
Technical Document

Niagara Tagging Guide

December 19, 2024

Legal Notice

Tridium, Incorporated
3951 Western Parkway, Suite 350
Richmond, Virginia 23233
U.S.A.

Confidentiality

The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation
(Tridium). Such information and the software described herein, is furnished under a license agreement and may
be used only in accordance with that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and, except as permitted under the below copyright notice, is not to be released to, or
reproduced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for
damages of any kind, including without limitation consequential damages, arising from the application of the
information contained herein. Information and specifications published here are current as of the date of this
publication and are subject to change without notice. The latest product specifications can be found by
contacting our corporate headquarters, Richmond, Virginia.

Trademark notice

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-
Conditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and
SQL Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON,
LonMark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara
Framework, and Sedona Framework are registered trademarks, and Workbench are trademarks of Tridium Inc.
All other product names and services mentioned in this publication that are known to be trademarks,
registered trademarks, or service marks are the property of their respective owners.

Copyright and patent notice

This document may be copied by parties who are authorized to distribute Tridium products in connection with
distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise,
in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior written consent from Tridium, Inc.

Copyright © 2025 Tridium, Inc. All rights reserved.

The product(s) described herein may be covered by one or more U.S. or foreign patents of Tridium.

For an important patent notice, please visit: http://www.honpat.com.

http://www.honpat.com/

Contents

About this Guide ...7

Document change log ..7

Related documents ..9
Chapter 1. Tagging Overview ...11

License requirements ...11

Tagging process ...11

Chapter 2. Common tagging tasks ...13
Creating a tagged device ..13

Adding Ad Hoc tags ...14

Removing a tag ..14

Add tags to objects in the Discovered pane ...15

Add tags in the Database pane ...16

Adding a Tag Group to a component ..16

Creating a custom tag group ...17

Adding a tag to an existing tag group ..18

Adding tags using Batch Editor ...19

Editing tags in a template ..20

View implied tags using Edit Tags dialog ..21

Viewing implied tags using Spy view ...22

Selecting or exiting tag mode (manager views) ..23

Exporting and importing tag dictionaries ...24

Creating a new tag dictionary ...24
Editing a tag dictionary exported to CSV ..25
Importing a tag dictionary in CSV format ...28
Exporting a tag dictionary ..30

Chapter 3. Tag dictionary service ...33
Smart tag dictionary ...33

Haystack smart tag dictionary ...33

Modifying the Haystack tag dictionary ...35
Creating the Haystack tagsImportFile and equipImportFile36
Editing tags in the Haystack tagsImportFile and equipImportFile37
Configuring the Haystack dictionary to auto-import modifications39
haystack-HsTagDictionary ...39
Haystack Tags Import File format ...40
Haystack Equip Import File format ...42
haystack-EquipRelation ...43
haystack-SiteRelation ..43
H4TagDictionary ..43
Migrating to Haystack 4 ..44
Migrating Haystack 3 items ..44
Haystack 4 import ...47

Niagara Tagging Guide Contents

December 19, 2024 3

Tags ...48
Choice tags ..48
Tag group ..49
Relations ..51
Tag rules ..53
Updating an existing H4 tag dictionary ..55

Brick tag dictionary ..57

Updating Brick tag dictionary ...59
Brick custom rules ...63

Chapter 4. Tagging reference ...67
About tags ..67

Online tagging versus offline tagging ...68

About the Edit Tags dialog ..68

Relation Manager ...70

Components and views in the tagdictionary module ..72

tagdictionary-TagDictionaryService ..73
Neqlize options ...76
Tag Rule Index ...77
Implied tags index ...80
NiagaraTagDictionary ..82
About tag dictionaries ..82
tagdictionary-SmartTagDictionary ..83
tagdictionary-SystemIndex ...84
Tag Definitions (TagInfoList) ..85
Tag Group Definitions (TagGroupInfoList) ..87
Relation Definition (RelationInfo) ..88
Tags (SimpleTagInfo) ...89
Smart Tags ...90
tagdictionary-NameTag ...90
tagdictionary-DisplayNameTag ...91
tagdictionary-TypeTag ...91
tagdictionary-historyIdTag ..91
tagdictionary-HistoryMarkerTag ...91
tagdictionary-ScopedTag ..92
SystemDb usage example ...93
Hierarchy QueryLevelDef usage example ..95
tagdictionary-SingletonTagInfoList ...97
tagdictionary-TagRuleList ..97
Tag Rule components ..98
Conditions ...102
tagdictionary-Always ...102
tagdictionary-And ...102
tagdictionary-BooleanFilter ..102
tagdictionary-HasAncestor ...103
tagdictionary-HasRelation ...103
tagdictionary-IsType ..103

Contents Niagara Tagging Guide

4 December 19, 2024

tagdictionary-Or ..104
tagdictionary-OrdScope ..104
tagdictionary-DataPolicy ...105
Tag Dictionary Manager view ..107
HTML5 Tag Manager view ..108
Tag Manager view ...109
Relation Manager view ..111

Chapter 5. Glossary ...113

Niagara Tagging Guide Contents

December 19, 2024 5

6 December 19, 2024

About this Guide
This topic contains important information about the purpose, content, context, and intended audience for this
document.

Product Documentation
This document is part of the Niagara technical documentation library. Released versions of Niagara software
include a complete collection of technical information that is provided in both online help and PDF format. The
information in this document is written primarily for Systems Integrators. To make the most of the information
in this book, readers should have some training or previous experience with Niagara software, as well as
experience working with JACE network controllers.

Document Content
This guide explains to the Systems Integrator how to use the Tagging feature.

Document change log
Updates (changes and additions) to this document are listed below.

December 19, 2024
• Added "Updating an existing H4 tag dictionary" to "Haystack 4 import" chapter.

• Added "Relation Manager" to "Tagging reference" (as of Niagara 4.15)

• Added "Relation Manager view" to "Components and Views" (as of Niagara 4.15)

• Updated "Brick tag dictionary" topic (as of Niagara 4.15)

April 10, 2024
• Added new “NotRule” to “Tag Rule components” topic (Niagara 4.14).

October 5, 2023
• Added new “Brick tag dictionary” and “Updating Brick tag dictionary” topics (as of Niagara 4.14).

• Added “tagdictionary-SmartTagDictionary” component (as of Niagara 4.14).

October 4, 2022
• Added new “ H4TagDictionary” topic to the “Haystack smart tag dictionary” chapter.

July 19, 2022
• Added new topic “ Tag Manager” to the “Tagging Reference” chapter.

April 26, 2022
• In the “Tag Dictionary Manager” view, added that the list of tag dictionaries displays version information

and the NewNew button limits the creation of a new tag dictionary to a “smart tag dictionary”.

November 2, 2020
• Added information on the HTML5 Tag Manager view.

• To support online help, updated ID values on “Rules” and “Tag Rule Component” topics and combined
the child component details in the “Tag Rule Component” topic.

February 4, 2020
• Edited the “TagDictionaryService” component topic to add information on several new properties related

to tag-based NEQL Ords functionality (in Niagara 4.9 and later).

August 6, 2019
• Edited Haystack component topics to add information on changes in Haystack tag dictionary import

Niagara Tagging Guide About this Guide

December 19, 2024 7

functionality (in Niagara 4.4U3, Niagara 4.7U1, Niagara 4.8 and later), and changes in the components
provided in the palette.

May 23, 2019
• Edited the component topics, “tagdictionary-HasAncestor” and “tagdictionary-HasRelation”, to provide

additional details.

• In the Tagging Reference chapter, added separate component topics for “haystack-EquipRelation” and
“haystack-SiteRelation” to support online help.

November 30, 2018
• Added several procedures on working with Haystack tagdictionary import files.

• Edited the component topics, “tagdictionary-TagDictionaryService” and “tagdictionary-ScopedTag”,
added information on SingletonTagInfoList frozen properties and usage examples of same to the
“tagdictionary-ScopedTags” topic.

• Added the component topic, “haystack-HsTagDictionary” and reference topics, “Haystack Tags Import
File format” and “Haystack Equip Import File format”.

• Edited the “Tag Dictionary Manager” view topic.

Updated: March 26, 2018
Updated for functional changes in Niagara 4.6:

• Added note to the “tagdictionary-TagDictionaryService” topic describing two new smart tag dictionaries
which can be used to exclude portions of the station from the system indexing process.

• Added component topics, “tagdictionary-SystemIndex” and “tagdictionary-scopedTag”.

Updated: October 24, 2017
Updated for functional changes in Niagara 4.4:

• Many changes throughout, all to do with the removal of the TagDictionary component and the frozen slot
on the TagDictionaryService named Monitor (and related functionality) from the tagdictionary module.

• Removed the following component topics from this guide: “tagdictionary-TagDictionary” and
“tagdictionary-TagGroupMonitor”.

Updated: August 30, 2017
• In the topics, “Tag Rule Index” and “Implied Tags Index,” there are added notes clarifying the type of

memory used, and type of tags that may be indexed.”

• This update includes many structural changes throughout the “Tagging Reference” section.

• In the “Tagging components” section of this guide, added several new component topics.

Updated: January 12, 2017
Updated for Niagara 4.3:

• Edited the topic, “About the Tag Dictionary Service”, added content describing the new Tag Rule Index
feature .

• Edited the topic, “Tag Rules”, added a section describing the new functionality in tag rules, includes new
topics on the “Tag Rule Index”, “Implied Tags Index”, and “Scoped Tag Rule” features.

• Added glossary entries on these features.

Updated: November 3, 2016
• Edited the topic, “Creating a custom tag group”, to provide information on best practices in tag group

naming.

• Edited “Tag Definitions” topic to provide Tag component property descriptions.

• Edited the “Tag Group Definitions” topic to add section on tag group handling when editing tags from

About this Guide Niagara Tagging Guide

8 December 19, 2024

within various views.

Updated: July 26, 2016
Added the procedure, “Creating a custom tag group”.

Updated: July 14, 2016
Added information on changes for Niagara 4.2, which include the following:

• Incorporated minor changes throughout to support branding.

• In the “Tag Rules” topic, added new information on TagRules in the tagdictionary palette.

November 29, 2015
Added information on changes supporting the Tag Dictionary Service functionality for Niagara 4.1. The
following topics have been modified as described.

• Creating a tagged device: edited content in steps 4 and 5. Results info explains that tags in added tag
groups are replaced with an implied relation.

• “Editing tags in a template”, added note to step 5.

• “About the Edit Tags dialog”, deleted duplicate content in 2nd paragraph and added note at end that
describes changed handling of tags in tag groups.

• “Tag Definitions”, added note that about data policy in tag definitions.

• “Tag Group Definitions”, added content that describes changed handling of tags in tag groups, data
policies, and other instances.

• The following topics have been added to this guide: “Adding a Tag Group to a component”, “Adding a
tag to an existing Tag Group”, “Data Policies”, “Tag Group Monitor”.

Initial publication: August 31, 2015

Related documents
Following documents provide information related to using tags.

• Niagara Hierarchies Guide

• Niagara Relations Guide

• Niagara Templates Guide

Niagara Tagging Guide About this Guide

December 19, 2024 9

About this Guide Niagara Tagging Guide

10 December 19, 2024

Chapter 1. Tagging Overview
Adding tags to your data model can streamline the process of setting up a system, especially large or
enterprise systems. Instead of manually mapping data into the application point by point, trend by trend,
systems integrators can use tags to facilitate the process. Tag information can also facilitate and improve
search results and hierarchical navigation design. Tagging is a form of semantic modeling that assigns
information (one or more tags) to objects. The tag information can help integrators and users significantly
when searching for objects, designing system structures or navigating hierarchies.

If you add tags to station objects using standard Tag Dictionaries, other applications can discover station
content without having to understand the naming convention used by the installer or system integrator. Typical
station tagging might include things such as: networks, devices, points, control blocks, and more. You can also
map all of these example objects to domain-specific semantic entities such as, buildings, systems, equipment
to further indicate how they relate to each other. Tagging can identify a device and indicate where it is
physically located. By identifying and locating devices, tags provide a context for the device that can be used
in many different ways. When you use tags, you can reduce or eliminate the requirement to manually map
objects directly to a desired application.

License requirements

The tagstags license is required to use the TagDictionaryService and tag dictionaries on a station. The
Dictionary.limit attribute limits the number of tag dictionaries available for the system. Any dictionaries
added above the limit for the license will be in fault. When a dictionary is in fault, the tags in that dictionary are
not available in the EdEdit Tit Tagsags dialog. By default, you are limited to the first two tag dictionaries. However, the
Dictionary.limit attribute is configurable on the license in the same manner as are device limits.

For more licensing information, see licensing topics in the Niagara Platform Guide.

Tagging process
This section describes the basic tagging process. Before adding tags, make sure that you have the dictionaries
that you need to complete the process.
The basic process for tagging involves the following:

1. Identify your purpose. Possible uses could be one or more of the following examples:

• Enterprise structure navigation: In this case you may want to focus on using tags that include
geographical information.

• Systems maintenance views: In this case you may need to use tags that include device or equipment
information.

• End user navigation: In this case you may use functionally related tags.

2. Make sure you have the dictionaries you need.

In many cases, the Niagara Tag Dictionary may be sufficient. By default, it is in the
TagDictionaryService folder in a new station. You can add the Haystack dHaystack dictictionaryionary from the haystackhaystack
palette if needed. You can also create Ad Hoc tags or create your own custom dictionary if you wish to.

NOTE: For new stations, you may need only the Niagara and Haystack Smart Tag Dictionaries. However,
you can reduce or eliminate your tagging efforts by looking for Smart Tag Dictionaries developed by the
Niagara community.

.

3. Add tags to your components.

You can add tags one at a time or you can use Tag Groups (containers of various tags) to add multiple tags
with each AddAdd action. You can add tags during or after a discovery process and you can also use the Batch
Editor to add tags.

Niagara Tagging Guide Tagging Overview

December 19, 2024 11

NOTE:

Adding a tag group adds a relation between the component and the tag group definition. The tags in the
group are implied on the component. If you change the tags in the group, the revised set of tags are
implied on the component.

Tagging Overview Niagara Tagging Guide

12 December 19, 2024

Chapter 2. Common tagging tasks
The following sections include descriptions of some common ways to use tagging.

Creating a tagged device
You can add Direct Tags to a device (or other station objects) to provide additional semantic information. You
may add more than one type of tag to a device to support multiple hierarchical navigation schemes. You can
also use Tag Groups to add a predefined collection of tags to the device in a single add action.

Prerequisites:

• One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TTagDictagDictionaryServiceionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

This task describes how to use the EdEdit Tit Tagsags dialog box to add individual tags or tag groups from an installed
tag dictionary.

1.Step Right-click on the device that you want to tag and select EdEdit Tit Tagsags from the popup menu.

2.Step In the EdEdit Tit Tagsags dialog box, select a dictionary from the option list in the top left corner
.

TIP: In the SearSearchch field, you can use a shortcut to designate the dictionary. Type hs: for
Haystack, n: for Niagara, and similarly for other dictionaries.

The top half of the dialog box shows a list of tags available from the selected dictionary.

3.Step Use the filter fields as needed to limit the number of tags displayed. For example:

• Type in the SearSearchch field

to filter by tag name. Tags are filtered immediately as you type.

• Select an option from the option list

to filter based on validity options (Show All, Valid Only, or Best Only).

4.Step Add any number of tags to suit your needs (for example, n:device, hs:geoState, my:bldgRef) using
either of the following methods:

• To add an individual tag from a tag dictionary, select one or more tags in the TTag Dictag Dictionaryionary
(upper) pane and click Add TAdd Tagag to assign the selected tag(s) to the device.

• To add a predefined collection of tags from a tag dictionary, in the TTag Dictag Dictionaryionary (upper)
pane in the dialog, scroll down to TTag Grag Groupsoups and select a tag group, and click Add TAdd Tagag to
assign the selected collection of tags at once.

NOTE:

Adding a tag group adds a relation between the component and the tag group definition.
The tags in the group are implied on the component. If you change the tags in the group,
the revised set of tags are implied on the component.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 13

The assigned individual tags and added tag groups are listed on the DirDirect Tect Tagsags tab in the lower
half of the dialog.

5.Step Edit any tag value fields, as appropriate, and click the SaveSave button to save the added tag
assignments.

6.Step Optional: For tags that have Ord type values such as hs:siteRef, refer to the following steps as an
example of how to add a link to your tag.

a. Click the option list arrow located to the right of the tag value field.

b. Select the appropriate link type from the options menu.

c. Browse to the desired link and select it.

d. Select the Handle option and click OKOK.

Result
The device is now tagged.

Adding Ad Hoc tags
You can add Ad Hoc Tags to any station object to provide additional semantic information without using an
installed tag dictionary. Ad Hoc tags are tags that you create directly from the EdEdit Tit Tagsags dialog box. These tags
are not found in any tag dictionary.

Ad Hoc tags are useful for development or testing purposes, allowing you to test without adding or modifying
tag dictionaries and without using the tags that are already in use by active production applications. However,
when applying tags that are used by applications, best practice is to use tags from standardized tag
dictionaries that are applied system-wide.

1.Step Right-click the component that you want to tag and select EdEdit Tit Tagsags from the popup menu.

2.Step In the EdEdit Tit Tagsags dialog box, and without making any selections click the AddTAddTagag button.
The Add TAdd Tagag dialog box appears.

3.Step In the TagId field, enter a new tag name using the following syntax: namespace:tagname.
For example, my:datalogs. For best practices, use a consistent naming convention. Also, it is
important to use a namespace that does not conflict with that of other installed tag dictionaries.

4.Step In the Type field, use the option list to select the tag type from the options available.

NOTE: In your Ad Hoc tag, do not use a namespace that is identical to an existing tag dictionary.
For example, do not use hs: , n: , or other namespace characters that would conflict with
existing tag dictionaries.

For an Ad Hoc tag with the TagId my:datalogs you could select a type called baja:String to
determine that the tag value be a String type of data.

5.Step To assign the tag to your selected component, click OKOK.
The new tag is added and appears in the DirDirect Tect Tagsags table in lower half of the dialog box.

6.Step Edit any tag value fields (for example, String, Ord,), as appropriate, and click SaveSave to save the tag
assignments.

Result
The component is now tagged.

Removing a tag
You can remove direct tags from individual station objects using the RemoveRemove dialog box.

NOTE: This task does not apply to implied tags.

Common tagging tasks Niagara Tagging Guide

14 December 19, 2024

1.Step Right-click the object that you want to edit and choose EdEdit Tit Tagsags from the menu.

2.Step From the EdEdit Tit Tagsags dialog box, click Remove TRemove Tagag.
The RemoveRemove dialog box appears showing a list of all the Direct Tags that are assigned to the
selected component.

3.Step Select the individual tags that you want to remove or choose Remove All and then click OKOK.
The selected tags are removed from the table listing under the DirDirect Tect Tagsags tab in the lower half of
the dialog.

NOTE: Check that the appropriate tags are now listed in the EdEdit Tit Tagsags lower pane, under the
DirDirect Tect Tagsags tab. Your deletions are not complete until you click SaveSave. If you want to revoke the
delete action, click CancelCancel.

4.Step To complete the task, click SaveSave.

Result
The tag is removed from the selected object.

Add tags to objects in the Discovered pane
Tagging is integrated into the StatStation Managerion Manager and Point ManagerPoint Manager views to make it easier to tag editable
stations or points in the DiscoverDiscovereded pane before adding them to the DatabaseDatabase pane.

Prerequisites:
Device ManagerDevice Manager or Point ManagerPoint Manager view is active with Tag Mode selected. Points or devices are discovered and
listed in the DiscoverDiscovereded pane.

Tagging during discovery is optional but it is a convenient way to add metadata as you add points or devices.
This task describes how to add tags only. It does not describe all point or device fields that need to be
reviewed or edited during an add process.

1.Step From the Point ManagerPoint Manager or StatStation Managerion Manager view, in the TTag Dictag Dictionaryionary pane, select the desired
tag dictionary.

2.Step Select one or more discovered objects in the DiscoverDiscovereded pane.

3.Step In the TTag Dictag Dictionaryionary pane, select one or more tags to add and click AddAdd.

4.Step In the AddAdd dialog box, check that the appropriate tags are added (table in top pane) and add
values to any tags that have editable fields.

5.Step Click OKOK and verify that your tags appear with the desired objects in the DatabaseDatabase pane.

Result
Devices or points are added to the station with tags.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 15

Add tags in the Database pane
Tagging is integrated into the StatStation Managerion Manager and Point ManagerPoint Manager views to make it easier to tag editable
stations or points that are in the DatabaseDatabase pane.

Prerequisites:

• Device ManagerDevice Manager or Point ManagerPoint Manager view is active with TTag Modeag Mode selected.

• Points or devices are listed in the DatabaseDatabase pane.

Tagging objects that are in the Database pane of a manager view is a convenient way to add metadata to your
points or devices. This task only describes how to add tags, it does not describe point or device fields that may
be edited from the manager view.

1.Step From the Point or StatPoint or Station Managerion Manager view, in the TTag Dictag Dictionaryionary pane, select the desired tag
dictionary.

2.Step Select one or more objects in the DatabaseDatabase pane.

3.Step In the TTag Dictag Dictionaryionary Pane, select one or more tags to add and click the TTagItagIt button.
Depending on the type of tag you are adding, one of the following happens:

• If one or more tags have a value field, an TTags Edags Editit dialog box opens and displays all fields.

• If no tags have value fields, a TTags Addedags Added dialog box displays a confirmation message
indicating how many tags are added.

4.Step Depending on the type of tags you have added, do one of the following:
Option Description

Edit tag values and click OKOK in the TTags Edags Editit
dialog box.

If this dialog box displays, then you have tag
values to edit. Edit the value fields and click OKOK.

Click OKOK in the TTags Addedags Added dialog box.

If this dialog box displays, no tag values are
available. Click OKOK.

Adding a Tag Group to a component
Adding a Tag Group allows you add a predefined collection of tags to a component in a single action. Typically,
tags are in a tag group because it is common for each of the tags to be assigned to the same component. The
Device ManagerDevice Manager and Point ManagerPoint Manager views of a driver, and the EdEdit Tit Tagsags dialog are the primary methods for
adding a tag group to a component. This procedure describes how to use the EdEdit Tit Tagsags dialog to add a tag
group.

Prerequisites:

Common tagging tasks Niagara Tagging Guide

16 December 19, 2024

• One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TTagDictagDictionaryServiceionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

1.Step Right-click on the component that you want to tag and select EdEdit Tit Tagsags from the popup menu.

2.Step In the EdEdit Tit Tagsags dialog box, select a dictionary from the option list in the top left corner
.

The top half of the dialog box shows a list of individual tags available from the selected dictionary.

3.Step Scroll down to see the list tag groups in the dictionary.

TIP: To limit the number of tags displayed, use the SearSearchch and the FilFilterter fields as needed.

4.Step To assign the selected collection of tags, select the desired tag group and click Add TAdd Tagag.
The assigned tag group displays as an Ord on the DirDirect Tect Tagsags tab (lower half).

5.Step To save the added tag assignments. click SaveSave.

Result
Once you save the added tag assignments, the set of tags in the tag group are implied tags on the
component.

Creating a custom tag group
Use the tagdictionary palette to create a custom tag group in a tag dictionary. This procedure describes how
to edit an existing tag dictionary, add a custom tag group and configure it with tags.

Prerequisites:

• Existing tag dictionary

• The tagdictionary palette is open.

Once a tag group is applied to an object, it implies all of the individual tags in its tag list, as well as implying a
marker tag that bears the name of the tag group. This allows you to easily define a NEQL search for the
marker tag for that tag group rather than define a search by concatenating each of the tags in the tag group’s
tag list.

Note that a recommended best practice for naming tag groups is to use a name that reflects its intended
usage. For example, the Haystack outsideAirTempSensor tag group is typically applied to points representing
outside air temperature.

Additionally, for tags that you add to a tag group a best practice is to use only “fully qualified” tag names. This
means, add tags from a tag dictionary’s existing tag definitions and include the namespace of the source tag
dictionary in the added tag’s name. This ensures that the tags will resolve correctly for NEQL queries.

1.Step Expand the TTagDictagDictionaryServiceionaryService node, double-click the tag dictionary you intend to edit to open
the PrProperty Sheetoperty Sheet view.

2.Step From the palette, drag a TTagGragGroupoup component onto the dictionary’s Tag Group Definitions
property and in the resulting popup, enter a name for this tag group (see recommended best
practices above) and click OKOK.

3.Step Expand your new tag group and proceed with the following steps:

a. Drag any previously defined tag one at a time from any tag dictionary’s tag definitions to
the TagList sub-property in the new tag group.

b. In the NameName popup, edit the tag name to prepend its source dictionary’s namespace (ex.:
change site to hs:site, as shown).

Niagara Tagging Guide Common tagging tasks

December 19, 2024 17

c. Click OKOK.

d. Repeat the steps a–c until you are finished adding tags to this tag group.

Result

On completion, the new custom tag group is immediately available for use. Changes made in this procedure
are automatically saved to the tag dictionary (selected in step 1).

When applying the new tag group to an object, the multiple tags included in the group are implied at once on
the object, as well as a marker tag bearing the name of that tag group.

Adding a tag to an existing tag group
You can add a tag from a different tag dictionary to an existing tag group. Optionally, you can add a tag from
the tagdictionary palette. Shown in the following image, the hs:hvac tag (copied from the Haystack
tagdictionary) is added to MyTagGroup in the Building tagdictionary.

Prerequisites:

• At least two tag dictionaries are installed.

• One of tag dictionaries contains a TagGroup.

1.Step In the Nav tree, expand the tag dictionary to the TagGroup that you wish to edit.

2.Step Expand the second tag dictionary to select a Marker tag that you wish to add to the TagGroup in

Common tagging tasks Niagara Tagging Guide

18 December 19, 2024

the first tag dictionary.

3.Step Drag (or right-click and copy) the selected tag, and drop it (or right-click and paste it) on the
TagList folder of the Tag Group Definition that you edit.

NOTE: An alternative is to add a Marker tag from the tagdictionary palette.

4.Step In the NameName window, enter the tag's desired name as a fully qualified tag name including the
namespace with the colon separator. For example: hs:hvac .

NOTE: There is no verification that the tag name entered is actually defined in a tag dictionary. If
it is not defined in a tag dictionary, the added tag is an "ad hoc" tag. While you can certainly use
ad hoc tags, the recommended tagging best practice is to use tags that are contained in a
standardized tag dictionary that is applied system-wide.

Changes to the tag group are saved automatically.

Result
This namespace overrides the application of the parent dictionary's defined namespace. The added tag
automatically becomes an n:tagGroup relation (an implied tag) from the component to the corresponding
tagdictionary's TagGroupInfo.

Adding tags using Batch Editor
You can add Direct Tags to large numbers of objects using the Program Service, Batch EdBatch Editoritor view. Use the
Batch EdBatch Editoritor to locate objects that need tagging and use the Add TAdd Tagsags button in the Batch EdBatch Editoritor view to add
tags.

Prerequisites:

• One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TTagDictagDictionaryServiceionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

This task describes how to use the EdEdit Tit Tagsags dialog box to add individual tags or tag groups from a dictionary
that is installed in the station Services folder.

NOTE: If you are using tags to support multiple hierarchical navigation schemes, you may add more than one
type of tag to a component. You can use tag Ggroups for adding multiple tags in a single add action.

1.Step In the station Nav tree, expand the StatStationion > ConfigConfig > ServicesServices and double-click PrProgram Servicesogram Services.

2.Step In the Batch EdBatch Editoritor view, click Find ObjectsFind Objects and use the Bql Query BuilderBql Query Builder to produce a list of
objects that you want to tag.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 19

The search produces a list of matching components.

3.Step Select and remove the unwanted components in the table and click Add TAdd Tagag.

4.Step Select one or more tags from the TTag Dictag Dictionaryionary (top) pane (or you may select Add TAdd Tagag from this
dialog window to apply custom tags) and click AddTAddTagag to assign the selected tags to all
components.

NOTE: Select a Tag Group, if appropriate, to add several tags at once.

The selected tags are added and appear in the DirDirect Tect Tagsags table in the lower half of the dialog
box. Finally, the BatchEdBatchEditor Resulitor Resultsts dialog opens with all tag actions listed.

Result
The components are tagged.

Editing tags in a template
You can edit an existing template to add additional direct tags to the objects in it, or to remove or modify the
existing tags. These changes are made on the template ConfiguratConfigurationion tab

Common tagging tasks Niagara Tagging Guide

20 December 19, 2024

Prerequisites:

• An existing template

• One or more installed tag dictionaries

This task describes using the TTemplateemplate sidebar to access an existing template and invoke the EdEdit Tit Tagsags window
from the template ConfiguratConfigurationion tab.

1.Step To locate a template, open the TTemplateemplate side bar by clicking WWindowindow > Side BarsSide Bars > TTemplateemplate.

2.Step In the TTemplateemplate side bar, click the pull down menu and select either: the Template or Module.

NOTE: To see templates stored in a template module, select the myModule folder and expand
the module. You cannot edit a template stored in a module. When you open it, ReadOnly appears
in the top left corner of the TTemplate Vemplate Viewiew. To make changes you must first click Save AsSave As and save
it as a new template in the templates folder.

3.Step Double-click on the template.
The TTemplate Vemplate Viewiew opens that displays the template tabs with the TTemplate Infoemplate Info tab selected.

4.Step Click the ConfiguratConfigurationion tab in the TTemplateemplate view, right-click the object you want to change in the
left pane, and select EdEdit Tit Tagsags.
The EdEdit Tit Tagsags dialog displays.

5.Step Proceed to add tags, remove tags, or modify values of existing tags and click SaveSave to close the
EdEdit Tit Tagsags dialog.

6.Step To save your changes to the template when finished, click SaveSave or, click Save AsSave As to create a new
variation of the template with a different filename (leaving the original template unchanged).

Next steps

NOTE: For more details on using the TTemplateemplate view Configuration tab, refer to the Template Guide sections
“Creating a template” and “Template reference”.

View implied tags using Edit Tags dialog
Viewing implied tags can be useful when designing a custom tag dictionary to confirm that certain objects are
getting the desired tags, or when designing a NEQL query for a hierarchy definition or search. Implied tags do
not appear in an object Property Sheet or other typical views. One way to view these tags is on the ImplImpliedied
TTagsags tab in the EdEdit Dialogit Dialog box.

Prerequisites:

• One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TTagDictagDictionaryServiceionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

Implied tags are automatically assigned to objects by Smart TSmart Tag Rulesag Rules in the installed tag dictionaries.

1.Step Right-click the object whose tags you want to examine and choose EdEdit Tit Tagsags from the popup
menu.

2.Step To view the ImplImplied Tied Tagsags, select the ImplImplied Tied Tagsags tab in the lower pane of the dialog box.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 21

For example, in the above image, you can see five tags that are implied based on the dictionary
rules for a Component object: The first four tags are implied from the Niagara tag dictionary
rules:

• n:name
• n:displayName
• n:type
• n:ordInSession
The final tag is implied based on Haystack tag dictionary rules:

• hs:id

Viewing implied tags using Spy view
Implied tags and implied relations are automatically assigned to objects by rules in the installed Smart TSmart Tagag
DictDictionariesionaries. The implied tags and implied relations do not appear in the PrProperty Sheetoperty Sheet view or other more
commonly used views. SpySpy view shows all of the direct and implied tags and relations on an object as well as
other detailed data. Although intended to be used for diagnostic purposes, you can use SpySpy view to identify
implied tags and/or relations already assigned to a component. This can be useful when developing
hierarchies. Once identified, you can then create queries for those tags/relations in your hierarchy definition.

Prerequisites:

• You are connected to your station.

• One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TTagDictagDictionaryServiceionaryService.

NOTE: If tagging offline, it is possible that no dictionaries are available. In that situation the system
searches for tag dictionaries in alternate locations.

This procedure describes how to open the SpySpy view on a station component to see its implied tags:

NOTE: Invoking the EdEdit Tit Tagsags window is another method for viewing the direct and implied tags assigned to a
component.

1.Step In the Nav tree, right-click the component of interest and click VViewsiews > Spy RemoteSpy Remote from the
popup menu.
Spy information displays in the WWeb Breb Browser Vowser Viewiew.

2.Step Scroll down to TTags Implags Impliedied.
The implied tags assigned to the selected component are listed. Scroll up or down to view all of
the tags and relations assigned to the component.

Common tagging tasks Niagara Tagging Guide

22 December 19, 2024

The SpySpy view pictured here lists the different types of tags and relations assigned to the AHU_2 component.

Selecting or exiting tag mode (manager views)
StatStation Managerion Manager and Point ManagerPoint Manager views have a TTag Modeag Mode available for adding tags to devices or points as
they are added.

Prerequisites:

• TTag Modeag Mode is only available in the StatStation Managerion Manager or Point ManagerPoint Manager views.

Tagging is integrated into the driver manager views to help you add tags when devices or points are

discovered and added. You can select and exit TTag Modeag Mode using either the ManagerManager menu or the TTagag icon
in the TTooloolbarbar.

While in the StatStation Managerion Manager or Point ManagerPoint Manager view, click ManagerManager > TTag Modeag Mode from the Workbench main
menu to select or exit Tag Mode.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 23

Result
When selected, TTag Modeag Mode appears as a single pane across the top or as a second pane in the upper pane
depending on whether or not you also have Learn ModeLearn Mode selected. The following image shows TTag Modeag Mode and
Learn ModeLearn Mode selected simultaneously.

Exporting and importing tag dictionaries
The TTag Dictag Dictionary Managerionary Manager view provides a method to import and export tag dictionaries (or smart tag
dictionaries) in a standard CSV file format, compatible with Excel (or other CSV-compatible spreadsheet
software). This facilitates creating custom tag dictionaries, which you then import to your station. Working in
the exported CSV file, you can easily edit the correctly structured tag dictionary, populating it with your
custom tag definitions, tag rules, etc. When finished, save the revised CSV file and import it using the TTagag
DictDictionary Managerionary Manager view.

Use case
It may suit your purposes to create a custom tag dictionary (or dictionaries) for a specific customer, for an
OEM, or for a specific application. You may use a custom tag dictionary as you would other tag dictionaries, to
apply tags to objects, create hierarchy definitions, as well as search the station for tagged objects.

NOTE: By default, the license for the Tag Dictionary Service limits the number of tag dictionaries available for
the system to the first two. Any dictionaries added above the limit for the license will be in fault and unusable.
However, the Dictionary.limit attribute on the license is configurable in the same manner as are device
limits.

Creating a new tag dictionary
Creating a new tag dictionary results in a correctly structured, “empty” tag dictionary, which you can export to
a CSV file format for editing.

Prerequisites:
You have a license to use tags and have installed the TTagDictagDictionaryServiceionaryService under the ServicesServices folder. You have
an online or offline connection to an open Station.

1.Step To open the TTag Dictag Dictionary Managerionary Manager view, double-click the TTagDictagDictionaryServiceionaryService in the Nav tree or

Common tagging tasks Niagara Tagging Guide

24 December 19, 2024

use the right-click menu to open this view.

2.Step Click NewNew, in the NewNew window, select Smart TSmart Tag Dictag Dictionaryionary and click OKOK.
A second NewNew window opens.

3.Step Enter a Name and Namespace for the dictionary and click OKOK.

Name could be your company name or some other unique name to identify the dictionary.

Namespace should be a short mnemonic to identify the dictionary, similar to the “hs” that stands
for Haystack. The shorter, yet meaningful, the better. NEQL predicates require this ID.

The database table of the DatabaseDatabase pane and the TTagDictagDictionaryServiceionaryService node in the Nav tree list
this custom tag dictionary.

Next steps
Instead of using the TTag Dictag Dictionary Managerionary Manager’s NewNew button to create a new tag dictionary, you could drag a
SmartTSmartTagDictagDictionaryionary component from the tagdictionary palette to the TTagDictagDictionaryServiceionaryService in the Nav tree. The
TTag Dictag Dictionary Managerionary Manager displays the resulting row in {fault} because its Namespace is not defined. To
remove the {fault} condition, select the row, click EdEditit and assign a Namespace.

Editing a tag dictionary exported to CSV
You can open an exported tag dictionary (CSV format) in Microsoft Excel or other CSV-compatible spreadsheet
software, or even a text editor. The file is structured correctly, ready for you to enter a namespace and add tag
definitions and other types of definitions, as needed.

Prerequisites:

• Tag dictionary exported to CSV format

• CSV-compatibile spreadsheet software

1.Step Open the exported CSV file ,which should resemble the one shown here.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 25

2.Step In cell B1B1, enter a Namespace for this tag dictionary, typically only a few characters, for example:
MyTags .

NOTE: Avoid using a namespace that conflicts with that of other installed tag dictionaries, such as
“n” (NiagaraTagDictionary) or “hs” (HaystackTagDictionary).

3.Step Starting under the Tag Definition section, in Row 18Row 18, enter the first of your tagDefinition entries
(one per row). Be be sure to note the following information:
Row Description

Row 4 Tag Definition section: define the tags for your dictionary in this area.

Rows that begin with ## are comment lines which show examples or explanatory
comments which may be helpful to retain in the file.

Row 5 Row 5 is an example of the pattern to use to define a tagDefinition entry. You
must define tag name and tag type.

Row 6–17 Row 6–17 show valid tag types that can be used.

Validation Rules columns: Validation rules are optional. These columns are
used to define NEQL query predicates that will be used to suggest where the
tag can be applied. For a particular tag definition entry, if more than one of
these columns have values, they will be wrapped in a tagdictionary:And
function.

• hasTag: This tag may be applied if the target component also matches
this NEQL tag query.

• hasAncestor: This tag may be applied if the target component has an
ancestor that matches this NEQL tag query.

Common tagging tasks Niagara Tagging Guide

26 December 19, 2024

Row Description

• isType: This tag may be applied to the target component if it is one of
these types. Value must be entered in the "module:ClassName" form.

If more than one type is entered separated by a space, it will be treated
as an "or" function. Example: driver:Device driver:PointFolder: The tag is
valid on a BDevice or a BPointFolder.

• hasRelation: This tag may be applied if the target component has this
relation and has the tags that are listed in the hasRelationFilter (3.c.v)
column.

hasRelationFilter: This is a tag filter used with hasRelation (3.c.iv)
validation check.

Units: Units are optional and can be used to define a measurement unit used
for a tag that has a value. The value entered is used as the unitName
argument in the BUnit.getUnit(String unitName). Example: "square foot" for a
tag whose value is an area.

4.Step Under the TagGroupDefinitions section (optional), add a row for each TagGroup, defining a
GroupName that will be used to represent this collection of tags.

a. Add one or more tag rows under the TagGroup one row for each tag in the group.

NOTE: Tags included in a TagGroup must also be defined in the TagDefinitions section.

5.Step Under the RelationDefinitions section (optional), add a row for each relation defining a
RelationName and enter Relation in the Type column.

6.Step Under the RuleDefinitions section (SmartTagDictionaries only), define the rules for implied tags
and relations.

a. Add a row for each TagRule, enter a RuleName and one or more validation rule column
values. See information on Validation Rules listed under Step 3.

b. Under the tag rule row, add a row for each implied tag for this rule entering a name, type
and a smart type. The smart type should be in the module:class format.

c. If there are any implied tag groups for this rule add a row for each with the GroupName
entered in the groupName column.

d. If there are any implied relations for this tag rule, add a row for each with the RelationName
in the name column and enter Relation in the type column.

Result

Your edited tag dictionary is complete and ready to import. An example of an edited tag dictionary in CSV file
format, shown here.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 27

Namespace = my

Tag Definitions — notice tagDefinitions, area and temp are configured with Validity Rules

Tag Group Definitions — notice oaTemp tagGroup is configured with a Validity Rule and the group contains
three tagDefinitions. (outside , air , and temp).

Relation Definitions — defines one Relation, buildingRef

Importing a tag dictionary in CSV format
After editing a tag dictionary outside of Niagara this procedure brings the dictionary back into the framework.

Prerequisites:
The tag dictionary in CSV format is in your Workbench user home.

1.Step Open the TTag Dictag Dictionary Managerionary Manager view of the TTagDictagDictionaryServiceionaryService.

2.Step Select the tag dictionary to update and click ImportImport.

Common tagging tasks Niagara Tagging Guide

28 December 19, 2024

A window confirms that the ImportImport action will overwrite the selected tag dictionary.

3.Step To replace the dictionary, click YYeses.
A File ChooserFile Chooser opens.

4.Step Locate and select the CSV file to import, and click OpenOpen.

NOTE:

By default, the function prompts for a CSV file. This behavior can be modified programmatically.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 29

A ResulResultsts window notifies you that the CSV file imported successfully.

5.Step To continue, click OKOK.

NOTE: In the event that the framework detects an error in the CSV file, an ErrErroror window opens
indicating the error and its location by row or line number.

6.Step To open the dictionary’s PrProperty Sheetoperty Sheet, expand the TTagDictagDictionaryServiceionaryService node in the Nav tree
and double-click (or right-click) on the imported/updated tag dictionary.
The PrProperty Sheetoperty Sheet opens.

7.Step Review its properties and verify your changes.

Exporting a tag dictionary
You would export a custom tag dictionary to edit it outside of Niagara. You could export any tag dictionary as
an example or as a template.

Prerequisites:
You have a license to use tags and have installed the TTagDictagDictionaryServiceionaryService under the ServicesServices folder. You have
an online or offline connection to an open Station.

1.Step To open the TTag Dictag Dictionary Managerionary Manager view, double-click the TTagDictagDictionaryServiceionaryService in the Nav tree or

Common tagging tasks Niagara Tagging Guide

30 December 19, 2024

use the right-click menu to open this view.
The TTag Dictag Dictionary Managerionary Manager view opens.

2.Step Select a tag dictionary and click ExportExport.
The File ChooserFile Chooser window opens.

3.Step Select a location to save the file, enter the desired file name (as shown), and click SaveSave.
A ResulResultsts message confirms the export.

Result

The exported structured tag dictionary is empty at this point. You can edit the file, as well as use it as a
template to develop additional tag dictionaries.

NOTE: You can also export the Niagara and Haystack dictionaries to use as examples.

Niagara Tagging Guide Common tagging tasks

December 19, 2024 31

Common tagging tasks Niagara Tagging Guide

32 December 19, 2024

Chapter 3. Tag dictionary service
The TTag Dictag Dictionary Serviceionary Service, located in a station’s Services directory, is the container for all tag dictionaries
installed in the station.

Smart tag dictionary
The Smart tag dictionary automatically applies the implied tags and relations to objects. Technically, implied
items, the implied tags and implied relations, are not added to the station, and the station size is not increased
as a consequence. To create a new Smart tag dictionary, drag the SmartTagDictionary component to the TTagag
DictDictionary Serviceionary Service. In addition to tag definitions, tag group definitions, and relation definitions present in a
simple tag dictionary, a Smart tag dictionary contains a list of tag rules that determine the implied tags and
implied relations for each and every object in the station.

Examples of smart tag dictionaries:

• NiagaraTagDictionary, whose namespace (<n:>) is the ‘n’ character followed by a colon. It is included by
default in all stations created using the New StatNew Station Wion Wizarizardd

• Haystack tag dictionaries, indicated by <hs:> namespace (Haystack/Haystack3) or <h4:> namespace
(Haystack 4). These dictionaries are available from the haystack palette, which is included in the Niagara
installation. The Haystack dictionaries are a result of the work of the Haystack community hosted on
http://project-haystack.org.

• Brick tag dictionary, indicated by <bk:> namespace. This dictionary is available from the brick palette,
which is include in the Niagara 4.14 and later installations. To learn more about the Brick tag dictionary,
see https://brickschema.org.

For more details on tag rules see the topic, tagdictionary-TagRuleList.

Haystack smart tag dictionary
This module provides the Niagara Haystack smart tag dictionary.

The Haystack dictionary is indicated by the hs or h4 namespace followed by a colon character (:). The haystack
module contains the types of components typically present in any smart tag dictionary (tag definitions, tag
group definitions, relation definitions, and tag rules). ProjectHaystack.org created and maintains the Haystack
tags and equipment point tag groups. As part of that, the organization frequently adds and removes tag
definitions. Periodically, a new or updated Niagara release provides the updated haystack module. However,
an alternative is available for customers who do not want the updated module or who cannot upgrade
software for their whole station.

Figure 1. Example tag rule

Niagara Tagging Guide Tag dictionary service

December 19, 2024 33

https://brickschema.org/

NOTE: In Niagara, when a Haystack tag dictionary is already installed in a station it is no longer imported
automatically when the station starts after upgrading the haystack module. This change prevents any new
implied equipRef and siteRef relations from appearing in the station and affecting hierarchies and NEQL
results. The latest tag, tag group, and relation definitions can be imported by invoking the Import DictImport Dictionaryionary
action on the HsTagDictionary component.

In Niagara, the haystack palette provides two versions of the dictionary: one contains only standard items
while the other contains the implied equipRef and siteRef smart relations. When adding a new Haystack tag
dictionary to a station, the latter dictionary is the recommended one to use to benefit from the smart relations
functionality of the dictionary.

The version that includes smart relations has the Tags Import File property pre-configured with a file Ord
(module://haystack/com/tridium/haystack/data/smartRefsImport.csv) pointing to a file included
with the haystack module, as shown here.

In latest version of Niagara a jar for the haystack-rt module is available, which allows you to modify tag
definitions in the haystack dictionary using an external .csv file. The patch jar provides two added properties

Figure 2. Haystack palette contains 2 versions of the dictionary

Figure 3. Tags Import File field in dictionary that includes smart relations

Tag dictionary service Niagara Tagging Guide

34 December 19, 2024

in the dictionary for this purpose. Using the Tags Import File and Equip Import File properties, you can
point to an external file, or a file within a module, to import tag values overriding those originally in the
dictionary.

The installed official haystack dictionary version number is visible in the property sheet. Periodically, the
software installation will provide an updated version of the dictionary. Otherwise, if making your own
modifications to the dictionary, edit the version number prior to importing your changes. If the version is the
same, the import will still accept changes from the TagsImportFile. “(import)” is appended to the version
found in the TagsImportFile but that version could be identical to the base version (“3.0.2”, for example). For
more details on making modifications, see the section on “Modifying the Haystack tag dictionary”.

NOTE: To use these import files, you must always specify a Tags Import File that contains a specified version
number even if there are no tags to be modified. If no modifications are made to equipment tagGroups, then
the Equip Import File is optional.

Importing changes allows you to modify a tag’s type, validity rule, and implied tag rule. In doing this, the tag
name is key. You must use the same tag name to override an original tag. You can specify a different value for
anything except the original tag name.

You can also add new tag names to add tags to the haystack dictionary, and remove a tag name to remove the
tag from the dictionary. To remove a tag, the TagsImportFile must have a row with the tag name and set the
value in the Kind column to “Remove”. Simply omitting the tag from the TagsImportFile will not remove it from
the dictionary. For more details, see the section on “Modifying the Haystack tag dictionary”.

Modifying the Haystack tag dictionary
If you wish to create a customized version of the Haystack tag dictionary, you can create haystack import files
that you can edit using a CSV-compatible spreadsheet program such as MS Excel. On completion, you can
configure the installed tag dictionary to import your changes when the Import DictImport Dictionaryionary action is manually
invoked.

The following procedures describe the steps to create the Haystack tagsImportFile and equipImportFile, edit
tags in those import files, and to configure the Haystack dictionary to import your modifications.

For more information on the haystack dictionary in the “HsTagDictionary” topic, see the components section
of this guide.

Figure 4. Haystack Tag Dictionary property sheet view

Niagara Tagging Guide Tag dictionary service

December 19, 2024 35

Creating the Haystack tagsImportFile and equipImportFile
The Haystack dictionary has a Make Import FilesMake Import Files action that can be used to create a tagsMerge.csv file and
an equipMerge.csv file. These files are copies of the master tags.csv file from the haystack-rt module.

Prerequisites:

• You have an open station connection (local or remote)

• The Haystack tag dictionary is installed in the station.

1.Step In the NavTree navigate to the station’s TagDictionaryService, right-click on the Haystack
dictionary and click ActActionsions > Make Import FilesMake Import Files.

2.Step In the Make Import FilesMake Import Files window, click on the BrBrowseowse icon to open a DirDirectory Chooserectory Chooser window,
navigate to the desired location, select the folder to save the files in, and click ChooseChoose. In the
Make Import FilesMake Import Files window, click OKOK.

Tag dictionary service Niagara Tagging Guide

36 December 19, 2024

The tagsMerge.csv and equipMerge.csv files are created and saved to the chosen folder in
the station file space.

NOTE: Optionally, if you invoke the action from the Workbench haystack palette with the local
station closed, the DirDirectory Chooserectory Chooser opens on the local PC file system.

Editing tags in the Haystack tagsImportFile and equipImportFile
The following steps describe how to remove, modify, and/or add a tag to the file. The example in this
procedure describes how to edit the tagsMerge.csv file using MS Excel (or another CSV-compatible
spreadsheet program).

Prerequisites:

• You have already created the tagsImportFile and equipImportFile.

NOTE: If the import files are saved to a remote station, you need to transfer them to a PC to edit them
with Excel. On the remote platform, use the File TFile Transfer Clransfer Clientient to copy the files to the local PC file system.

• MS Excel (or other CSV-compatible spreadsheet program) is installed on your PC.

NOTE: Optionally, you can edit the import files using a text editor, but editing is far easier using a
spreadsheet program.

1.Step Navigate to the previously created tagsMerge.csv file (or equipMerge.csv) and double-click
to open it.

2.Step In the first row of the tagsMerge.csv (not the equipMerge.csv), edit the versionversion value, for
example change the number to “3.0.2 MyCompany.1”.

NOTE: You must include the version row of the Tags Import File (tagsMerge.csv). This is
true even when all other changes that you make occur in the Equip Import File
(equipMerge.csv) .

Niagara Tagging Guide Tag dictionary service

December 19, 2024 37

3.Step Locate the data row containing the tag you wish to remove or modify.

4.Step For any row that you wish to modify, uncomment the row by removing the “##” prefix from the
namename column, leaving just the tag name.

NOTE: Initially, all data rows are commented-out (rows start with “**” or “##” characters), and as
such they will be ignored on import. To edit a row, you must remove the comment characters so
that your changes will be recognized and imported.

5.Step In the uncommented row, edit any of the tag values as needed. For example, you might make any
the following changes:

• To remove the absorption tag, select the tag type, MarkerMarker, and enter “ Remove ”

• To change the tag type for ac, active, andair, select the MarkerMarker value for each and enter a
different value, such as “ Double ”, “ String ” or “ NameTag ”.

• To add a tag name to the list, simply insert a row (or copy/paste a row) and enter a unique
name for this tag, the tag kind (type), and other values as needed.

NOTE: When making changes, the tag name is important. You must use the exact same tag name
to overwrite an existing tag. You can specify a different value for anything except the original tag
name. Of course, the exception is when you intend to add a new tag name to the list.

6.Step When finished making changes, click FileFile > SaveSave and FileFile > CloseClose.

Result

IMPORTANT: To use the import files you must copy them to a folder on a target station. On a remote
platform, use the File TFile Transfer Clransfer Clientient to copy the files from the PC to the station’s “shared” folder.

Tag dictionary service Niagara Tagging Guide

38 December 19, 2024

Configuring the Haystack dictionary to auto-import modifications
Set the Haystack dictionary’s Tags Import File and Equip Import File properties to reference your
modified tagsMerge.csv and equipMerge.csv files and import the changes when you invoke the Haystack
dictionary’s Import DictImport Dictionaryionary action.

Prerequisites:

• The Haystack tag dictionary is installed in the station.

• You have already created the Tags Import File and Equip Import File and modified the files as
needed.

• The modified import files are copied to the target station’s file space.

1.Step Open a PrProperty Sheetoperty Sheet view on the a Haystack dictionary.

2.Step In the Tags Import File field, enter the file Ord for your tagsMerge.csv file (use the Browse
icon to locate and select to the file).

3.Step In the Equip Import File field, enter the file Ord for your equipMerge.csv file.

4.Step Click SaveSave

Result
The next time you invoke the Haystack dictionary’s Import DictImport Dictionaryionary action it loads the changes described in
the tagsMerge.csv and equipMerge.csv files.

NOTE: To use these import files, you must always specify a Tags Import File that contains a specified version
number even if there are no tags to be modified. If no modifications are made to equipment tagGroups, then
the Equip Import File is optional.

NOTE: When editing tagsMerge.csv or equipMerge.csv, you must include the version row (in
tagsMerge.csv). Otherwise, your changes will not be recognized and imported to the dictionary.

haystack-HsTagDictionary
This module provides the Niagara Haystack smart tag dictionary. The Haystack dictionary is indicated by the hs
namespace followed by a colon character (:). The haystack module contains the types of components typically
present in any smart tag dictionary (tag definitions, tag group definitions, relation definitions, and tag rules).

Properties
Besides the standard smart tag dictionary properties, the haystack dictionary contains the following
configuration properties.

Name Value Description

Version 3.0.2 (default) Version number for the installed
haystack tag dictionary. When the
number is appended with
“(import)”, this indicates that
dictionary modifications have been
included from the TagsImportFile
and/or EquipImportFile.

Tags Import File null (default) A file Ord for a CSV file that can be
edited using MS Excel (or other
spreadsheet program). The file is
used to add a new tag or relation,
modify an existing tag or relation, or
remove an existing tag or relation
to/from the haystack dictionary. The
file contents are imported to the
dictionary when you invoke the

Niagara Tagging Guide Tag dictionary service

December 19, 2024 39

Name Value Description

haystack dictionary’s Import DictImport Dictionaryionary
action.

Equip Import File null (default) A file Ord for a CSV file that can be
edited using MS Excel (or other
spreadsheet program). The file is
used to add a new tagGroup, modify
an existing tagGroup or remove an
existing tagGroup to/from the
haystack dictionary. The file contents
are imported to the dictionary when
you invoke the haystack dictionary’s
Import DictImport Dictionaryionary action.

Actions

• Import DictImport Dictionaryionary — imports tag, tag group, relation, and tag rule definitions from a standard definition
tags.csv file and from the optional TagsImportFile and EquipImportFile files.

• Make Import FilesMake Import Files — creates example files (tagsMerge.csv and equipMerge.csv) that can be specified
as the TagsImportFile and EquipImportFile respectively to modify the tags, tag groups, and relations in
the installed Haystack tag dictionary.

Haystack Tags Import File format
The TTags Import Fileags Import File (tagsMerge.csv) is created by the Make Import FilesMake Import Files action on the Haystack tag
dictionary. This file is used to add a new tag or relation, modify an existing tag or relation, or remove an
existing tag or relation to/from the haystack dictionary.

The TTags Import Fileags Import File is a CSV file that can be edited using MS Excel (or other CSV-compatible software).

IMPORTANT: For editing purposes, the import files can be located anywhere on your PC. However, to use the
import files you must copy them to a folder on the target station.

About the rows

Version row: Row 1 — The file must start with “version” in the first column and version string in second
column.

Header rows: Rows 2 and 3 — Header rows that contain the column headings.

Data rows: Rows 4 and beyond — Each data row has 12 columns. In a text editor each column is separated
with a “,” (comma). The column definitions follow. Each row defines an individual tag or relation (Ref kind).

NOTE: Initially, all data rows are commented-out (rows start with “**” or “##” characters), and as such they
will be ignored on import. To edit a row, you must remove the comment characters so that your changes will
be recognized and imported.

Tag dictionary service Niagara Tagging Guide

40 December 19, 2024

Data columns:

Column Description

Name Name of the tag defined by this row. If the tag with this name already exist in the haystack dictionary, the
tag’s definition will be overwritten by the definitions in this row. If the tag with this name does not exist in the
haystack dictionary, a new tag will be added with this row’s tag definitions.

Kind Defines the tag kind (e.g. Marker, Bool, Number, Str, URI, Ref, Date, Time, Datetime, Obj, Coord).

Note: Ref kind will be defining a relation and not a tag.

Note: Remove in the Kind column will cause this tag to be removed from the haystack
dictionary.

Smart Type If the row is defining a smart tag or smart relation this will define the class for the smart type. It is in the form
of module:typeName.

If no type is entered and there are no implied tag rules, the tag type will be
SimpleTagInfo.

If no type is entered and there are implied tag rules, the type will be SmartTagInfo

If Kind is “Ref” and no type is defined, the relation type will be RelationInfo

impliedTagRules (columns) Used in defining a TagRule in the TagRules section of the Haystack dictionary.

These colums are used to define the condition rules for a smart tag. If more that one
column is used then it will use a "and" function to evaluate the combined condition
rules.

Not used if the Kind is Ref.

ValidityRules (columns) These columns are used to define the validity for a tag or relation. The validity is used by user interface
components to filter tags or relations that may be added to Niagara components. Used in the creating the
TagInfo entry for the tag in the TagDefinitions of the Haystack dictionary.

NOTE: If the Kind value is “Ref” then it is used in creating the RelationInfo entry in the
RelationsDefinitions of the Haystack dictionary.

hasTags Contains a list of space delimited tags. It will generate a Boolean filter with an "or" between each tag. It is

Figure 5. tagsImportFile data in comma-delimited CSV format

Figure 6. tagsImportFile data as it appears in MS Excel

Niagara Tagging Guide Tag dictionary service

December 19, 2024 41

Column Description

indicating that this tag may be implied if the given component has one of these tags. If a haystack tag, only
enter the tag name.

isType Generates a IsTypeCondition using the type provided. In the form of module:typeName. This tag may be
implied if the given component is of this type.

hasAncestor Generates a HasAncestorCondition using the tag specified. If more that one tag is specified then an Or
function is used to evaluate. This tag may be implied if the given component has an ancester with one of
these tags. If haystack tag, only enter tag name.

filter Generates a BooleanFilter using the contents of this filter. The filter must be a fully qualified NEQL predicate.

NOTE: You must include nameSpace for tag entries.

Units Defines the units for the given tag. The value is the unit long name and must be contained in the
UnitsDatabase. The value appears as a defaultFacet Facet property added to the TagInfo entry for the tag in
the TagDefinitions of the haystack dictionary.

Haystack Equip Import File format
The Equip Import FileEquip Import File (equipMerge.csv) is created by the Make Import FilesMake Import Files action on the Haystack tag
dictionary. This file is used to add a new tagGroup, modify an existing tagGroup or remove an existing
tagGroup to/from the haystack dictionary.

The Equip Import FileEquip Import File is a CSV file that can be edited using MS Excel (or other CSV-compatible software).

IMPORTANT: For editing purposes, the import files can be located anywhere on your PC. However, to use the
import files you must copy them to a folder on the target station.

About the rows

Header rows: Rows 1 and 2 — Header rows that contain the column headings.

Data rows: Rows 3 and beyond — Each row has 12 columns. In a text editor each column is separated with a
“,” (comma). The column definitions follow. Each row defines an individual tag or relation (Ref kind).

NOTE: Initially, all data rows are commented-out (rows start with “**” or “##” characters), and as such they
will be ignored on import. To edit a row, you must remove the comment characters so that your changes will
be recognized and imported.

Data columns:

Figure 7. tagsImportFile data in comma-delimited CSV format

Figure 8. tagsImportFile data as it appears in MS Excel

Tag dictionary service Niagara Tagging Guide

42 December 19, 2024

Column Description

Name Name of the tagGroup defined by this row. If the tagGroup with this name already exists in the haystack
dictionary, the tagGroup definition will be overwritten by the definitions in this row. If the tagGroup with this
name doesn’t exist in the haystack dictionary, a new tag will be added with this row’s tag definitions.

Remove Entering the word “Remove” in this column causes this tagGroup to be removed from the haystack
dictionary.

ValidityRules (columns) This group of columns is used to define the validity for a tagGroup. The validity is used by UI components to
filter tagGroups that may be added to a component. Used in creating the TagGroupInfo entry for the
tagGroup in the TagGroupDefinitions of the Haystack dictionary.

hasTags Contains a list of space delimited tags. It generates a Boolean filter with an “or” between each tag. It
indicates that this tagGroup may be valid to be applied to the given component if it has one of these tags. If
haystack tag, only enter the tag name.

isType Generates the IsTypeCondition using the type provided. Written in the form of module:typeName. This
tagGroup may be valid to be applied to the given component is of this type.

hasAncester Generates a HasAncesttorCondition using the tag(s) specified. If more that one tag is specified then an Or
function will be used to evaluate. This tag may be valid to be applied to the given component if it has an
ancestor with one of these tags. If it is a haystack tag, only enter the tag name.

filter Generates a BooleanFilter using the contents of this filter. The filter must be a fully qualified NEQL predicate.
It is typically used to traverse a hs:equipRef relation to validate that this point is related to a specific type
of equipment.

NOTE: You must include the nameSpace for tag and relation entries.

TagGroup Tags Contains a space delimited list of discrete tags that are associated with this tagGroup. Most of these tags will
be Marker tags. If a tag is a value tag, a value can be specified by using tagName(tagValue) format.
Example: cool stage(2) cmd specifies tagGroup tags : cool stage cmd with the stage tag having a
value of 2.

haystack-EquipRelation
Haystack tag dictionary is the addition of the smart equipment relation (hs:equipRef).

Typically you create an explicit direct relation between all points that belong to an equipment object and the
component in the station that represents the equipment. Instead, you can use this smart equip type relation to
automatically create an implied relation between a point and its ancestor if that ancestor has the hs:equip tag
applied.

The smart EquipRef relation implies an hs:equipRef between a Control Point and the nearest ancestor with the
hs:equip tag. This relation is not implied on a Control Point whose proxy extension is the NullProxyExt. This
relation is not implied on a Control Point if the point already has a direct hs:equipRef relation.

haystack-SiteRelation
Haystack tag dictionary is the addition of the smart site relation (hs:siteRef).

The haystack module supports a smart site relation (hs:siteRef) that is valid for ControlPoints. If a ControlPoint
has an hs:equipRef relation (direct or implied) to a component with the hs:equip tag and that equip component
has an hs:siteRef relation to a component with the hs:site tag, an hs:siteRef relation is implied from the
ControlPoint to that site component.

H4TagDictionary
With the Haystack 4 tag dictionary, most items come directly from the unaltered Project Haystack source files
(see https://project-haystack.org/download). This provides the benefit that it does not require post-processing
of Project Haystack sources to supply information necessary to Niagara. The latest version of these source files
at the time of the release of Niagara is packaged with the haystack-rt module. Newer versions that were
released later by Project Haystack may be used instead of the packaged versions.

As of Niagara 4.13, the Haystack 4 tag dictionary primarily uses defs.json and protos.json files produced
by Project Haystack to generate the dictionary’s tags, tag groups, relations, and tag rules.

Niagara Tagging Guide Tag dictionary service

December 19, 2024 43

Defs.json contains information about all tags, all relations, and tag groups based on conjuncts. It also
contains the tag hierarchy that is used to create most tag rules.

Protos.json contains additional tag groups.

An additional configuration file is used to assist with the dictionary generation, and add tag rules as well as
smart tag types that enable some tagging convenience features. A default file is packaged with haystack-rt,
but you can reference your own, if required. For stations already tagged in Haystack 3, a migration action adds
Haystack 4 items that are equivalent to the Haystack 3 versions.

The Haystack 4 tag dictionary’s namespace is h4.

Migrating to Haystack 4
The Haystack 4 tag dictionary contains an action that adds Haystack 4 equivalents for Haystack 3 tags, tag
groups, and relations. The Haystack 3 items are not removed. The equivalent tags and relations are mostly
copies of the Haystack 3 versions with the distinction of the Haystack 4 h4 namespace. To see the required
item modifications, see “Changes3to4 – Project Haystack” at https:// project-haystack.org/doc/docHaystack/
Changes3to4.

Tag groups

These modifications are captured in a configuration file packaged with the haystack-rt module.

There are no exact equivalents for Haystack 3 tag groups. Some require only an additional “point” tag such as
the Haystack 3 dischargeAirTempSensor group that results in adding the Haystack 4 proto
dischargeAirTempSensorPoint. Others require an explicit mapping such as energyNetSensor to
totalNetAcElecActiveEnergySensorPoint. Some Haystack 3 tag groups, such as steamEnteringFlowSensor,
cannot be mapped and Haystack 4 equivalent tags are added for those tag group tags.

Value tags are not included in Haystack 4 tag groups. Therefore as an example, the voltAnglePhaseSensorAB
tag is equivalent to the acElecVoltAngleSensorPoint tag plus a “phase” tag set to “AB”.

Migrating Haystack 3 items
For stations already tagged in Haystack 3, a migration action adds Haystack 4 items that are equivalent to the
Haystack 3 versions.

Prerequisites:

• You have an open station connection (local or remote).

• The Haystack 4 tag dictionary is installed.

1.Step To invoke the migration action, under TTagDictagDictionaryServiceionaryService, right-click Haystack4Haystack4 and select
ActActionsions > Migrate Haystack3 ItemsMigrate Haystack3 Items.

Tag dictionary service Niagara Tagging Guide

44 December 19, 2024

The Migrate Haystack3 ItemsMigrate Haystack3 Items window opens.

The migration action accepts a customized namespace. By default the module://haystack/
com/tridium/haystack/data/haystack3MigrationConfig.csv configuration file path is
selected. You can find the config file under the Haystack module.

Niagara Tagging Guide Tag dictionary service

December 19, 2024 45

If desired, you can make changes to the configuration file. The configuration file consists of the
following columns: haystack3 name, type (tag, tagGroup, or relation), optional NEQL query,
corresponding h4 name(s), and h4 type (tag, tagGroup, or relation).

2.Step Click OKOK to execute the migration action.

Tag dictionary service Niagara Tagging Guide

46 December 19, 2024

Result
The migration action kicks off a job that logs the actions taken on each component in the station. Any errors
are also logged. Once you take action to correct these errors, they can re-run the job as required until the
migration is complete.

Haystack 4 import
For the Haystack 4 tag dictionary, the haystack-rt.jar is packaged with the latest versions of Project Haystack
source at the time of the Niagara release. There is a small set of items defined in a Niagara configuration file
that you can customize, if necessary.

The following sections give you a detailed overview of the Haystack 4 tag dictionary import.

Figure 9. The Tag Dictionary Service with the Haystack 4 dictionary

Niagara Tagging Guide Tag dictionary service

December 19, 2024 47

Tags
All tags in the Niagara Haystack 4 tag dictionary come from the Project Haystack’s defs.json file.
Most defs in the Project Haystack core library (lib:ph) are excluded unless they meet the following
requirements:

• The entity or geoPlace defs
• Subtypes of entity

• Defs that are a tag on entity or geoPlace or one of their subtypes

• Defs listed in the Niagara configuration file: min, max, input, and output

For remaining defs, the supertype tree of each def is traversed and if a mapped Haystack 4 type is found, a tag
of the corresponding Niagara type will be added to the dictionary.

Choice tags
All of the choice values for a choice def subtype are added as separate tags in the dictionary.

If a choice def has an “of” value, such as pipeFluid where “of” is the fluid def, the choice values are all
descendants of that “of” def. Otherwise, the choice values are simply the descendants of the choice def.

Figure 10. Haystack 4 tag definitions

Tag dictionary service Niagara Tagging Guide

48 December 19, 2024

The choice def is added as a BDynamicEnum tag with the choice values included in the value’s BEnumRange.
Tag rules are added to imply the corresponding choice value tag based on the selected enum value.

For example, if the pipeFluid tag on a component is set to “water,” a water marker tag will be implied on that
component.

Tag group
The first set of tag groups in the Niagara Haystack 4 tag dictionary are derived from the conjuncts (for
example, ac-elec) defined in the defs.json file.

Figure 11. Haystack 4 choice tags

Niagara Tagging Guide Tag dictionary service

December 19, 2024 49

The co2-concentration conjunct becomes a co2Concentration tag group that contains the co2 and
concentration tags.

Figure 12. Example of conjunct tag groups

Tag dictionary service Niagara Tagging Guide

50 December 19, 2024

The next set of tag groups are created for all protos in Project Haystack’s protos.json file that are not
already a tag or conjunct. For example, the “point” and “humidifier equip” protos are skipped because there is
already a point tag and humidifierEquip conjunct tag group.

Relations
For all defs that are a subtype of the ref def, a string value tag is added.

You can add these tags directly to station components and set their value manually to the ID of the entity to
which they refer. If the ID of that referenced entity changes, the values of these ref tags must be manually
updated. Alternatively, Niagara relations can be used. For ref def subtypes except for ID, a relation is added to
the dictionary. These relations are exported by the nhaystack service as ref tags with their value set to the ID
of the relation endpoint.

Figure 13. Example of protos tag group

Niagara Tagging Guide Tag dictionary service

December 19, 2024 51

The Niagara configuration file also defines tag rules that imply smart equipRef, spaceRef, and siteRef relations.
The smart equipRef relation works exactly as the Haystack 3 version, which is that an outbound relation is
implied from non-null proxy points to a component ancestor with the equip tag and inbound relations are
implied from that ancestor back to the points.

Unlike Tridium’s Haystack 3 tag dictionary, the equip tag is not implied on all BDevices, so it needs to be added
where appropriate.

If an equipequip component has a spaceRef relation to a spacespace component, the smart spaceRef relation will imply
outbound spaceRef relations from that equipequip’s points to that spacespace and will imply inbound relations from the
spacespace component back to those points.

If an equipequip or spacespace component has a siteRef relation to a sitesite component, the smart siteRef relation will imply
outbound siteRef relations from the sub-equips, sub-spaces, and equip points to that sitesite and will imply
inbound relations from the sitesite component back to those items. The following figure shows an automatically
generated hierarchy based upon these implied smart relations.

Tag dictionary service Niagara Tagging Guide

52 December 19, 2024

Tag rules
The following gives you an overview of standard and custom tag rules.

Standard

Rules for the choice value tags are automatically generated based on the choice values found in the
defs.json file. Another set of rules is automatically generated based on the def type inheritance tree in
Haystack 4.

For example, water is a subtype of liquid, which is a subtype of fluid, which is a subtype of substance, which is
a subtype of phenomenon. As a result, there is a tag rule that implies the liquid tag if a component has the
water tag, or a tag rule that implies the fluid tag if a component has the liquid tag (direct or implied).

Niagara Tagging Guide Tag dictionary service

December 19, 2024 53

Custom

The Niagara configuration file defines tag rules that unlock some tagging convenience features in the
framework. There are rules that imply simple tags based on the component’s type such as the point tag on
BControlPoints and the bacnet tag on BBacnetNetworks. There are rules implying smart tags that derive their
value from something else such as the unit tag whose value is based on the component’s units facet. An
alternate configuration file can be specified if you wish a different set of tag rules and/or if you want to change
the tag types they imply.

Figure 14. Inheritance tree tag rules

Tag dictionary service Niagara Tagging Guide

54 December 19, 2024

Updating an existing H4 tag dictionary
You can update an existing Haystack 4 tag dictionary on a running station with each tag dictionary update that
Haystack releases.

1.Step Go to the "Project Haystack" website at https://project-haystack.org/download and download the
definitions and prototypes.

Figure 15. Custom tag rules

Niagara Tagging Guide Tag dictionary service

December 19, 2024 55

Move the defs.json and protos.json files into a folder in the station's shared folder. Move
the defs.json file into a defs folder and the protos.json into a protos folder.

NOTE: If you have customized your Haystack dictionary tag rules, for example, removed a
default tag rule, the configurations for those customizations are contained in the third file, which
is named haystack4NiagaraConfig.json. If no customization is done, the default tag rule
configuration is used. You can find the default tag rule configuration file HS4toN4.json in the
haystack-rt module.

2.Step To perform the tag dictionary update, right-click on the Haystack dictionary in the TTag Dictag Dictionaryionary
ManagerManager view and select Import DictImport Dictionaryionary from the drop-down menu.

The Import DictImport Dictionaryionary window opens.

3.Step In the upper right corner of the Import DictImport Dictionaryionary window, click the down arrow and select
DictDictionary Orionary Ord Chooserd Chooser from the drop-down menu.

Tag dictionary service Niagara Tagging Guide

56 December 19, 2024

4.Step To run the import, navigate to the files in the station, select the folders containing the defs.json
and protos.json files, and click OKOK.

5.Step In the DirDirectory Chooserectory Chooser window, select the update folder located in the station.

6.Step After import completion, you can open the directory entry in the property sheet view to confirm
that the import was successful and that the tags, groups, relations, and rules are updated as
intended.

Brick tag dictionary
The Brick tag dictionary is an instance of the standard Niagara Smart Tag Dictionary and does not contain any
custom properties or actions. There are no custom views associated with this dictionary. The dictionary
contains a collection of definitions for tags, tag groups, relations, and tag rules.

To create a Brick tag dictionary, establish a Fox connection to the station. In the brick palette, select the BrickBrick
component and add it to the TTagDictagDictionaryServiceionaryService container on the station.

Starting with Niagara 4.15, you have three tag dictionary components available for installation from the brick
palette:

Niagara Tagging Guide Tag dictionary service

December 19, 2024 57

• The main BrickBrick tag dictionary includes tag groups that contain tags derived from the Brick schema
subclass and hasAssociatedTag information.

• The BrickHasTBrickHasTagsOnlyagsOnly dictionary in the AlternateBrickTagDictionaries folder contains tag groups with tags
derived only from the hasAssociatedTag information .

• The BrickSubclassesOnlyBrickSubclassesOnly dictionary in the AlternateBrickTagDictionaries folder contains tag groups
with tags derived only from subclass information.

Overview
A Brick schema organizes entities of a building into a class hierarchy, where each level is a more specific
version of its parent. In Brick, the types are defined as a hierarchy of classes.

The Brick tag dictionary contains a library tag groups, relations, and rules that enable a Niagara station to be
modelled using Brick semantics defined in the Brick ontology. As a station is being constructed, these
dictionary elements can be applied, or they can be applied to components of an existing station. The Brick tag
dictionary does not contain any custom properties or actions, and it has no custom views associated.

Module information: The brick-rt module, which needs to be installed on your station, implements a Niagara
Smart tag dictionary to support modelling a system using the Brick schema. This module has a dependency in
the tagdictionary-rt module, which is required for any tag dictionary.

The Brick tag dictionary contains the following definitions for tag groups, relations, and tag rules:

• Brick subclasses: Brick schema entities can be declared a subclass of another entity. These are modeled as
tag groups in the dictionary. The subclass hierarchy elements are included as tags in a tag group. For
example, the airHandlingUnit tag group includes subclass entries for hvacEquipment, equipment, and
entity.

• Brick hasAssociatedTag: Many Brick schema entities have a hasAssociatedTag property. These are
modeled in the dictionary as tag groups. For example, the airHandlingUnit tag group includes tags for
air, equipment, handler, handling, and unit.

• Brick aliasOf: A few Brick schema entities are declared as an alias of another entity. For example, the Brick
AHU entity is an alias of the Air_Handling_Unit entity. Alias entities are included in the Brick dictionary as
tag groups with the same contents as the originating entity tag group.

• Brick class: Each tag group includes a class tag with a String value of the Class name declared in the Brick
schema. For example, the airHandlingUnit tag group contains a class tag with the value
"Air_Handling_Unit".

• Brick Id: Starting in Niagara 4.15, the id tag has been removed from the dictionary.

• Brick inverse relations: Most of the relationships defined in the Brick schema have associated inverse
relationships. For example, if one entity has a bk:isPartOf relationship to another entity, there is an
associated inverse bk:hasPart relationship. In these cases, when you apply one of these relations between
two entities in a station, the dictionary rules will imply the inverse relation between those two entities.

Tag dictionary service Niagara Tagging Guide

58 December 19, 2024

NOTE: The Haystack smart tag dictionary and the Brick tag dictionary can run simultaneously.

Updating Brick tag dictionary
You can update the Brick tag dictionary version outside of the official Niagara release schedule. When the Brick
consortium releases a new version of the ontology, Tridium will generate a new version of the Brick tag
dictionary as a JSON file and make it available for customers. The Niagara Brick tag dictionary supports the
most recent version of the ontology with each Niagara release.

Prerequisites:
The Brick tag dictionary is installed on the station.

1.Step In the Workbench Nav tree panel, locate the JSON file and copy it to the station by dragging it to
the station’s FilesFiles container.

Niagara Tagging Guide Tag dictionary service

December 19, 2024 59

2.Step To load the file into a Brick tag dictionary on a station, from the view selector open the AX SlotAX Slot
SheetSheet view on the Brick tag dictionary in the TTagDictagDictionaryServiceionaryService, right-click on the
importDictimportDictionaryionary action row and select Config FlagsConfig Flags.

3.Step Unselect the HiddenHidden flag for the importDictimportDictionaryionary action, and click OKOK.

Tag dictionary service Niagara Tagging Guide

60 December 19, 2024

4.Step Navigate back to the TTag Dictag Dictionary Managerionary Manager view on the TTagDictagDictionaryServiceionaryService, and on the Brick
tag dictionary, right-click and select ActActionsions > Import DictImport Dictionaryionary.

The Import DictImport Dictionaryionary window opens.

5.Step Click the down-arrow next to the folder icon and select File OrFile Ord Chooserd Chooser.

Niagara Tagging Guide Tag dictionary service

December 19, 2024 61

The File ChooserFile Chooser window opens.

6.Step From the File ChooserFile Chooser > Files on StatFiles on Stationion, select the JSON file already copied to the station and
click OpenOpen.
The Brick tag dictionary import process runs as a job on the station. You can view the results of
the import process by opening the Job Service ManagerJob Service Manager on the station’s Job ServiceJob Service and clicking
the double arrow icon on the right side of the Tag Dictionary Import row.

Tag dictionary service Niagara Tagging Guide

62 December 19, 2024

Brick custom rules
The JSON file loaded as part of the import process contains a list of rules to be included in the Brick tag
dictionary. If desired, you can add to or override the default rules with a custom rule set.
To add or override the default rules with a custom rule set, you create their own JSON rules file and select it in
the Select a JSON file for custom rules (optSelect a JSON file for custom rules (optional)ional) field in the Generate Brick DictGenerate Brick Dictionaryionary dialog window.
The brick module contains the default JSON file brickCombinedAsGroupsPlusClassTag.json. You can view it in
Workbench by opening it in the Nav tree.

The existing Brick tag rules are defined in the rules object. The custom rules are defined as a JSON object with
that same format. There is one JSON element for each Niagara property in a tag rule. Each tag rule has an
entry for “name”, “condition”, and then at least one entry for “tags”, “tagGroups”, or “relations”. These in
turn have JSON elements for each of their respective Niagara properties.

NOTE: It is possible to declare a tag rule to be assigned to a specific Niagara type, which allows you to
develop any custom rules necessary as JAVA classes.

Niagara Tagging Guide Tag dictionary service

December 19, 2024 63

An example of a custom rules file for three custom rules:

{
"rules": [

{
"name": "id",
"condition": {
"type": "tagdictionary:IsTypeCondition",
"objectType": "control:ControlPoint"

},
"tags": [
{

"name": "id",
"type": "brickTest:BrickCustomIdTag",
"validity": {
"type": "tagdictionary:IsTypeCondition",
"objectType": "control:ControlPoint"

}
}

]
},
{
"name": "enableStatus",
"condition": {
"type": "tagdictionary:IsTypeCondition",
"objectType": "control:BooleanPoint"

},
"tagGroups": [
{

"name": "enableStatus",
"tags": [
{
"name": "enable"

},
{
"name": "point"

},
{
"name": "status"

}
]

}
]

},
{
"name": "hasQUDTReference",
"condition": {
"type": "tagdictionary:Always"

},
"relations": [
{

"name": "hasQUDTReference",
"type": "brickTest:BrickCustomQUDTRelation"

}
]

}
]

Tag dictionary service Niagara Tagging Guide

64 December 19, 2024

}

• The first id rule declares the condition as any ControlPoint, and the tag id will be applied. This tag has a
custom JAVA implementation declared as a BrickCustomId type in a brickTest module. The JAVA class for
this would be named BBrickCustomId.

• The second enableStatus rule has a Boolean Point condition and adds a tag group that contains the
enable, point, and status tags.

• The third hasQUDTReference rule has an Always condition and adds a relation with a custom
BrickCustomQUDTRelation type in a brickTest module.

Niagara Tagging Guide Tag dictionary service

December 19, 2024 65

Tag dictionary service Niagara Tagging Guide

66 December 19, 2024

Chapter 4. Tagging reference
Tagging is a form of semantic modeling that assigns information (one or more tags) to objects. The tag
information can help integrators and users significantly when searching for objects, designing system
structures or navigating hierarchies.

Tagging can identify a device and indicate where it is physically located. By identifying and locating devices,
tags provide a context for the device that can be used in many different ways. When you use tags, you can
reduce or eliminate the requirement to manually map objects directly to a desired application.

About tags
Tags assign additional information to objects in order to make the objects more accessible and flexible for
search and system design. Tags also facilitate the design and use of hierarchical organization in a station user
interface, whether you are working with an Enterprise Supervisor station or a single controller station.

NOTE: The tags available for use are defined in the tag dictionaries installed on your station.

Tag structure
A tag contains different parts that, together, make the tag useful as additional information on objects in a
station. The following diagram shows the four basic parts of a tag.

The following table provides definitions of the different parts of a tag:

Item Tag Element Description

1 Tag Id The tag Id is comprised of a dictionary and name, generally displayed as two
pieces of text separated by a colon: dictionaryNamespace:name.

2 Tag dictionary The dictionary string is used to link or assign a tag to a particular "namespace"
(tag dictionary). This is typically a very short string of only a few characters.

NOTE: If the dictionary is not defined (empty string), the Id is displayed with
just the name.

3 Tag name The name string provides the semantic information and is often paired with the
tag value.

4 Tag value A string value assigned to the tag for more information, for example: building
name, device name, location, or other.

Types of tags
The following table describes types of tags that may be used on the system:

Figure 16.Parts of a Tag

Niagara Tagging Guide Tagging reference

December 19, 2024 67

Tag type
Description

Direct tags
Direct tags are tags that you add intentionally to a component using an installed tag dictionary or an Ad
Hoc tag. In its simplest form, a tag on a component is a component “property”, with a non-component
value and a metaData flag set. The property name is a string form of the tag Id. In the EdEdit Tit Tagsags dialog
box, direct Ttags are listed under the DirDirect Tect Tagsags tab.

Implied tags
Implied tags are tags that are not directly stored in the component, but are implied by tag rules that are
defined in installed Smart Tag Dictionaries. These tags are typically the remapping of existing component
properties to the semantic naming convention defined in a tag dictionary. In the EdEdit Tit Tagsags dialog box.
Implied tags are listed under the ImplImplied Tied Tagsags tab.

Ad Hoc tags
An Ad Hoc tag, also a direct tag, is one that you create in the Add TAdd Tagag dialog box just before adding it to
a component. Ad hoc tags are not included in any tag dictionary.

Online tagging versus offline tagging
There are three separate scenarios in which you apply tags:

• Online tagging: The installed tag dictionaries in TTagDictagDictionaryServiceionaryService take effect.

• Offline tagging in a station with tag dictionaries: The installed tag dictionaries in the
TTagDictagDictionaryServiceionaryService take effect. You will also see implied tags in the EdEditit dialog.

• Offline tagging in a station when no dictionaries are found: The system searches for tag dictionaries in
the following locations:

• all palettes of installed tag dictionary modules

• in the user-home/tagDictionary folder where custom tag dictionaries are stored

• also searches for implied tags

About the Edit Tags dialog
The EdEdit Tit Tagsags dialog as well as the station and point manager views are the primary methods for adding a tag
or a tag group to a component. The dialog lets you add individual tags or tag groups to the object, as well as
remove them from the object. The lower half of the dialog provides tabs to view the direct and implied tags
assigned to the object.

Invoke the EdEdit Tit Tagsags dialog box by right-clicking an object and selecting EdEdit Tit Tagsags.

Tagging reference Niagara Tagging Guide

68 December 19, 2024

In the EdEdit Tit Tagsags dialog box, select a dictionary from the option list in the top left corner .

TIP: You can use this shortcut to select a dictionary. In the SearSearchch field type hs: for Haystack, n: for
Niagara, or enter the namespace for another dictionary.

The top half of the dialog box shows a list of tags available from the selected dictionary. Once a tag is
assigned to the active object, the tag icon appears dimmed.

To facilitate making selections, the dialog box includes filters that help by narrowing the list of tags from which
you can choose. This is most useful when selecting from a dictionary containing a huge number of tags, such as
the Haystack Tag Dictionary.

Type in the SearSearchch field to filter by tag name. Tags are filtered immediately as you type.

• If the list has only a single item, it is selected by default.

• If a tag name is a subset of another tag, adding a space selects the shorter tag by name.

For example, if you have both “chiller” and “chillerPlant” tags, typing "chiller" shows both tags. Adding a
space after “chiller” filters out “chillerPlant” and shows the “chiller” tag only.

• Entering a colon ":" filters for the tag dictionary that has the prefixed namespace.

For example, if you enter "hs:temp" you select the “hs” (Haystack) dictionary and the "temp" tag.

Figure 17. Edit Tags dialog

Niagara Tagging Guide Tagging reference

December 19, 2024 69

You can also select an option from the option list to filter based on validity options.

• Show All: no filtering applied when this option is selected.

• Valid Only: shows just the tags that are valid based on rules defined in the tag dictionary.

• Best Only: filters tags in appropriate manager views based on the identity of the component; for
example, whether it is a point or device.

Methods for adding tags include the following:

• Add an individual tag from a dictionary.

• Add a tag group (predefined collection of tags) from a dictionary.

• Add a unique ad hoc tag which you create.

After clicking Add TAdd Tagsags, the selected tags are added and appear in the DirDirect Tect Tagsags table in lower half of the
dialog box.

After editing any tag value fields as needed, click SaveSave to save the tag assignments.

For tags that have Ord type values such as “hs:siteRef”, refer to the following image and steps as an example
of how to add a link to your tag.

1. Click the option list arrow located to the right of the tag value field.

2. Select the appropriate link type from the options menu.

3. Browse to the desired link and select it.

4. Select the Handle option.

5. Click OKOK.

Relation Manager
The Relation Manager is an HTML5 view that you can use to add, edit, and delete relations and links (as of
Niagara 4.15).
It is available as a view on all components. You can select it using the View Selector in the top-right corner of
the screen.

Tagging reference Niagara Tagging Guide

70 December 19, 2024

To view it, you can also right-click on a component and select VViewsiews > RelatRelation Managerion Manager.

It is equivalent to the Relation Sheet in Workbench and offers the following features:

• Display implied and direct relations

• Show knobs and relation knobs

• Apply filters

• Visualize the relations

• Navigation using the visualization

• Edit relations and links

Niagara Tagging Guide Tagging reference

December 19, 2024 71

• Drag and drop a component from the Nav tree to the relation table to add a component. The dialog box
that opens when you drop the component auto-populates with the Ord that you have dragged.

• Show slot location by hovering over it

Related documentation, see "Relation Sheet view" in Niagara Relations Guide.

Components and views in the tagdictionary module
Components include services, folders, and other model building blocks associated with a module. You drag
them to a property or wire sheet from a palette. Views are plugins that can be accessed by double-clicking a
component in the Nav tree or right-clicking a component and selecting its view from the VViewsiews menu.

The component topics that follow appear as context sensitive help topics when accessed by:

• Clicking HelpHelp > On VOn Viewiew (F1) while the view is open.

• Clicking HelpHelp > Guide On TGuide On Tarargetget

Components in the tagdictionary palette are described in the following sections.

Tagging reference Niagara Tagging Guide

72 December 19, 2024

tagdictionary-TagDictionaryService
The TTag Dictag Dictionary Serviceionary Service, located in a station’s Services directory, is the container for all tag dictionaries
installed in the station.

Tag Dictionary Service
The TTag Dictag Dictionary Managerionary Manager is the main view for the Tag Dictionary Service. The service has a property for
defining adefauldefault namespacet namespace so that queries that do not specify a namespace are resolved on this default
namespace. For example, if you execute a NEQL query for " point " (instead of " n:point "), and the default
namespace ID is set to " n ", your query returns all objects tagged with " n:point ".

Note the following information about the Tag Dictionary Service:

• The tagstags license is required to use the TagDictionaryService and tag dictionaries on a station.

• A station can support only one tag dictionary service.

• Neither the tag dictionary service nor any tag dictionaries are strictly required for tagging or for performing
NEQL queries. However, without tags or tag dictionaries, a station is not be able to take advantage of most
of the functions available from tagging objects. Tags and tag dictionaries are fairly lightweight and
therefore are included by default in all stations created by the new station wizard.

• Installed tag dictionaries belong under the TTagDictagDictionaryServiceionaryService. They are not allowed anywhere else in
the station.

Figure 18. The tagdictionary palette

Niagara Tagging Guide Tagging reference

December 19, 2024 73

Tagging enhancements include added support for tag-based Px bindings which resolve NEQL query Ords
instead of slot path Ords. The purpose of this is to enable you to create reusable graphics that can be installed
on any component in any station where the bound components are properly tagged and related correctly to
the base component. Tag-based Px bindings use a NEQL query and a new single scheme that resolves the
query result to a single entity. The TagDictionaryService includes new configuration properties to support this
functionality. For details, see the “Neqlize options” section.

NOTE: The tagdictionary palette includes two smart tag dictionaries that support the System Database and
System Indexing features. The dictionaries allow you to easily exclude portions of a NiagaraStation from
indexing operations, which you might want to do for licensing reasons. This dictionary has a smart tag, the
scoped tag. If you add this dictionary to your station, you can drop a systemIndex:excludedsystemIndex:excluded marker tag on a
component and any descendants will have this same tag implied on them. To prevent implying this tag on all
descendants, you can apply a systemIndex:includedsystemIndex:included marker tag where necessary. This dictionary has a scoped
tag rule that can be configured to imply the systemIndex:excludedsystemIndex:excluded tag on portions of the station as specified in
one or more Ord scopes.

The TTag Dictag Dictionary Serviceionary Service includes the following indexing features both of which reduce the amount of re-
evaluation of tag rules, which improves response time for obtaining results of NEQL searches and traversing
hierarchies:

• Tag Rule Index, enabled by default. For complete details, see Tag Rule Index.

• The Implied Tags Index, disabled by default, can be configured for user-selected implied tags. For
complete details, see Implied tags index.

Tag Dictionary Service properties

Property Values Description

Enabled true or false Activates and deactivates use of the
function.

Status Text, read-only Indicates the condition of the
component at last polling.

• {ok} indicates that the
component is polling
successfully.

• {down} indicates that polling
is unsuccessful, perhaps
because of an incorrect
property.

• {disabled} indicates that the
Enable property is set to
false.

Figure 19. TagDictionaryService is located in the Services directory

Tagging reference Niagara Tagging Guide

74 December 19, 2024

Property Values Description

• fault indicates another
problem.

Fault Cause Text, read-only Indicates why the network,
component, or extension is in fault.

Default Namespace Id Text, string This TagDictionaryService property
provides a field that is used to
indicate a default tag namespace
(tag dictionary), which is used if there
is no namespace provided as part of
a query. For example, if the default
namespace is set to “hs”, a search
query that includes only “ahu” would
return all objects that are tagged
with “hs:ahu”.

Tag Rule Index Enabled true (default) or false Enabled by default, the Tag Rule
Index is an index on the Tag
Dictionary Service which improves
performance in evaluating tag rules
for implied tags during NEQL
searches. Setting the property to
false automatically clears the index,
as do any changes in the service.

Indexed Tags text string Entering tag ids in this field enables
those tags to be indexed for each
component in the station. Use a
semi-colon separated list for multiple
tag ids that should be indexed. This
field can be cleared to clear the
implied tag index and prevent any
further indexing.

Neqlize Options additional details Contains sub-properties that list
default excluded relations and tags,
enable/disable use of the default
exclusions, custom excluded
relations and tags. You can specify
whether to use the default
exclusions along with any custom
exclusions or to use only the your
custom exclusions. For details, see
the following section on “Neqlize
Options”.

Actions

• Clear TClear Tag Rule Indexag Rule Index allows you to manually clear the Tag Rule index.

NOTE: Typically, you would not need to invoke this Clear TClear Tag Rule Indexag Rule Index action because the index is
cleared automatically whenever changes are made in the Tag Dictionary Service. It is provided so that you
can reset everything when you are not seeing the expected results.

• InvalInvalidate Alidate All Tl Tag Indexesag Indexes resets (clears) all tag indexes.

• InvalInvalidate Single Tidate Single Tag Indexag Index resets (clears) the specified tag indexes.

Niagara Tagging Guide Tagging reference

December 19, 2024 75

NOTE: These actions do not discontinue indexing for the tagIDs listed in the Indexed Tags property. The
index will be rebuilt the next time a search for one of the indexed tagIDs is executed.

Neqlize options
There is added support for tag-based NEQL query Ords. The TagDictionaryService features several added
properties to specify certain tags and relations to be excluded when converting slot path Ords to NEQL query
Ords.

For example, a tag-based NEQL query Px Ord binding using the n:name tag would hurt the reusability of a
graphic because the bound component would have to be named the same under a different base component.
Using the n:ordInSession or Haystack hs:id tag would be equivalent to using an absolute slot path Ord.
Using the parent or child implied relations would be somewhat more limiting than relative slot path Ord.

The Default Excluded Relations and Default Excluded Tags values are collected from each installed tag

Figure 20. Neqlize Options properties on the TagDictionaryService

Tagging reference Niagara Tagging Guide

76 December 19, 2024

dictionary. Custom Excluded Relations and Custom Excluded Tags values can be optionally specified and
be either appended to or replace the default values. User values for Excluded Relations and Excluded Tags
can be specified in the Px Editor WWorkbench Optorkbench Optionsions and either appended to or replace these
TagDictionaryService values.

Name Value Description

Default Excluded Relations string Default values collected from
installed tag dictionaries for relation
pattern filters used to exclude
relations when converting slot path
Ords to traverse NEQL query Ords.

Use Default Excluded Relations true (default), false When true, the custom values for
relation pattern filters will be
appended to the default values.
Otherwise, the custom values will be
used exclusively and the default
values will be ignored.

Custom Excluded Relations string Custom values for relation pattern
filters used to exclude relations when
converting slot path Ords to traverse
NEQL query Ords.

Default Excluded Tags string Default values collected from
installed tag dictionaries for tag
pattern filters used to exclude tags
when converting slot path Ords to
NEQL query Ords.

Use Default Excluded Tags true (default), false When true, the custom values for tag
pattern filters will be appended to
the default values. Otherwise, the
custom values will be used
exclusively and the default values will
be ignored.

Custom Excluded Tags string Custom values for tag pattern filters
used to exclude tags when
converting slot path Ords to NEQL
query Ords.

Tag Rule Index
The tag rule index, which is enabled by default, is an index on the TTag Dictag Dictionary Serviceionary Service. The index improves
performance in evaluating tag rules for implied tags during NEQL searches. The index, which is built as NEQL
queries are executed, maps tags to the tag rules that imply those tags. This index should not require a
significant amount of system memory.

NOTE: The type of memory being used by the tag rule and implied tag indexes is heap memory. So these
indexes are not stored persistently but are built dynamically after every station reboot when NEQL queries are
submitted.

Niagara Tagging Guide Tagging reference

December 19, 2024 77

To ensure that the index is kept up-to-date, it is cleared automatically whenever changes are made in the TTagag
DictDictionary Serviceionary Service. For example, if you delete a tag from the tag list under a tag rule, the index is automatically
cleared. This prevents incorrect or incomplete results from occurring in your hierarchies, searches, and anything
else that uses NEQL queries. As you execute subsequent searches the index is rebuilt.

Although cleared automatically, there is an added Clear TClear Tag Rule Indexag Rule Index action on the TTag Dictag Dictionary Serviceionary Service
which allows you to manually clear the index. Typically, you would not need to invoke this action. It is provided
so that you can reset everything when you are not seeing the expected results. It is not likely that the tag rule
index would be the cause of the problem but the action is available just in case.

Additionally, within the Spy RemoteSpy Remote view, there is an added “Tag rule index info” section, which lists details of
the index. Specifically, it shows the following:

• the number of implied tags, technically, tagIDs in the index referred to as “# of indexed tags”

• the number of tag rules in the index implying those tags; a single rule may appear many times in the index
and indicates via these values whether the index has been cleared. For example, when the index is cleared
or disabled both the "# of indexed tags" and "# of tag rules" values on the Spy page will be zero.

Figure 21. Tag Rule Index Enabled property

Figure 22. Clear Tag Rule Index action

Tagging reference Niagara Tagging Guide

78 December 19, 2024

Imply tags in a different tag dictionary

Tag rule index allows you to imply tags in a different tag dictionary than the one containing the tag rule doing
the implying. Stated another way, this permits you to use tags from other tag dictionaries with a different
namespace, such as the Niagara tag dictionary which is frozen in the tag rules of your custom smart tag
dictionaries. Frozen means that you cannot add rules that persist through a station restart.

For example, the following image shows the property sheet for a custom smart tag dictionary in which a tag
rule contains several tags, one of which is a marker tag for “isBooleanWritable”. Notice that this tag is not fully
qualified, meaning that the tag name does not include the namespace of the source tag dictionary. In this
situation the tag automatically assumes the namespace of the dictionary in which it is being used, in this case
the “Custom” tag dictionary: c:isBooleanWritable. The other tags in the tag rule are fully qualified and
reference a completely different tag dictionary, the Niagara tag dictionary as indicated by the namespace, n:.

Right-clicking a boolenWritable point in the station allows you to select the EdEdit Tit Tagsags dialog box. On the
ImplImplied Tied Tagsags tab, you can see that the tags in the example tag rule are implied on this object. Also, you can
confirm that the tag rule has implied tags from the parent smart tag dictionary (Custom, c:isBooleanWritable)
as well as tags from a different tag dictionary (Niagara, n:geo*).

Figure 23. Tag rule index info section in Spy Remote view

Figure 24. Tag dictionary property sheet followed by implied tags in Edit Tags dialog

Niagara Tagging Guide Tagging reference

December 19, 2024 79

More significantly, when you search for "n:geoCountry", for example, you will get booleanWritable points in
the results.

Implied tags index
Implied tags index improves performance of NEQL searches and hierarchy traversal. Implied tags originate
from evaluating the tag rules in smart tag dictionaries and evaluating direct tag groups on an entity. Indexing
implied tags limits the amount of tag rule re-evaluation that occurs on subsequent NEQL queries.

For example, a NEQL search on an unindexed tag (ex.: c:city) requires that every tag rule that contains this tag
be evaluated; every component throughout the station be evaluated for this tag; and this evaluation must be
done every time a search for this tag is initiated. All of which adds up to a significant drain on performance.

JACE is constrained not only by processor power but also by memory availability. To control the impact on
memory, the Implied Tags Index is disabled by default.

NOTE: The type of memory being used by the tag rule and implied tag indexes is heap memory. So these
indexes are not stored persistently but are built dynamically after every station reboot when NEQL queries are
submitted.

You can enable specific tags for indexing by entering those individual tagIDs in the Indexed Tags field in the
TTag Dictag Dictionary Serviceionary Service property sheet. Entering tagIDs in this field enables those tags to be indexed for each
component in the station. Use a semi-colon separated list to enter multiple tagIDs to be indexed. Tags that are
not enabled for indexing will use normal tag rule and direct tag group evaluation.

To stop indexing from occurring on some or all tagIDs and reduce the memory used by this index, remove
tagIDs from the Indexed Tags field in the TTag Dictag Dictionary Serviceionary Service property sheet.

Although there is no mechanism for clearing the index, you can reset the index whether a tag definition is
implied or not via the following actions on the TTag Dictag Dictionary Serviceionary Service. These actions do not discontinue
indexing for the tagIDs listed in the Indexed Tags field but reset the index in regards to some or all of the
tagIDs being indexed. The index will be rebuilt the next time a search for one of the indexed tagIDs is
executed.

• InvalInvalidate Alidate All Impll Implied Tied Tags Indexesags Indexes

• InvalInvalidate Single Implidate Single Implied Tied Tags Indexags Index

Figure 25. Implied Tags tab in Edit Tags dialog

Tagging reference Niagara Tagging Guide

80 December 19, 2024

CAUTION: Memory use is strongly influenced by the number of components in the station and then also
influenced by the number of tags being indexed. The implied tags index has the potential to grow large
enough to exceed available memory. To avoid this, limit the number of tags enabled for indexing.

Either direct or implied tags can be added to the Indexed Tags field. If an object contains an indexed tag as a
direct tag, the index will not be used at all. If the entity does not contain the indexed tag as a direct tag, a
search through the rules will be executed to determine if the tag is implied and the index will store whether or
not the tag is implied.

NOTE: The implied tag index is most helpful for tags that are implied (rather than direct tags), because the re-
evaluation of any tag rules can be skipped.

Implied tags that are safe for indexing are those tags that will be implied and whose values will not change
regardless of changes to the station. For example, tags that are related to the type of a component, which can
never change, are very safe to index. Tags related to type of a component include:

• n:type

• n:point

• n:input

• n:output

• n:device

• n:network

• n:schedule

• hs:connection

• hs:cur

• hs:device

• hs:equip

• hs:kind

• hs:network

• hs:point

• hs:writable

Tags used in GroupLevelDefinitions are good candidates for indexing because they are used frequently.
However, that does not necessarily make them safe tags to index.

Other implied tags may be riskier because rule conditions and contents can be changed and the changes might
not be reflected in the index. Tags that are implied using the HasAncestorRule or HasRelationRule conditions
depend on the station configuration and, if the station configuration changes, might affect whether or not tags
are implied.

Also, it is not the value of the tag that is indexed but the tag definition. So, if the value of the tag depends on
something that changes, those changes will be reflected in the value of the tag when the tag is retrieved from
the index. For example, if the history ID of a history extension changes, the new value will be reflected in the
value of the n:history tag when it is retrieved.

Tags whose values are derived based on component and/or properties of the station are called smart tags.
Other smart tags that are safe to index include the following:

• n:name

• n:displayName

• n:ordInSession

• n:station

• hs:curErr

• hs:curStatus

Niagara Tagging Guide Tagging reference

December 19, 2024 81

• hs:curVal

• hs:enum

• hs:his

• hs:hisErr

• hs:hisInterpolate

• hs:hisStatus

• hs:id

• hs:maxVal

• hs:minVal

• hs:tz

• hs:unit

• hs:writeErr

• hs:writeLevel

• hs:writeStatus

• hs:writeVal

NOTE: If you find that the JACE is at the limit of memory usage, it is best to clear any tags from the Indexed
Tags field in the TTag Dictag Dictionary Serviceionary Service so that the indexing no longer occurs. If the station crashes before the
Indexed Tags field can be cleared, the station can be started with the system property
niagara.tagdictionary.disableTagIndexing set to true. This will prevent any indexing and allow the Indexed
Tags field to be cleared. Then, this system property can be cleared and the station restarted to allow indexing
again.

NiagaraTagDictionary
The NiagaraTagDictionary is a frozen slot of the Tag Dictionary Service.

This property is a smart tag dictionary containing a collection of tags developed for Niagara systems that are
used for semantic modeling of specific building control entities, that is, networks, devices, equipment, points,
sites, buildings, geo-location, histories. Since this is a smart tag dictionary, it applies implied tags and implied
relations to components and links throughout the station. This allows queries to find these components based
on type, linkage, hierarchy or combinations of these. The Niagara Tag Dictionary is indicated by the <n:>
namespace (the letter <n> followed by the colon character).

About tag dictionaries
The tagdictionary module contains tag dictionary components which you can use to create custom tag
dictionaries. A tag dictionary is the container for a collection of tag definitions, tag group definitions, and
relation definitions. The tags in a tag dictionary may be associated with devices, components, and points.
Typically, these associations are established when the device is discovered, registered, and fully subscribed but
tags can be added to an object at any time. Tags also provide a vocabulary for searching.

NOTE: The tagstags license is required in order to use the TagDictionaryService and tag dictionaries on a station.

The TTag Dictag Dictionary Managerionary Manager, the primary view of the Tag Dictionary Service, displays the dictionaries that are
installed on the station. You can create and add custom tag dictionaries to the station via this view (or by
dragging from the tagdictionary palette). For example, you may create one or more custom dictionaries for a
specific customer, for an OEM, or for a specific application.

Tag dictionary composition
A tag dictionary is composed of the following:

• A unique namespace, normally 1- or 2-characters, for example ”n” for Niagara, “hs” for Haystack

• Tag definitions (contain individual Tag components added to the dictionary). This is the collection of

Tagging reference Niagara Tagging Guide

82 December 19, 2024

standardized tags with an Id.name that has semantic meaning for the given domain or namespace. The
dictionary also defines tag default values and any validation rules for applying tags.

• TagGroup definitions (optional and contain individual TagGroups components added to the dictionary).
This is a collection of standardized groupings of tags (tag groups) that have semantic meaning for the
given domain or namespace. The dictionary also defines any validation rules for applying these tag
groups.

• Relation efinitions (optional and contain individual relation components added to the dictionary). This is a
collection of standardized relation Ids with semantic meaning for the given domain or namespace.

• TagRules (optional and in a smart tag dictionary only; they contain individual TagRule components added
to the dictionary)

tagdictionary-SmartTagDictionary
The Smart tag dictionary automatically applies the implied tags and relations to objects. Implied items, that is,
the implied tags and implied relations, are not added to the station, and the station size is not increased as a
consequence.

Smart tag dictionary properties
To create a new Smart tag dictionary, drag the SmartTagDictionary component to the TTag Dictag Dictionary Serviceionary Service.

Property Values Description

Namespace text This field indicates the default tag
namespace “bk” (tag dictionary).

Version read-only Displays the Smart tag dictionary
version.

Niagara Tagging Guide Tagging reference

December 19, 2024 83

Property Values Description

Neqlize Excluded Tags text string Displays default values collected
from installed tag dictionaries for tag
pattern filters used to exclude tags
when converting slot pathOrds to
NEQL query Ords.

Neqlize Excluded Relations additional details Displays default values collected
from installed tag dictionaries for
relation pattern filters used to
exclude relations when converting
slot path Ords to traverse NEQL
query Ords.

Enabled true (default) or false Enabled by default, the Tag Rule
Index is an index on the Tag
Dictionary Service which improves
performance in evaluating tag rules
for implied tags during NEQL
searches. Setting the property to
false automatically clears the index,
as do any changes in the service.

Frozen true or false (default) If true, you cannot add rules that
persist through a station restart.

Tag Definitions additional details, tag info list See “Tag Definitions (TagInfoList)”

Tag Group Definitions additional details, tag group info list See “Tag Group Definitions
(TagGroupInfoList)”

Relation Definitions additional details, relation info list See “Relation Definition
(RelationInfo)”

Tag Rules additional details, tag rule list See “Tagdictionary-TagRuleList”

Actions
Export Dictionary: Exports the contents of a tag dictionary to a CSV or JSON file to view and edit externally.

tagdictionary-SystemIndex
Added smart tag dictionaries in the tagdictionary palette provide support for the system database and system
indexing features. Located in the SystemIndexDictionaries folder, the SystemIndex dictionary has a scoped tag
to assist with excluding certain objects from system indexing operations.

Once you add the SystemIndex dictionary to your station, you can drop a systemIndex:excluded marker tag on
a component and this tag will be implied on all of the component's descendants. In cases where you want to
prevent implying this tag on some of the component's descendants, you can drop a systemIndex:included
marker tag where necessary and those portions of the tree will not have the systemIndex:excluded marker tag
implied and will not be excluded from system indexing.

For stations running prior versions
For stations running on older versions of Niagara, use the SystemIndex dictionary located in the Pre 4.6
folder (shown).

Tagging reference Niagara Tagging Guide

84 December 19, 2024

This pre 4.6 SystemIndex dictionary has a scoped tag rule that can be configured to imply the
systemIndex:excluded tag on portions of the station as specified in one or more ord scopes. The pre-4.6
SystemIndex dictionary only implies the systemIndex:excluded tag through ord scopes. The
systemIndex:excluded marker tags will not be implied automatically when using the pre-4.6 SystemIndex
dictionary.

Name Value Description

systemIndex:excluded Marker When applied to a component and
when the SystemIndex dictionary for
Niagara is enabled and installed, all
descendants will have the same
marker tag implied on them (except
for descendants of a component
with the systemIndex:included
marker tag applied). This results in
these components being excluded
from system indexing.

systemIndex:included Marker When applied to a component, it
prevents the
systemIndex:excluded marker tag
from being implied on that
component or any of its descendants
even if an ancestor of the
component has the
systemIndex:excluded marker tag.
This results in the component and its
descendants being included in
system indexing.

Tag Definitions (TagInfoList)
The TTag Definitag Definitionsions folder in a tagdictionary contains the collection of standardized tags that have semantic
meaning for that namespace (tag dictionary). Each tag in this TTagInfoListagInfoList can be used to add specific metadata
to objects in a station, assigning additional semantic information, which provides a basis for searching. Tags
typically contain a Validity slot with conditions such as, Always, IsType.

Tag properties
The following implementations of Simple Tag Info are available in the Tags folder of the tagdictionary palette.
When creating a custom tag dictionary, drag and drop tags from the palette to the Tag Definitions folder in the
tag dictionary’s property sheet to create the tag definitions for that dictionary.

Figure 26. SystemIndex smart tag dictionaries

Niagara Tagging Guide Tagging reference

December 19, 2024 85

Tag components available in the palette are listed in the following table.

Tag Name Value Description

Marker Marker (default) Tag name only. The Marker tag does not require a value. The fact
that a component has the tag applied is sufficient to convey
semantic information (the tag name, that is, “device” or “input”).

String String value Tag name and string value

Integer 0 (default) Tag name and numeric value

Long 0 (default) Tag name and numeric value

Float 0.00 (default) Tag name and numeric value

Double 0.00 (default) Tag name and numeric value

Ord null (default) Tag name and Ord value

DynamicEnum 0 (default) Tag name and numeric value

EnumRange Tag name and numeric value

AbsTime date/time Tag name and date/time relative to given time zone

RelTime 00000h 00m 00s Tag name and time

Unit Tag name, type and unit of measure

TimeZone UTC Tag name and timezone

Following is a list of common properties for tag (Simple Tag Info) components

Name Value Description

Validity A tag's validity property reflects
criteria specified in the Condition
property, providing a "hint" as to
which objects the tag may be
applied.

Condition Always, And, BooleanFilter, A Validity subproperty used to

Figure 27. Example tag properties

Tagging reference Niagara Tagging Guide

86 December 19, 2024

Name Value Description

HasAncestor, HasRelation, IsType, Or specify criteria to be met in order for
the tag to be applied to an object.
Used in conjunction with the Filter
subproperty. There may be one or
more conditions under the Validity
property.

Filter A tag name A Condition subproperty used to
further specify objects to which the
tag may be applied. The Filter value
indicates tag(s) that must already be
assigned to an object.

Default Value Assigns a default value. Often
present when validity specifies that
the tag may be applied only to a
baja:Component.

defFacets Configurable facets applied to the
default value property.

NOTE: Tag dictionaries support adding a single DataPolicy to a TagInfo or a TagGroupInfo component. Also,
the TTagInfoagInfo and TTagGragGroupInfooupInfo components have an Add DataPolAdd DataPolicyicy action. For details, see “Data Policies”.

Tag Group Definitions (TagGroupInfoList)
Although not required, a tag dictionary may contain tag groups. The TTag Grag Group Definitoup Definitionsions folder in a
TagDictionary property sheet contains the collection of TagGroups for that dictionary. A tag group provides
a structure that lets you add multiple tags to an object with a single action. Typically, tags are in a group
because it is common for each of the tags to be assigned to a single component.

For example, in the Haystack Tag Dictionary, there is a tag group for “discharge air temp sensor” that contains
the following set of individual tags:

• discharge

• air

• temp

• sensor

Once a tag group is applied to an object, it implies all of the individual tags in its tag list, as well as implying a
marker tag that bears the name of the tag group. This allows you to easily define a NEQL search for the
marker tag for that tag group rather than defining a search by concatenating each of the tags in the tag
group’s tag list.

The Device ManagerDevice Manager and Point ManagerPoint Manager views of a driver, and the EdEdit Tit Tagsags dialog are the primary methods
for adding a Tag Group to a component.

NOTE: When creating or editing a tag group, include only those tags that have a corresponding tag definition
in the parent tag dictionary. One way to guarantee it is to populate the tag group’s tag list with tags copied
only from the tag definitions list in the tag dictionary.

TagGroup properties
When using the EdEdit Tit Tagsags dialog to add a tag group, the tag group displays in the DirDirect Tect Tagsags tab as an Ord to
the tag group itself, and once the change is saved the individual tags of the tag group display in the ImplImpliedied
TTagsags tab.

Niagara Tagging Guide Tagging reference

December 19, 2024 87

A tag group can contain tags from other tag dictionaries. You can add a tag to a tag group that overrides the
namespace of the parent tag dictionary. This allows you to define a tag group that contains tags from multiple
tag dictionaries.

NOTE: There is no verification that a tag name entered in the Add TAdd Tagag dialog box is actually defined in a tag
dictionary. If the tag definition does not exist, the added tag is an ad hoc tag. It is possible to use ad hoc tags,
although a tagging best practice is to include only those tags that have a corresponding tag definition in the
parent tag dictionary.

You can add a single “Data Policy” to a TTag Grag Group Definitoup Definitionsions folder (or to a TTag Definitag Definitionsions folder). A data
policy provides additional metadata that can be associated with a tagged component. For more details see
“Data Policies”.

Type Value Description

Validity Specifies criteria to be met in order
for this tag group to be applied to an
object.

TagInfoList Contains the collection of tags that
make up this tag group.

Relation Definition (RelationInfo)
Tag dictionaries often contain a collection of relation definitions, which are standardized relation Ids with
semantic meaning for that namespace. These relation definitions come into play when adding a relation to a
component. In the RelatRelationion dialog, your choices are limited to the relations that are defined in any of the tag
dictionaries installed on your system.

NOTE: For devices containing child points that have a Null Proxy extension, the childNullProxyPoint relation is
implied on each of those points.

Figure 28. Relation Definitions in custom TagDictionary (left) provide choices seen in the Relation dialog (right)

Tagging reference Niagara Tagging Guide

88 December 19, 2024

Tags (SimpleTagInfo)
Several Simple TSimple Tag Infoag Info components, also known as “simple tags” or “tags”, are available in the Tags folder of
the tagdtagdictictionaryionary palette. Use these when creating a custom tag dictionary to populate the tag definitions list.
Drag these tags from the palette to the TTag Definitag Definitionsions folder in the tag dictionary’s property sheet to create
the tag definitions for that dictionary.

Tags properties
Tag components and properties are listed below.

Name Value Description

Marker Marker (default) Tag name only. The Marker tag does
not require a value. The fact that a
component has the tag applied is
sufficient to convey semantic
information (the tag name “device”
or “input”).

String text Tag name and string value

Integer 0 (default) Tag name and numeric value

Long 0 (default) Tag name and numeric value

Float 0.00 (default) Tag name and numeric value

Double 0.00 (default) Tag name and numeric value

Boolean true, false (default) Tag name and boolean value

Ord null (default) Tag name and Ord value

Niagara Tagging Guide Tagging reference

December 19, 2024 89

Name Value Description

DynamicEnum 0 (default) A DynamicEnum is an ordinal state
variable whose range can be
specified by an EnumRange.

EnumRange null (default) An EnumRange stores a range of
ordinal/name pairs.

AbsTime 31–Dec-1969 07:00 AM/PM EST
(default)

An AbsTime is an absolute point in
time relative to a given time zone.

RelTime +00000h 00m 00s (default) A RelTime is relative amount of time.

Unit micsc() null(null) (default) Tag name and unit of measure

Timezone UTC (+0) (default) A TimeZone value tag specified by
an EnumRange.

Smart Tags
The Smart TSmart Tagag components, with the exception of historyMarker and scoped, are already included in the tag
lists of rules of the NiagaraTagDictionary, which causes those tags to be implied throughout the station as long
as the NiagaraTagDictionary is installed and enabled. While SimpleTSimpleTagInfoagInfo components are tags that have just
a static value, smart tags are tags whose values are based on some code and the values are usually derived
from the objects on which they are applied. A smart tag dictionary includes tag rules that imply tags (both
simple tags and smart tags) to components based on the conditions of the rules.

Smart TSmart Tagag components are available in the tagdictionary palette.

NOTE: Although not recommended, it is possible to replace the NiagaraTagDictionary with your own custom
tag dictionary. In that situation, you could drop the smart tag components into the tag list of the rules in your
custom tag dictionary so that the tags would be implied throughout your station.

You can add smart tag components to a tag dictionary by dragging them to the tag definitions list, and then
drag them onto individual components using the EdEdit Tit Tagsags dialog box. However, the tags would not be
implied, only included in the tag definitions list. To be implied, the smart tags must be included in the tag lists
of tag rules. As a rule, these tags are more effectively applied by including them in the tag lists of tag rules.

tagdictionary-NameTag
The Name smart tag is available in the tagdtagdictictionaryionary palette under the Smart TSmart Tagsags folder. The value of the name
tag is set to the name of the baja:Complex object to which it is applied (either directly or implied by a rule).

Note that the Name smart tag is included in the object tags rule of the NiagaraTagDictionary. This rule applies
to all objects that are type baja:Complex. The value type of this tag is string.

Tagging reference Niagara Tagging Guide

90 December 19, 2024

tagdictionary-DisplayNameTag
The Display Name smart tag is available in the tagdtagdictictionaryionary palette under the Smart TSmart Tagsags folder. The value of
the Display Name tag is set to the display name of the baja:Complex object.

Note that the Display Name smart tag is included in the object tags rule of the NiagaraTagDictionary. This rule
applies to all objects that are type baja:Complex. The value type of this tag is string.

tagdictionary-TypeTag
The Type smart tag is available in the tagdtagdictictionaryionary palette under the Smart TSmart Tagsags folder. The value of the type
tag is set to the type of the baja:Complex object.

Note that the Type smart tag is included in the object tag rules of the NiagaraTagDictionary. This rule applies
to all objects that are type baja:Complex. The value type of this tag is string.

tagdictionary-historyIdTag
The historyId smart tag is available in the tagdtagdictictionaryionary palette under the Smart Tags folder.

The historyId smart tag is included in the point tags rule of the NiagaraTagDictionary. This rule applies to all
objects that are type control:ControlPoint. The value type of this tag is string and its value is set to the
historyId of the first enabled history extension on the control:ControlPoint object.

tagdictionary-HistoryMarkerTag
The historyMarker tag is available in the tagdtagdictictionaryionary palette under the Smart Tags folder.
The historyMarker smart tag, if included in a rule, is a marker tag that is applied to a control:ControlPoint
object if it has an enabled history extension.

Niagara Tagging Guide Tagging reference

December 19, 2024 91

tagdictionary-ScopedTag
The scoped smart tag is available in the tagdictionary palette under the Smart TSmart Tagsags folder. The scoped smart
tag can be applied to a baja:Component object.

When applied to a component, either directly or implied by a tag rule, the smart tag searches the component's
ancestors looking for a tag with the "search ID". This tag is called the matching tag and the ancestor on which
it is found is called "the matching ancestor".

Without specifying anything in the scoped tag's frozen properties, the basic behavior of this smart tag is as
follows:

• The search ID will be the same as scoped tag itself.

• If found, a tag with the scoped tag ID will be added to the component. The value of the added tag will be
copied from the matching tag. If the matching tag is a marker tag, the added tag will be a marker tag. If
the matching tag is a value tag, the added tag will have the same value as the matching tag.

This basic behavior can be modified by adding a TagInfo to the scoped tag's frozen properties. Usage is
optional and each can contain only a single tag. Only the ID of the TagInfo added to these properties is of
consequence and its type is ignored.

• Search Tag List property

If a TagInfo is added to Search Tag List property, the ID of this TagInfo will be used as the search ID
instead of the ID of the scoped tag. If a matching tag is found, the tag added to the component will still
have the same ID as the scoped tag. If this property is empty or the TagInfo has the same ID as the
scoped tag, only direct tags will be considered when searching the component's ancestors. Otherwise,
both direct and implied tags will be considered.

• Out Of ScopeTag List property

If a TagInfo is added to the Out Of Scope Tag List property, the ID of this TagInfo is called the "out-
of-scope ID". The scoped tag will not be added to the component if the component itself, the matching
ancestor, or any ancestors between the component and the matching ancestor have a tag with the out-of-
scope ID. If the out-of-scope ID is the same as the scoped tag ID, only direct tags will be considered.
Otherwise, both direct and implied tags will be considered. If the out-of-scope ID is the same as the
scoped tag ID, the scoped tag will never be added to a component.

• Value Source Tag List property

If a TagInfo is added to the Value Source Tag List property, the ID of this TagInfo is called the
"value-source ID". If a tag exists on the matching ancestor with the value-source ID, called the "value-
source tag", the value of the added tag will be copied from that tag instead of the matching tag. If a
value-source tag does not exist on the matching ancestor, the value of the added tag will be copied from
the matching tag. If the value-source ID is the same as the scoped tag ID, only direct tags will be
considered for the value-source tag. Otherwise, both direct and implied tags will be considered.

Figure 29. Scoped smart tag

Tagging reference Niagara Tagging Guide

92 December 19, 2024

For example, if the tag with the search ID is a double value tag set to 5.0, then a double value tag set to
5.0 with the scoped tag ID will be added to descendant components. If a TagInfo is added to the
ValueSourceTagList property, the value of the scoped tag added to a component will be copied from
the direct or implied tag with the same ID as the ValueSourceTagList TagInfo (the value source ID) on
the matching ancestor. Only direct tags (and not implied tags) will be used if the ValueSourceTagList
TagInfo has the same ID as the scoped tag. If the matching ancestor does not have a tag with the value
source ID, the value of the scoped tag will be copied from the tag with the search ID.

In another example using the namespace of the custom dictionary is "c:". The Search Tag List is populated
so c:stateRoot will be used as the search ID instead ofhs:geoState, which is the ID of the scoped tag. The Out
Of Scope Tag List is empty. The Value Source Tag List is populated so the value-source ID is n:name. If a
direct or implied tag with the ID c:stateRoot is found on an ancestor of a component, a hs:geoState tag will be
added to that component with a value set to the n:name tag on the matching ancestor.

SystemDb usage example
Provides a usage example for the scoped smart tags in the SystemIndex tag dictionary.

Note that the excluded scoped smart tag is available in the tag rules of the SystemIndex tag dictionary. When
a systemIndex:excluded marker tag is added to a component, a systemIndex:marker tag becomes implied on
all of the component's descendants except those that contain or are descendants of a component with a
systemIndex:include marker tag. The presence of the systemIndex:excluded tag, whether direct or implied,
excludes the component from system indexing operations. Alternately, to prevent implying the excluded tag
on some of the descendants you can apply the included tag where necessary.

Figure 30. Example scoped tag: hs:geoState

Niagara Tagging Guide Tagging reference

December 19, 2024 93

This usage example shows a components tree where a direct systemIndex:excluded marker tag is added to A1
and a direct systemIndex:included marker tag is added to B12. If the SystemIndex tag dictionary is installed,
the resulting implied systemIndex:excluded tags are shown in parentheses. Due to the systemIndex:included
(the OutOfScope id) tag on B12, a systemIndex:excluded marker tag is not implied on B12 or its descendants
(C121 and C122).

Figure 31.Excluded and included smart tags in SystemIndex dictionary

Tagging reference Niagara Tagging Guide

94 December 19, 2024

If A1 contains a direct or implied systemIndex:excluded tag and the OutOfScope id (as shown below), the
systemIndex:excluded tag is not added to any of A1’s descendants.

Hierarchy QueryLevelDef usage example
Provides a usage example for scoped smart tags in a hierarchy QueryLevelDefinition.

To add a c:parentName tag with the value of the n:name tag to all descendants of a component with a

Figure 32. SystemDB included/excluded example

Figure 33.

Niagara Tagging Guide Tagging reference

December 19, 2024 95

"c:parent" tag, create a scoped tag with the ID c:parentName, set the Search Tag List property to c:parent,
and set the Value Source Tag List property to n:name.

You can use this by setting up a hierarchy to first query for all objects in the station that have a c:parent tag,
and then using a query facet, to query for all objects in the station that have both a c:child tag and a
c:parentName tag that is the same name as the parent component.

Figure 34. parentName becomes an implied tag on the descendant

Tagging reference Niagara Tagging Guide

96 December 19, 2024

When defining a hierarchy, one advantage to using QueryLevelDefs rather than GroupLevelDefs is that you can
attach a graphic view to a QueryLevelDefinition. On expanding the resulting hierarchy, the graphic view
displays for that level.

tagdictionary-SingletonTagInfoList
The Singleton Tag Info List is a frozen property in a ScopedTag smart tag component, available in the
tagdtagdictictionaryionary palette under the Smart Tags folder. Usage is optional.

Each Singleton Tag Info List has a particular use, and each can contain only a single tag. For more details,
see tagdictionary-ScopedTag

tagdictionary-TagRuleList
The TTag Rulesag Rules used in a Smart Tag Dictionary are the primary mechanism for implying tags and relations. It is
the tag rules defined in the installed tag dictionaries that determine which implied tags and implied relations
are assigned to each object (entity).

A tag rule defines certain criteria that determines if one or more tags and/or relations are implied on an object.
In addition to the Condition property, tag rules contain three definition lists: Tag List, Tag Group List, and
Relation List.

When a “tag-able” object is evaluated, the process determines if the object meets the criteria specified in the
Condition property of each tag rule. If the criteria is met, it will return a tag (or relation, or tag group) with the
value set (if other than a Marker tag). If the criteria is not met, then the implied tag does not apply and a null
value is returned. Eventually, the results from the tag rules in all of the smart tag dictionaries in the station are
merged to form the complete set of implied tags and implied relations for an object.

The Validity slot of a definition (TagInfo, RelationInfo, or TagGroupInfo) is not evaluated in a tag rule or in a
tag group definition. It is only evaluated in the Tag Definitions of a tag dictionary.

Any definition (tag, tag group, or relation) that exists in a Tag Rule or Tag Group Definition is required to have a
corresponding definition in the main lists of the tag dictionary (Tag Definitions, Tag Group Definitions, Relations
Definitions).

Added scoped tag rules provide a means of focusing tag rule evaluation in specific areas of the station tree.

Figure 35. Hierarchy utilizing scoped tags

Niagara Tagging Guide Tagging reference

December 19, 2024 97

Tag Rule components
The tagdictionary palette contains the default TagRule, TagForType which has the IsType condition, however
the Condition slot is frozen, uneditable, limiting its usage. In also contains additional RuleRule components
allowing you to add custom TTagRulesagRules (with different Conditions) to smart tag dictionaries. These new TTagRuleagRule
components in the palette cover all possible conditions (except Never), which means that tags can be implied
using more complex logic.

For additional information, see “tagdictionary-TagRuleList” in this guide.

The tag rule shown here is the BooleanFilterRule. The rule’s Condition slot has a FilFilterter field containing the
NEQL predicate which queries for the following tags: hs:ahu or hs:vav or hs:chiller or
hs:chillerPlant or hs:coolingTower or hs:heatExchanger or hs:boiler or hs:boilerPlant. Also,
the rule’s Tag List is configured with the hvac marker tag. This tag rule queries objects in the station, filtering
for those that have one or more of the tags specified in the condition FilFilterter field. If the query returns true for
any object (as having one of more of the queried tags), then the rule applies the hvac implied tag to the object
as well.

Each of the TagRule components is configured for a certain condition. If these conditions are met (present in
station objects) then the specified tag(s) and/or relation(s) become implied for those objects.

tagdictionary-ScopedTagRule
Tag rules may have a scope in which they apply. This means that an entity will only have tags implied by a rule
if the entity is in the tag rule's scope. The effect of this is to focus evaluation of NEQL queries on applicable
entities, which may reduce the amount of time it takes to complete a search or to perform hierarchy traversal.
Several ScopesScopes components are available in the tagdictionary palette.

Regular tag rules do not have a scope container in which to drop scope components, so they cannot be
scoped. The special ScopedTagRule type has a Scope ListScope List container in which scopes may be dropped from the
palette. A scoped tag rule is targeted to a particular place in the station via the Scope Ord property. Also,
within a custom smart tag dictionary, you can create multiple scoped tag rules, each with a different root
Scope Ord. Moreover, a single ScopedTagRule may have multiple scopes defined in its scope container — if an
entity is in any of these scopes, the rule applies.

NOTE: For tag rules that are not targeted to a particular place in the station, it is better to use a “regular”
TagRule rather than a Scoped Tag Rule because the scoping mechanism requires some time to complete the
evaluation so it may slow performance if everything is in scope.

The reason to use a scoped tag rule is to speed up certain kinds of tag rule evaluations. In particular, using a
hasAncestor condition to specify a particular part of a station (such as, hasAncestor with n:name =
Building1Folder) in a tag rule is slow and this new scoping mechanism speeds up those kinds of rules.
However, if the rule is something that does not require checking an entity's ancestors, then a regular TagRule
should be used instead.

For example, suppose you are using a rule to tag components by their name, say a rule with a BooleanFilter
with n:name like "Lighting.*East", and you know that those components will only live in a particular part of the
station, say under a folder called "Campus". You might think that using a scoped tag rule would make the

Figure 36. Example tag rule (Haystack Tag Dictionary)

Tagging reference Niagara Tagging Guide

98 December 19, 2024

queries faster because it would not have to check outside the Campus folder. That is not the case though. It
still has to check every component and decide if it is in scope or not. In this case, determining if a component
is in scope is probably slower than just checking the name of the component, so using the scoped rule could
hurt performance slightly.

Basically, the scoped tag rule exists as an alternative to using the slower hasAncestor condition to check for a
component's scope in the station. A best practice is to consider if you did not use a scoped tag rule, would you
use a hasAncestor condition to accomplish the same thing. If so, use a scoped tag rule. If not, use a regular
TagRule.

AlwaysRule
If the AlwaysRule is present in an installed tagdictionary, the condition is true for all station objects and so the
specified tag(s) may be applied to each and every object.

Name Value Description

Condition true (default) There is no criteria to be met. The condition is always “true” so a filter is not necessary.

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

AndRule
The specified tag definitions may be applied if the target object has all of the conditions listed under the
Condition property.

Name Value Description

Condition true (default) There is no criteria to be met. The condition is always “true” so a filter is not necessary.

Condition
sub-
properties

tagdictionary:
conditionName null
(default)

Add slots under Condition property or drag any of the Condition components (Always, And,
BooleanFilter, HasAncestor, HasRelation, IsType, Never, Or) from the palette.

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group
List

tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

BooleanFilterRule
The specified tags may be applied if the target object has a tag listed in the Filter property.

Name Value Description

Condition Criteria to be met by target objects.

Condition sub-properties baja:stringfalse (default) Target object must meet the filter criteria (NEQL query).

Figure 37. Example BooleanFilter tag rule

Niagara Tagging Guide Tagging reference

December 19, 2024 99

Name Value Description

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

HasAncestorRule
The specified tag definition(s) may be applied if the target object, or one of its ancestors, has the tags listed in
the Filter property.

Name Value Description

Condition Criteria to be met by target objects.

Filter baja:stringfalse (default) Target object or one of its ancestors must meet the filter criteria (NEQL query).

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Info List contains the list of tag(s) to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

HasRelationRule
The specified tag definition(s) may be applied if the target object, or an object along the relation specified in
the RelatRelation Idion Id field, has the tags listed in the Filter property and has the relation specified in the Relation
Id field.

Name Value Description

Condition Criteria to be met by target objects.

Filter baja:stringfalse (default) Target object must meet the filter criteria (NEQL query).

Relation Id baja:string Relation along which objects will be searched for one that meets the Filter criteria.

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

IsTypeRule
The specified tag definition(s) may be applied if the target object is one of the specified object type.

Name Value Description

Condition Criteria to be met by target objects.

Is Type Condition (sub-property) baja:TypeSpec Target object must be or extend this specified type.

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group List tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

NotRule
The specified tag definition(s) may be applied if the child condition of the Not tag rule condition evaluates to
false. The tag definition(s) will not be applied if the Not tag rule condition has no child condition.

Tagging reference Niagara Tagging Guide

100 December 19, 2024

Name Value Description

Condition
(Not)

Criteria to be met by target objects.

Child
Condition
(sub-
property)

tagdictionary:TagRuleCondition Target object must be or extend this specified type. The NotRule condition only
accepts a single child tag rule condition. The IsType condition is shown but the child
condition can be any subclass of BTagRuleCondition.

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group
List

tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation
List

relation Id(s) Relation Info List contains the relation Ids to be applied.

OrRule
The specified tag definition(s) may be applied if the target object has any of the conditions listed under the
Condition property.

Name Value Description

Condition Criteria to be met by target objects.

Condition
sub-
properties

tagdictionary:
conditionName null
(default)

Add slots under Condition property or drag any of the Condition components (Always, And,
BooleanFilter, HasAncestor, HasRelation, IsType, Never, Or) from the palette.

Tag List tag(s) Tag Info List contains the list of tag(s) to be applied.

Tag Group
List

tag group(s) Tag Group Info List contains the list of tag groups to be applied.

Relation List relation Id(s) Relation Info List contains the relation Ids to be applied.

Figure 38. NotRule tag rule

Figure 39. Example OrRule tag rule

Niagara Tagging Guide Tagging reference

December 19, 2024 101

Conditions
Condition is a validity subproperty used to specify criteria to be met in order for a parent definition’s tag to
be applied to an object. It is used in conjunction with the Filter subproperty. There may be one or more
conditions under the Validity property.

The Validity property of a tag definition is primarily used to filter out tags in the EdEdit Tit Tagsags dialog that should
not be applied to an object. The criteria contained in this property does not prevent applying the tag to any
object.Some smart tags, however, do not operate properly if they are applied to an object that does meet the
criteria in the Validity property. The Validity property can be any tag rule condition including And and Or,
which allow for combining other conditions.

The validity conditions are located in the tagdtagdictictionaryionary palette.

tagdictionary-Always
Always is one of several possible validity conditions properties. If the Always condition property is present in a
tag definition, there is no criteria to be met. The condition is always true and so the parent definition's tag(s)
and/or relation(s) become implied for every object in the station.

The validity conditions are located in the tagdtagdictictionaryionary palette.

tagdictionary-And
And is one of several possible validity conditions properties. If all of the specified criteria are present in the
queried object, the parent definition's tag(s) may be applied.

For example, you can drag an AndRule onto the rule definitions of a smart tag dictionary. Then, drag the And
condition (or other conditions) under the condition And for that rule, as shown here.

The validity conditions are located in the tagdtagdictictionaryionary palette.

tagdictionary-BooleanFilter
BooleanFilter is one of several possible validity conditions subproperties, which are used to specify a certain
criteria to be met in order for a tag to be applied to an object.

Tagging reference Niagara Tagging Guide

102 December 19, 2024

For example, the BooleanFilter condition slot has a FilFilterter subproperty containing the NEQL predicate which
queries objects in the station for the tags: hs:equip or hs:chiller. If the query returns true for any object
(as having one of more of the queried tags), the validity criteria has been met. So the parent definition's tag(s)
and/or relation(s) become implied for those objects.

tagdictionary-HasAncestor
HasAncestor is one of several possible TagRule conditions, which are used to specify a tag rule or tag validity
criteria.

In the example shown, the HasAncestor condition slot has a Filter subproperty containing the NEQL
predicate which queries ancestor entries in the station: hs:ahu or hs:vav. If the Filter NEQL predicate is
true for the target object or one of its ancestors, the HasAncestor criteria is met. If an object is a component
and has a parent component, its ancestor is that parent. If an object is not a component or is a component
without a parent component, the endpoint of the first outbound n:parent relation is its ancestor.

tagdictionary-HasRelation
HasRelation is one of several possible TagRule conditions which are used to specify a tag rule or tag validity
criteria.

The Filter subproperty contains a NEQL predicate. If this predicate is true for the target object or a related
object, the HasRelation criteria is met. A related object is the endpoint of any inbound or outbound relations
where the relation Id matches the one specified in the Relation Id field. Endpoints of the endpoints,
endpoints of those endpoints, and so on are also tested.

If the target object, or an object along the relation specified in the Relation Id field, has the tags listed in the
Filter property and has the relation specified in the Relation Id field, then the parent definition's tag(s) may
be applied.

tagdictionary-IsType
IsType is one of several possible validity conditions subproperties, which are used to specify a certain criteria
to be met in order for a tag to be applied to an object.

If the queried object is of the specified object type, then the parent definition's tag(s) may be applied.

Figure 40. Example HasAncestor Condition slot with Filter

Niagara Tagging Guide Tagging reference

December 19, 2024 103

The validity conditions are located in the tagdtagdictictionaryionary palette.

tagdictionary-Or
Or is one of several possible validity conditions subproperties, which are used to specify a certain criteria to be
met in order for a tag to be applied to an object.

For the Or condition, if the target object has any of the conditions listed under the Or property, the parent
definition's tag(s) may be applied.

The example below shows the And tag rule which contains the condition And with these additional combined
conditions: And and Or. In this case, if all of the And criteria plus any of the Or criteria are met, the parent
definition’s tag(s) may be applied.

tagdictionary-OrdScope
You add the OrOrdScopedScope component to the scope list container or a ScopedTagRule. Added OrOrdScopesdScopes are, in
effect, adding another condition to the rule.

Properties

NOTE: In order for the rule to be applied, the component must be located at or under the scopeOrd and not
located under any of the excludedScopeOrds.

The OrdScope components are available in the tagdictionary palette.

Property Value Description

Scope Ord ord, null (default) Defines the part of the station tree to

Tagging reference Niagara Tagging Guide

104 December 19, 2024

Property Value Description

evaluate. For example, during a search or
hierarchy refresh the DriverContainerScope
ord value,service:driver:DriverContainer,
limits evaluation to objects in the Drivers
folder. Similarly, the NiagaraNetworkScope ord
value,service:niagaraDriver:NiagaraNetwork
limits evaluation to objects in the
NiagaraNetworkNiagaraNetwork folder.

Exclude Scope Ords Ord List Defines part of the station tree excluded
from evaluation. For example, during a
search or hierarchy refresh this exclude
scope ords value,
service:TagDictionaryService, excludes the
Tag Dictionary Service from evaluation.
Typically, the ords in this ord list will be
underneath the scope ord.

tagdictionary-DataPolicy
Tag dictionaries may include data policies. A data policy provides additional metadata associated with a tag or
tag group. The tagdictionary palette contains the following DataPolDataPolicyicy components:

• DataPolicy

• BooleanDataPolicy

• EnumDataPolicy

• NumericDataPolicy

• StringDataPolicy

NOTE: Typical tagging operations do not require data policies. The data policy functionality is provided
primarily for use by the Analytics engine. For that reason, tag dictionaries may include added data policies.

An Add Data PolAdd Data Policyicy action has been added to TTagInfoagInfo and TTagGragGroupInfooupInfo components. Invoking this action
prompts you to select a DataPolicy type to add to the selected TTagInfoagInfo or TTagGragGroupInfooupInfo component in a tag
dictionary.

You can also add a data policy to TTagInfoagInfo or TTagGragGroupInfooupInfo components by dragging a DataPolDataPolicyicy component
from the tagdictionary palette onto the desired TTagInfoagInfo or TTagGragGroupInfooupInfo component.

NOTE: Only a single data policy can be added to TTagInfoagInfo or TTagGragGroupInfooupInfo components. You may not add a
data policy if the TTagInfoagInfo component is a Marker tag, or if the TTagInfoagInfo or TTagGragGroupInfooupInfo component already has
a DataPolicy child.

Properties for Data Policy

Name Value Description

Min Interval drop-down with time intervals
(defaults to None)

Defines the minimum allowed
interval when requesting a value
or trend request.

When a value or trend request is
processed, if the value of the
Interval in the request is less

Niagara Tagging Guide Tagging reference

December 19, 2024 105

Name Value Description

than the value of this Min
Interval, the Algorithm modifies
the value of the Interval in the
request to be the value of this Min
Interval prior to processing the
request.

For example, if a trend request
specifies the Interval as Five
Minutes and the algorithm’s Min
Interval is Fifteen Minutes the
algorithm changes the request
Interval from Five Minutes to
Fifteen Minutes before processing
the request.

The default of None allows any
interval to be specified in the
request.

Max Interval drop-down with time intervals
(defaults to None)

Defines the maximum allowed
Interval when requesting a trend.

When an algorithm processes a
value or trend request, if the
value of the request’s Interval is
greater than the value of this Max
Interval, the algorithm modifies
the value of the request’s
Interval to the value of this Max
Interval prior to processing the
request.

For example, if the trend request
specifies an Interval of Week and
the algorithm’s Max Interval is Day
the algorithm changes the value
of the request’s Interval from
Week to Day before processing the
request.

The default of None allows any
Interval to be specified in the
request.

Preferred Time Range from and to times (both default to 12
AM EDT)

Configures when the time period
starts and ends.

Preferred Rollup drop-down list of arithmetic
functions

Defines the how to roll up the
data when a request does not
specify the rollup function.

Tagging reference Niagara Tagging Guide

106 December 19, 2024

Name Value Description

Preferred Aggregation drop-down list of arithmetic
functions

Defines the aggregation to use
when a request does not specify
the aggregation function.

Units drop-down list of units of measure Identifies which unit of
measurement system to use,
English or metric.

EnglishMetricNone

Precision 32 bit (default), 64 bit Selects 32 bit32 bit or 64 bit64 bit options for
the history data logging. The 64
bit option allows for higher level
of precision but consumes more
memory.

Totalized

Trend Required true (default) or false When true, all points must have a
trend.

Tag Dictionary Manager view
TTag Dictag Dictionary Managerionary Manager, the default view for the Tag Dictionary Service, lists all tag dictionaries installed on the
station and their versions. The view provides functionality for creating, editing, importing/exporting tag
dictionaries; and indicates the presence direct tags that could be replaced with a TagGroup relation.

Buttons

• NewNew — allows you to create a new smart tag dictionary, which you can then export to a .CSV file for
editing.

• EdEditit — at the bottom of the view allows you to change the tag dictionary properties: Name, Namespace,

Figure 41. Tag Dictionary Manager view

Niagara Tagging Guide Tagging reference

December 19, 2024 107

and Enabled status.

• ImportImport and ExportExport — allow you to import or export tag dictionaries in a standard .CSV file format. You can
edit an exported tag dictionary in any CSV-compatible spreadsheet program (either online or offline) to
add or remove tag definitions, tag groups definitions, relation definitions, as well as validity rules.
Afterwards, you may import the edited .CSV file, thereby updating the existing tag dictionary.

• TTagsags > TTagGragGroupsoups — examines the station component tree looking for individual direct tags on a
component that match a TagGroup defined in an installed tag dictionary. If any are found, a window opens
listing the component, collection of direct tags, matching TagGroup and an indication if the component is
contained in a deployed template. Also shown are two columns, ConvertConvert and RemoveTRemoveTagsags.

If the ConvertConvert column is checked, the direct tags will be replaced with a TagGroup relation. When Convert
is selected RemoveTags is automatically be selected. If the Convert is not selected but RemoveTRemoveTagsags is, the
tag collection will be removed from the component without converting to a TagGroup relation. This is to
handle the case where a collection of tags can map to multiple TagGroups with some being subsets of
others. If neither Convert or RemoveTags is selected, no action is taken.

Make Convert and RemoveTag selections in the presented table and when you click OKOK, the selected
Conversions and TagRemovals occur.

HTML5 Tag Manager view
There is added support for the HTML5 THTML5 Tag Managerag Manager view featuring an intuitive design that enables a more
efficient overall tagging workflow.

It provides the same functionality as the EdEdit Tit Tagsags window in Workbench, but with some additional workflow

Figure 42. HTML5 Tag Manager view in a browser

Tagging reference Niagara Tagging Guide

108 December 19, 2024

enhancements. For example, the “context sensitive tagging” feature (as shown in the above image), is also
available in the existing EdEdit Tit Tagsags window via the dropdown list with either the Show AlShow Alll, Best OnlyBest Only or VValalidid
OnlyOnly option; and provides advanced tag filtering as well.

The following enhancements in the HTML5 THTML5 Tag Managerag Manager result in a more efficient tagging workflow:

• Allows bulk tagging of components via the browser

• Seamlessly view direct and implied tags

• Export all direct and implied component tags to a spreadsheet for templating and ongoing management

• Integrates with the SearSearch Servicech Service to improve workflow

• Drag-n-drop functionality

• Added as a default view on all station components for enhanced flexibility

The manager view functions identically whether accessed from within Workbench or a browser.

Tag Manager view
This view is the default view of the TTag Managerag Manager. You can add bulk tags.

Figure 43. HTML5 Tag Manager view in Workbench

Niagara Tagging Guide Tagging reference

December 19, 2024 109

To access this view, right-click on any network container and click VViewsiews > TTagManageragManager.

The following sections explains about the different types of windows.

Selected Components
Column Description

Name Display the name of the component.

Location Display the location of the selected component.

Available Tags
Column Description

Tag Display the different types of tags names.

Tag type Display the type of tag.

Showing tags on (Direct/Implied)
There are two types of tags available

• DirDirect Tect Tagsags Direct tags are tags that you add intentionally to a component using an installed tag
dictionary.

• ImplImplied Tied Tagsags Implied tags are tags that are not directly stored in the component, but are "implied" by tag
rules that are defined in installed Smart Tag Dictionaries.

Column Description

Tag Id Display the tag Id.

Tag Name Display the tags name.

Value Display the tag value.

Figure 44. Tag Manager View

Tagging reference Niagara Tagging Guide

110 December 19, 2024

Column Description

Value Type Display the type of value.

Buttons

• Remove ComponentsRemove Components Removes the selected component from the database

.

• EdEditit

Edit the value of the tag.

• AddAdd Insert a new tag in the database.

• DeleteDelete Deletes a selected tag from the database.

Relation Manager view
This view is an HTML5 view that you can use to add, edit, and delete relations and links (as of Niagara 4.15). It
is available as a view on all components.

The following section explains the different properties.

Property Description

Outbound Displays the component name of an outbound relation or link
(includes the slot for links)

Relation Displays the (outbound) relation ID for a relation or the type for a
link

Component Displays the name of the component at which this view is looking
(includes the slot for links)

Relation Displays the (inbound) relation ID for a relation or the type for a link

Inbound Displays the component name of an inbound relation or link
(includes the slot for links)

Tags Opens a compact editor to add, edit, or remove tags on a link

Niagara Tagging Guide Tagging reference

December 19, 2024 111

Actions

• New: Adds a relation or link

• Edit: Edits the selected relation or link

• Delete: Deletes the selected relations and/or links

Tagging reference Niagara Tagging Guide

112 December 19, 2024

Chapter 5. Glossary
The following glossary entries relate specifically to the topics that are included as part of this document.

To find more glossary terms and definitions refer to glossaries in other individual documents.

Alphabetical listing

semantic information
Metadata used to indicate the purpose of a device, that is, what the device is, what each of its data points
means, and how devices are related to each other.

scoped tag rule
In Niagara tag rules have a scope in which they apply. This means that an entity will only have tags implied by a
tag rule if the entity is within the tag rule's scope. This focuses evaluation of NEQL queries on applicable
entities, which reduces the amount of time it takes to complete a search or hierarchy refresh.

data policy
A data policy provides additional metadata that can be associated with a tagged component. For more details
on tags and tagging, see the Niagara Tagging Guide.

Haystack
An extensible Semantic Web Browser developed by the Haystack research group at the MIT Computer Science
and Artificial Intelligence Laboratory (http://haystack.lcs.mit.edu). The project explores how the Semantic Web
data model (a Resource Description Framework — RDF) can be applied by users to better organize, navigate,
and retrieve information, both personal and shared (www.w3.org/2005/04/swls/BioDash/Demo/What is
Haystack.html).

Haystack tag dictionary
A smart tag dictionary (namespace) containing a collection of tags developed by Project Haystack, which can
be used for semantic modeling of building control entities, i.e. site tags, building tags, equipment tags, point
tags, geo-location tags, etc.

The Haystack dictionary is indicated by the hs character, followed by a colon character (:).

The Haystack dictionary is a result of the work of the Open Source Initiative (OSI) hosted on the website
http://project-haystack.org.

implied tags index
In Niagara you can manually enable indexing on individual tags in the tag definitions of a custom smart tag
dictionary. The index primarily improves performance of NEQL searches and speeds-up hierarchy refreshing.

namespace
A container for a set of names in a naming system. A tag dictionary is a namespace.

Niagara tag dictionary
A tag dictionary (namespace) containing a collection of tags developed for Niagara systems, that are used for
semantic modeling of specific building control entities, i.e. networks, devices, equipment, points, sites,
buildings, geo-location, histories, etc.

The Niagara dictionary is a type of Smart Tag dictionary, therefore it applies Implied Tags and Implied Relations
to components and links. This allows queries to find these components based on type, linkage, hierarchy or
combinations of these. The Niagara tag dictionary is included by default in all stations created using the New
Station tool.

The Niagara dictionary is indicated by the n character, followed by a colon character (:).

Niagara Tagging Guide Glossary

December 19, 2024 113

tag
A piece of semantic information (metadata) associated with a device or point (entity) for the purpose of
filtering or grouping entities. Tags identify the purpose of the component or point and its relationship to other
entities. For example, you may wish to view only data collected from meters located in maintenance buildings
as opposed to those located in office buildings or schools. For this grouping to work, the metering device in
each maintenance building includes a tag that associates the meter with all the other maintenance buildings in
your system.

JACEs are associated with Supervisors based on tags; searching is done based on tags.

Tags are contained in tag dictionaries. Each tag dictionary is referenced by a unique namespace.

tag dictionary
Tag dictionaries contain a set of tag definitions, and may contain tag group definitions, relation definitions, as
well as tag rules for smart tags.

taggable spaces
The implementation of tags for all common data types: components, files, histories and alarms.

tag rule index
In Niagara the tag rule index is an index on the station’s Tag Dictionary Service which improves performance in
evaluating tag rules for implied tags during NEQL searches.

Glossary Niagara Tagging Guide

114 December 19, 2024

	Technical Document Niagara Tagging Guide December 19, 2024
	Niagara Tagging Guide
	Legal Notice
	Confidentiality
	Trademark notice
	Copyright and patent notice

	About this Guide
	Product Documentation
	Document Content
	Document change log
	December 19, 2024
	April 10, 2024
	October 5, 2023
	October 4, 2022
	July 19, 2022
	April 26, 2022
	November 2, 2020
	February 4, 2020
	August 6, 2019
	May 23, 2019
	November 30, 2018
	Updated: March 26, 2018
	Updated: October 24, 2017
	Updated: August 30, 2017
	Updated: January 12, 2017
	Updated: November 3, 2016
	Updated: July 26, 2016
	Updated: July 14, 2016
	November 29, 2015
	Initial publication: August 31, 2015

	Related documents

	Tagging Overview
	License requirements
	Tagging process

	Common tagging tasks
	Creating a tagged device
	Adding Ad Hoc tags
	Removing a tag
	Add tags to objects in the Discovered pane
	Add tags in the Database pane
	Adding a Tag Group to a component
	Creating a custom tag group
	Adding a tag to an existing tag group
	Adding tags using Batch Editor
	Editing tags in a template
	View implied tags using Edit Tags dialog
	Viewing implied tags using Spy view
	Selecting or exiting tag mode (manager views)
	Exporting and importing tag dictionaries
	Use case
	Creating a new tag dictionary
	Editing a tag dictionary exported to CSV
	Importing a tag dictionary in CSV format
	Exporting a tag dictionary

	Tag dictionary service
	Smart tag dictionary
	Haystack smart tag dictionary
	Modifying the Haystack tag dictionary
	Creating the Haystack tagsImportFile and equipImportFile
	Editing tags in the Haystack tagsImportFile and equipImportFile
	Configuring the Haystack dictionary to auto-import modifications
	haystack-HsTagDictionary
	Properties
	Actions
	Haystack Tags Import File format
	About the rows

	Haystack Equip Import File format
	About the rows

	haystack-EquipRelation
	haystack-SiteRelation

	H4TagDictionary
	Migrating to Haystack 4
	Tag groups

	Migrating Haystack 3 items

	Haystack 4 import
	Tags
	Choice tags
	Tag group
	Relations
	Tag rules
	Standard
	Custom

	Updating an existing H4 tag dictionary

	Brick tag dictionary
	Overview
	Updating Brick tag dictionary
	Brick custom rules

	Tagging reference
	About tags
	Tag structure
	Types of tags

	Online tagging versus offline tagging
	About the Edit Tags dialog
	Relation Manager
	Components and views in the tagdictionary module
	tagdictionary-TagDictionaryService
	Tag Dictionary Service
	Tag Dictionary Service properties
	Actions
	Neqlize options
	Tag Rule Index
	Imply tags in a different tag dictionary

	Implied tags index
	NiagaraTagDictionary

	About tag dictionaries
	Tag dictionary composition

	tagdictionary-SmartTagDictionary
	Smart tag dictionary properties
	Actions

	tagdictionary-SystemIndex
	For stations running prior versions

	Tag Definitions (TagInfoList)
	Tag properties

	Tag Group Definitions (TagGroupInfoList)
	TagGroup properties

	Relation Definition (RelationInfo)
	Tags (SimpleTagInfo)
	Tags properties

	Smart Tags
	tagdictionary-NameTag
	tagdictionary-DisplayNameTag
	tagdictionary-TypeTag
	tagdictionary-historyIdTag
	tagdictionary-HistoryMarkerTag
	tagdictionary-ScopedTag
	SystemDb usage example
	Hierarchy QueryLevelDef usage example
	tagdictionary-SingletonTagInfoList

	tagdictionary-TagRuleList
	Tag Rule components
	tagdictionary-ScopedTagRule
	AlwaysRule
	AndRule
	BooleanFilterRule
	HasAncestorRule
	HasRelationRule
	IsTypeRule
	NotRule
	OrRule

	Conditions
	tagdictionary-Always
	tagdictionary-And
	tagdictionary-BooleanFilter
	tagdictionary-HasAncestor
	tagdictionary-HasRelation
	tagdictionary-IsType
	tagdictionary-Or
	tagdictionary-OrdScope
	Properties

	tagdictionary-DataPolicy
	Properties for Data Policy

	Tag Dictionary Manager view
	Buttons

	HTML5 Tag Manager view
	Tag Manager view
	Selected Components
	Available Tags
	Showing tags on (Direct/Implied)
	Buttons

	Relation Manager view
	Actions

	Glossary
	Alphabetical listing
	semantic information
	scoped tag rule
	data policy
	Haystack
	Haystack tag dictionary
	implied tags index
	namespace
	Niagara tag dictionary
	tag
	tag dictionary
	taggable spaces
	tag rule index

