
Technical Document

Niagara Edge 10 ACE Driver Guide

This PDF is generated from docs.niagara-community.com on: August 7, 2025

About this guide

This topic contains important information about the purpose, content, context, and intended audience for this
document.

Product Documentation

This document is part of the Niagara technical documentation library. Released versions of Niagara software
include a complete collection of technical information that is provided in both online help and PDF format. The
information in this document is written primarily for Systems Integrators. To make the most of the information in
this book, readers should have some training or previous experience with Niagara software, as well as
experience working with JACE network controllers.

Document Content

This document describes the initial software installation and configuration of the Edge 10 ACE Driver on a
Niagara Edge 10 device, using Workbench (versions Niagara 4.8 and later).

This document does not cover station configuration or Niagara 4 components. For more information on these
topics, please refer to online help and various other Niagara 4 software documents.

• Document change log
Changes to this document are listed in this topic.

• Related documentation
Additional information on Niagara system, devices and protocols is available in the following
documents.

Document change log

Changes to this document are listed in this topic.

February 24, 2020

Edited several topics in the chapter, “ACE Nrio Trunk”.

November 1, 2019

In the topic, “Network architecture”, added a caution note alerting customers to restrict access to all computers,
devices, field buses, components, etc., that manage their building model. Added a new chapter on the “ACE Nrio
Trunk”.

August 9, 2019

Edited the ace-AceDynamicComp component topic to provide additional usage details on Select objects.

July 19, 2019

Updated content throughout, added two additional component topics to support online help.

About this guide

2

March 26, 2019

Minor changes throughout.

February 14, 2019

Early Access documentation

Parent topic: About this guide

Related documentation

Additional information on Niagara system, devices and protocols is available in the following documents.

• Niagara Edge 10 Install and Startup Guide

Parent topic: About this guide

About this guide

3

About the Edge 10 ACE

The Edge 10 ACE Driver is an autonomous control engine that comes with the Niagara 4.8 installation, and runs
in parallel with Niagara. The ACE driver provides fast start-up times and deterministic control. ACE's ability to
start-up quickly allows an application to quickly assume control over the I/O to perform critical functions.
Deterministic control ensures that your application will always run in the specific order and timeframe as
specified upon application creation.

The ACE driver runs only on a Niagara Edge 10 device, and is comprised of an ACE network, and a catalog of ACE
components. Just like programming a standard Niagara application, you drag ACE components onto a wire sheet
which provides a familiar way to create applications. The ACE App is composed of a set of linked components,
similar to kitControl components which run in a Niagara station.

The ACE App runs in parallel with a Niagara station and both are able to communicate and share data with each
other. While the two engines can collaborate, the application developer must choose if they want to control
onboard Edge 10 I/Os and remote I/Os in the ACE App or in the station.

Note: If you try to run both the AceEdgeNetwork and the EdgeIONetwork one or both of the networks will be in
fault. If you add the second network it will be in fault. If you restart the station they will both be in fault.

Another feature of the ACE driver is that it is fully compatible with application templates, which are the primary
means of sharing solutions that are built for Edge devices. As long as the ACE executable files (*.ace) are in the
/ace folder in the station’s file space, they will be picked up by any application template that is created from that
station and then installed to the same location in the target station. Complete details on application templates
are available in the Niagara Templates Guide.

• Requirements
Following are the licensing, software, and platform requirements for running the Edge 10 ACE Driver.

• ACE Network architecture
The ACE driver uses the standard Niagara network architecture.

• Installing ACE software
The following procedures describe the steps to install the ACE software on a released device as well as
on a pre-released device.

• Creating an ACE Application offline
This procedure describes the steps to engineer Ace applications offline, for later installation in the field.

• Adding App logic offline
Initially. the Local AceDevice contains a minimum default application which contains a Services folder
with the PlatformService and CommService objects. You drag ACE components to the App Wire Sheet
to build your app logic. As an example, this procedure describes adding the Ace Ramp and AoPoint
components.

• Downloading an offline App to the ACE engine
This procedure describes the steps to download (or push) a previously created Ace App (stored offline
on your PC file system) to the ACE engine which is running in memory.

• Creating an ACE application online
On installation, the AceEdgeNetwork comes with a default ACE App. The default App contains only the
components necessary for the ACE driver to communicate with the station, it does not contain any
logic. This procedure describes the steps to essentially copy and edit the default App which is running in
memory.

• Adding ACE proxy points to the station
The Local ACE Device has a Points extension, which provides a way for the station to interact with the
ACE App to gather data. Using Discovery you can add ACE proxy points to the station database to
transfer data from the App to your station, and to control functions of the App from your station.

• Troubleshooting tips
This section provides tips to help in troubleshooting your Ace App.

About this guide

4

Requirements

Following are the licensing, software, and platform requirements for running the Edge 10 ACE Driver.

The ACE driver is a licensed feature. The platform license must include the “ace” feature.

The following software modules are required to run the ACE driver.

• ace (-rt, -wb)

• aceEdge (-rt)

• platAceIpc (-rt)

The ACE driver runs on any Niagara Edge 10 platform running Niagara 4.8 or later.

Parent topic: About the Edge 10 ACE

ACE Network architecture

The ACE driver uses the standard Niagara network architecture.

Figure 1. Expanded Ace Edge Network in the Nav Tree

The AceEdgeNetwork is the top-level parent component, and by default has typical component slots such as,
Health and other status properties, Alarm Source Info, Ping Monitor, Tuning Policies, Heart Beat, and etc. The
Property Sheet is the default view for the AceEdgeNetwork.

The Local (Ace Device) is the second-tier component in the network. It has typical device status properties, a
Points Extension, and the ACE App. There can be only one child device in the AceEdgeNetwork, as such the
AceDevice is included with the network component. The Property Sheet is the default view for the AceDevice.

The AceDevicePointsExt is the parent container for proxy points. The Ace Points Manager is the default view for
the PointsExt.

The ACE App is a child of the Local AceDevice. The App folder is a Niagara representation of the ACE application

About this guide

5

components. It is useful for visualization of the applications behavior. The proxy points are a sufficient interface
to the application. There is no need for the in-station representation of the App.

The ACE App has a number of configurable properties related to scan frequency, scan level, and order. When the
ACE application is running it constantly scans components. Setting the scan “Level” is how you configure the
frequency of component scanning, while “Order” controls the order of execution within a scan level. For more
details see, “ace-AceApp” and “ace-AceCompManager” in the “Components and views" chapter of this guide.

The ACE driver has an extensive catalog of its own ACE components. You drag ACE components onto the Ace
Wire Sheet view to build the Ace App.
Figure 2. ACE Catalog with expanded Ace Io folder

Note: The ACE Catalog functions like a palette, in that you access it via the Workbench Side Bars, in the pane you
can navigate to folders, expand folders, and drag components from the pane. The catalog contains a large
number of Ace components, many of those are similar to kitControl components.

CAUTION: Protect against unauthorized access by restricting physical access to the computers and devices that
manage your building model. Set up user authentication with strong passwords, and secure components by
controlling permissions. Failure to observe these recommended precautions could expose your network
systems to unauthorized access and tampering.

Parent topic: About the Edge 10 ACE

Installing ACE software

The following procedures describe the steps to install the ACE software on a released device as well as on a pre-
released device.

Installing software on a released Edge device

1. Refer to the Niagara Edge 10 Install and Startup Guide and follow the instructions on “Setting up a
single device using commissioning”, and “Running the Commissioning Wizard”.

2. Connect to the station running on the Edge device.

About this guide

6

3. In the station Drivers node, remove the existing EdgeIoNetwork

4. Open the aceEdge palette and drag the AceEdgeNetwork to the Drivers node.

Figure 1. AceEdgeNetwork available in aceEdge palette

Installing on a pre-released Edge device

1. Update the Edge device with the Niagara 4.8 software

2. In the station Drivers node, remove the existing EdgeIoNetwork.

3. Open the aceEdge palette and drag the AceEdgeNetwork to the Drivers node.

Figure 2. AceEdgeNetwork available in aceEdge palette

Parent topic: About the Edge 10 ACE

Creating an ACE Application offline

This procedure describes the steps to engineer Ace applications offline, for later installation in the field.

The PC is properly licensed and running the Niagara 4.8 Workbench.

1. In Workbench, click Tools > New ACE App.

About this guide

7

2. In the New ACE App window, click in the ACE App Name field and enter the preferred app name.

Note the ACE App Path which indicates the default location where the new app will be saved (the ~ace
folder in your Windows User Home). The path is editable, you can save the App anywhere in your file
system. Also note, that there is only one CatalogFile (use the default path shown).

3. Click Finish.

The new offline Ace application is created and saved to the ~ace folder in your Windows User Home.

Parent topic: About the Edge 10 ACE

Adding App logic offline

Initially. the Local AceDevice contains a minimum default application which contains a Services folder with the
PlatformService and CommService objects. You drag ACE components to the App Wire Sheet to build your app
logic. As an example, this procedure describes adding the Ace Ramp and AoPoint components.

You have already created your new offline App.

1. In the NavTree, double-click your offline App to open the Wire Sheet view.

About this guide

8

2. In the toolbar, click Window > Side Bars > ACE Catalog, to open the ACE Catalog pane.

Note: The ACE Catalog functions like a palette, in that you access it via the Workbench Side Bars, in the
pane you can navigate to folders, expand folders, and drag components from the pane. The catalog
contains a large number of Ace components, many of those are similar to kitControl components.

3. Expand the catalog’s Util folder and drag the Ramp component to the wire sheet.
4. Expand the Ace Io folder and drag the AnalogOutput component to the wire sheet.
5. Open a Property Sheet view of the AnalogOutput and set the pointIndex value to 1.00 which

corresponds to 1st output.

6. Link the output of the Ramp component to the input of the AnalogOutput.

About this guide

9

7. Click the SaveBog icon in the toolbar to save your changes to the Ace App.

CAUTION: When engineering offline Apps be sure to save your changes via the Workbench toolbar

SaveBog icon () not the Save icon. SaveBog saves the App offline.

Parent topic: About the Edge 10 ACE

Downloading an offline App to the ACE engine

This procedure describes the steps to download (or push) a previously created Ace App (stored offline on your
PC file system) to the ACE engine which is running in memory.

• The PC is properly licensed and running the Niagara 4.8 Workbench

• You have previously created the ACE App offline and saved it to your PC file system.

1. In the station Drivers node, expand the AceEdgeNetwork, right-click Local and click Ace Application >
Download App.

2. In the File Chooser window, select your previously created offline application and click OK.

ACE App download job runs and a confirmation notice displays on-screen when finished. Also, the
download job is visible in the JobService.

The offline ACE App is pushed to the Ace Device’s memory. At this point the App starts running immediately.
Parent topic: About the Edge 10 ACE

Creating an ACE application online

On installation, the AceEdgeNetwork comes with a default ACE App. The default App contains only the
components necessary for the ACE driver to communicate with the station, it does not contain any logic. This
procedure describes the steps to essentially copy and edit the default App which is running in memory.

• The PC is properly licensed and running the Niagara 4.8 Workbench

• The AceEdgeNetwork is already added to the station’s Drivers node.

1. In the Drivers node in the NavTree, right-click on the AceEdgeNetwork and open a Property Sheet view.
2. Right-click the Local device and in the menu click Ace Application > View App .

About this guide

10

This copies the default Ace App (already running in memory) and places it as a child of the Local Ace
Device. For more details on the Ace Device right-click menu options see, “ace-AceDevice” in the
“Components and views” chapter of this guide.

3. Right-click the Local device again and in the menu click Ace Application > Save App.
This step puts your new App in the ACE engine (it becomes the App running in memory).

4. Double-click on the App to open a Ace Wire Sheet view.
5. In the Workbench toolbar, Window > Side Bars > ACE Catalog, to open the ACE Catalog pane.
6. In the catalog, navigate to desired components and drag them to the wire sheet as needed to build the

App logic.
7. In the Workbench toolbar, click the Save icon.

Your new ACE App is saved within the station.

Parent topic: About the Edge 10 ACE

Adding ACE proxy points to the station

The Local ACE Device has a Points extension, which provides a way for the station to interact with the ACE App to
gather data. Using Discovery you can add ACE proxy points to the station database to transfer data from the App
to your station, and to control functions of the App from your station.

• You have an existing station configured with the AceEdgeNetwork

• You have an existing ACE App that contains logic already running in memory.

1. Expand the AceEdgeNetwork in the station Drivers node and in the App, double-click the Points folder
to open the Ace Point Manager view.

2. Click Discover.
The Discover pane lists one folder for every discovered ACE component in the App.

3. Click to expand a folder.
This reveals the slots of that component which can be added as proxy points.

4. Select one or more of the exposed slots and click Add.
The selected slots are added as proxy points in the station Database pane, as shown in the example
image.

5. In the Workbench toolbar, click the Save icon to save your changes to the station.

About this guide

11

Parent topic: About the Edge 10 ACE

Troubleshooting tips

This section provides tips to help in troubleshooting your Ace App.

Debug options

In the station DebugService, there are debug options to add ACE log categories. You can use these to gather ACE
App data in the Application Director.

Figure 1. Debug Options for ACE log categories

outOfService action

The outOfService action is available for all four of the inputs and outputs found in the Ace Io folder of the Ace
Catalog. When invoked on an input the outOfService action disables the input and sets it to the indicated value.
When invoked on an output the outOfService action locks the point so that further updates are not written to
hardware. Useful when you want to disable certain inputs or outputs while you examine just a portion of the
logic. When no longer needed, remove the outOfService setting with the auto action.

About this guide

12

Parent topic: About the Edge 10 ACE

About this guide

13

ACE Nrio trunk

In Niagara 4.9 and later, the ACE driver provides support for the ACE Nrio Trunk. This allows for Nrio16 and
Nrio34 integration with the ACE App via a familiar (Niagara driver) interface.

Under the AceEdgeNetwork, this is enabled via the NrioTrunk Use AceNrio property, which when set to “true”
adds a cookie to the station and restarts the ACE engine.

Note: When you have an existing NrioNetwork already enabled and running in the station, that existing
NrioNetwork has control of the COM port that the NRIO module is connected to. If you subsequently configure
your AceEdgeNetwork to use the ACE Niro Trunk, the NrioService component in the ACE App is initialized in a
fault state because it cannot get a lock on the COM port. The reverse is true as well.

The configuration workflow is as follows.

• In the AceEdgeNetwork, add the Nrio Trunk and enable AceNrio.

• Add the NrioService to the ACE App and configure the communications port.

• Add NrioDevices (Nrio16Device and/or Nrio34Device) as needed to match the physical device(s).

• Add Nrio I/O point components (e.g., NrioAnalogIn, NrioAnalogOut, NrioDigitalIn, NrioDigitalOut) to all
read/write access to Nrio points.

• Configure the pulse counter.

• NrioService
NrioService is an implementation of the ace-AceDynamicComp component. It must be present (on the
ACE Edge network) for other ACE Nrio components to function.

• aceEdge-NrioDevice
NrioDevice (an implementation of the ace-AceDynamicComp component) represents a specific device.
Map Nrio16Device and Nrio34Device components to the corresponding physical IO-R modules.
Configure properties to address the device.

• aceEdge-ioPoints
The Nrio I/O Points read or write data to a single point.

• Setting up the Nrio Trunk
This procedure describes how to install and configure the Nrio Trunk on the ACE driver.

• Setting up the NrioService
This procedure describes how to set up the NrioService in the ACE App to use the ACE Nrio Points
components to control actual IO-R modules.

• Adding Nrio Points
This procedure describes how to add and configure the NrioPoints in a NrioDevice.

NrioService

NrioService is an implementation of the ace-AceDynamicComp component. It must be present (on the ACE Edge
network) for other ACE Nrio components to function.

Properties

This component is found in the ACE Catalog, AceNrio folder.

Figure 1. NrioService properties

About this guide

14

In addition to standard health properties and the properties common to all instances of the Ace Dynamic Comp
component, the following configuration properties are present.

Name Value Description

comPort /dev/ser1 (default)

trunk 1

baudRate 115200 Communications transmission rate

enable true, false (default)

commLossTimeout 8 (default) Number of seconds that may pass before
timing-out on loss of comm connections.
Range is 8–900.

startupTimeout 15 (default) Number of seconds that may pass before
timing-out on startup. Range is 8–900.

Parent topic: ACE Nrio trunk

aceEdge-NrioDevice

NrioDevice (an implementation of the ace-AceDynamicComp component) represents a specific device. Map
Nrio16Device and Nrio34Device components to the corresponding physical IO-R modules. Configure properties
to address the device.

You can map the NrioDevice component to a specific IO-R module via the Match window.

This component is found in the ACE Catalog, AceNrio folder.

Figure 1. Nrio34Device properties (same for Nrio16Device)

About this guide

15

In addition to common AceDynamicComp and health properties, the following configurable properties are
present.

Name Value Description

devAddress

enableCommLossDefaults true, false (default)

enableStartupDefaults true, false (default)

commLossTimeout 8 (default)

startupTimeout 15 (default)

devVersion

Actions

Following are right-click menu options for Nrio16Device and Nrio34Device components

• Force Read —

• Wink — toggles the digital output (DO1) of the selected device. This action is enabled when the device
status is “OK”.

• Ping — checks on whether the NrioDevice is in service. This action is enabled when the device is
matched.

• Match — opens the Match window, triggering the match and discovering process for the NrioDeivce.
This action is enabled when the device status is not “OK”.

Parent topic: ACE Nrio trunk

About this guide

16

aceEdge-ioPoints

The Nrio I/O Points read or write data to a single point.

NrioPoints are implementations of the AceDynamicComp component.

• NrioAnalogInput

• NrioAnalogOutput

• NrioDigitalInput

• NrioDigitalOutput

All Nrio I/O point components must have an NrioDevice parent to obtain an address.

This component is found in the ACE Catalog, AceNrio folder.

Figure 1. NrioDigitalOutput properties

In addition to common AceDynamicComp and health properties the following configurable properties are
present.

Name Value Description

pointIndex Configure the Point Index property to map
the component to a certain I/O. If the
value of Point Index property is invalid
(duplicated or out of valid range), the
component will be in fault.

polarity

minOn

minOff

About this guide

17

Name Value Description

defaultValue

in

out

Parent topic: ACE Nrio trunk

Setting up the Nrio Trunk

This procedure describes how to install and configure the Nrio Trunk on the ACE driver.

• You are connected to the station running on an Edge device.

• There is an existing AceEdgeNetwork with ACE App installed and running.

• The aceEdge palette is open.

1. Under the station’s Drivers node, open a Property Sheet view of the AceEdgeNetwork.
2. From the aceEdge palette, drop the NrioTrunk component onto the network.
3. Open a Property Sheet view of the NrioTrunk and set Use Ace Nrio to “true”.

Note: Leave the default value of Trunk and Port Name properties unchanged.

The ACE App is configured for Nrio.
Parent topic: ACE Nrio trunk

Setting up the NrioService

This procedure describes how to set up the NrioService in the ACE App to use the ACE Nrio Points components
to control actual IO-R modules.

• You are connected to the station running on an Edge device.

• There is an existing AceEdgeNetwork with ACE App installed and running.

• The ACE driver is configured to use AceNrio.

• The aceEdge palette is open.

1. Open the ACE App wire sheet.
2. Open the ACE Catalog sidebar.
3. From the Ace Nrio subfolder in the sidebar, drag the NrioService onto the App wire sheet.

Note: The NrioService is required in the ACE app in order to use NRIO devices.

4. From the Ace Nrio subfolder in the sidebar, drop an NrioXXDevice onto the ACE App wiresheet, where
NrioXXDevice is either Nrio16Device or Nrio34Device.

5. Right-click the NrioDevice and click Actions > Match.
6. In the Match window, click Discover, click to select one of the discovered UUIDs and click Match.

The NrioDevice component’s status should be OK

The ACE App is configured for Nrio. You can add points next.
Parent topic: ACE Nrio trunk

About this guide

18

Adding Nrio Points

This procedure describes how to add and configure the NrioPoints in a NrioDevice.

Note: Nrio I/O point components are required to reside in a certain NrioDevice component, i.e. they must have a
NrioDevice as their parent component.

Once added, you need to configure the NrioPoint’s Point Index property to map the component to a certain I/O.
If the value of Point Index property is invalid (duplicated or out of valid range), the status of that component will
be in fault.

1. Open a Property Sheet (or Wire Sheet) view of the NrioDevice.
2. From the ACE Catalog, drag a point of the desired type onto the view.
3. On the Property Sheet for the point, configure the following properties:

• For Point Index enter the number of the I/O (e.g., for ao1, you enter “1”).
• ForInputs, select the input type (Resistance or Voltage).

Parent topic: ACE Nrio trunk

About this guide

19

Components

Components include services, folders and other model building blocks associated with a module. You drag them
to a property or wire sheet from a palette. Views are plugins that can be accessed by double-clicking a
component in the Nav tree or right-clicking a component and selecting its view from the Views menu.

The component and view topics that follow appear as context-sensitive help topics when accessed by:

• Right-clicking on the object and selecting Views > Guide Help

• Clicking Help > Guide On Target

• aceEdge-AceEdgeNetwork
The AceEdgeNetwork component is added to the station Drivers node. The network includes a single
Local AceDevice. Also, there is no Device Manager view for this network since there can be only one
device. Double-clicking the AceEdgeNetwork opens a Property Sheet view. The component is found in
the aceEdge palette.

• ace-AceDevice
By default, the Local (Ace Device) object is included in the AceEdgeNetwork.

• ace-AcePointDeviceExt
The Ace Point Manager is the default view of the Points Ext. The Discover action lists one folder for
every discovered component in the Ace App. Expanding a folder reveals the properties of that
component. The properties can be added as proxy points in the station database.

• ace-Ace App
The ACE App runs in memory.

• ace-AceFolder
By default, each ACE App contains the “Services” Ace Folder, a container for additional ACE objects. By
default, this folder contains the PlatformServices and the CommService components. You can add
additional AceFolders for your own purposes.

• ace-AcePointFolder
• ace-AceDynamicComp

The AceDynamicComp, a hidden component, is a representation of a runtime ACE component
containing a dynamically created list of properties.

• ace-AceCompManager
The Ace Comp Manager view is available from the Views dropdown list in the ACE Wire Sheet view (or
in the NavTree, from the right-click menu for the App or for any Folder (component) in the App). Use
this view to compare and edit the Level and Order settings for components in the App.

• ace-AcePointManager
The default view of the AceDevicePointExt. Like other manager views, it provides the Discover, Add, and
etc., actions.

• ace-AceWireSheet
The default view of the AceApp and any Folders in the App. Like theNiagara Wire Sheet view, the Ace
Wire Sheet provides a familiar space for creating applications.

aceEdge-AceEdgeNetwork

The AceEdgeNetwork component is added to the station Drivers node. The network includes a single Local
AceDevice. Also, there is no Device Manager view for this network since there can be only one device. Double-
clicking the AceEdgeNetwork opens a Property Sheet view. The component is found in the aceEdge palette.

Figure 1. AceEdgeNetwork Property Sheet view

About this guide

20

In addition to the standard network properties (Status, Enabled, Fault Cause, Health, etc.) the following
configurable properties are present.

Type Value Description

Comm Config Contains the Fault Cause subproperty

Parent topic: Components

ace-AceDevice

By default, the Local (Ace Device) object is included in the AceEdgeNetwork.

Figure 1. Ace Device Property Sheet view

The Ace Device contains standard device properties including a Points Ext. Complete details on these standard
properties are available in the Niagara Drivers Guide.

Actions

Right-clicking Local > Ace Application invokes a menu of application-related actions. The actions function as
described here:

• View App — transfers the app currently running in memory, putting a copy into the station.

About this guide

21

• Download App — transfers the app from the hard drive (offline) to the ACE engine (running in
memory).

• Upload App — transfers (or pushes) the app from ACE engine (running in memory) to the hard drive
(offline).

• Save App — transfers the app that is currently in the station and puts it into memory (overwriting the
app that is running there).

Parent topic: Components

ace-AcePointDeviceExt

The Ace Point Manager is the default view of the Points Ext. The Discover action lists one folder for every
discovered component in the Ace App. Expanding a folder reveals the properties of that component. The
properties can be added as proxy points in the station database.

The Property Sheet view of the AcePointDeviceExt includes the following configurable Ace Point Discovery
Preferences.

Name Value Description

Do Not Ask Again true, (default) false

Learn Offline true, false (default)

Parent topic: Components

ace-Ace App

The ACE App runs in memory.

Figure 1. Ace App properties

When the Ace application is running it constantly scans the components. The scan frequency is configurable.
Setting the Scan “Level” is how you configure the frequency of component scanning. See the Scan Period

About this guide

22

property (50ms default) in the App property sheet view.

• Scan Level 1 (not visible) uses the configured Scan Period rate.

• Scan Levels 2-4 (values are 2, 4, 8 default), where the specified value is a multiplier of the configured
Scan Period value.

For example, Level 2 has a value of 2 which means it will scan every 100ms (2 x 50ms). This is useful if you have
components that you want to have operate very quickly to be responsive.

Name Value Description

Object Id

Meta

Device Name

App Name

Guard Time

Scan Period 50 ms (default) Sets the scan frequency. This value is the
basis for the Scans Level 1–4. Scan Level 1
always uses this scan frequency.

Time To Steady State

Log Level

Scans Level 1 (not visible) 1 Uses the configured Scan Period value (50
ms, by default).

Scans Level 2 2 (default) Uses the configured Scan Period value and
applies this multiplier to determine the
scan frequency. For example, Scans Level 2
scans every 100 ms (2 x 50 ms). Range is
1–65534.

Scans Level 3 4 (default) Uses the configured Scan Period value and
applies this multiplier to determine the
scan frequency. Range is 1–65534.

Scans Level 4 8 (default) Uses the configured Scan Period value and
applies this multiplier to determine the
scan frequency. Range is 1–65534.

Parent topic: Components

ace-AceFolder

By default, each ACE App contains the “Services” Ace Folder, a container for additional ACE objects. By default,
this folder contains the PlatformServices and the CommService components. You can add additional AceFolders
for your own purposes.

About this guide

23

Name Value Description

Object Id numeric A numeric object identifier. The range is
0-65534.

Exe Param numeric Executable parameter lists the executable
scan level and scan order for this
component.

Parent topic: Components

ace-AcePointFolder

The AcePointFolder is provided for organizing proxy points, if desired. This component is found in the aceEdge
palette.

Parent topic: Components

ace-AceDynamicComp

The AceDynamicComp, a hidden component, is a representation of a runtime ACE component containing a
dynamically created list of properties.

Common properties

Most of the components in the ACE Catalog are AceDynamicComp components which are created dynamically
from code unique to the Niagara Edge 10 platform and included in the ACE driver. Click the following link for a
complete list of these components and their properties.

AceDynamicComp Index

Figure 1. Common properties on AceDynamicComp objects

Name Value Description

Object Id 2 (default) This is the unique object identifier that is
automatically generated by ACE. It is used
by the Niagara Proxy Point to identify
which component the proxy point is
related to. The range is 0-65534.

Meta 202050560 (default) This is the unique data that identifies what
the functionality of the AceDynamicComp
will be.

About this guide

24

Name Value Description

Exe Param numeric, 1 (default) Executable parameter lists the executable
scan level and scan order for this
component.

Ace Type text string Name of this Ace object type

Ace Kit text string Container in the ACE Catalog where this
component may be found.

logLevel text string Shows the configured log level as either
Error, Warning, Message, or Trace.

Select components usage details

When working with ACE select components (from the Ace Catalog Select folder), the Select slot requires an
Integer value (or a StatusInt slot type) as a link. Many components in the ACE Catalog have numeric out slots,
which are of type StatusDouble. These slots must be converted to a StatusInt to be compatible with the Select
object Select slot when linking into the Select object. The NumericToInt conversion object must be used as
shown below to accomplish this conversion. The NumericToInt component is found in the Conversion folder.

When trying to link an out slot of an ACE object to the select slot of an ACE Select object, and the link will not
connect, you can use the following steps to verify that the two slots are not compatible.

1. Put the mouse on the out slot of the "Link From" object and click the mouse.

2. While holding the mouse button, move to the white link bar at the bottom of the ACE Select object to
see the link error view.

3. The out slot of the source object should be highlighted. Hover your mouse over the select slot of the
target (Select) object and the error message appears, as shown below. This error is a definite indication
that the NumericToInt conversion is required.

Figure 2. Example Select object link error

Figure 3. Example usage of NumericToInt conversion component

About this guide

25

Also, for Select components there is a new enumRange slot at the bottom of the select objects which allows you
to define what each select value represents.

Figure 4. enumRange slot at the bottom of the select object

In the above example, when selecting between three inputs with select statusEnum values being 1, 2 and 3. The
enumRange at the bottom is defined as 1=Off, 2=Heating, and 3=Return. The select slot at the bottom of
the object then shows which input is currently selected as Off, Cooling or Heating. Shown here, the numeric
select is currently using the Heating input, or in2.

Parent topic: Components

ace-AceCompManager

The Ace Comp Manager view is available from the Views dropdown list in the ACE Wire Sheet view (or in the
NavTree, from the right-click menu for the App or for any Folder (component) in the App). Use this view to
compare and edit the Level and Order settings for components in the App.

About this guide

26

Figure 1. Ace Comp Manager view shows components in the Ace App

When the ACE App is running it constantly scans the components. The scan frequency is configurable via Level
and Order settings. Scan “Level” is how you configure the frequency of component scanning . See Scan Period
property (50 ms default) in the ACE App Property Sheet view. Scan Level 1 (not visible) uses the configured Scan
Period rate. For Scan Levels 2-4 (values are 2, 4, 8 by default), each value is a multiplier of the configured Scan
Period value. For example, Level 2 has a value of 2 which means it will scan every 100ms (2 x 50ms). Useful if you
have components that you want to have operate really quickly to be responsive.

Order is the order of execution within a scan level. For example, you can drag 3 Ace Compare components onto
the wire sheet and link them (1st to the 2nd, the 2nd to the 3rd) to create a logic chain. Save those changes and
switch to the Ace Comp Manager view. You will see 0 as the Order values of those components. But, you can
click Edit and set the Level and Order manually, or set order by clicking the Force Order button to evaluate the
components of the App and determine an execution order based on that.

Name Value Description

Level numeric Level sets the frequency of component
scanning.

Order numeric Order sets the order of execution within a
scan level.

Buttons

• New Folder — creates a new component folder

• New —

• Edit — opens the Edit window on the selected component where you can modify the Name, Level, and
Order settings.

About this guide

27

• Force Order — evaluates the components of the App and determines an execution order based on that.

• TagIt —

Parent topic: Components

ace-AcePointManager

The default view of the AceDevicePointExt. Like other manager views, it provides the Discover, Add, and etc.,
actions.

Discover provides a method of getting data from the ACE App to your station, and enables you to control
functions of the App from your station. Discover shows one folder for every discovered component in the ACE
App. Expanding one reveals the slots of that component. The slots can be added as proxy points in the station

Figure 1. Ace Point Manager view showing expanded Ramp component properties

Parent topic: Components

ace-AceWireSheet

The default view of the AceApp and any Folders in the App. Like theNiagara Wire Sheet view, the Ace Wire Sheet
provides a familiar space for creating applications.

Figure 1. ACE Wire Sheet view of the Service folder in the AceApp

About this guide

28

Parent topic: Components

About this guide

29

	About this guide
	Product Documentation
	Document Content
	Document change log
	February 24, 2020
	November 1, 2019
	August 9, 2019
	July 19, 2019
	March 26, 2019
	February 14, 2019
	Related documentation

	About the Edge 10 ACE
	Requirements
	ACE Network architecture
	Installing ACE software
	Installing software on a released Edge device
	Installing on a pre-released Edge device
	Creating an ACE Application offline
	Adding App logic offline
	Downloading an offline App to the ACE engine
	Creating an ACE application online
	Adding ACE proxy points to the station
	Troubleshooting tips
	Debug options
	outOfService action

	ACE Nrio trunk
	NrioService
	Properties
	aceEdge-NrioDevice
	Actions
	aceEdge-ioPoints
	Setting up the Nrio Trunk
	Setting up the NrioService
	Adding Nrio Points

	Components
	aceEdge-AceEdgeNetwork
	ace-AceDevice
	Actions
	ace-AcePointDeviceExt
	ace-Ace App
	ace-AceFolder
	ace-AcePointFolder
	ace-AceDynamicComp
	Common properties
	Select components usage details
	ace-AceCompManager
	Buttons
	ace-AcePointManager
	ace-AceWireSheet

