
Technical Document

Niagara Hierarchies Guide

This PDF is generated from docs.niagara-community.com on: August 7, 2025

About this guide

This topic contains important information about the purpose, content, context, and intended audience for this
document.

Product Documentation

This document is part of the Niagara technical documentation library. Released versions of Niagara software
include a complete collection of technical information that is provided in both online help and PDF format. The
information in this document is written primarily for Systems Integrators. To make the most of the information in
this book, readers should have some training or previous experience with Niagara software, as well as
experience working with JACE network controllers.

Document Content

This Niagara 4 Niagara Hierarchies Guide provides an introduction to the use of hierarchies to create any number
of logical navigation trees which are not limited to representing the actual system structure. The use of
hierarchies allows for easy access to system information and components.

This document provides conceptual information about the hierarchies feature, as well as procedural information
describing how to set up and edit hierarchy definitions and assign hierarchies to roles.

• Document change log
Updates (changes and additions) to this document are listed below.

• Related documentation
Additional information is available in the following documents.

Document change log

Updates (changes and additions) to this document are listed below.

June 6, 2022

Added Note for namespace and query search details in “NEQL query examples” topic.

Parent topic: About this guide

Related documentation

Additional information is available in the following documents.

• Niagara Tagging Guide

• Niagara Relations Guide

• Niagara Station Security Guide

• Niagara Developer Guide

• Niagara System Database and System Indexing Guide

Parent topic: About this guide

About this guide

2

Common hierarchy tasks

The Hierarchy Service provides an efficient method of creating one or more logical navigation trees for the
Niagara system. You manage (set up and edit) hierarchy definitions on a station under the HierarchyService.
Hierarchy definitions are not legal anywhere else in the station. To set up new hierarchy definition, drag and drop
the Hierarchy component onto the HierarchyService node or property sheet. Currently, the Hierarchy Service
can contain an unlimited number of hierarchy definitions.

When you save a hierarchy definition, it executes against the system and the resulting Nav tree hierarchy is saved
in the station’s Hierarchy space. The navigation hierarchy name matches that of the hierarchy definition. In order
to modify a navigation hierarchy, you must make necessary changes in the hierarchy definition and save. Then
simply right-click the Hierarchy node and refresh the nav tree to update the navigation hierarchy.

• Preliminary preparations
The following preparations should be done prior to setting up a hierarchy.

• Setting up a hierarchy definition
This procedure demonstrates the steps to define a hierarchy to easily navigate to Air Handler Units in a
specific building in order to monitor child points and performance.

• Editing a hierarchy definition
Editing a Nav tree hierarchy is done by making modification in the corresponding hierarchy definition
located under the HierarchyService node. You can add, remove, or reorder the LevelDefs in an existing
hierarchy definition, as well as edit the configured properties (NEQL text, GroupBy tags and facets) for
any LevelDef.

• Assigning a hierarchy to a role
The visibility of any particular hierarchy is given on a role by role basis. More than one hierarchy can be
assigned to a role. The role(s) assigned to a user determines which hierarchies are visible to that user.

• Viewing implied tags using Spy view
Implied tags and implied relations are automatically assigned to objects by rules in the installed Smart
Tag Dictionaries. The implied tags and implied relations do not appear in the Property Sheet view or
other more commonly used views. Spy view shows all of the direct and implied tags and relations on an
object as well as other detailed data. Although intended to be used for diagnostic purposes, you can
use Spy view to identify implied tags and/or relations already assigned to a component. This can be
useful when developing hierarchies. Once identified, you can then create queries for those tags/
relations in your hierarchy definition.

• Accessing hierarchies scoped against the SystemDb
You can access hierarchies scoped against the SystemDb, which allows the Supervisor station to
navigate hierarchies with data based on entities from the remote JACE stations. The purpose of the
System Database is to allow you to run queries against your entire Niagara system (the Supervisor and
those Niagara stations connected to it), which allows your searches and hierarchies to span the entire
system.

Preliminary preparations

The following preparations should be done prior to setting up a hierarchy.

1. Lay out how you want your hierarchy to look on a piece of paper before you begin assigning tags and
creating components for buildings, offices, etc.

Note: It may be helpful to model the desired navigation nodes in the station using folders to represent
objects such as offices or floors.

2. Make a list of tags you plan to use and to which components you will assign the tags. You are not
limited to using tags from one tag dictionary. You can use any tags that are available, as well as
individual Ad Hoc tags which you create as needed (they do not need to be in a tag dictionary). For any
tags that you create, use a consistent tag naming convention, such as acme:AHU, acme:building, etc.

About this guide

3

Note: Only the tags that you add to an object appear on its property sheet. To view both implied tags
and directly added tags for a component, right-click the component in the Nav tree and select Edit Tags,
then click the tabs to view either Direct or Implied tags.

3. Confirm that the necessary tag dictionaries are installed. If desired, create a custom tag dictionary
containing a collection of tags that you create in order to simplify the tagging process.

Note: The Niagara tag dictionary is installed by default. Also, the Haystack open source tag dictionary,
included in the installation, can be added from the haystack palette.

4. Confirm devices and points are already discovered and tagged. If not, add the necessary tags. You can
assign multiple tags to any component. For example, one piece of equipment might have the following
tags applied: n:device, acme:AHU2, acme:equipRef, etc. For details on adding tags, see the Tagging
Guide.

Note: Tags are case sensitive. Make sure you use the correct case when entering tags in your hierarchy
definition queries otherwise the queries will return nothing.

5. Confirm any additional components (any model components representing buildings, offices, etc.) are
already created and tagged. If not, add necessary tags.

6. Confirm any necessary relationships between components are already added. If not, add any necessary
relations. For example, you may need to add a relation between a folder in your model representing a
particular floor and several air handler units. For details on adding relations, see the Relations Guide.

Note: When editing a hierarchy definition (in the HierarchyService) those changes are not automatically reflected
in the individual hierarchy tree (in the Hierarchy space). To view changes in an individual hierarchy tree, right-
click that hierarchy node in the Hierarchy space and select Refresh Tree Node. This updates the hierarchy tree
according to the current definition.

Once you have tagged all components as needed and added any desired relations between components you are
ready to define your hierarchy.

Additional Tips

• You can speed up hierarchy creation by copying and pasting level definitions within the current
hierarchy, or from one hierarchy to another. Then make any necessary edits to the pasted level
definitions.

• You can create multiple hierarchies for the same station in order to have different users navigate the
station differently. For example a Facilities Manager might navigate the system differently than an
Operator.

• When defining a hierarchy, a common practice is to frequently save and evaluate the resulting
hierarchy. In this way, you are able to identify where an additional level definition is required. Tweak the
resulting hierarchy by making iterative passes in this manner.

Parent topic: Common hierarchy tasks

Setting up a hierarchy definition

This procedure demonstrates the steps to define a hierarchy to easily navigate to Air Handler Units in a specific

About this guide

4

building in order to monitor child points and performance.

• The hierarchy and tagdictionary modules must be installed on your system.

• The hierarchy palette is open in the side bar.

• All devices, points and other components are already tagged and any necessary relations already
added.

• A plan for the desired navigation hierarchy already determined during preliminary preparations. For
more details see the section, Preliminary preparations.

1. Navigate to the station’s Config > Services node in the Nav tree and double-click the HierarchyService.
The Hierarchy Service Property Sheet displays in the right pane.

2. Drag and drop the Hierarchy component from the palette side bar to the Hierarchy Service Property
Sheet (or to HierarchyService node in the Nav tree), and in the Name dialog enter the hierarchy name:
“AHU Points” and click OK.
The new hierarchy definition appears in the Hierarchy Service Property Sheet and under the
HierarchyService in the Nav tree.

3. In the right pane, click on AHU Points to open it’s property sheet.
4. Click to expand the Scope and Station properties and enter the following Scope ORD:

station:|slot:/Model/Westerre/W1.

This Scope ORD causes the query to search only this specific location within the station. An alternative
to limiting the scope is to use additional LevelDefs.

5. Click and drag a QueryLevelDef component from the hierarchy palette to the AHU Points Property Sheet
and in the Name dialog enter “Device” and click OK.

6. In the property sheet, click to expand the new Device level definition and perform the following action:

Property name Action

Query Enter: n:device and nBld:ahu to return any objects tagged with n:device
and nBld:ahu.

Note: Typically, you identify the tags applied to AHUs in the station and make
note of them, by examining tags on one or more of these devices during
preliminary preparations. Without prior knowledge, you need to examine the
devices to determine how they are tagged or to apply tags.

7. Click and drag a RelationLevelDef component from the hierarchy palette to the AHU Points Property
Sheet and in the Name dialog enter “Points” and click OK.

8. In the property sheet, click to expand the new Points level definition and perform the following actions:

Property name Action

Outbound Relation Ids Enter: n:childPoint to return any child point components.

Filter Expression Enter additional tags to filter results: hs:air or nBld:temp to return any

objects tagged with either hs:air or nBld:temp.

Repeat Relation Select: true

9. Click Save.
10. In the Nav tree, right-click the Hierarchy space, select Refresh Tree Node, and expand the nodes to view

the resulting AHU Points hierarchy.

About this guide

5

There is added support for multiple relation IDs on a single relation level definition. You can enter more than one
comma-separated tagID in the Inbound Relation IDs or Outbound Relation IDs properties. The results for any of
these relation IDs display in the hierarchy.
Parent topic: Common hierarchy tasks

Editing a hierarchy definition

Editing a Nav tree hierarchy is done by making modification in the corresponding hierarchy definition located
under the HierarchyService node. You can add, remove, or reorder the LevelDefs in an existing hierarchy
definition, as well as edit the configured properties (NEQL text, GroupBy tags and facets) for any LevelDef.

• An existing Nav tree hierarchy in the Hierarchy space

1. Expand the HierarchyService and double-click the hierarchy definition to edit.
2. Make any of the following changes as needed:

• Click existing LevelDefs to edit configured properties.
• Add additional LevelDefs.
• Delete existing LevelDefs.
• Reorder existing LevelDefs

3. Click Save.
4. To view your changes in the hierarchy, right-click the Hierarchy space node in the Nav tree and click

Refresh Tree Node.

Parent topic: Common hierarchy tasks

Assigning a hierarchy to a role

The visibility of any particular hierarchy is given on a role by role basis. More than one hierarchy can be assigned
to a role. The role(s) assigned to a user determines which hierarchies are visible to that user.

• The hierarchy you wish to assign exists in the Hierarchy space.

1. To open the RoleManager view, double-click the RoleService.
2. Double-click to edit an existing role.
3. In the Edit window, click the chevron icon to the right of Viewable Hierarchies.
4. In the Edit Viewable Hierarchies window, click to the left of the desired hierarchy to select it, and click

OK.

The hierarchy will be visible under the Hierarchy space to any user assigned that role who logs in to the station.

Note: Assigning a hierarchy to a role only controls visibility of the top level of that hierarchy. The visibility of
elements under any assigned hierarchy are still restricted by the assigned role and its category permissions.

Example

As an example, the Building Owner role is edited to assign the Local Facility Manager hierarchy.

After a user assigned the Building Owner role logs in to the station, the Local Facility Manager hierarchy is
visible under the Hierarchy space.

Next, the particular Role must be assigned to a user for the hierarchy to be visible to that user.
Parent topic: Common hierarchy tasks
Related reference
Permissions

About this guide

6

Viewing implied tags using Spy view

Implied tags and implied relations are automatically assigned to objects by rules in the installed Smart Tag
Dictionaries. The implied tags and implied relations do not appear in the Property Sheet view or other more
commonly used views. Spy view shows all of the direct and implied tags and relations on an object as well as
other detailed data. Although intended to be used for diagnostic purposes, you can use Spy view to identify
implied tags and/or relations already assigned to a component. This can be useful when developing hierarchies.
Once identified, you can then create queries for those tags/relations in your hierarchy definition.

• You are connected to your station.

• One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TagDictionaryService.

Note: If tagging offline, it is possible that no dictionaries are available. In that situation, the system
searches for tag dictionaries in alternate locations.

• One or more installed tag dictionaries. If necessary, add required tag dictionaries to the
TagDictionaryService

Note: If tagging offline, it is possible that no dictionaries are available. In that situation, the system
searches for tag dictionaries in alternate locations.

This procedure describes how to open the Spy view on a station component to see its implied tags:

Note: Invoking the Edit Tags window is another method for viewing the direct and implied tags assigned to a
component.

1. In the Nav tree, right-click the component of interest and click Views > Spy Remote from the popup
menu.
Spy information displays in the Web Browser View.

2. Scroll down to Tags Implied.
The implied tags assigned to the selected component are listed. Scroll up or down to view all of the tags
and relations assigned to the component.

Parent topic: Common hierarchy tasks

Accessing hierarchies scoped against the SystemDb

You can access hierarchies scoped against the SystemDb, which allows the Supervisor station to navigate
hierarchies with data based on entities from the remote JACE stations. The purpose of the System Database is to
allow you to run queries against your entire Niagara system (the Supervisor and those Niagara stations
connected to it), which allows your searches and hierarchies to span the entire system.

• You have an open connection to a Supervisor station (via Workbench or browser).

• The SystemDb is installed and configured on the Supervisor.

• In order for any tagged entities to resolve correctly in virtual hierarchies, you must have installed the
same tag dictionaries on the Supervisor station as are installed in the subordinate stations.

• Entities in the subordinate stations are already tagged as needed.

• You have the hierarchy palette open.

• You have successfully indexed subordinate stations in your NiagaraNetwork, and Niagara virtuals must

About this guide

7

be enabled and set up properly for user permissions.

Although not a prerequisite, you may want to copy existing hierarchy definitions configured on the subordinate
stations and paste those into to the HierarchyService on theSupervisor station. Also, you need to modify those
definitions to point the hierarchy scope to the System Database. Otherwise, you need to create a properly
scoped hierarchy definition as described here.

1. In the Nav Tree of the Supervisor station, expand the Services node.
2. In the hierarchy palette, drag the Hierarchy component to the station’s HierarchyService and in the

Name window, enter the desired name. Alternatively, there is a preconfigured SystemDbHierarchy
component in the hierarchy palette that already has the SystemDb ("sys:") scope configured.

3. Open a Property Sheet view of the HierarchyService, expand Hierarchy > Scope > Station and in the
ScopeOrd field replace the default value by entering: sys:.
You have changed the Hierarchy scope to run against the SystemDb.

4. Continue to add level definitions as needed (based on objects and tags as used in the subordinate
stations and how you wish to navigate those stations). For more details, see procedure “Setting up a
Hierarchy Definition”.

5. Right-click in the Nav Tree and select Refresh Tree Node.
6. Expand the station’s Hierarchy space and navigate throughout the entities (including points and

schedules) located on the subordinate stations as organized by the hierarchies.

For more details on SystemDb, see the Niagara System Database and System Indexing Guide.

Parent topic: Common hierarchy tasks
Related reference
Hierarchy scopes

About this guide

8

Hierarchy reference

The following topics describe the basic hierarchy concepts and hierarchy components.

• About the Hierarchy Service
The Hierarchy Service provides an efficient method of creating a logical navigation tree for the Niagara
system. Rather than defining each element of the tree in a Nav file, the Hierarchy Service allows you to
define the navigation tree based on a set of level definition rules referred to as “LevelDefs”.

• Tags provide context in a hierarchy
Hierarchies are based on the tags and relations associated with each object (device, point and
component). Tags tell the system, for example, that a specific device is located in a specific building and
that a specific point belongs to a specific piece of equipment. The HierarchyService uses this contextual
information to set up the structure for individual hierarchies.

• Hierarchy component
Obtained from the hierarchy palette, the Hierarchy component creates the root level of a hierarchy Nav
tree structure.

• Caching hierarchies
There is added support for caching hierarchies on the station (server-side) which improves hierarchy
performance by greatly reducing the length of time it takes to render an expanded hierarchy on the
client side (Workbench and web browsers). Using cached hierarchies makes the Workbench and web
browser clients more responsive. However, the cache does reduce available heap memory on the
station side.

• About level definitions
Level definitions (LevelDefs) are used under the HierarchyService to define hierarchies. Each hierarchy
is defined as a tree of LevelDefs where there is a unique LevelDef for each node of the tree. The two
basic types of LevelDefs, Group and Entity, are described here:

• Context parameters
Context parameters on a LevelDef can be used to pass context sensitive information to subsequent
(lower) level definitions. You can use a Query Context to store any name value pair, but a more
powerful use is to store context sensitive data via facets.

• Hierarchy scopes
The Scope container under each hierarchy can contain one or more HierarchyScopes over which the
hierarchy can be generated. The default is the station (or Component Space) scope.

• Permissions
Roles have a Viewable Hierarchies property that allows you to assign on a per role basis which
hierarchies are visible to a user.

About the Hierarchy Service

The Hierarchy Service provides an efficient method of creating a logical navigation tree for the Niagara system.
Rather than defining each element of the tree in a Nav file, the Hierarchy Service allows you to define the
navigation tree based on a set of level definition rules referred to as “LevelDefs”.

Hierarchy Service properties

The hierarchy module is required in order to use hierarchies.

The HierarchyService, installed by default in the station’s Services directory, is the parent container for all
hierarchy definitions. The default view for the Hierarchy Service is the Property Sheet view, as shown.

About this guide

9

Property Value Description

Status read-only Reports the condition of the entity or
process at last polling.

{ok} indicates that the component is
licensed and polling successfully.

{down} indicates that the last check was
unsuccessful, perhaps because of an
incorrect property, or possibly loss of
network connection.

{disabled} indicates that the Enable
property is set to false.

{fault} indicates another problem. Refer to
Fault Cause for more information.

Fault Cause read-only Indicates the reason why a system object
(network, device, component, extension,
etc.) is not working (in fault). This property
is empty unless a fault exists.

Enabled true or false Activates (true) and deactivates (false) use
of the object (network, device, point,
component, table, schedule, descriptor,
etc.).

Hierarchy Timeout 00000h 00m 00s (hours, minutes,
seconds), 45 seconds (default)

This property allows you to configure the
wait time for hierarchy query processing.
When navigating a hierarchy, if the time it
takes to process a hierarchy query exceeds
the hierarchy timeout value, an error
message displays in Niagara 4.

You may increase the timeout value to
allow a longer wait time for results, or
decrease the timeout value to abandon
hierarchy query processing earlier.

Hierarchy palette

The hierarchy palette provides the HierarchyService component, the Hierarchy component which you use to
create a new hierarchy definition, as well as default level definition components (LevelDefs) which you must add
to a hierarchy definition to define the node levels within a hierarchy.

About this guide

10

Parent topic: Hierarchy reference

Tags provide context in a hierarchy

Hierarchies are based on the tags and relations associated with each object (device, point and component). Tags
tell the system, for example, that a specific device is located in a specific building and that a specific point
belongs to a specific piece of equipment. The HierarchyService uses this contextual information to set up the
structure for individual hierarchies.

All types of tags may be used to structure hierarchies, including implied (default) tags, such as n:device and
n:point as well as Haystack dictionary tags (tags that begin with hs:), custom-built dictionary tags, and Ad Hoc
tags that you might create when tagging components in the station. You do not have to create a custom tag
dictionary to use Ad Hoc tags, they can be created as needed. Although, using tags in a tag dictionary ensures
consistency which typically yields better results.

Before creating one or more hierarchies, configure your devices with the tags that will yield the hierarchies that
you need.

Note: As a convenience, you can fine tune a hierarchy by editing the tags on a component where it appears in
the Hierarchy space, rather than navigating to the component in the station logic. Whether your changes are
made in the station logic or in the Hierarchy space, they are applied to the same component.

Parent topic: Hierarchy reference

Hierarchy component

Obtained from the hierarchy palette, the Hierarchy component creates the root level of a hierarchy Nav tree
structure.

The name of the Hierarchy component becomes the collective name for the root node in the tree. Examples
might be a company or department name, a geographic region or the name of a group of devices that are being
monitored together.

Figure 1. Hierarchy component property sheet

About this guide

11

Hierarchy properties

Property Value Description

Query Context Config Facets window Sets up the current location’s context as a facet.

The current location is one item that could be
placed in the query context. The facet value is
compared with the value of the context tag on a
device or point at a lower level in the navigation
tree.

The query context can hold anything to be used in
LevelDef queries. It is comparable to a hierarchy
scoped variable. You could create multiple copies
of such a hierarchy definition and then customize
each copy with the query context of the specific
hierarchy.

Status read-only Reports the condition of the entity or process at
last polling.

{ok} indicates that the component is licensed and
polling successfully.

{down} indicates that the last check was
unsuccessful, perhaps because of an incorrect
property, or possibly loss of network connection.

{disabled} indicates that the Enable property is set
to false.

{fault} indicates another problem. Refer to Fault
Cause for more information.

Fault Cause (general) read-only Indicates the reason why a system object
(network, device, component, extension, etc.) is
not working (in fault). This property is empty
unless a fault exists.

Scope station: Causes the hierarchy query to search the local
station database.

Scope Ord station:|slot:/... Causes the hierarchy query to search within a
specific location in the station database

Tags GroupLevelDefn tags Applies additional tags. For example, you can set
the display name of the hierarchy definition as
you might for any other component. The display
name will be used when the hierarchy is displayed
under the hierarchy space and the
n:displayName tag stores this display name.
The name of the hierarchy definition and not the
display name is used in hierarchy ords so
hierarchy ords will continue to work even if the
display name of a hierarchy is changed. The
display name might be changed to make the
hierarchy space more user friendly (display names
can accept more than regular component names).

Cache Status read-only (defaults to Not Cached
(default), Caching, Cached, Caching
Failed, Not Cached On Started

Shows whether or not the hierarchy is cached or
the status of a caching operation that is in
progress. Cached indicates there is an existing
cache of the hierarchy.

About this guide

12

Property Value Description

Not Cached indicates that either an existing
cache was cleared, or the hierarchy has never
been cached.

Caching indicates that there is a job running
that is creating a cache of the hierarchy.

Caching Failed indicates that something
went wrong during cache creation and a cache of
the hierarchy does not exist. See the caching job
log for details regarding the failure.

Not Cached on Startup indicates that the
hierarchy property Cache On Station Started is
true the station start did not start a caching job
because either the
niagara.hierarchy.caching.disableOnStationStarted
or niagara.hierarchy.caching.disabled system
property is set to true. A cache of the hierarchy
does not exist.

Cache Creation Time read-only Shows date/time that the current cache was
created or null if a cache of the hierarchy does not
exist.

Cache On Station Started true, false (default) Configures if a cache job should run on station
start.

true starts a job once the station that builds a
cache of this hierarchy starts.

false starts nothing on station start.

Property Value Description

Query Context Config Facets window Sets up the current location’s context as a facet.

The current location is one item that could be
placed in the query context. The facet value is
compared with the value of the context tag on a
device or point at a lower level in the navigation
tree.

The query context can hold anything to be used in
LevelDef queries. It is comparable to a hierarchy
scoped variable. You could create multiple copies
of such a hierarchy definition and then customize
each copy with the query context of the specific
hierarchy.

Status read-only Reports the condition of the entity or process at
last polling.

{ok} indicates that the component is licensed and
polling successfully.

{down} indicates that the last check was
unsuccessful, perhaps because of an incorrect
property, or possibly loss of network connection.

{disabled} indicates that the Enable property is set
to false.

{fault} indicates another problem. Refer to Fault
Cause for more information.

About this guide

13

Property Value Description

Fault Cause (general) read-only Indicates the reason why a system object
(network, device, component, extension, etc.) is
not working (in fault). This property is empty
unless a fault exists.

Scope station: Causes the hierarchy query to search the local
station database.

Scope Ord station:|slot:/... Causes the hierarchy query to search within a
specific location in the station database

Tags GroupLevelDefn tags Applies additional tags. For example, you can set
the display name of the hierarchy definition as
you might for any other component. The display
name will be used when the hierarchy is displayed
under the hierarchy space and the
n:displayName tag stores this display name.
The name of the hierarchy definition and not the
display name is used in hierarchy ords so
hierarchy ords will continue to work even if the
display name of a hierarchy is changed. The
display name might be changed to make the
hierarchy space more user friendly (display names
can accept more than regular component names).

Cache Status read-only (defaults to Not Cached
(default), Caching, Cached, Caching
Failed, Not Cached On Started

Shows whether or not the hierarchy is cached or
the status of a caching operation that is in
progress. Cached indicates there is an existing
cache of the hierarchy.

Not Cached indicates that either an existing
cache was cleared, or the hierarchy has never
been cached.

Caching indicates that there is a job running
that is creating a cache of the hierarchy.

Caching Failed indicates that something
went wrong during cache creation and a cache of
the hierarchy does not exist. See the caching job
log for details regarding the failure.

Not Cached on Startup indicates that the
hierarchy property Cache On Station Started is
true the station start did not start a caching job
because either the
niagara.hierarchy.caching.disableOnStationStarted
or niagara.hierarchy.caching.disabled system
property is set to true. A cache of the hierarchy
does not exist.

Cache Creation Time read-only Shows date/time that the current cache was
created or null if a cache of the hierarchy does not
exist.

Cache On Station Started true, false (default) Configures if a cache job should run on station
start.

true starts a job once the station that builds a
cache of this hierarchy starts.

false starts nothing on station start.

About this guide

14

Actions

These caching-related actions are applied manually per hierarchy definition via the right-click menu.

• Create Cache — builds the hierarchy cache; an existing cache is deleted before the new cache is built

• Clear Cache — deletes the existing hierarchy cache

Additionally, you could link the caching action to a trigger schedule so that the cache is recreated on a regular
schedule, such as each night at 3:00 a.m.

Parent topic: Hierarchy reference
Related concepts
Caching hierarchies

Caching hierarchies

There is added support for caching hierarchies on the station (server-side) which improves hierarchy
performance by greatly reducing the length of time it takes to render an expanded hierarchy on the client side
(Workbench and web browsers). Using cached hierarchies makes the Workbench and web browser clients more
responsive. However, the cache does reduce available heap memory on the station side.

Caching is applied manually per hierarchy definition. If you have more than one hierarchy definition, each one
must be cached separately via an action on the right-click menu. And each hierarchy has a separate cache status
visible in the property sheet view of the Hierarchy component.

As with the implied tag index, once the hierarchy cache is built, it does not change. Subsequent changes to the
station, that is, editing a hierarchy definition or editing permissions, are not reflected in the cache until it is
recreated. For example, if you take away permissions that let a particular user see some part of the hierarchy, it
will continue to be visible to that user if the cache is not recreated. A best practice is that the user making such
changes to the station also be responsible for clearing the existing cache and creating a new cache.

Unlike the implied tag index which it is built “on-the-fly” as tag queries are executed, the hierarchy cache is built
at the time you initiate it. The job is launched and runs in a separate thread, and when the job completes a
popup window displays a message confirming that hierarchy caching completed successfully. Note that you can
expand a hierarchy while its caching job is running.

Figure 1. Cache information available in Remote Spy Page view

The Remote Spy Page view for each hierarchy shows how many elements are cached and the size of the cached
hierarchy. The cached hierarchy is stored in heap memory and is not persisted with the station. It must be
recreated each time the station starts. The Cache On Station Started property can be set so recreating the cache
when the station starts is automatic.

• System properties for caching
There are a couple of system properties that you can set which will inhibit the automatic caching
functions. Useful for managing hierarchy caching on a platform with limited heap space.

• Other caching mechanisms
One thing to be aware of is that clients, such as Workbench or a web browser, have their own caching
mechanism that is separate from hierarchy caching.

About this guide

15

Parent topic: Hierarchy reference
Related reference
Hierarchy component
System properties for caching

System properties for caching

There are a couple of system properties that you can set which will inhibit the automatic caching functions.
Useful for managing hierarchy caching on a platform with limited heap space.

• niagara.hierarchy.caching.disableOnStationStarted

In a situation where it appears that too much memory is being used (resulting in a station shutdown/
crash), there is a system property that you can set (niagara.hierarchy.caching.disableOnStationStarted)
for ignoring the Cache On Station Started property. The cache-related Actions will continue to work
even if this system property is set. When this system property is set to “true” hierarchies will not be
cached automatically when the station starts even if the Cache On Station Started property is “true”.
The intention of this system property is to provide a method of preventing a reboot loop.

• niagara.hierarchy.caching.disabled

When set to “true”, this system property disables caching of any hierarchies. You can set this property.
Additionally, it will be set automatically by the nre launcher for legacy platforms that do not have much
heap space, such as the JACE-3 and JACE-6.

The Create Cache action will still be present on hierarchies, but, when you try to invoke the action, an
error window appears with the following message:

“Hierarchy caching is disabled because the system property niagara.hierarchy.caching.disabled is set to
true. This may be because the platform does not have sufficient station heap space.”

This new system property is in addition to
niagara.hierarchy.caching.disableOnStarted, which only affects whether caches for
hierarchies will actually be built on station startup when with the CacheOnStationStarted property set
to true. If the niagara.hierarchy.caching.disabled property is set, then the
niagara.hierarchy.caching.disableOnStationStarted property is disregarded and
hierarchy caches are not built on station startup or when requested by the Create Cache action.

Parent topic: Caching hierarchies
Related concepts
Caching hierarchies

Other caching mechanisms

One thing to be aware of is that clients, such as Workbench or a web browser, have their own caching
mechanism that is separate from hierarchy caching.

For example, if you were to expand a hierarchy in the web browser, the browser saves those objects in the web
page. If you then change something that affects the contents of the hierarchy (hierarchy definition, station
configuration, user permissions, etc.) you will not see this change in the browser but will continue to see what is
saved to the web page. So you must refresh the web page in order to see those changes. The same is true in
Workbench, you must refresh the tree node of the hierarchy space (individual hierarchies cannot be refreshed
separately).

Parent topic: Caching hierarchies

About this guide

16

About level definitions

Level definitions (LevelDefs) are used under the HierarchyService to define hierarchies. Each hierarchy is defined
as a tree of LevelDefs where there is a unique LevelDef for each node of the tree. The two basic types of
LevelDefs, Group and Entity, are described here:

• Group and list level definitions, basically placeholder folders, set up the structure.

A GroupLevelDef defines a node based on distinct tag values assigned to devices, points or
other components, and provides simple grouping. Marker tags should not be used in a
GroupLevelDef.

A ListLevelDef defines a node based on one or more NamedGroupDefs (named group
definitions). Each NamedGroupDef has a query in which both marker and value tags can be
used. ListLevelDefs require one or more NamedGroupDefs within them.

In order to view the actual data, you must add devices and child elements underneath a group or list level
definition. To do this, use the Entity level definitions (either QueryLevelDef or RelationLevelDef) to set up each
NEQL query.

• A QueryLevelDef defines the tags to search on.

• A RelationLevelDef defines a relationship with a parent element to search on.

Level elements (LevelElems) are the nodes presented in an expanded hierarchy tree in the station Hierarchy
space as shown in the following image, where each node in the hierarchy is represented with a LevelElem.

LevelElems result from running the NEQL query at each level of the defined hierarchy. An individual LevelElem
based on an Entity level definition typically is associated to a BComponent within the scope of the NEQL query,
which is typically a station.

• QueryLevelDef component
Obtained from the hierarchy palette, this component sets up a NEQL query that returns the data
displayed in a hierarchy. QueryLevelDef is added to a hierarchy definition usually following one or more
GroupLevelDef or ListLevelDef components.

• RelationLevelDef component
Obtained from the hierarchy palette, this component defines a query that returns data for all objects
that are related to the level immediately above it. Typically, the relationship is a child relationship
(n:child).

• GroupLevelDef component
Obtained from the hierarchy palette, this component sets up a group to contain the results of one or
more QueryLevelDefs that follow.

• ListLevelDef component
Obtained from the hierarchy palette, this component sets up groups based on NEQL queries contained
in NamedLevelDefs. A ListLevelDef contain as child components one or more NamedGroupDefs and
must be followed by at least one QueryLevelDef.

• NamedGroupDef component
Obtained from the hierarchy palette, this component works in conjunction with ListLevelDef and
RelationLevelDef. It allows you to add one or more placeholder folders (nodes) within the ListLevelDef.

Parent topic: Hierarchy reference

QueryLevelDef component

Obtained from the hierarchy palette, this component sets up a NEQL query that returns the data displayed in a
hierarchy. QueryLevelDef is added to a hierarchy definition usually following one or more GroupLevelDef or
ListLevelDef components.

About this guide

17

Property Value Description

Query Context Config Facets window Sets up the current location’s context as a
facet.

The current location is one item that could
be placed in the query context. The facet
value is compared with the value of the
context tag on a device or point at a lower
level in the navigation tree.

The query context can hold anything to be
used in LevelDef queries. It is comparable
to a hierarchy scoped variable. You could
create multiple copies of such a hierarchy
definition and then customize each copy
with the query context of the specific
hierarchy.

Query NEQL query Defines a NEQL query. You may use all the
NEQL operators: and, or, etc.

The Context expression feature of NEQL
can also be included to access values in the
query context. Facet keys (found in the
query context) surrounded by braces will
be replaced by the value of the facet. For
example, in the query hs:siteRef =
{siteId}, "{siteId}" will be replaced by
the value of the siteId facet in the query
context.

Include Grouping Queries true (default), false Configures the prepending of Gropu Level
queries to the current NEQL query.

true prepends preceding GroupLevelDef
queries in the hierarchy to the current
NEQL query.

false prevents preceding GroupLevelDef
queries from prepending to the current
NEQL query. This results in LevelElems for
all query results being appended to the
grouping LevelElems instead of just those
query results that also match preceding
grouping values in the hierarchy.

Sort None, Ascending (default), Descending Determines the order in which results
display.

Parent topic: About level definitions

About this guide

18

RelationLevelDef component

Obtained from the hierarchy palette, this component defines a query that returns data for all objects that are
related to the level immediately above it. Typically, the relationship is a child relationship (n:child).

RelationLevelDef properties

The Inbound Relation Id and Outbound Relation Id properties on a relation level definition replace the
“RelationId” and “Inbound” properties present in prior releases. Note that during station start-up, if the existing
bog file contains a RelationId value, this value is copied to either an Inbound Relation Id or an Outbound Relation
Id based on the inbound flag value.

Additionally, there is added support for multiple relation IDs on a single relation level definition. You may add
multiple Inbound or Outbound Relation Ids separated by a comma. The results for any of these relation IDs
display in the hierarchy. Note that only a single LevelElem will be added for each distinct Entity related by the
specified Ids, even if the Entity is related multiple ways (any duplicate relation levels will be removed).

Property Value Description

Query Context Config Facets window Sets up the current location’s context as a
facet.

The current location is one item that could
be placed in the query context. The facet
value is compared with the value of the
context tag on a device or point at a lower
level in the navigation tree.

The query context can hold anything to be
used in LevelDef queries. It is comparable
to a hierarchy scoped variable. You could
create multiple copies of such a hierarchy
definition and then customize each copy
with the query context of the specific
hierarchy.

Inbound Relation Ids Comma separated list of relationIds Queries for inbound relations with the
specified Ids. Any duplicate relation levels
will be removed.

Outbound Relation Ids Comma separated list of relationIds Queries for outbound relations with the
specified Ids. Any duplicate relation levels
will be removed.

Repeat Relation true, false (default) Configures how the system processes
relations.

true, causes the system to traverse the

About this guide

19

Property Value Description

specified relations until there are no
further results. For example, if the relation

ID is n:child, the relation level def
repeatedly evaluates until it reaches an
Entity that has no children.

false evalutes the relations level def only
once.

Sort None, Ascending (default), Descending Determines the order in which results
display.

Parent topic: About level definitions

GroupLevelDef component

Obtained from the hierarchy palette, this component sets up a group to contain the results of one or more
QueryLevelDefs that follow.

Note: At least one QueryLevelDef is required after a GroupLevelDef, at any subsequent position.

Figure 1.

Property Value Description

Query Context Config Facets window Sets up the current location’s context as a
facet.

The current location is one item that could
be placed in the query context. The facet
value is compared with the value of the
context tag on a device or point at a lower
level in the navigation tree.

The query context can hold anything to be
used in LevelDef queries. It is comparable
to a hierarchy scoped variable. You could
create multiple copies of such a hierarchy
definition and then customize each copy
with the query context of the specific
hierarchy.

Group By text string Defines a single tag to use for grouping
query results at the current level. For

example, n:geoState groups all resulting
data by the “n:geoState” tag on the Entity:
AZ, CA, VA, etc.

Sort None, Ascending (default), Descending Determines the order in which results

About this guide

20

Property Value Description

display.

Parent topic: About level definitions

ListLevelDef component

Obtained from the hierarchy palette, this component sets up groups based on NEQL queries contained in
NamedLevelDefs. A ListLevelDef contain as child components one or more NamedGroupDefs and must be
followed by at least one QueryLevelDef.

The NEQL queries in the child NamedGroupDefs can contain marker tags and value tags.

Type Value Description

Query NEQL query Defines a NEQL query. You may use all the
NEQL operators: and, or, etc.

The Context expression feature of NEQL
can also be included to access values in the
query context. Facet keys (found in the
query context) surrounded by braces will
be replaced by the value of the facet. For
example, in the query hs:siteRef =
{siteId}, "{siteId}" will be replaced by
the value of the siteId facet in the query
context.

Sort None, Ascending (default), Descending Determines the order in which results
display.

Parent topic: About level definitions

NamedGroupDef component

Obtained from the hierarchy palette, this component works in conjunction with ListLevelDef and
RelationLevelDef. It allows you to add one or more placeholder folders (nodes) within the ListLevelDef.

Property Value Description

Query NEQL query Defines a NEQL query. You may use all the
NEQL operators: and, or, etc.

The Context expression feature of NEQL
can also be included to access values in the
query context. Facet keys (found in the

About this guide

21

Property Value Description

query context) surrounded by braces will
be replaced by the value of the facet. For
example, in the query hs:siteRef =
{siteId}, "{siteId}" will be replaced by
the value of the siteId facet in the query
context.

Parent topic: About level definitions

Context parameters

Context parameters on a LevelDef can be used to pass context sensitive information to subsequent (lower) level
definitions. You can use a Query Context to store any name value pair, but a more powerful use is to store
context sensitive data via facets.

If we add a String facet to a Query Context where the value of that facet is a tag name, the tag name is
evaluated against the results returned by the LevelDef and the value stored in the Query Context. See also,
“Query context example.”

Note: When adding facets to a Query Context, the facet values for tag names must be Strings. When comparing
a tag value to values from the Query Context, make sure the resulting types are the same. In the “Query context
example,” with equipId=hs:id and hs:equipRef={equipId}, the “type” for the values: hs:id and
hs:equipRef must be the same (BOrds in this example).

Parent topic: Hierarchy reference

Hierarchy scopes

The Scope container under each hierarchy can contain one or more HierarchyScopes over which the hierarchy
can be generated. The default is the station (or Component Space) scope.

The value in the Scope ORD subproperty limits the query to a specific location within the station, such as
station:|slot:/Model/Westerre/W1. An alternative to limiting the scope is to use additional LevelDefs in a
hierarchy definition.

Note: The "nspace" and "sys" ORD schemes support querying for indexed entities in the System Database.
These ORD schemes allow you to query the entire SystemDb, as well as to execute scoped queries against the
SystemDb. For details see the procedure, "Accessing hierarchies scoped against the SystemDb" in Chapter 1 of
this guide. For complete details on the System Database and System Indexing, see the Niagara System Database
and System Indexing Guide.

Parent topic: Hierarchy reference
Related tasks
Accessing hierarchies scoped against the SystemDb

Permissions

Roles have a Viewable Hierarchies property that allows you to assign on a per role basis which hierarchies are
visible to a user.

Users with the Admin role can always view all hierarchies and due to their super user permissions can view
everything under those hierarchies. All other users are assigned permissions to view a hierarchy via their role(s).

About this guide

22

In the Role Service, when editing a role in the Role Manager, you can select which hierarchies are visible to that
role. A user will be able to see all hierarchies that are assigned to their role.

Note: Assigning a hierarchy to a role only controls visibility of the top level of that hierarchy. The visibility of
elements under any assigned hierarchy are still restricted via the Role and its Category permissions.

For more details on categories, roles, and permissions, refer to the “Authorization Management” section of the
Niagara Station Security Guide

Parent topic: Hierarchy reference
Related tasks
Assigning a hierarchy to a role

About this guide

23

Examples

The following examples are designed to help you plan your tag requirements in advance.

• Display all points example
This is a straight-forward example of how to create a hierarchy that displays real-time results from all
points configured for three AHU units owned by the same company.

• Query context example
This example has two buildings, each with a Modbus network and Modbus Variable Air Volume (VAV)
controller. The goal is to monitor supply and return temperatures for each controller. Specifically, this
example demonstrates how the query context works.

• Multi-user example
This example features a campus of two multi-tenant buildings: Westerre I and Westerre II. The Niagara
system monitors each building’s lighting systems and HVAC equipment. The example illustrates how to
structure hierarchies in a Supervisor station for three users: facilities manager, system integrator, and
operations center.

• NEQL query examples
The Niagara Entity Query Language (NEQL) provides a mechanism for querying tagged entities in
Niagara applications. This topic provides grammar and syntax examples to help you construct these
queries.

Display all points example

This is a straight-forward example of how to create a hierarchy that displays real-time results from all points
configured for three AHU units owned by the same company.

Figure 1. All AHU Points hierarchy definition setup (left) and resulting hierarchy Nav tree (right)

Note: Red icons displaying in a hierarchy definition indicate the need to save due to the hierarchy being newly
created or modified in some way.

This table explains each property in the hierarchy definition.

About this guide

24

Level name Property Where set up Comments

Scope Scope: Station Station selected by
default in the hierarchy
definition.

This property limits the range of the
hierarchy to the station database.

Tags Hierarchy Tags Tags added to
LevelElems that are not
BComponents

None in this example. When the
navigation hierarchy is built, tags are
applied to LevelElems (nodes) that are
not BComponents

Device (QueryLevelDef) Query Context Selected here in the
hierarchy definition.

Not used in this example.

Query : n:device Direct tag added to
each AHU.

Returns all components tagged as
“devices”.

and hs:ahu Direct tag added to
each AHU.

Further narrows the search results to

only devices tagged with “hs:ahu”.

Sort: Ascending Selected here in the
hierarchy definition.

Defines the display sequence.

Points (RelationLevelDef) Outbound Relation Ids:
n:childPoint

Implied tag on each
point.

Indicates the outbound relation
direction setup on the object (target)
component of a relation. Returns all
entities with an outbound
“n:childPoint” relation from each result
returned from the previous
QueryLevelDef (named Device). The
n:childPoint relation is implied between
devices and points underneath the
device.

Inbound Relation Ids: Implied tag on each
point.

Not used in this example.

Filter Expression: Set up here in the
hierarchy definition.

Not used in this example.

Repeat Relation: true Set up here in the
hierarchy definition.

When true, this cause entities
traversed by the specified outbound
“n:childPoint” relation to be added to
subsequent levels of the hierarchy, if
they existed. n:childPoint is a relation
implied on devices so it is unlikely that
there would be additional levels unless
the relation was added manually.

Note: Referencing the implied n:childPoint relation between devices and their points, you can easily create
hierarchy displays that omit of the Points folder.

There is added support for multiple relation IDs on a single relation level definition. You can enter more than one
comma separated tagID in the Inbound Relation IDs or Outbound Relation IDs properties. The results for any of
these relation IDs display in the hierarchy.

Parent topic: Examples

About this guide

25

Query context example

This example has two buildings, each with a Modbus network and Modbus Variable Air Volume (VAV) controller.
The goal is to monitor supply and return temperatures for each controller. Specifically, this example
demonstrates how the query context works.

Building setup

The Site component (from the Haystack palette) was used to represent each building in the Nav tree. The Site
component is useful for this purpose since it is pre-tagged with a number of individual site-related tags which
can be used to create alternate hierarchies. Building1 and Building2 are arbitrary names assigned to the
components. Each building is assigned the following tags:

• The Haystack tag, hs:site, identifies the object as a physical site.

• The implied Haystack tag hs:id=h:{identifier} provides unique identification for each building via
the alpha-numeric {identifier} notation. For Building1 hs:id is h:9f2 , and for Building2 it is h:9f3.

Device setup

The network and VAV controllers are set up under the Drivers folder. ModbusVAV1 and ModbusVAV2 are
the arbitrary equipment names. Each device is assigned the following tags and relation:

• The Haystack tag, hs:equip, identifies the object as a physical device.

• The implied Haystack tag, hs:id=h:{deviceID}, provides unique identification for each device via
the alpha-numeric {deviceID} identifier. In the example, ModbusVAV1’s hs:id is h:83d, and
ModbusVAV2’s hs:id is h:841.

• The Haystack relation, hs:siteRef associates each device with the building in which it is located.

Points setup

VAV performance is monitored by two points (ModbusClientPointDeviceExt):

• SupplyTemp

• ReturnTemp

Each point is assigned the following Haystack tag and relation:

• The Haystack tag, hs:point, identifies the object as a point.

• The Haystack relation, hs:equipRef, associates each point with the equipment to which it belongs

Hierarchy definition

The hierarchy definition consists of three QueryLevelDefs.

This table explains each property in the hierarchy definition.

About this guide

26

Level Name Property Where set up Processing

site QueryLevelDef Query Context: siteId=hs:id Implied name, value tag on
each building component:

hs:Id={identifier} , where

{identifier} is a unique string
that identifies the site (Building
1 and Building 2)

Establishes the context for the
equipment level (next level in
the tree) by storing the value of

each building’s hs:id (Building
1 or Building 2) in the config

facet siteId.

Query : hs:site Name, value tag on each

building component hs:site =
h:9f2 or hs:site = h:9f3

Returns components tagged

with hs:site.

equipmentQueryLevelDef Query Context:

equipId=hs:id
hs:Id={identifier}, where

{identifier} is a unique string
that identifies each device. The
equipment Id for ModbusVAV1

is h:83d, and that for

ModbusVAV2 is h:841.

Establishes the context for the
points level by storing the value

of each device’s hs:id in the

config facet equipId.

Query:

hs:equip and
hs:siteRef->
hs:id = {siteId}

Set up by the site query context
in the previous level definition.

Query returns all devices

assigned the hs:equip implied
marker tag, and the NEQL

traverse operator “->”
instructs the query to

“traverse” the siteRef
relationship to determine if that
Source Ord value matches the

unique siteId context setup in
the previous QueryLevelDef, the
site level definition.

pointsQueryLevelDef Query Context none

Query:

hs:point and
hs:equipRef->
hs:id = {equipId}

Set up by the equipment query
context in previous level
definition.

The implied marker tag on each

point, hs:point, returns all
data for all points in the system,
and the NEQL traverse operator

“->” instructs the query to

“traverse” the equipRef
relationship to determine if that
Source Ord value matches the

unique equipId context setup
in the previous QueryLevelDef,
the equipment level definition.

Context processing

In this example:

• The siteRef=h:9f2 outbound relation on ModbusVAV1 matches the site query context value,
siteId=h:9f2, for Building 1 causing ModbusVAV1 to appear under Building 1 in the resulting
hierarchy.

• The siteRef=h:9f3 outbound relation on ModbusVAV2 matches the site query context value,

About this guide

27

siteId=h:9f3, for Building 2 causing ModbusVAV2 to appear under Building 2 in the resulting
hierarchy.

Continuing with the processing of points:

• The equipRef=h:83d relation on two points labeled SupplyTemp and ReturnTemp matches the
equipment query context value, equipId=h:83d, for ModbusVAV1 causing these points to appear
under ModbusVAV1.

• The equipRef=h:841 relation on two additional points SupplyTemp and ReturnTemp matches
the equipment query context value, equipId=h:841, for ModbusVAV2 causing them to appear
under ModbusVAV2.

Without using config facets to store the site and equipment contexts, a query would place all equipment below
each building and all points below each piece of equipment regardless of where the equipment and points
actually belong.

Note: When adding facets to the Query Context, the facet values for tag names should be Strings.

When comparing tag value to values from the Query Context, make sure the resulting types are the same. from
the example above with equipId=hs:id and hs:equipRef={equipId}, the types in the values of hs:id
and hs:equipRef must be the same (BOrds in this example).

Parent topic: Examples

Multi-user example

This example features a campus of two multi-tenant buildings: Westerre I and Westerre II. The Niagara system
monitors each building’s lighting systems and HVAC equipment. The example illustrates how to structure
hierarchies in a Supervisor station for three users: facilities manager, system integrator, and operations center.

Figure 1. Multi-user hierarchies on a station

• Facility Manager hierarchy - To monitor usage for the entire building as well as by floor, the facility
manager prefers that the data to be displayed by floor. Each floor expands in a similar fashion to Floor 1
in the screen capture. Westerre II follows the same structure.

Note: This hierarchy definition is the one that is fully explained in this example topic.

• Systems Integrator hierarchy - The systems integrator, whose main interest is monitoring device
performance, prefers to view the same data by device.

• Operations Center hierarchy - Finally, the operations center monitors the data by tenant and individual
office.

Definition for Facility Manager hierarchy

Now that you know the goal, the hierarchy structure for the Facility Manager is as follows.

All tags, including implied (default) and dictionary tags are available for constructing hierarchies. The table that
follows explains each of six levels for the Facility Manager’s hierarchy definition. After studying this example you
should be able to understand the hierarchies for the Systems Integrator and Operations Center. The level names
(left column) were set up by the hierarchy designer.

About this guide

28

Level name Property Where set up Result

Campus_GroupLevel Group By: demo:campus Value tag on each building
component; the value of

campus is “Westerre
Complex”

“Westerre Complex” appears as
the first node in the hierarchy
under “Facility Manager”

site_QueryLevel Query Context: siteId=hs:id Implied tag on each building
component:

hs:Id={identifier}, where

{identifier} is a unique string
that identifies the site

Sets siteId equal to the value

of the site’s hs:id and passes

siteId down to the next level
in the hierarchy definition

Query: hs:site Marker tag on each building
component

Identifies the component as a
location, causing the site names
to appear as nodes under
“Westerre Complex”

floor_GroupLevel Group By: demo:floor Value tag on each office:

demo:=Floor {n}, where

{n} is 1, 2, 3 or 4

Identifies the floor on which
each office is located, causing
the floor to appear in the
hierarchy

office_QueryLevel Query Context: officeId=hs:id hs:Id={identifier}, (where

{identifier} is a unique string
that identifies the office) is an
implied tag on each office.

Sets officeId equal to the
value of the office’s hs:id and

passes officeId down to the
next level in the hierarchy
definition.

Query: demo:office Marker tag on each office Identifies the component as an
office, causing the office names
to appear as nodes under each
floor in the hierarchy

Query: hs:siteRef={siteId} siteRef is a name, value tag on
each office. The value of this tag
is the hs:id of the site (building)
in which the office is located.

Compares the hs:siteRef tag

on the office) with the siteId
passed down from the
site_QueryLevel. A match
ensures that the office appears
under the correct building in
the hierarchy.

equip_QueryContext Query: hs:equip On each device Identifies the device as a piece
of equipment. This tag causes
the equipment names to
appear as nodes under each
office in the hierarchy.

Query:

demo:officeRef={officeId}
officeRef is a name/value tag
on each device. The value of this

tag is the hs:id of the office in
which the device is located.

Compares the

demo:officeRef tag on the

equipment with the officeId
passed down from the
office_QueryLevel. A match
ensures that the equipment
appears under the correct office
in the hierarchy.

Query Context: equipId=hs:id hs:Id={identifier} , (where Sets equipID to the value of

About this guide

29

{identifier} is a unique string
that identifies the office) is an
implied tag on each office.

the device’s hs:id and passes

equipId down to the next
level in the hierarchy definition.

history_QueryLevel Query: n:point Implied tag on each point. Returns data from all device
points.

Query: n:history Implied tag on each point. Returns all histories for the
device.

Query: hs:equipRef={equipId} Name, value tag on each point.
The value of this tag is the

hs:id of the device in which the
point is located.

Compares the hs:equipRef
tag on each point with the

equipId passed down from
the equip_QueryLevel. A match
ensures that the point appears
under the correct device in the
hierarchy.

About assigning hierarchies to Roles

Roles have a Viewable Hierarchies property. By assigning a hierarchy to a specific role you are able to control the
visibility of the entire hierarchy (and grouping elements within the hierarchy). Only the users assigned to that
role are able to view the hierarchy.

Note: Users with the Admin role can always view all hierarchies and due to their super user permissions can
view everything under those hierarchies. All other users are assigned permissions to view one or more
hierarchies via their role(s).

Parent topic: Examples

NEQL query examples

The Niagara Entity Query Language (NEQL) provides a mechanism for querying tagged entities in Niagara
applications. This topic provides grammar and syntax examples to help you construct these queries.

Note that NEQL only queries for tags. NEQL supports traversing defined entity relationships as well as
parameterized queries and allows you to use the same syntax for queries in hierarchy level definitions as is used
in Search queries.

In addition to using NEQL queries in a hierarchy definition or search, you might use these queries for testing
purposes, say to find devices or points in a station. For example, to find all devices in a station enter the query:
neql:n:device. Or using the absolute ORD form in Workbench, press CTRL+L to open the ORD dialog and
enter the following:

ip:<host>|foxs:|station:|slot:/|neql:n:device

Note:

In Niagara, the “sys:” ORD scheme can be used to redirect NEQL queries to resolve against the System
Database. For example, the following query searches for all devices known to the System Database:

ip:<host>|foxs:|sys:|neql:n:device

About this guide

30

In Niagara, NEQL queries can be resolved over FOX. Additionally, NEQL results support tables so the results can
be displayed in collection tables, reports, Px pages, etc. NEQL can be used in the following cases:

• used on a table on a Px page

• resolved from the ORD Field Editor

• resolved from the browser/path bar when typed in an Hx Profile

• used to generate reports

Finally, NEQL and BQL can be used together (although not supported in Search). You can append a BQL query to
the end of a NEQL query for additional processing. Do this in any of the cases listed above. The following
example shows a BQL select query appended to a NEQL query.

ip:<host>|foxs:|station:|slot:/|neql:n:device|bql:select toDisplayPathStrin
g, status

The above query first finds all devices using the NEQL statement, and then the BQL statement processes against
the devices returned from the NEQL query, displaying a two–column table with the display path of the devices
shown in one column and the status of the devices shown in the other.

CAUTION: Appending a BQL query to the end of a NEQL query may take some processing time. You could
experience processing delays when using such queries.

Query examples

The following examples are designed to help you construct queries.

To query for Syntax example Returns result

point tag n:point Any entity with the point tag (in the "n" namespace)

name tag = "foo" n:name = "foo" Any entity with the "foo" name tag (in the "n" namespace)

type tag = "baja:Folder" n:type = "baja:Folder" Any entity with the "baja:Folder" type tag (in the "n" namespace)

points that are
NumericWritables with
hs:coolingCapacity > 4.03

type =
"control:NumericWritable"
and hs:coolingCapacity >
4.03

Any entity with the "control:NumericWritable" type tag (in the "n"
namespace) and the coolingCapacity tag (in the "hs" namespace)
with a value greater than 4.03

everything true All entities

entities with names containing
"Switch"

n:name like ".*Switch.*" Any entity with a name that contains "Switch" case-sensitive

entities with geoCity tag with
value not equal to Atlanta

n:geoCity != "Atlanta" Any entity with the geoCity tag (in the n namespace) with a value
that is not Atlanta

where n:pxView is a relation n:pxView->n:type Any entity with a pxView relation where the endpoint is a niagara
type. This is all the entities that have px views.

entities with t:foo but not
t:herp

t:foo and not t:herp Any entity with the foo tag (in the t namespace) that does not also
have the herp tag (in the t namespace).

About this guide

31

To query for Syntax example Returns result

points that were built earlier
than 2015 or whose primary
function is backup

hs:yearBuilt < 2015 or
hs:primaryFunction =
"backup"

Any entity with either the yearBuilt tag (in the hs namespace) with
value less than 2015 or the primaryFunction tag (in the hs
namespace) with value "backup"

child entities of entities with
the floor tag = 2

n:parent->hs:floor = 2 Any entity whose parent has the floor tag (in the hs namespace)
with value 2

Note: Do not create a namespace for a tag dictionary if that namespace is already used for an existing ORD
scheme (NEQL or BQL). Since the search service allows for different types of searches (for example, neql and
bql), user must validate the search text and make sure they are not trying to enter an invalid ORD. Precede the
query search with "neql:" to specify that it should run a neql query explicitly, for example: "neql:h:test".

NEQL grammar

The following list is the subset of the NEQL grammar that you can use to build NEQL queries for the “Query”
portion of Query Level Defs and the “Filter Expression” portion of Relation Level Defs in Hierarchies. For a more
comprehensive overview of NEQL and the complete grammar and examples, refer to NEQL documentation in the
Niagara Developer Guide.

• <statement> := <full select> | <filter select> | <traverse>
• <full select> := select <tag list> where <predicate>
• <filter select> := <predicate>
• <traverse> := traverse <relation> (where <predicate)
• <tag list> := <tag> (, <tag>)*
• <tag> := (<namespace>:)<key>
• <relation> := (<namespace>:)<key><direction>
• <namespace> := <word>
• <key> := <word>
• <direction> := -> | <-
• <predicate> := <condOr>
• <condOr> := <condAnd> (or <condAnd>)*
• <condAnd> := <term> (and <term>)*
• <term> := <cmp> | <tagPath> | <not>
• <cmp> := <comparable> <cmpOp> <comparable> | <like>
• <like> := <tagPath> like <regex>
• <cmpOp> := = | != | < | <= | > | >=
• <comparable> := <val> | <tagPath>
• <val> := <number> | <bool> | <str>
• <tagPath> := (<relation>)*<tag>
• <not> := not <negatable> | !<negatable>
• <negatable> := (<predicate>) | <tag> // note: parens around

<predicate> signify actual paren characters, NOT optional syntax
• <number> := <int> | <double>
• <bool> := true | false
• <str> := "<chars>"
• <typeSpec> := <moduleName>:<typeName>
• <moduleName> := <word>
• <typeName> := <word>
• <word> := <chars>
• <regex> := "<chars>" // note: some regex edge cases not supported

Parent topic: Examples

About this guide

32

	About this guide
	Product Documentation
	Document Content
	Document change log
	June 6, 2022
	Related documentation

	Common hierarchy tasks
	Preliminary preparations
	Additional Tips
	Setting up a hierarchy definition
	Editing a hierarchy definition
	Assigning a hierarchy to a role
	Example
	Viewing implied tags using Spy view
	Accessing hierarchies scoped against the SystemDb

	Hierarchy reference
	About the Hierarchy Service
	Hierarchy Service properties
	Hierarchy palette
	Tags provide context in a hierarchy
	Hierarchy component
	Hierarchy properties
	Actions
	Caching hierarchies
	System properties for caching
	Other caching mechanisms

	About level definitions
	QueryLevelDef component
	RelationLevelDef component
	RelationLevelDef properties
	GroupLevelDef component
	ListLevelDef component
	NamedGroupDef component

	Context parameters
	Hierarchy scopes
	Permissions

	Examples
	Display all points example
	Query context example
	Building setup
	Device setup
	Points setup
	Hierarchy definition
	Context processing
	Multi-user example
	Definition for Facility Manager hierarchy
	About assigning hierarchies to Roles
	NEQL query examples
	Query examples
	NEQL grammar

