagdictionary-Or
Or is one of several possible validity conditions subproperties, which are used to specify a certain criteria to be
met in order for a tag to be applied to an object.

For the Or condition, if the target object has any of the conditions listed under the Or property, the parent
definition's tag(s) may be applied.

The example below shows the And tag rule which contains the condition And with these additional combined
conditions: And and Or. In this case, if all of the And criteria plus any of the Or criteria are met, the parent
definition’s tag(s) may be applied.

UMl AndRule AndRule
(@l Condition And
UMl And And
(@l NamedLikeWhatever Boolean Filter
. Filter n:name like "Whatever"
(Ml HasHistory Boolean Filter
! Filter n:histord
(@or oOr

(Ml 1sTypel Is control:BooleanPoint

(M IsType2 Is control:NumericPoint

tagdictionary-OrdScope

You add the OrdScope component to the scope list container or a ScopedTagRule. Added OrdScopes are, in
effect, adding another condition to the rule.

Properties

NOTE: In order for the rule to be applied, the component must be located at or under the scopeOrd and not
located under any of the excludedScopeOrds.

The OrdScope components are available in the tagdictionary palette.

Property Description

Scope Ord ord, null (default) Defines the part of the station tree to

104 December 19, 2024

Niagara Tagging Guide Tagging reference

Property Value Description

evaluate. For example, during a search or
hierarchy refresh the privercontainerscope
ord value,service:driver:DriverContainer,
limits evaluation to objects in the Drivers
folder. Similarly, the NiagaraNetworkScope ord
value,service:niagaraDriver:NiagaraNetwork
limits evaluation to objects in the
NiagaraNetwork folder.

Exclude Scope Ords Ord List Defines part of the station tree excluded
from evaluation. For example, during a
search or hierarchy refresh this exclude
scope ords value,
service:TagDictionaryService, excludes the
Tag Dictionary Service from evaluation.
Typically, the ords in this ord list will be
underneath the scope ord.

tagdictionary-DataPolicy

Tag dictionaries may include data policies. A data policy provides additional metadata associated with a tag or
tag group. The tagdictionary palette contains the following DataPolicy components:

e DataPolicy

* BooleanDataPolicy
e EnumDataPolicy

* NumericDataPolicy
e StringDataPolicy

NOTE: Typical tagging operations do not require data policies. The data policy functionality is provided
primarily for use by the Analytics engine. For that reason, tag dictionaries may include added data policies.

An Add Data Policy action has been added to Taginfo and TagGrouplnfo components. Invoking this action
prompts you to select a DataPolicy type to add to the selected Taginfo or TagGrouplnfo component in a tag
dictionary.

You can also add a data policy to Taglnfo or TagGrouplnfo components by dragging a DataPolicy component
from the tagdictionary palette onto the desired Taginfo or TagGrouplnfo component.

NOTE: Only a single data policy can be added to Taginfo or TagGrouplnfo components. You may not add a
data policy if the TagInfo component is a Marker tag, or if the Taginfo or TagGroupinfo component already has
a DataPolicy child.

Properties for Data Policy

Name Value Description
Min Interval drop-down with time intervals Defines the minimum allowed
(defaults to None) interval when requesting a value

or trend request.

When a value or trend request is
processed, if the value of the
Interval in the request is less

December 19, 2024 105

Tagging reference

Name Value

Max Interval drop-down with time intervals
(defaults to None)

Preferred Time Range from and to times (both default to 12
AM EDT)
Preferred Rollup drop-down list of arithmetic
functions
106

Niagara Tagging Guide

Description

than the value of this Min

Interval, the Algorithm modifies
the value of the 1nterval in the
request to be the value of this min
Interval prior to processing the
request.

For example, if a trend request
specifies the Interval as rive
Minutes and the algorithm’s Min
Interval iS Fifteen Minutes the
algorithm changes the request
Interval from Five Minutes to
Fifteen Minutes before processing
the request.

The default of xone allows any
interval to be specified in the
request.

Defines the maximum allowed
Interval when requesting a trend.

When an algorithm processes a
value or trend request, if the
value of the request’s 1nterval is
greater than the value of this Max
Interval, the algorithm modifies
the value of the request’s
Interval to the value of this Max
Interval prior to processing the
request.

For example, if the trend request
specifies an 1nterval of week and
the algorithm’s Max Interval is pay
the algorithm changes the value
of the request'’s 1nterval from
week to Day before processing the
request.

The default of vone allows any
Interval to be specified in the
request.

Configures when the time period
starts and ends.

Defines the how to roll up the
data when a request does not
specify the rollup function.

December 19, 2024

Niagara Tagging Guide Tagging reference

Name Value Description
Preferred Aggregation drop-down list of arithmetic Defines the aggregation to use
functions when a request does not specify

the aggregation function.

Units drop-down list of units of measure Identifies which unit of
measurement system to use,
English or metric.

EnglishMetricNone

Precision 32 bit (default), 64 bit Selects 32 bit or 64 bit options for
the history data logging. The 64
bit option allows for higher level
of precision but consumes more

memory.

Totalized

Trend Required true (default) or false When true, all points must have a
trend.

Tag Dictionary Manager view

Tag Dictionary Manager, the default view for the Tag Dictionary Service, lists all tag dictionaries installed on the
station and their versions. The view provides functionality for creating, editing, importing/exporting tag
dictionaries; and indicates the presence direct tags that could be replaced with a TagGroup relation.

Figure 41. Tag Dictionary Manager view

. Services . TagDictionaryService / Tag Dictionary Manager -

Database 3 objects

Name Type Status Version Namespace FaultCause F
‘ Miagara Miagara Tag Dictionary {ok} 1.5 n

‘ SmartTagDictionary SmartTag Dictionary {ok} 10 T

‘ Haystack Hs Tag Dictionary {ok} 3.0.2 N.2 w/ SmartRefs (import) hs

[3 New | # Edit | Import Export Tags—>TagGroups...

Buttons

* New — allows you to create a new smart tag dictionary, which you can then export to a .CSV file for
editing.

e Edit — at the bottom of the view allows you to change the tag dictionary properties: Name, Namespace,

December 19, 2024 107

Tagging reference

Niagara Tagging Guide

and Enabled status.

Import and Export — allow you to import or export tag dictionaries in a standard .CSV file format. You can
edit an exported tag dictionary in any CSV-compatible spreadsheet program (either online or offline) to
add or remove tag definitions, tag groups definitions, relation definitions, as well as validity rules.
Afterwards, you may import the edited .CSV file, thereby updating the existing tag dictionary.

Tags > TagGroups — examines the station component tree looking for individual direct tags on a
component that match a TagGroup defined in an installed tag dictionary. If any are found, a window opens
listing the component, collection of direct tags, matching TagGroup and an indication if the component is
contained in a deployed template. Also shown are two columns, Convert and RemoveTags.

If the Convert column is checked, the direct tags will be replaced with a TagGroup relation. When Convert
is selected RemoveTags is automatically be selected. If the Convert is not selected but RemoveTags is, the
tag collection will be removed from the component without converting to a TagGroup relation. This is to
handle the case where a collection of tags can map to multiple TagGroups with some being subsets of
others. If neither Convert or RemoveTags is selected, no action is taken.

Make Convert and RemoveTag selections in the presented table and when you click OK, the selected
Conversions and TagRemovals occur.

HTMLS Tag Manager view

There is added support for the HTML5 Tag Manager view featuring an intuitive design that enables a more
efficient overall tagging workflow.

Figure 42. HTML5 Tag Manager view in a browser

EEREEBEEEE R

onfig ® [TagManager v [
Selected Components 9 objects v Available Tags & Haystack ~ % ¥ showall ~ 214 objects v
w UnuoCt WATKET
Name Location
0 uv Marker
VAV_07 slot:/Drivers/NiagaraNetwork/N
& valve Marker
VAV_06 slot:/Drivers/NiagaraNetwork/N .)
& variableVolume Marker
VAV_D8 slot:/Drivers/NiagaraNetwork/h
vav Marker
VAV 09 slot:/Drivers/NiagaraNetwork/
0 vavMode Marker
VAV_02 slot:/Drivers/NiagaraNetwork/M
L vavZone Marker
VAV_03 slot:/Drivers/NiagaraNetwork/N
& vid Marker
VAV_D4 slot:/Drivers/NiagaraNetwork/N PP
0 visibility Marker
VAV 01 slot:/Drivers/NiagaraNetwork/N
Q wnlt Marker
VAV_05 slot:/Drivers/NiagaraNetwork/l Showing tags on: VAV_(B Direct Jimplied 7 objects v
Tag Id Tag Name Value
& hs:equip & Marker
& hswvav vav & Marker
Le hs:parallel parallel & Marker
& hs:fanPowered fanPowered & Marker
& hs:elecReheat elecReheat & Marker
& hs:singleDuct singleDuct & Marker
& hs:pressureDependent pressureDependent & Varker

® add

= Remove Compenents

It provides the same functionality as the Edit Tags window in Workbench, but with some additional workflow

108

December 19, 2024

Niagara Tagging Guide Tagging reference

enhancements. For example, the “context sensitive tagging” feature (as shown in the above image), is also
available in the existing Edit Tags window via the dropdown list with either the Show All, Best Only or Valid
Only option; and provides advanced tag filtering as well.

The following enhancements in the HTMLS5 Tag Manager result in a more efficient tagging workflow:

Allows bulk tagging of components via the browser

Seamlessly view direct and implied tags

Export all direct and implied component tags to a spreadsheet for templating and ongoing management
Integrates with the Search Service to improve workflow

Drag-n-drop functionality

Added as a default view on all station components for enhanced flexibility

The manager view functions identically whether accessed from within Workbench or a browser.

Figure 43. HTML5 Tag Manager view in Workbench

NisgaraNetwork/MainStrestStation/Floor 0l/pointa/VAV 01]view: tagdictionacy: Ta

elected Components - Available Tags @ Niagara it W showAll -+ 1 objects hd

Tag Tag Type

@ Tag

Tag Name Value

Q222224
o ptolh T b b

B Remove Components

Tag Manager view

This view is the default view of the Tag Manager. You can add bulk tags.

December 19, 2024 109

Tagging reference Niagara Tagging Guide

Figure 44. Tag Manager View

. Station (Space) . Config . Drivers . NiagaraNetwork ,/ TagManager ~
- Nav Selected Components Available Tags & Niagarav Y ShowAll v
'e] My vork
LAY - @w wa o Name Le Tag Tag Type
© RemoteFile system O NiagaraNetwork sk -~ @ Tags
& station (Space) - .
A Al bindHints String
© config displayName String
@ services € hasPxView Marker
© orivers .
 NiagaraNetwork name String v
6 Bacnethetwork Showing tagson: | NiagaraNetwork Direct Oimplied 2 objects v
O BacnetawsNetwork
6 NaxisvideoNetwork Tagld Tag Name Value
O Bacnetowsnetwork € n:bindHints bindHints
© HittpClientNetwork
S 9 n:displayName displayName

6 MaxproNetwork

= Remove @ Add

Components

To access this view, right-click on any network container and click Views > TagManager.

The following sections explains about the different types of windows.

Selected Components

Description
Name Display the name of the component.
Location Display the location of the selected component.

Available Tags

Description
Tag Display the different types of tags names.
Tag type Display the type of tag.

Showing tags on (Direct/Implied)
There are two types of tags available

* Direct Tags Direct tags are tags that you add intentionally to a component using an installed tag
dictionary.

* Implied Tags Implied tags are tags that are not directly stored in the component, but are "implied" by tag
rules that are defined in installed Smart Tag Dictionaries.

Column Description

Tag Id Display the tag Id.
Tag Name Display the tags name.

Value Display the tag value.

110 December 19, 2024

Niagara Tagging Guide

Tagging reference

Column Description
Value Type Display the type of value.
Buttons

* Remove Components Removes the selected component from the database

e Edit
Edit the value of the tag.
e Add Insert a new tag in the database.

e Delete Deletes a selected tag from the database.

Relation Manager view

This view is an HTMLS5 view that you can use to add, edit, and delete relations and links (as of Niagara 4.15). It

is available as a view on all components.

000

| » () NumericWritable2

@ rile
AW
tt ®

2

- Outbound Relation

<

D d

o
NumericWritablel n:childDevice
NumericWritable2 n:childPoint

>
»

® " {71 [@ Relation Manager v @&
» show Implied 4. show Links & Show Model bl
Pro
@
omponentsFolder
Numa n
Relation Inbound Tags

NumericWritable
NumericWritable
NumericWritable / in16 L A Link NumericWritablel / out £
® New

The following section explains the different properties.

Property Description

Outbound
Relation
Component

Relation

Inbound

Tags

Displays the component name of an outbound relation or link
(includes the slot for links)

Displays the (outbound) relation ID for a relation or the type for a
link

Displays the name of the component at which this view is looking
(includes the slot for links)

Displays the (inbound) relation ID for a relation or the type for a link

Displays the component name of an inbound relation or link
(includes the slot for links)

Opens a compact editor to add, edit, or remove tags on a link

December 19, 2024

111

112

Tagging reference

Actions

¢ New: Adds a relation or link

Edit: Edits the selected relation or link

Delete: Deletes the selected relations and/or links

Niagara Tagging Guide

December 19, 2024

Niagara Tagging Guide Glossary

Chapter 5. Glossary

The following glossary entries relate specifically to the topics that are included as part of this document.
To find more glossary terms and definitions refer to glossaries in other individual documents.

Alphabetical listing

semantic information
Metadata used to indicate the purpose of a device, that is, what the device is, what each of its data points
means, and how devices are related to each other.

scoped tag rule

In Niagara tag rules have a scope in which they apply. This means that an entity will only have tags implied by a
tag rule if the entity is within the tag rule's scope. This focuses evaluation of NEQL queries on applicable
entities, which reduces the amount of time it takes to complete a search or hierarchy refresh.

data policy
A data policy provides additional metadata that can be associated with a tagged component. For more details
on tags and tagging, see the Niagara Tagging Guide.

Haystack

An extensible Semantic Web Browser developed by the Haystack research group at the MIT Computer Science
and Atrtificial Intelligence Laboratory (http://haystack.lcs.mit.edu). The project explores how the Semantic Web
data model (a Resource Description Framework — RDF) can be applied by users to better organize, navigate,
and retrieve information, both personal and shared (www.w3.0rg/2005/04/swls/BioDash/Demo/What is
Haystack.html).

Haystack tag dictionary
A smart tag dictionary (namespace) containing a collection of tags developed by Project Haystack, which can
be used for semantic modeling of building control entities, i.e. site tags, building tags, equipment tags, point
tags, geo-location tags, etc.

The Haystack dictionary is indicated by the hs character, followed by a colon character (:).

The Haystack dictionary is a result of the work of the Open Source Initiative (OSI) hosted on the website
http://project-haystack.org.

implied tags index
In Niagara you can manually enable indexing on individual tags in the tag definitions of a custom smart tag
dictionary. The index primarily improves performance of NEQL searches and speeds-up hierarchy refreshing.

namespace
A container for a set of names in a naming system. A tag dictionary is a namespace.

Niagara tag dictionary

A tag dictionary (namespace) containing a collection of tags developed for Niagara systems, that are used for
semantic modeling of specific building control entities, i.e. networks, devices, equipment, points, sites,
buildings, geo-location, histories, etc.

The Niagara dictionary is a type of Smart Tag dictionary, therefore it applies Implied Tags and Implied Relations
to components and links. This allows queries to find these components based on type, linkage, hierarchy or
combinations of these. The Niagara tag dictionary is included by default in all stations created using the New
Station tool.

The Niagara dictionary is indicated by the n character, followed by a colon character ().

December 19, 2024 113

Glossary Niagara Tagging Guide

tag

A piece of semantic information (metadata) associated with a device or point (entity) for the purpose of
filtering or grouping entities. Tags identify the purpose of the component or point and its relationship to other
entities. For example, you may wish to view only data collected from meters located in maintenance buildings
as opposed to those located in office buildings or schools. For this grouping to work, the metering device in
each maintenance building includes a tag that associates the meter with all the other maintenance buildings in
your system.

JACEs are associated with Supervisors based on tags; searching is done based on tags.
Tags are contained in tag dictionaries. Each tag dictionary is referenced by a unique namespace.

tag dictionary
Tag dictionaries contain a set of tag definitions, and may contain tag group definitions, relation definitions, as
well as tag rules for smart tags.

taggable spaces
The implementation of tags for all common data types: components, files, histories and alarms.

tag rule index
In Niagara the tag rule index is an index on the station’s Tag Dictionary Service which improves performance in
evaluating tag rules for implied tags during NEQL searches.

114 December 19, 2024

	Technical Document Niagara Tagging Guide December 19, 2024
	Niagara Tagging Guide
	Legal Notice
	Confidentiality
	Trademark notice
	Copyright and patent notice

	About this Guide
	Product Documentation
	Document Content
	Document change log
	December 19, 2024
	April 10, 2024
	October 5, 2023
	October 4, 2022
	July 19, 2022
	April 26, 2022
	November 2, 2020
	February 4, 2020
	August 6, 2019
	May 23, 2019
	November 30, 2018
	Updated: March 26, 2018
	Updated: October 24, 2017
	Updated: August 30, 2017
	Updated: January 12, 2017
	Updated: November 3, 2016
	Updated: July 26, 2016
	Updated: July 14, 2016
	November 29, 2015
	Initial publication: August 31, 2015

	Related documents

	Tagging Overview
	License requirements
	Tagging process

	Common tagging tasks
	Creating a tagged device
	Adding Ad Hoc tags
	Removing a tag
	Add tags to objects in the Discovered pane
	Add tags in the Database pane
	Adding a Tag Group to a component
	Creating a custom tag group
	Adding a tag to an existing tag group
	Adding tags using Batch Editor
	Editing tags in a template
	View implied tags using Edit Tags dialog
	Viewing implied tags using Spy view
	Selecting or exiting tag mode (manager views)
	Exporting and importing tag dictionaries
	Use case
	Creating a new tag dictionary
	Editing a tag dictionary exported to CSV
	Importing a tag dictionary in CSV format
	Exporting a tag dictionary

	Tag dictionary service
	Smart tag dictionary
	Haystack smart tag dictionary
	Modifying the Haystack tag dictionary
	Creating the Haystack tagsImportFile and equipImportFile
	Editing tags in the Haystack tagsImportFile and equipImportFile
	Configuring the Haystack dictionary to auto-import modifications
	haystack-HsTagDictionary
	Properties
	Actions
	Haystack Tags Import File format
	About the rows

	Haystack Equip Import File format
	About the rows

	haystack-EquipRelation
	haystack-SiteRelation

	H4TagDictionary
	Migrating to Haystack 4
	Tag groups

	Migrating Haystack 3 items

	Haystack 4 import
	Tags
	Choice tags
	Tag group
	Relations
	Tag rules
	Standard
	Custom

	Updating an existing H4 tag dictionary

	Brick tag dictionary
	Overview
	Updating Brick tag dictionary
	Brick custom rules

	Tagging reference
	About tags
	Tag structure
	Types of tags

	Online tagging versus offline tagging
	About the Edit Tags dialog
	Relation Manager
	Components and views in the tagdictionary module
	tagdictionary-TagDictionaryService
	Tag Dictionary Service
	Tag Dictionary Service properties
	Actions
	Neqlize options
	Tag Rule Index
	Imply tags in a different tag dictionary

	Implied tags index
	NiagaraTagDictionary

	About tag dictionaries
	Tag dictionary composition

	tagdictionary-SmartTagDictionary
	Smart tag dictionary properties
	Actions

	tagdictionary-SystemIndex
	For stations running prior versions

	Tag Definitions (TagInfoList)
	Tag properties

	Tag Group Definitions (TagGroupInfoList)
	TagGroup properties

	Relation Definition (RelationInfo)
	Tags (SimpleTagInfo)
	Tags properties

	Smart Tags
	tagdictionary-NameTag
	tagdictionary-DisplayNameTag
	tagdictionary-TypeTag
	tagdictionary-historyIdTag
	tagdictionary-HistoryMarkerTag
	tagdictionary-ScopedTag
	SystemDb usage example
	Hierarchy QueryLevelDef usage example
	tagdictionary-SingletonTagInfoList

	tagdictionary-TagRuleList
	Tag Rule components
	tagdictionary-ScopedTagRule
	AlwaysRule
	AndRule
	BooleanFilterRule
	HasAncestorRule
	HasRelationRule
	IsTypeRule
	NotRule
	OrRule

	Conditions
	tagdictionary-Always
	tagdictionary-And
	tagdictionary-BooleanFilter
	tagdictionary-HasAncestor
	tagdictionary-HasRelation
	tagdictionary-IsType
	tagdictionary-Or
	tagdictionary-OrdScope
	Properties

	tagdictionary-DataPolicy
	Properties for Data Policy

	Tag Dictionary Manager view
	Buttons

	HTML5 Tag Manager view
	Tag Manager view
	Selected Components
	Available Tags
	Showing tags on (Direct/Implied)
	Buttons

	Relation Manager view
	Actions

	Glossary
	Alphabetical listing
	semantic information
	scoped tag rule
	data policy
	Haystack
	Haystack tag dictionary
	implied tags index
	namespace
	Niagara tag dictionary
	tag
	tag dictionary
	taggable spaces
	tag rule index

