
Technical Document

Niagara JSON Toolkit Guide

This PDF is generated from docs.niagara-community.com on: August 7, 2025

Legal Notice

Tridium, Incorporated

3951 Western Parkway, Suite 350

Richmond, Virginia 23233

U.S.A.

Confidentiality

The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation
(Tridium). Such information and the software described herein, is furnished under a license agreement and may
be used only in accordance with that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and, except as permitted under the below copyright notice, is not to be released to, or
reproduced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for
damages of any kind, including without limitation consequential damages, arising from the application of the
information contained herein. Information and specifications published here are current as of the date of this
publication and are subject to change without notice. The latest product specifications can be found by
contacting our corporate headquarters, Richmond, Virginia.

Trademark notice

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-
Conditioning Engineers. Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and SQL
Server are registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of Oracle
and/or its affiliates. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON, LonMark,
LonTalk, and LonWorks are registered trademarks of Echelon Corporation. Tridium, JACE, Niagara Framework,
and Sedona Framework are registered trademarks, and Workbench are trademarks of Tridium Inc. All other
product names and services mentioned in this publication that are known to be trademarks, registered
trademarks, or service marks are the property of their respective owners.

Copyright and patent notice

This document may be copied by parties who are authorized to distribute Tridium products in connection with
distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise, in
whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior written consent from Tridium, Inc.

Copyright © 2025 Tridium, Inc. All rights reserved.

The product(s) described herein may be covered by one or more U.S. or foreign patents of Tridium.

For an important patent notice, please visit: http://www.honpat.com.

Related reference
Metrics (Json Schema Metrics)

Legal Notice

2

http://www.honpat.com/

About this guide

The JSON Toolkit provides a way to easily extract data from a station as well as a way to input information to
control connected devices.

The beginning chapters introduce data output and input. The Developer Guide chapter explains how to extend
toolkit features.

• Document change log
Changes to this document are listed in this topic.

• Related documentation
These documents provide additional information about how to construct data models using the Niagara
Framework.

Related reference
Metrics (Json Schema Metrics)

Document change log

Changes to this document are listed in this topic.

October 4, 2021

• Added information about “JsonDemuxRouter” Learn Mode property.

August 10, 2021

• Added or edited property descriptions and actions in components section.

• Added JsonArrayForEach component.

• Added Status slot to 11 components.

• Added documentation for actions.

• Updated the example in the topic titled, “Setpoint handler and writing to points.”

• Edited the setpoint handler JSON example.

December 9, 2019

Initial document release

Parent topic: About this guide
Related reference
Metrics (Json Schema Metrics)

Related documentation

These documents provide additional information about how to construct data models using the Niagara
Framework.

Legal Notice

3

Internal resources

• Niagara Developer Guide

• Niagara Drivers Guide

• Niagara Graphics Guide

• Bajadoc (accessed through the Workbench Help system)

External resources

• Java Platform Standard Edition 7 Documentation: https://docs.oracle.com/javase/7/docs/

• Unix time: https://en.wikipedia.org/wiki/Unix_time

• Chart.js, JavaScript charting for designers and developers: https://www.chartjs.org/

• Google Chart: https://developers.google.com/chart

Parent topic: About this guide
Related reference
Metrics (Json Schema Metrics)

Legal Notice

4

https://docs.oracle.com/javase/7/docs/
https://en.wikipedia.org/wiki/Unix_time
https://www.chartjs.org/
https://developers.google.com/chart

Introduction

The JSON Toolkit module adds functionality to the Niagara Framework®, enabling you to export JSON data
(payloads) from a station, or, when importing data, to influence the station in some way. A schema generates a
payload for export, whilst a handler processes imported JSON. The Toolkit is intended to give you the power to
adapt as needed.

JSON (JavaScript Object Notation) is a simple, lightweight, data encoded string. Used for data interchange since
2002 to communicate between a web browser and a server for the Javascript language, it has gained popularity
and is used in many scenarios beyond those implemented in 2002. Many IoT devices can easily receive a JSON
payload.

Figure 1. Logical JSON flow

On the left is the universe of data available to a Niagara Station. The station database provides some data; other
data can come from outside the station. The Schema contains configuration properties, which set up its
functions. A schema updates when a CoV triggers a generation action from a bound entity or a person invokes
the generate action on a schema Property Sheet. This causes any linked properties of the JSON Object payload to
create the Output string, which retrieves and routes the data onward through a Transport Point and Handler to
an alarm recipient, the cloud or other destination, and back to the device for asset control, such as to control the
lighting in a home or acknowledge an alarm.

The format of the JSON output string is relatively simple, organised into a list of key:value pairs, with support
for data types: Numeric, Boolean, Enum and String much like Niagara points. JSON messages can use any
sequence of objects, arrays and key/value pairs. The JSON Toolkit is flexible. You, as a developer can extend the
Toolkit or use APIs to access station data. You can drag schema elements around and change the order of the
messages.

JSON supports two data structures: objects and arrays. Complexity emerges from these simple constructs mainly
due to the variation in expected payload between different pieces of software, and also their expected encoding
of non-primitive types, such as date and time. This is where the demand arises for a flexible solution to marshal
Niagara’s rich object model to and from the JSON format.

You can extend the Toolkit or use APIs to access a station’s data. JSON can post data to APIs for data
transmission. For example, using the inbound components of the JSON Toolkit, external systems can send a

Legal Notice

5

JSON-encoded message to a Niagara station to change a setpoint or acknowledge an alarm.

As the data manipulator, you set up data retrieval and use by creating links between JSON objects. Each schema
contains a single root object, which itself contains the JSON objects that establish the links.

Figure 2. JSON workflow

From the station to the destination, you link the output string, typically via MQTT, to a string-publish point,
which sends the payload to a topic in the broker that forwards (transports) it to the destination system. The
schema itself is transport agnostic. Linking produces the desired result.

For example, just as an external oBIX client can poll a station for data, the JSON output can be retrieved via an
HTTP GET request to a URL that exposes its contents as a web servlet. Using JSON, you can have the same rich
data that oBIX provides without the pre-defined oBIX format. Using JSON, you choose the format of the data,
which affords total flexibility.

MQTT brokers can link the output of a JSON schema to a cloud platform, such as Bluemix, Google Cloud, and
AWS.

• Quick JSON example
This is a simple example with JSON objects and arrays.

• JSON Toolkit use cases
The following information includes a summary of typical JSON use cases, transport protocols and a
summary of the toolkit features.

• Transport protocols
The JSON Toolkit itself does not mandate the transport protocol used.

• Feature summary
The JSON Toolkit supports a significant list of features and options to aid the engineering effort.

• Comparison to alternatives
JSON Toolkit alternatives include oBIX and bajaScript.

• License requirements
To use the JSON Toolkit, your host requires the DR-JSON or DR-S-JSON feature added to the host’s
license. Production (non-demo) licenses also require an active Software Maintenance Agreement (SMA)
for the toolkit to function. Engineering or Demo licenses should have this feature added by default.

• JSON schema service
To use the toolkit, you first need to set up the JsonSchemaService by adding it to the station Services
container.

• Supervisor
The most convenient deployment of the jsonToolkit in cloud connectivity is to connect directly from the
controller schema to the remote transport. However, if a controller does not have remote connectivity,
a Supervisor is required. There are a few options to consider.

Related reference
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)

Quick JSON example

This is a simple example with JSON objects and arrays.

{
 "temperature": [
 {
 "Timestamp":"28-Jun-18 4:42 PM BST",

Legal Notice

6

 "Value":21.83
 }
]
}

In this example:

• A root object encloses the whole payload with open and close braces { }. A JSON schema object is a
named container that holds other schema entities. By itself an object has no properties or additional
containers.

• A JSON array named “temperature”. An array is a named container represented by brackets [] that
holds other schema entities.

• An object, in braces { }, is contained by the “temperature” array.

• The object contains a string “Timestamp” and a numeric “Value.” Each appears as a key/value pair
inside the object.

You could construct this simple example using StringConcat components from the kitControl module, however, if
you have many points it would take a lot of work to create this construct for every point. A JSON schema can
work across many points without extra effort.

Parent topic: Introduction
Related reference
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)

JSON Toolkit use cases

The following information includes a summary of typical JSON use cases, transport protocols and a summary of
the toolkit features.

Typical use cases

Following are some possible use cases for the JSON Toolkit:

• Cloud connectivity (IoT)

• Visualization

• Device connectivity

• Machine learning

• Analytics

• Data archival

Parent topic: Introduction
Related reference
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)

Legal Notice

7

Transport protocols

The JSON Toolkit itself does not mandate the transport protocol used.

Potential transport protocols include:

• MQTT (by linking the JSON schema output to an Mqtt String Publish Point)

• HTTP(s)

• Box (bajaux widget)

• File

These options may be valid for both incoming and outgoing JSON payloads. When linking to a publish or
subscribe control point, you may need to use an Engine Cycle Message Queue component to ensure that the
schema outputs all messages to the linked transport.

Parent topic: Introduction
Related reference
EngineCycleMessageQueue (Engine Cycle Message Queue)
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)

Related information
EngineCycleMessageQueue (Engine Cycle Message Queue) - Json

Feature summary

The JSON Toolkit supports a significant list of features and options to aid the engineering effort.

• Customer-definable JSON payloads

• Payloads for types other than points, such as, tags and facets

• Payloads for histories, series transform, and alarms

• Data selection using either bindings (ords), bql, or the addition of markers that directly identify points

• Support for encoding alarm events via a JsonAlarmRecipient

• The ability to respond to incoming requests to change a setpoint or acknowledge an alarm by uuid

• On-demand payloads generated by a CoV

• Topic generation for a relative schema (for example, mqtt publish topic)

• Tuning policies to throttle output

• Program object-based overrides

• The ability for developers to extend the toolkit

Parent topic: Introduction
Related reference
JsonSchema (Json Schema)

Legal Notice

8

https://docs.niagara-community.com/bundle/docJsonToolkit/page/docJsonToolkit.ditamap#EngineCycleMessageQueueEngineCycleM-1A2F8B84

Metrics (Json Schema Metrics)

Comparison to alternatives

JSON Toolkit alternatives include oBIX and bajaScript.

• oBIX (obix.org) provides a comprehensive connectivity option for Niagara, the JSON Toolkit differs by
offering a flexible, user-defined payload, and support for publish-on-change.

• bajaScript (bajascript.com) provides a means to access the Niagara component model with convenient
support for complex objects, subscription, action invocation, and querying.

• Project Haystack (project-haystack.org) offers both a common semantic model and a protocol to enable
the exchange of data. These tags can be included in the payloads generated by the JSON Toolkit.

In contrast to the above options, the JSON Toolkit does not dictate the protocol or layout used to exchange data.
This could be an advantage when dealing with charting libraries and cloud service providers who expect to send
or receive data in a specific format.

Parent topic: Introduction
Related reference
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)

License requirements

To use the JSON Toolkit, your host requires the DR-JSON or DR-S-JSON feature added to the host’s license.
Production (non-demo) licenses also require an active Software Maintenance Agreement (SMA) for the toolkit to
function. Engineering or Demo licenses should have this feature added by default.

SMA Expiration Monitor

In addition to the licensed feature requirement, the toolkit requires an active SMA in order to run. The Expiration
Monitor increases notifications as expiration of this agreement approaches. It runs on startup, the monitor (of
the JsonSchemaService) checks every 24 hours to establish if the expiration date is within the warning period, or
expired, and generates an offNormal or fault alarm accordingly. Although the alarms are likely the most
accessible type of notification, the SMA Monitor also logs the days remaining to the station console, which, for
example, could be shown on a dashboard. The station’s UserService also has an SMA Notification property,
which alerts users at the web login screen.

As the extension of the SMA currently requires a reboot to install the new license, once the monitor detects that
the agreement has expired it performs no further checks until the station starts again.

Parent topic: Introduction
Related reference
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)

JSON schema service

To use the toolkit, you first need to set up the JsonSchemaService by adding it to the station Services container.

Adding the JsonSchemaService component to the Services container can provide some station global filtering as
well as the ability to restrict user access when handling inbound messages.

Legal Notice

9

Figure 1. JsonSchemaService properties

The Spy page for the service maintains a registry of the export markers contained within the station. This registry
might prove useful when debugging issues with relative schema used in conjunction with the export marker
paradigm. In the event that setpoint changes are received, the register aids in finding the marked points.

Global Cov Slot Filter

The Global Cov Slot Filter can denote which slots to ignore when subscribing to bound values. The default list of
slots includes a good example of why this function is necessary in that changes to a component’s wsAnnotation
property (which defines the position and size of a component glyph on the wire sheet) should generally be
excluded from the changes of value reported to any upstream consumer of data.

Run As User

Another important property provided by the JsonSchemaService is Run As User. This property specifies the user
account to assume in the event that a router processes an incoming change. For example, this assumption is
mandatory when using the SetpointHandler, so that any changes triggered by a cloud platform are limited to
areas in the station where the platform has write access. JSON schema export data also optionally use this
property.

Operation Optional? How it works

Configuring
a setpoint
handler for
incoming
JSON

No The set operation only succeeds if the Run As User is a real user who has operator write permission on the
slot target.

Defining a
schema for
exporting
JSON

Yes When set, the data value of the exported slot defaults to an empty string unless the Run As User is a real
user who has operator read permission on the slot.

Note: Run As User is important for security. This property may only be set by a super user.

Debugging with Spy page

The Spy page for the JsonSchemaService also has a registry of the export markers (refer to the Export Marker
topic) contained within the station, which might prove useful when debugging relative schema issues that are
used in conjunction with the export marker paradigm. The central register aids finding the marked points in the
event that setpoint changes are received.

Figure 2. JsonSchmaService Spy page link

Legal Notice

10

Parent topic: Introduction
Related reference
Global Cov Slot Filter (Subscription Slot Blacklist)
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)
SetPointHandler (Json Set Point Handler)
JsonSchemaService (Json Schema Service)

Supervisor

The most convenient deployment of the jsonToolkit in cloud connectivity is to connect directly from the
controller schema to the remote transport. However, if a controller does not have remote connectivity, a
Supervisor is required. There are a few options to consider.

NiagaraNetwork point export

You import points from subordinate controllers into a Supervisor under the NiagaraNetwork and create
Supervisor schemata.

• Schema queries and bindings may target points under the NiagaraNetwork and subscription (change of
value) will work ok.

• Some information, such as the parent name and original slot path of the points, may not be available in
the schemata.

• Tag data and permissions may need to be redefined at the Supervisor level.

• Alarms and histories need to be imported to the Supervisor if you require these data for your schema.

• This approach requires the most configuration overhead and may not be desirable to import all the
points to the Supervisor.

System database

Use the system database to index subordinate controllers and sys: ords for queries within a Supervisor schema.

• Example schema query: station:|sys:|neql:n:point|bql:select name,
out.value, out.status

• Example schema base query: station:|sys:|neql:n:point|bql:select *

• Subscription to the remote points works so that change of value is available, as is the parent name and
original slot path of the points.

Legal Notice

11

• You cannot use a system database ord for a specific point binding.

• This option is not suitable for export of alarms and histories.

NiagaraNetwork schema export

The schema runs locally on each controller and is linked to a StringWritable. This writable point is then imported
into the Supervisor and linked to remote transport.

• It makes sense to do the processing at the data source where full point fidelity is available.

• The framework deals with permissions locally at each station.

• You have full alarm and history support.

• Linking the imported StringWritable to a transport, such as MQTT, keeps the point subscribed.

Proxy

If you are using MQTT as your transport, you may set up an intermediary broker to proxy messages to the
remote broker. This solution requires extra IT overhead and support.

Parent topic: Introduction
Related reference
JsonSchema (Json Schema)
Metrics (Json Schema Metrics)

Legal Notice

12

Exporting with a JSON schema

Adding a JsonSchema component to your station allows for the construction of a JSON payload to suit the
requirements of your particular application.

Overview

There are examples in the jsonToolkit palette, which may help with learning how to construct a schema. You can
simply drag the JsonExampleComponents and Schemas folders into a running station to work with them.

Figure 1. Schema parts

You construct a schema by placing “entities” from the jsonToolkit palette below a JsonSchema in the station and
then use configuration properties and queries to get the output you want. Use the numbers in the screen
capture to learn about schema elements:

1. You can give each schema a unique name.

2. The Output property contains the resulting JSON payload (message or string).

Note: The format of this black box (with new lines and spacing) is purely for presentation. The actual
string output is minified and does not contain extra spaces.

3. The Enabled property turns the generation of output, execution of queries and subscription to bound
values on and off. The Config folder contains properties that configure general schema attributes.

4. The Queries folder can contain query entities to insert bql, historical or alarm database content into a
payload.

5. A { } root object or an [] array contains JSON entities that structure the Output message. Some entities
may be simple—for example braces { } represent a simple JSON object, while other entities represent
Niagara bql queries (refer to the Niagara Developer Guide) and, therefore, have the potential to be
more complex.

6. Actions build and manage schema contents. The Generate action builds and updates schema output.
For relative schemata, Generate evaluates the base query and publishes the results for each resolved
base item.

Legal Notice

13

What can a Schema contain?

The schema supports a nested structure of child entities. These can be Objects, Arrays, or Properties of various
types. Niagara alarm, history or point data may populate these entities, which include:

Entity Type Output

Object “objectName” :{"name” : value, “name2” : value2….}

Array “arrayName” :[value, value2….]

Property “key”: value

Property List “key”: value, “key2”: value2

All entities (minus Property) support nested child entities. This lets you build a schema using a tree structure
with entities found in the jsonToolkit palette.

What structure is allowed?

Every schema requires a root member that is allowed by the JSON standard: this means an object { } or an array [
].

Figure 2. root Json Schema Object

The screen capture shows how Niagara represents a JSON root object in a standard Property Sheet view.

• Config folder
The JSON Toolkit provides several options to help you create consistent naming and formatting. The
root properties in each schema’s Config folder provide these consistency properties.

• Tuning policy
Most tuning policies properties are explained by the Niagara Drivers Guide.

• Overrides
An Overrides folder is a standard container under the JSON Config folder.

• Debugging errors (Schema History Debug)
When output updates rapidly, such as when a link calls a generate JSON action in quick succession or a
relative schema quickly changes output once per base item, it may be useful to view the most recent
output history. This task describes how to view the output history.

• JSON schema metrics
Metrics expose schema generation, query execution and CoV subscription data. You can log this
information, link it, and use it to generate alarms.

• Schema construction
Setting up a schema involves binding station data to JSON entities.

• Queries
Queries search the station database for the data to include in a schema.

• Alarms

Legal Notice

14

The JsonAlarmRecipient exports alarms using the recipient’s schema.
• Exporting schema output (JsonExporter)

The JsonExporter creates a file with the current output of the schema you are viewing. You could use
this feature with the ReportService to export on a regular basis, perhaps via file, email, ftp or HTTP for a
machine learning application or similar application.

• Exploring the examples
The JSON palette includes several examples you can explore to learn how schemata work.

Related reference
Metrics (Json Schema Metrics)

Config folder

The JSON Toolkit provides several options to help you create consistent naming and formatting. The root
properties in each schema’s Config folder provide these consistency properties.

The schema Config folder is separate from the station Config folder and applies only to the parent schema.

Figure 1. Config properties

• Name Casing Rule conforms names to camel case or another style.

• Name Spacing Rule defines a character to insert between words in a name, such as a space, hyphen,
underscore, etc.

• Date Format Pattern configures dates.

• Numeric Precision configures the number of decimal digits to show on exported floating point numbers,
values are rounded. Point facets are not used.

• Use Escape Characters turns on and off the use of escape characters around symbols that otherwise
would have special meaning. For example, when false, $20 becomes a space character.

The “Components” chapter documents the options for these properties.

Parent topic: Exporting with a JSON schema
Related reference
Metrics (Json Schema Metrics)

Tuning policy

Most tuning policies properties are explained by the Niagara Drivers Guide.

Tuning properties provide rules for evaluating when JSON outputs data and for indicating an update strategy.

Legal Notice

15

Configuring this policy can affect system performance. They are located in the Schema Config folder.

Figure 1. Tuning policy properties

Update Strategy determines when JSON string generation occurs: at change-of-value or on demand.

There is a built-in Min Write Time to ensure that hundreds of concurrent CoV changes over a short time do not
result in a deluge of JSON messages. For example, when set to five (5) seconds and a change-of-value occurs
within five seconds of the last change of value, schema generation defers for a full five seconds. However, if this
amount of time exceeds the Max Write Time setting, the system forces schema generation. In contrast, Max
Write forces an update after the specified interval.

Note: A Force Generate Json action overrides all tuning policy settings.

Export markers applied to numeric points also have a CoV Tolerance property which can be used to throttle
output.

The Write On Start and Write On Enabled properties provide other ways to invoke schema generation, for
example, when the station starts.

Parent topic: Exporting with a JSON schema
Related reference
Metrics (Json Schema Metrics)

Overrides

An Overrides folder is a standard container under the JSON Config folder.

This folder adds a TypeOverride component to the schema, should it be necessary to override how the schema
converts specific datatypes to JSON. The override applies to anywhere the system encounters the data type in
the entire schema. Examples might be:

• replacing Facets with a locally-understood value, such as ‘degC’ to ‘Celsius’

• defining a different format for simple types, such as Color and RelTime

• managing expectations for +/- INF in a target platform

For further information, refer to the “Type Override Example” in the “Developer Guide” chapter of this
document.

Parent topic: Exporting with a JSON schema
Related concepts
Type Override example
Related reference
Metrics (Json Schema Metrics)

Legal Notice

16

Debugging errors (Schema History Debug)

When output updates rapidly, such as when a link calls a generate JSON action in quick succession or a relative
schema quickly changes output once per base item, it may be useful to view the most recent output history. This
task describes how to view the output history.

You are viewing the Property Sheet for the schema.

1. Do one of the following:
• Click the Output History button to the right of the Output property on the schema.
• Expand the schema’s Config > Debug folder, right-click the Schema Output History Debug slot,

and click Views > Spy Remote.
The Schema Output History Debug view opens.

The History Size allows you to store more but be careful not to fill memory with JSON strings.

2. To configure the amount of debug data stored in the station, expand the Schema Output History Debug
folder and configure the History Max Size property.
It is a good idea to reduce this value once you have finished debugging.

Parent topic: Exporting with a JSON schema
Related reference
Debug (Json Schema Debug Folder)
Metrics (Json Schema Metrics)

JSON schema metrics

Metrics expose schema generation, query execution and CoV subscription data. You can log this information, link
it, and use it to generate alarms.

Figure 1. Schema metrics

These help with sizing and provisioning capacity from a cloud platform by estimating the traffic a station is likely
to generate with a given JSON schema. They may also assist in identifying performance problems. Debugging can
be assisted by using the reset action.

The metrics provide three categories of performance information: query performance, generate performance,
and subscription performance.

Queries Generation Subscription

Query Folder Executions Request Schema Generations Subscribes

Legal Notice

17

Queries Generation Subscription

Individual Query Executions Schema Generations Unsubscribes

Query Fails Schema Generation Fails Subscription Events

Last Query Fail Reason Last Schema Generation Fail Reason Subscription Events Ignored

Last Query Execution Millis Output Changes Cache Hits

Query Execution Millis Total Last Output Size Cache Misses

Query Execution Millis Max Output Size Total

Query Execution Millis Avg Output Size Max

Output Size Avg

Resolve Errors

Parent topic: Exporting with a JSON schema
Related reference
Metrics (Json Schema Metrics)

Schema construction

Setting up a schema involves binding station data to JSON entities.

Binding configuration, about binding

Bound properties, objects and arrays are JSON entities, which can use the current values of an ord target to
render their values. Fixed variants do not support binding.

Slot selection

When picking a bound object or array, you may choose which slots from the target to include in the resultant
JSON container. Currently the options are:

Figure 1. Slots to include

• All slots

• All visible slots (hidden slots excluded)

• Summary slots: only those with a summary flag

• Selected slots: manually-selected slots from a list

Legal Notice

18

Target types

Note: When choosing the bind target for a binding you could select any type of slot, from devices to control
points to out slots to simple values, there are no restrictions.

Bound arrays and objects output the value of each of the selected slots (refer to Slot Selection). The default
behaviour for each encountered slot type is as follows:

Selection Output

Strings The string value is unchanged

Booleans A JSON Boolean

Integer/
Long

A JSON number

Double
and float
decimals

A JSON number rounded to use the schema’s decimal places config

Enum
value

A JSON String that represents the Enum value

AbsTime A String representation of the date formatted as per the schema config

Control
Point

A JSON String, Numeric, Boolean, or Enum to represent the out slot’s value

Status
Value

A JSON String, Numeric, Boolean, or Enum to represent the value

Status A JSON string to represent the value, for example, {ok}

Anything
else

The string representation of the value as returned from the framework. This is often the type display name.

Note: Bound objects and arrays do not recurse. Only direct child slots are included. These behaviours make a few
assumptions about the most-expected case, for example, excluding the status string from certain types. Program
overrides may override all these behaviours.

Naming

For binding results you may choose what the key is in the key/value pair:

Selection Output

Display
Name

The name of the bound property, object or array

Target
Name

The name of the ord target

Target The display name of the ord target

Legal Notice

19

Selection Output

Display
Name

Target
Parent
Name

The name of the ord target’s parent

Target
Path

The absolute path of the target from the root of the component tree

Tip: You may use a Tag property with the name n:name to include point names. This property inserts a single
tag value from the bound component in the output. If the SearchParents property is true, the framework
searches up the hierarchy for the closest component with a matching tag id (if the tag not found on binding
target.

• Entities
Entities are objects, arrays, properties and bound properties.

• Creating a regular schema
You construct a schema by placing objects from the jsonToolkit palette in a JsonSchema.

• Relative schema construction
A relative schema enables the scaling of JSON payload generation and much faster engineering than
absolute object binding.

• Export markers
Export markers on points and other entities set up efficient data retrieval.

Parent topic: Exporting with a JSON schema
Related reference
Metrics (Json Schema Metrics)
BoundProperty (Json Schema Bound Property)

Entities

Entities are objects, arrays, properties and bound properties.

Objects

Objects are entities used to create containers in the JSON message and identify slots in a target ord.

• A JSON schema Object inserts into the schema an empty named container ({ }) for holding other
schema entities.

• A BoundObject is a named JSON object whose child name and value pairs are the slots within a target
ord.

Figure 1. A Json Schema Bound Object

Legal Notice

20

Arrays

Arrays contain a list of values. They do not include names.

• A JSON schema Array inserts into a schema an empty named container ([]) for the purpose of holding
other schema entities.

• A JSON schema BoundArray is a named JSON object that renders values as a list.

Fixed properties

Fixed Properties are hard-coded name and value pairs, which you always want to appear as constants in the
JSON string. You can link to these if the value is expected to vary. The next generation event, triggered by a CoV
on a bound entity or by the invocation of the Generate action, includes the current value. A change in the value
of any fixed property does not trigger a CoV generation event in the same way that a bound equivalent does.

• A FixedString property inserts a string value.

• A FixedNumeric property inserts a numeric value.

• A FixedBoolean property inserts a Boolean value.

Bound properties

A bound property inserts the current value of the object specified in the binding.

Figure 2. Bound properties

BoundProperties include:

• A BoundCSVProperty is a named JSON string that renders child slots as a string, comma–separated list

Legal Notice

21

with no surrounding [] or { }.

• A Tag property is a list of name and value properties based upon selected tags found on a binding
target. If the tag is not found on the binding target, andSearchParents is true, the framework searches
up the hierarchy for the closest component with a matching tag id.

• A TagList is a list of name and value property pairs that are based upon selected tags found on a binding
target. A comma-separated list specified in the Tag Id List Filter property can limit the tags to be
included in the output. Example: n:name, n:type or * for all. If Include Namespace is true, the tag
dictionary prefix is added to the key (for example, the hs: is added to hvac to give: hs:hvac).

Note:

Facet and Tag properties are not bound like the other bindings, in that changes of value do not prompt
schema generation. The current value is retrieved from the station when the schema generates.

Figure 3. Json Schema Tag List

• A Facet property inserts a single facet value from a bound component into the schema output, for
example, the units of the current point.

• A FacetList inserts a list of name and value facet properties based on a comma-separated list or * for all.
Add facet keys as follows: units, mix, max

• Message properties

Figure 4. Message properties

• A Count property is a named numeric value, which increments by 1 on each schema generation. Could
be used for message IDs.

• A CurrentTime property inserts the current time as set up in the Config folder’s Time Format property.

• UnixTime property inserts the current time in Unix time as seconds from January 1, 1970.

Legal Notice

22

Parent topic: Schema construction
Related reference
Metrics (Json Schema Metrics)
BoundObject (Json Schema Bound Object)
BoundArray (Json Schema Bound Array

Creating a regular schema

You construct a schema by placing objects from the jsonToolkit palette in a JsonSchema.

The station is running.

1. Open the jsonToolkit palette from the Workbench palette sidebar.
2. Drag a JsonSchema to the Config node or another desired folder location and type a unique name for

the schema when prompted.
3. To view the schema Property Sheet, double-click the schema glyph in the Nav tree.

The Property Sheet opens.

When you initially view the Property Sheet for a new schema, the Output property is an empty black
box. JSON strings appear here when you generate output.

4. In the Property Sheet view, ensure that the Enabled property is set to true.
Setting Enabled to false prevents the generation of output, the execution of queries and the
subscription to bound values.

5. To begin setting up the message, expand the Objects folder in the palette, drag an Object to the
Property Sheet and name it, for example, root.
Braces { } represent this object in the Output. This single top-level object serves as the JSON parent
container for other JSON objects that make up the message. Each JSON object requires a pair of braces
({ }) and arrays require brackets ([]).

6. Drag an object, array, or property from the palette to the Property Sheet root container.
Some objects may be simple and other objects may yield the more complex results of Niagara bql
queries. The objects that you choose to add depend on your unique requirements.

• Empty braces { } icons represent a JSON object. A bound object is a named object whose child
name and value pairs are the slots within an ord target.

• Bracket [] icons represent an array, which is an empty named container of other schema
entities. A bound array is a named object that renders values as a list.

• Other icons represent properties, which may be fixed or bound.

7. To update the schema Output based on the current values retrieved from the station, click Generate, or
right-click the schema name and click Actions > Generate Json.
This action causes a regular schema to re-evaluate any query and populate the Output box with JSON.

8. To set up some actual station data, drag in a BoundObject, name it appropriately, expand the bound
object and click the Select Source finder to the right of the Binding property.
This object requires a binding similar to the way components on Px pages require bindings to actual

Legal Notice

23

points in a station.
The Choose component/slot for JSON window opens.

9. Navigate to and select the source component, click OK and then click Save.
When choosing the target for a binding, you can select any type of slot, from devices to control points
to out slots to simple values. There is no restriction. Due to subscription, saving the schema also
generates the JSON message (output).
If your logic contains one or more points whose values change periodically, the schema generates a new
JSON message every time a CoV occurs. If the schema is connected to MQTT, the schema can send each
new message to the web.

10. To change the Json Name (a read-only property) to the name of the bound input slot on your Wire
Sheet, change Json Name Source property to Target Name, and, from the Slots To Include property,
choose Summary Slots.
To include specific slots, use the Slots to Include properties, identify and pick individual slots for more
fine-grained control.

You may link the output slot to an EngineCycleMessageQueue, if required, which buffers output sent to the
onward transport. These could be MQTT or HTTP depending on the onward linked point.
Parent topic: Schema construction
Related reference
Metrics (Json Schema Metrics)

Relative schema construction

A relative schema enables the scaling of JSON payload generation and much faster engineering than absolute
object binding.

The type of schema discussed thus far uses only absolute ords. In situations with many points, absolute ords
could limit scalability. One schema per point or device would not be an efficient way to proceed. In the same way
that relative ords in graphics enable efficient engineering with the Niagara framework, a relative schema
provides easier scaling for an existing station and also requires no changes to the JSON when adding new
components and points.

A base query feeds base components to the schema, which the query resolves against the schema one at a time.
In this manner it is possible to select, for example, all BACnet points in a station and output their name, status
and present value for export to the cloud. If an engineer adds an extra device to the BACnet network in the
future, the base query can automatically include it in the data exposed by the station, if the query allows.

Alone, a relative schema can select data to export or, when combined with an Export Marker, it can send only
recent history or publish only when a set tolerance value is exceeded. Further still, you can move points between
schema based on their status. You might have one schema that sends verbose point data and another with
simple latest values once you add an export marker.

Note: A best practice is to limit the scope of the base query to a subset of points in the station and limit the
frequency of JSON message generation. Very frequent payload generation could degrade station performance.

Base query examples

This base query would return all the overridden points beneath the Drivers container:

slot:/Drivers|bql:select * from control:ControlPoint where status.overridden
= 'true'

This query returns all points with the Haystack marker tag, hvac:

slot:/|neql:n:point and hs:hvac

Legal Notice

24

The base query’s Publish Interval causes the base query to be re-executed periodically and triggers a complete
publish output (of every returned component) at the interval selected.

Invoking the Generate action on a relative schema evaluates the base query again.

CAUTION: Do not include the schema output itself in the base query. This will quickly consume available Java
heap memory!

Parent topic: Schema construction
Related concepts
How schema generation works
Related reference
Metrics (Json Schema Metrics)

Export markers

Export markers on points and other entities set up efficient data retrieval.

Export marker: selecting control points

You select control points to export using:

• Absolute ord bindings in a standard schema

• Bql or neql in a relative schema

• by adding an export marker to a component.

JSON export markers offer several benefits beyond just marking points to include in a relative schema. For
example, you can use it to limit the export of alarm or history data related only to points with an export marker
present. It can also store a unique identifier supplied by a third party platform. This can allow you to differentiate
among registered points with an ID and unregistered points without an ID. An example use case is sending
different payloads prior to registration including more detailed information (units, min/max, descriptive tags)
than should be sent upon every change of value. When applied to a numeric point an export marker introduces
a CovTolerance property to reduce unwanted updates from the station if a value changes only slightly. You can
also use an export marker with incoming JSON payloads.

Here are some examples of relative schema configuration.

• Base Query: station:|slot:/|bql:select * from
jsonToolkit:JsonExportMarker

• Example bound property binding ord: slot:.. (References the parent of the JsonExportMarker base)

Export marker filters

Both filters below have a Send Since action, which allows alarms or histories since a given date to be exported.
This feature might be useful following network disruption or during initial commissioning of a system.

The Send Since action allows you to specify a start time. The linked schema considers only records stored on or
since this time for output.

Two common filter properties are:

• Current Export Id includes a description of the export marker if it is linked to a fixed string in the

Legal Notice

25

schema.

• Count reports how many export-marked points were processed in the last invocation. It resets when the
station restarts.

Alarm export marker filter

This filter selects specific alarms a station generates before the station passes them to a recipient. Typically, the
recipient would be a JSON alarm recipient, but it could be SNMP, BACnet, etc. with the source alarm class linked
to the In slot of the filter.

In the context of alarming the filtering occurs normally on alarms passed from the alarm class as they are
generated.

Figure 1. Wire Sheet showing the use of an export marker filter

Filter mode Outputs alarms

Marked With Id If the source has an export marker present, with Id set

Marked If the source has an export marker present

Pass All All alarms

Block All No alarms

In the context of alarming, the filtering occurs normally on alarms passed from the alarm class as they are
generated.

The Send Since action queries the alarm database and passes existing records in to this filter (inclusive of the
supplied timestamp) so that they can be checked for a suitable export marker and then passed to the receiving
schema as required to create a new record for each alarm. The timestamp, being in the past, should help identify
when this mode is active.

Note:

To prevent an accidental data deluge, Send Since does not function if the filter is in Pass All mode. A bql query on
the alarm database could be used if this is a requirement.

History export marker filter

This filter exports history data for points with an export marker.

The filter overlaps somewhat with the relative history query, which can select history for points using many
different selection criteria, or an appropriate base query may also be used to generate history for each export
marked point. The HistoryExportMarkerFilter allows updating of the timestamp stored on each export marker so
that only recent history records are sent to the remote system (typically, records added since the last export).

Legal Notice

26

The schema nested under the filter determines the payload format. To complete the export, link the output from
that schema to a target transport point.

If one does not exist already, the HistoryExportMarkerFilter adds a new query to the Queries folder of the
schema. This query needs to be referenced by a BoundQueryResult.

In the event that an export-marked point has more than one history extension beneath it, the schema exports
each extension in turn.

In most cases, it is likely the Current Export Id property needs to be linked into the schema output to provide
identifying information, or even the query used to select data may be included if the target system could infer
useful data from it.

Note: Because the export marker relies on being added to a local control point in the station, it is not possible to
match histories imported over BACnet or NiagaraNetwork using this method. Use a relative schema instead.

Use the Send Since Last Export action to send only unsent history data using the timestamp stored on each
export marker.

These are some important filter properties:

• History Export Filter is the schema that produces the output.

• Current Query identifies the query fed into the schema below. The first query in the Queries folder is
linked on start, does not have to be the only query, and is output first by the schema.

• Columns sets up comma-separated values, for example, timestamp, value, status.

• Update Send Since Time determines if the schema updates most recent send time when the schema
generates data and enables sending only changed records on the next run. If true, every time the
schema exports history it updates the timestamp stored on each export marker.

Parent topic: Schema construction
Related reference
JsonExportSetpointHandler (Json Export Setpoint Handler)
ExportMarker (Json Export Marker)
JsonExportRegistrationHandler (Json Export Registration Handler)
AlarmExportMarkerFilter (Alarm Export Marker Filter)
HistoryExportMarkerFilter (History Export Marker Filter)
Metrics (Json Schema Metrics)

Queries

Queries search the station database for the data to include in a schema.

Query folder

The Queries folder of a JSON schema stores queries whose results are available to be used in the schema. This
allows JSON content to be generated from the results of bql or neql queries. For example, to name just a few,
you can generate a report of overridden points, active alarms, or history logs for a given point.

Query Interval is an important property of the queries folder. It determines how often queries execute, and,
therefore, how up-to-date any data exported by the schema will be when an update strategy of CoV is used.

Legal Notice

27

Note: If multiple queries exist, the station runs each query in parallel each time the schema executes.

Queries do not execute each time a schema generates in change-of-value mode, otherwise a query could run
every time a point value changes, which could have a negative impact on the performance of the control
strategy running in a station. Instead, a BoundQueryResult caches the results and adds them to the schema.

Schemata in on-demand mode and relative schemata do execute each query every time a schema generates.

It is possible to manually invoke query execution using the Execute Queries action of the schema, which could
also be linked to some appropriate logic to trigger execution when needed.

Important:

When executing queries against your station, bear in mind the potential performance implications of running
queries frequently. To reduce the scope of the query, focus the first part of the ord to the location where the
data are likely to be found, or by using the stop keyword to prevent depth recursion.

Query

You add queries below the Queries folder found at the top level of the schema.

Figure 1. Query properties

A query can be any valid transform, neql or bql statement which returns a BITable.

Here are some useful examples to include in a schema:

Data to
return

Query

BACnet
points
currently
in
{override}
status

slot:/Drivers/BacnetNetwork|bql:select name, out.value from control:ControlPoint
where status.overridden = 'true'

History
records

history:/Newhaven/waveHeight|bql:select timestamp, value

Output
from a
series
transform

station:|transform:slot:/VelocityServlet/lineChart/TransformGraph

Alarm alarm:|bql:select timestamp, uuid, ackState, source as 'origin'

Legal Notice

28

Data to
return

Query

database
contents Note:

You may rename the columns using the ‘as’ keyword, which the resultant JSON reflects.

Relative history query

Used in conjunction with a relative schema, the query Pattern Property pre–appends the current base item to a
bql query, so that query data can be included in the payload for a given set of points or devices:

%baseHistoryOrd%?period=today|bql:select timestamp, value

You may use this in conjunction with a base query that returns a HistoryConfig or a HistoryExt (or the parent of
these types):

station:|slot:/JsonExampleComponents|bql:select * from history:HistoryConfig

Consider the effect on performance that running many queries on an embedded controller may have.

BoundQueryResult

Once you define a query, use the BoundQueryResult to determine where and how to insert the results into the
payload.

You can mix query results, such as bound properties or other query results with all other schema member types
in the same payload. For example, if required by the target platform, you could construct a floor summary with
historical data and current alarms.

The JSON Toolkit provides various output formats as the following examples demonstrate, and a developer can
create new output formats.

The following examples use two columns for the sake of brevity. You may add more columns.

You can format the timestamp returned by a query using the format options in the schema’s Config folder.

Executing a bql query does not trigger subscription of the component in question. The values used are the last
values known to the station.

Example JSON

Row array with header
"data": [
[
"timestamp", "value"
], [
"2019-02-07 23:27:42.116+0000",
45
], [
"2019-02-07 23:28:03.157+0000",
15
], [

Legal Notice

29

Example JSON

"2019-02-07 23:28:24.197+0000",
85
], [
"2019-02-07 23:28:45.222+0000",
55
], [

"2019-02-07 23:29:06.247+0000",
25
]
]

Row array
"data": [
[
"2019-02-07 23:27:42.116+0000",
45
], [
"2019-02-07 23:28:03.157+0000",
15
], [
"2019-02-07 23:28:24.197+0000",
85
], [
"2019-02-07 23:28:45.222+0000",
55
], [
"2019-02-07 23:29:06.247+0000",
25
]
]

Objects array
"data": [
{
"timestamp": "2019-02-07 23:27:42.116+0000",
"value": 45
},
{
"timestamp": "2019-02-07 23:28:03.157+0000",
"value": 15
},
{
"timestamp": "2019-02-07 23:28:24.197+0000",
"value": 85
},
{
"timestamp": "2019-02-07 23:28:45.222+0000",
"value": 55
},
{
"timestamp": "2019-02-07 23:29:06.247+0000",
"value": 25
}

Legal Notice

30

Example JSON

]

Named objects (The first column is
assumed to represent the object name.) "data": [

"2019-02-07 23:27:42.116+0000": {
"value": 45
},
"2019-02-07 23:28:03.157+0000": {
"value": 15
},
"2019-02-07 23:28:24.197+0000": {
"value": 85
},
"2019-02-07 23:28:45.222+0000": {

"value": 55
},
"2019-02-07 23:29:06.247+0000": {
"value": 25
}
]

Column array with header
"data": [
[
"timestamp",
"2019-02-07 23:27:42.116+0000",
"2019-02-07 23:28:03.157+0000",
"2019-02-07 23:28:24.197+0000",
"2019-02-07 23:28:45.222+0000",
"2019-02-07 23:29:06.247+0000"
], [
"value", 45,
15,
85,
55,
25
]
]

Column array
"data": [
[
"2019-02-07 23:27:42.116+0000",
"2019-02-07 23:28:03.157+0000",
"2019-02-07 23:28:24.197+0000",
"2019-02-07 23:28:45.222+0000",
"2019-02-07 23:29:06.247+0000"
], [
45,
15,
85,
55,

Legal Notice

31

Example JSON

25
]
]

Single column array

Note: The query used to populate the
BoundQueryResult should only return
one column. It would be wasteful to
select data that are not expected to
emerge in the payload.

"data": [
45,
15,
85,
55,
25
]

Key Value Pair Object

Note: The query used to populate the
BoundQueryResult should only return
two columns.

“data”: {
"2019-02-07 23:27:42.116+0000" : 45,
"2019-02-07 23:28:03.157+0000" : 15,
"2019-02-07 23:28:24.197+0000" : 85,
"2019-02-07 23:28:45.222+0000" : 55,
"2019-02-07 23:29:06.247+0000" : 25
}

Tuning You may use the hidden query folder property queriesMaxExecutionTime to
increase the amount of time granted to complete all the queries during each cycle.
Failure to complete in this time causes schema generation to fail.

• Setting up queries
In addition to the binding queries, which set up a single query bql, neql or ord, you can add additional
queries to a Queries folder. The schema turns the queries in this folder into a string.

Parent topic: Exporting with a JSON schema
Related reference
Metrics (Json Schema Metrics)
Query (Json Schema Query)
RelativeHistoryQuery (Relative History Query)
BoundQueryResult (Json Schema Bound Query Result)

Setting up queries

In addition to the binding queries, which set up a single query bql, neql or ord, you can add additional queries to
a Queries folder. The schema turns the queries in this folder into a string.

1. Create a regular schema.

Legal Notice

32

The example above uses the points of a BACnet device. This JSON configuration includes the Queries
folder and the root object container for the schema.

a. Identifies the regular queries that define the source of the data for binding. In this example,
the query uses bql to identify the data.

b. Identifies a query that can become a JSON string. The query result injects the query referenced
from the Queries folder into the point in the schema output. You can nest these queries
anywhere within your JSON message.

By default, each schema includes a Queries folder, which comes with two properties: Query Interval (to
configure how frequently to execute the query), and Last Query Completed Timestamp.

2. To configure the Query Interval, right-click the Queries folder, click Views > AX Property Sheet,
configure the interval, and click Save.

3. To add an ad hoc query to the schema, expand the Query node in the palette, drag a Query from the
palette to the Queries folder in the schema, double-click the Query, enter the Query Ord, and click
Save.
For simplicity, the example Queries folder contains a single query. It could contain additional queries.
A above identifies the ord for the single ad hoc query (BacnetQuery): station:|slot:/Drivers/
BacnetNetwork/MyName|bql:select name, proxyExt.objectId, out.value AS ‘v’,
status from control:ControlPoint

This query searches a particular BACnet device for the name, object ID, current value and status of all
points under the device. The Last Result Size property indicates that the query finds two points.

4. To create a bound query result, expand the Query node in the palette and drag a BoundQueryResult
from the palette to the root object in the schema.
In the example, the bound query result (identified by the second box) references the query
(BacnetQuery) and defines the Output Style to render the query in.

5. To update the payload message, click the Generate button.

The result of running the example query looks like this:
Figure 1. Device connectivity JSON payload

Legal Notice

33

The first group of name and value pairs reports the result of the main binding query (under config). The data
block at the bottom shows the result of the ad hoc query in the Queries folder. The data block displays as an
object array identified by the square brackets. The array contains one object per BACnet point, in this case two
objects, each inside a pair of braces.

This example could have used a relative schema. Which one to use depends on your requirements. Does your
API need all data in a single JSON message or does it require one message per point? This procedure does not
subscribe to the component model. It runs a bql query to populate the BITable and encodes that data. The
power of bql to select data feeds into the input to the schema the same as you could feed a series transform into
this schema, query the historical alarm data, or query history data.

This type of query configuration does not have to be done with device points. By “query” in this context, we
mean anything that returns a BITable so you could use a transform ord, bql on the history space or neql on the
component space. Any time you have something you can feed to the ReportService you can encode and output
it with a schema.

Parent topic: Queries
Related reference
Metrics (Json Schema Metrics)

Alarms

The JsonAlarmRecipient exports alarms using the recipient’s schema.

AlarmRecipient

Linking the alarm topic of an alarm class into the route action of a JsonAlarmRecipient triggers the generation of
a new payload each time the alarm class receives an alarm.

The JsonAlarmRecipient comes with a nested schema whose payload output depends on the alarms passed
through from the parent recipient.

Queries, bound objects and arrays, and/or properties can include present value data from the station in the
payload.

Legal Notice

34

There are, however, some alarm-specific data types you can include, notably the properties from a Niagara
Alarm Record: BAlarmRecord

By including the unique identifier in an outgoing message, an inbound payload can acknowledge alarms.

Alarm Record Property

Only the JsonAlarmRecipient’s schema supports these alarm-related properties. Adding each of these to the
schema allows inclusion of the selected alarm property in the output.

For example, the sourceState, uuid, alarmClass etc. As with other schema properties the name is determined by
renaming the property, for example AlarmRecordProperty becomes timestamp.

BFormat Property

This property defines the alarm data to be extracted from the Niagara alarm database. For example, if an
engineer used the Metadata property of an AlarmExt to record the location of a point in the building, this could
be fetched using alarmData.location to include in the payload.

• Exporting alarm records to the JsonAlarmRecipient
This component comes with a nested schema whose payload output depends on the alarms passed
through from the parent recipient.

Parent topic: Exporting with a JSON schema
Related reference
JsonAlarmRecipient (Json Alarm Recipient)
AlarmRecordProperty (Json Schema Alarm Record Property)
BFormatProperty (B Format String)
Metrics (Json Schema Metrics)

Exporting alarm records to the JsonAlarmRecipient

This component comes with a nested schema whose payload output depends on the alarms passed through
from the parent recipient.

You may include queries, bound objects or arrays, and properties to return a station’s present value data in the
payload. You may also include some specific alarm data types, notably the properties from the alarm record:
BAlarmRecord.

1. Drag the JsonAlarmRecipient to the Wire Sheet.
2. Connect the Alarm Class to the Route Alarm action on the recipient.

Linking the alarm class to the route action of a JsonAlarmRecipient component triggers the generation
of a new JSON payload each time the recipient receives an alarm from the alarm class.

3. Add an AlarmRecordProperty component to the schema and select one or more properties.

Legal Notice

35

Each property you add to the schema can include selected alarm data in the output, such as the
sourceState, uuid, alarmClass etc. As with other JSON schema properties, you can rename the property;
for example “AlarmRecordProperty” can be renamed to “current value”, as shown above.

4. To filter out unwanted alarms before sending data to the alarm recipient, add the
AlarmExportMarkerFilter to the Wire Sheet and connect it as shown below.

Normal filtering occurs on alarms passed from the alarm class to the recipient as the station generates
the alarms.

The Send Since action queries the alarm database and passes existing records to the filter (including the
supplied timestamp). The system checks the records for a suitable ExportMarker, and passes them to
the receiving JsonSchema to create a new record for each alarm. Since the timestamp is in the past, the
filter should be able to identify when its mode was active.

Note:

To prevent accidental data deluge, Send Since does not function if the filter’s Mode is set to Pass All.
You could use a bql query on the alarm database if this is a requirement.

Parent topic: Alarms
Related reference

Legal Notice

36

Metrics (Json Schema Metrics)

Exporting schema output (JsonExporter)

The JsonExporter creates a file with the current output of the schema you are viewing. You could use this feature
with the ReportService to export on a regular basis, perhaps via file, email, ftp or HTTP for a machine learning
application or similar application.

1. To export current JSON data, either click the Export button () or click File > Export
The Export window opens.

2. Select the exporter and where to view.
3. To export to a file, you may click the Browse button to locate the file.

A URL like the following also allows access to the schema output via the JsonExporter:http://127.0.0.1/
ord/station:%7Cslot:/JsonSchema%7Cview:jsonToolkit:JsonExporter

This means that using a web client you can easily query the data in a station over HTTP.

Parent topic: Exporting with a JSON schema
Related reference
Metrics (Json Schema Metrics)

Exploring the examples

The JSON palette includes several examples you can explore to learn how schemata work.

You are connected to a running station. The jsonToolkit palette is open.

1. Expand your Station > Config and double-click the Config node.
2. Expand the Examples node in the palette.
3. Select the two folders: JsonExampleComponents and Schemas and drop them into the Config node of

your station.
The examples folders must be at the root of the station Config component for them to work correctly.
The screen capture shows the example folders in the station Config folder.

Legal Notice

37

4. To view the components, double-click the JsonExamplecomponents node.
The Wire Sheet opens to reveal two folders with points.

5. Double-click the Points folder.
The Wire Sheet opens the Points folder.

This folder includes a Ramp that is updating.

6. To view the sample schemata, double-click the Schemas folder in the Nav tree.
The Wire Sheet opens with nine example schemas.

Legal Notice

38

There is a basic example with bindings. Another that runs a query. There is a relative schema. Along the
bottom are examples of how to apply a schema to a practical job. For example, there is are formats for
communicating with an IBM cloud and the Sparkplug standard.

• Connecting a device
This procedure uses an example to demonstrate how to connect a device. The example sets up a
relative schema to look for all folders in the station that have a particular tag, such as “lights,” “sensor,”
etc.

• Visualization
Generating the data for a graph uses the JSON queries. For example, you could use a JSON message to
embed a chart in a web page.

Parent topic: Exporting with a JSON schema
Related reference
Metrics (Json Schema Metrics)

Connecting a device

This procedure uses an example to demonstrate how to connect a device. The example sets up a relative schema
to look for all folders in the station that have a particular tag, such as “lights,” “sensor,” etc.

1. Set up writable points in the station folders and connect them to the source points.
2. Drag a relative schema to a logic Wire Sheet.
3. Set up a base query to locate the point values.

For example: slot:/Hue|neql:n:light (assuming a “light” tag has been applied to the point’s parent
folder).

4. Specify the binding.
For example: slot:
The Output property displays the JSON message payload.

5. Drag an EngineCycleMessageQueue to the Wire Sheet.
6. On the Wire Sheet, link the RelativeJsonSchema’s Current Base And Output to the Enqueue slot of the

queue.
7. Post the output from the program to HTTP.

Parent topic: Exploring the examples
Related reference
Metrics (Json Schema Metrics)

Legal Notice

39

Visualization

Generating the data for a graph uses the JSON queries. For example, you could use a JSON message to embed a
chart in a web page.

The screen capture shows a JSON message that serves as the source for rendering a chart in a web site.

Figure 1. JSON message for Google chart data

This shows all the square brackets of several arrays with values. The JSON that generates this payload queries
the history for a particular ramp in a station:

history:/json/Ramp|bql:select top 5 value

This is another (different) example of a schema and the JSON message that creates its chart.

Figure 2. JSON schema and output

Gold (orange) identifies the basic Query ord. The block identified by the green box and arrow (data) is the bound
query result. The resulting graph looks like the following on a web page.

Figure 3. Charts created by JSON messages

Parent topic: Exploring the examples
Related reference
Metrics (Json Schema Metrics)

Legal Notice

40

Importing JSON

Data coming into a station can be used to modify a setpoint or execute some other action. A handler processes
imported JSON.

• Routing complete incoming messages
A JsonMessageRouter component directs a whole incoming message (payload) to a new slot so that
incoming messages may redirect the JSON to be handled by another component, such as a “handler”
component type.

• Routing part of a message
A JsonDemuxRouter directs a subset of an incoming message (payload) to a new slot so that links may
redirect the JSON to be handled by another component. This procedure provides an example of routing
part of a message.

• About the Json Path selector
The JsonPath component allows data to be interactively located and extracted from JSON structures
using a special notation to represent the payload structure.

• Handlers and alarm acknowledgments
Message handlers are components designed to perform a specific task with the data routed and
selected via the other inbound components. Handlers make acknowledging alarms possible.

• Setpoint handler and writing to points
The SetPointHandler sets incoming setpoint values to control writable control points.

• Export setpoint handler and export registration
Like the SetpointHandler, the ExportSetpointHandler allows an external JSON message to change the
value of a control point identified by the Id property of an export marker.

Related reference
Metrics (Json Schema Metrics)

Routing complete incoming messages

A JsonMessageRouter component directs a whole incoming message (payload) to a new slot so that incoming
messages may redirect the JSON to be handled by another component, such as a “handler” component type.

1. Open the jsonToolkit palette, expand Inbound > Routers and drag a JsonMessageRouter component to
a working folder in the station.

2. Open the router Property Sheet by double-clicking the JsonMessageRouter component.
3. Type a value in the Key property to identify the type of message (for example: messageType) and

click Save.
Enabling Learn Mode adds a dynamic slot on input. This procedure documents how to add the slot
manually.

4. Manually add a dynamic string slot to the router component by opening the AX Slot Sheet view, or by
simply right-clicking the sheet and clicking Add Slot.
An Add Slot window opens for either method, as shown below.

Legal Notice

41

Adding a slot from the Slot Sheet View Adding a slot using the Action menu

5. Give the slot a name, use the transient and read-only flags to avoid onward handlers running again at
station start and click OK.
The new slot is added.

6. On the Wire Sheet, connect the router.
The following Wire Sheet routes the entire incoming message to the dynamic slot for onward
processing:

For example, if Key = messageType, the JSON routes this message to a string slot with a name
“alarmAck” and then on to connected handlers, as shown above.

{
 "messageType": "alarmAck",
 "user": "AJones",
 "alarmId": ["5cf9c8b2-1542-42ba-a1fd-5f753c777bc0"]
}

Legal Notice

42

Parent topic: Importing JSON
Related reference
Metrics (Json Schema Metrics)
JsonMessageRouter (Json Message Router)

Routing part of a message

A JsonDemuxRouter directs a subset of an incoming message (payload) to a new slot so that links may redirect
the JSON to be handled by another component. This procedure provides an example of routing part of a
message.

The following instructions assume that you have an incoming message (payload) with the following key value
pairs: “hue”, “sat”, “bri”, “on”.

{
 "hue": 43211,
 "sat": 254,
 "bri": 254,
 "on": true
}

1. Open the palette, expand Inbound > Routers and drag a JsonDemuxRouter component to a desired
location in the station.

2. Open the JsonDemuxRouter’s Property Sheet by double-clicking the router.
The property sheet view displays.

Note: Enabling Learn Mode adds a dynamic slot on input. This procedure documents how to add the
slot manually.

3. Manually add a baja:double slot by opening the AX Slot Sheet view, or by simply right-clicking the sheet
and clicking Add Slot.
An Add Slot window opens for either method, as shown below.

Legal Notice

43

Adding a slot from the Slot Sheet View Adding a slot using the Action menu

4. To add the slot to the JsonDemuxRouter component, give the slot a name (“hue” for this example),
choose Type: baja:Double and click OK.
The new slot is added.

5. In the Wire Sheet view, connect the schema output to the JsonDemuxRouter component’s Route slot.
The following image shows a Wire Sheet view of components routing part of an incoming message to
the slot for onward processing. The slot that you add must match the key name, to select that key, and
should be either Boolean, Numeric or String to match the JSON value.

Once the JsonDemuxRouter component has a slot of type baja:Double named "hue", it passes the
hue to expose the value “43211” for use in the station.

Note: To extract nested JSON objects, add a string with an appropriate name, for example, a demuxed string
named ‘data’ could contain this entire nested object:

{
 "type" : "line",
 "data" :
 {
 "labels" : ["Sunday", "Monday"],
 "values" : [1, 2]
 }
}

Parent topic: Importing JSON
Related reference
Metrics (Json Schema Metrics)

Legal Notice

44

JsonDemuxRouter (Json Dmux Router)

About the Json Path selector

The JsonPath component allows data to be interactively located and extracted from JSON structures using a
special notation to represent the payload structure.

For the example below, the first item in the values array (1) can be selected using a JsonPath value of
$.data.values.[0]:

{
 "type" : "line",
 "data" :
 {
 "labels" : ["Sunday", "Monday"],
 "values" : [1, 2]
 }
}

In this example a single numeric value was selected. However it is possible to select a complete subset of the
incoming JSON, for example: $.data would select the entire data object into the out slot, or
$.data.values would select the entire JSON “values” array. Any expression containing a search with
$..labels, for example, will return search results enclosed within an outer array.

Much more explanation of this powerful tool can be found at the following websites:

• https://goessner.net/articles/JsonPath/

• http://jsonpath.com/

• https://www.baeldung.com/guide-to-jayway-jsonpath

• Applying a jsonPath selector
Selectors are components that apply selection criteria to an inbound message and display the result in
an out slot. The JsonPath component allows data to be interactively located and extracted from JSON
structures using a special notation to represent the payload structure.

Parent topic: Importing JSON
Related reference
Metrics (Json Schema Metrics)
JsonPath (Json Path)

Legal Notice

45

Applying a jsonPath selector

Selectors are components that apply selection criteria to an inbound message and display the result in an out
slot. The JsonPath component allows data to be interactively located and extracted from JSON structures using a
special notation to represent the payload structure.

You have a schema generating an output that can be filtered.

The following task shows how to use a JsonPath component for data selection.

1. Open the jsonToolkit palette, expand Inbound > Selectors and drag a JsonPath selector to a Wire Sheet
and then open the selector’s property sheet view.

2. Configure the path property using the syntax $.data.values.[0], as shown below, and save your
changes.

The result of the configuration displays in the Out property.

For example, this path selects the first item in a values array (1): $.data.values.[0]. This is the
schema payload:

{
 "messageType" : "line",
 "data" : [
 {
 "labels" : ["Sunday", "Monday"],
 "values" : [1, 2]
 }
}

This example selects a single numeric value, however, there are other possibilities for selecting a subset
of the incoming JSON:

• $.data transfers the entire data object to the Out slot.

• $.data.values selects the entire JSON array.

Any expression containing a search with, for example, $..labels returns search results enclosed
within an outer array.

These URLs to external web sites explain this powerful tool in detail.

• https://goessner.net/articles/JsonPath/

• http://jsonpath.com/

• https://www.baeldung.com/guide-to-jayway-jsonpath

Legal Notice

46

Parent topic: About the Json Path selector
Related reference
Metrics (Json Schema Metrics)

Handlers and alarm acknowledgments

Message handlers are components designed to perform a specific task with the data routed and selected via the
other inbound components. Handlers make acknowledging alarms possible.

If an alarm exported from a station includes the UUID, an Alarm Uuid Ack Handler can pass back that unique id.
The expected format is shown below, where the array allows multiple alarms to be acknowledged at once.

{
 "user": "Maya",
 "alarms": ["5cf9c8b2-1542-42ba-a1fd-5f753c777bc0"]
}

The user value stored on the alarm record identifies which user acknowledged the alarm in the remote
application. If the user key is omitted the component still tries to acknowledge the alarms using the fallback
name “AlarmUuidAckUser”.

Note: The Json Schema Service runAsUser is a prerequisite for this handler to work. The specified user must have
admin write permissions for the alarm class of the records being acknowledged.

Two alarm handler properties configure this task:

• AckSource is a string appended to every AlarmRecord acknowledged. Its purpose is to allow auditing in
future and is stored as AckSource in the alarm data.

• AckResult is a topic that reports the results of the alarm acknowledgment. Its purpose is to log or post
process activity. Here is an example of the output it reports:

"Ack-ed alarm " + record

"Already ack-ed in alarmDb " + record

"Could not create BUuid from " + uuid

Parent topic: Importing JSON
Related reference
JsonAlarmRecipient (Json Alarm Recipient)
AlarmRecordProperty (Json Schema Alarm Record Property)
BFormatProperty (B Format String)
Metrics (Json Schema Metrics)
AlarmUuidAckHandler (Alarm Uuid Ack Handler)

Related information
Alarm - MAP

Setpoint handler and writing to points

The SetPointHandler sets incoming setpoint values to control writable control points.

ID.

Legal Notice

47

https://docs.niagara-community.com/bundle/docJsonToolkit/page/map/JSONAlarm-MAP_0000071338.ditamap

This is an example of setpoint handler JSON:

 {
 "%idKey%" : "x",
 "%valueKey%" : y,
 ("%slotNameKey%" : "slotName")
 }

The Control Points are located by handle ord in the form: "%idKey%" : "323e" or "%idKey%" :
"h:323e".

These properties configure setpoint handlers:

• idKey is a top-level key in the JSON payload. It represents the point ID.

• valueKey is a top-level key in the JSON payload. It represents the value to set.

• slotNameKey is an optional top-level key in the JSON payload. It represents the slot name to write to.

• defaultWriteSlot defines which slot to write to by default if the payload does not specify a slot.

• runAsUser is a mandatory property for the setpoint handler to use.

The nested keys, override/duration and status are not currently supported.

Parent topic: Importing JSON
Related reference
Metrics (Json Schema Metrics)

Export setpoint handler and export registration

Like the SetpointHandler, the ExportSetpointHandler allows an external JSON message to change the value of a
control point identified by the Id property of an export marker.

This handler locates target points in a station where a unique key from the cloud platform registered the points.
Once the cloud platform returns a suitable identifier for a point with an export marker, this setpoint handler can
apply write messages from the platform using the returned Id rather than the slot or handle ord (for example).

Export registration

The JsonExportRegistrationRouter and JsonExportDeregistrationRouter enable this behaviour of applying a
unique identifier from an external system to an export marker.

This allows the cloud (or other external system) to assign it’s own identifier or primary key to export-marked
points in the Niagara station, which can be used to locate them in future or include them in exports to the cloud
system.

The messages should be in this format:

{
 "messageType" : "registerId"
 "niagaraId" : "h:a032",
 "platformId" : "mooseForce123"
}

or

Legal Notice

48

{
 "messageType" : "deregisterId"
 "platformId" : "mooseForce123",
}

Note: This class does not use the messageType, which would be used simply to route it to this handler and so
can be changed as needed.

Example

This Wire Sheet and JSON loosely demonstrate some of the routers and selectors based upon a fictional point
search JSON message.

Figure 1. Json Export Registration Handler example Wire Sheet and JSON

Parent topic: Importing JSON
Related reference
JsonExportSetpointHandler (Json Export Setpoint Handler)
JsonExportRegistrationHandler (Json Export Registration Handler)
JsonExportDeregistrationHandler (Json Export Deregistration Handler)
Metrics (Json Schema Metrics)

Legal Notice

49

Components

Components include services, folders and other model building blocks associated with a module. You may drag
them to a Property or Wire Sheet from a palette.

Descriptions included in the following topics appear as context-sensitive help topics when accessed by:

• Right-clicking on the object and selecting Views > Guide Help

• Clicking Help > Guide On Target

• JsonSchema (Json Schema)
This component defines the schema, which includes the resulting output, configuration and queries
properties, JSON entities, and actions.

• Config (Json Schema Config Folder)
This folder contains properties used to configure the entire schema.

• Debug (Json Schema Debug Folder)
This folder contains two slots. This information can help troubleshoot problems.

• Queries (Json Schema Query Folder)
This folder under a JSON schema stores search queries whose results are then available to be used by
the schema. Queries generate JSON payloads from the results of bql or neql searches. For example, a
query may include a report of overridden points, active alarms, or history logs for a given point.

• RelativeJsonSchema (Relative Json Schema)
This schema enables the scaling of JSON payload generation, which provides faster processing than the
speed available using multiple simple schemata.

• JsonSchemaService (Json Schema Service)
This service supports JSON functionality and provides some station global filtering.

• Object (Json Schema Object)
This is an empty, named container that holds the other schema entities, which set up the JSON payload.

• BoundObject (Json Schema Bound Object)
This entity is a named JSON object whose child name and value pairs are the slots within a target ord.

• Array (Json Schema Array)
This is an empty, named container for other schema entities, which set up the JSON payload.

• BoundArray (Json Schema Bound Array
This is an empty named container for other schema entities.

• FixedString (Json Schema String Property)
This property inserts a string value into the JSON payload.

• FixedNumeric (Json Schema Numeric Property)
This property inserts a fixed numeric value.

• FixedBoolean (Json Schema Boolean Property)
This property inserts a fixed Boolean value, which defaults to false.

• Count (Json Schema Count Property)
This fixed property defines a named value that increments by one each time the schema generates. You
could use this property for message IDs.

• CurrentTime (Json Schema Current Time Property)
This fixed property inserts the current time as defined by the Date Format Pattern in the JSON schema
object.

• UnixTime (Json Schema Unix Time Property)
This fixed property inserts the current time as Unix time. This system for identifying a point in time is
the number of seconds that have elapsed since 00:00:00 Thursday, 1 January 1970. It is widely used in
systems that run the Unix operating system.

• BoundProperty (Json Schema Bound Property)
This property inserts the current value of the object specified by the Binding property.

• BoundCSVProperty (Json Schema Bound Csv Property)
This bound property is a named JSON string, which renders child slots as a string, comma separated list
(with no surrounding [] or {}).

• Facet (Json Schema Facet Property)

Legal Notice

50

This bound property defines a single facet value from a bound component to insert in the schema
output, for example the units of the current point.

• FacetList (Json Schema Facet List)
This bound property inserts a list of name/value facet properties based upon a comma separated list or
* for all.

• Tag (Json Schema Tag Property)
This bound property inserts a single tag value from the bound component into the output.

• TagList (Json Schema Tag List)
This bound property defines a list of name/value properties based upon selected tags found upon a
binding target.

• Query (Json Schema Query)
This JSON entity sets up a database search. A query can be any valid transform, neql or bql statement,
which returns a BITable.

• RelativeHistoryQuery (Relative History Query)
This query works in conjunction with a RelativeJsonSchema.

• BoundQueryResult (Json Schema Bound Query Result)
This entity determines where and how to insert the results of a query in the payload.

• JsonAlarmRecipient (Json Alarm Recipient)
This component configures the recipient of JSON alarm output.

• AlarmRecordProperty (Json Schema Alarm Record Property)
These properties are only supported on the JsonAlarmRecipients Schema.

• BFormatProperty (B Format String)
This property defines alarm data to extract from the Niagara alarm database. For example, if an
engineer uses the Metadata property of an AlarmExt to record the location of a point in a building,
alarmData.location could fetch this information and include it in the payload.

• ExportMarker (Json Export Marker)
Provides a way to mark a component for data export to JSON. You use this method rather than binding
to an ord, bql, neql, or an absolute path.

• AlarmExportMarkerFilter (Alarm Export Marker Filter)
This filter selects specific alarms before the station passes the data to an alarm recipient. Typically, the
recipient for the filtered alarms would be a JsonAlarmRecipient, but it could be an SNMP, BACnet, etc.
recipient with the source alarm class linked to the In slot of the filter.

• HistoryExportMarkerFilter (History Export Marker Filter)
This filter exports history data for points with an export marker. To do so, it adds a new query under the
schema’s Queries folder (if one does not already exist). A BoundQueryResult references this query.

• JsonExportSetpointHandler (Json Export Setpoint Handler)
This component allows an external JSON message to change the value of a control point identified by
the ID property of an export marker.

• JsonExportRegistrationHandler (Json Export Registration Handler)
This component works with the JsonExportSetpointHandler to apply a unique identifier from an
external system to an export marker.

• JsonExportDeregistrationHandler (Json Export Deregistration Handler)
This component works with the JsonExportSetpointHandler to remove a unique identifier from an
external system to an export marker.

• JsonMessageRouter (Json Message Router)
This component transfers inbound messages to an onward component that is suitable for processing or
handling the message.

• JsonDemuxRouter (Json Dmux Router)
Unlike the JsonMessageRouter, which forwards the whole JSON payload to the added slots intact, this
component passes a selected part of the message to the added slots. It is a very basic method of
selecting data of interest, and likely will become inefficient to use when faced with a large payload and
chained routers. An approach with far more features is JSON Path.

• JsonPath (Json Path)
Selectors are components that take an inbound JSON message, apply some selection criteria to it, and
set up the result an out slot. This might be a subset of the JSON. It could be, for example, the size of a
message or the result of an aggregate function, such as the sum of a repeated value. This selector
component allows data to be interactively located and extracted from JSON structures using a special
notation to represent the payload structure.

• JsonAtArrayIndex (Json At Array Index)
This component selects a value in a JSON array by array index.

Legal Notice

51

• JsonContainsKey (Json Contains Key)
This selector returns a Boolean value if the specified key is present in the payload.

• JsonIndexOf (Json Index Of Key Selector)
This component returns the index of a given key within a JSON object.

• JsonSum (Json Sum Selector)
This selector sums all values found in the payload that match the key (numeric values parsed only).

• JsonLength (Json Length Selector)
This selector returns the length of the first object or array that matches the key.

• JsonFindAll (Json Find All Selector)
This selector returns all values in an array that match the key.

• JsonArrayForEach (Json Array For Each)
• AlarmUuidAckHandler (Alarm Uuid Ack Handler)

If the alarms exported from a station include a unique ID (UUID), this component passes back the UUID.
• SetPointHandler (Json Set Point Handler)

This handler sets incoming setpoint values to control writable control points.
• EngineCycleMessageQueue (Engine Cycle Message Queue)

When the system generates JSON very quickly, this component can provide a buffer between the data
source and destination control point to prevent potential discards within the same engine cycle. Using
this component ensures that the JSON processes all messages.

• EngineCycleMessageAndBaseQueue (Engine Cycle Pair Queue)
This component buffers the output of a relative schema so the base item that prompted schema
generation is also wrapped and buffered in the output. This allows, for example, an ongoing topic or
URL to be altered to include the base items, such as: /upload/device/BASE_ITEM_NAME.

• InlineJsonWriter (Inline Json Writer)
This feature supports custom JSON code.

• TypeOverride (Type Override)
This component is an example of a program to override a data type.

• relativeTopicBuilder (Program)
This program object uses an instance-based class file to implement your component logic. You view and
edit the program using the ProgramEditor.

Related reference
Metrics (Json Schema Metrics)

JsonSchema (Json Schema)

This component defines the schema, which includes the resulting output, configuration and queries properties,
JSON entities, and actions.

Figure 1. JsonSchema properties

You add a schema to a station by dragging a JsonSchema from the palette to the Config folder in the Nav tree.
From there, to access schema properties, expand the Config folder and double-click the schema.

Legal Notice

52

https://docs.niagara-community.com/bundle/docJsonToolkit/reference/JsonArrayForEach-JsonArrayForEach_0000086679.dita

Property Value Description

Output container Contains the generated JSON string.

Enabled true (default) or false Activates (true) and deactivates (false) use
of the object (network, device, point,
component, table, schedule, descriptor,
etc.).

Status read-only Indicates if the network, device, point or
component is active or inactive.

Fault Cause read-only Indicates the reason why a system object
(network, device, component, extension,
etc.) is not working (in fault). This property
is empty unless a fault exists.

Last Updated read-only Reports when the schema was updated
last.

Config folder Contains properties for customizing the
schema.

Queries folder Contains the query ords.

root

This container holds JSON entities: objects, arrays, properties and bound properties.

Figure 2. root Json Schema Object

A separate topic documents each of type of object, array and property.

Buttons

These functions are available when you click a button and name to the right of the Output property on the
schema Property Sheet.

Figure 3. JSON Schema actions on the right side

Legal Notice

53

• Generate requests a rebuild and update of schema output. For relative schemata, this evaluates the
Base Query and publishes results.

• Copy copies the selected JSON to the clipboard.

• Clear Output sets the Out slot of this component to an empty string.

• Output History displays a history of the most recent schema output values in a new tab. This
information is useful to confirm output contents if the schema changes rapidly due to subscribed
points, and to have timestamps show how frequently it changes.

• Metrics reports information used to size and provision capacity as well as debug performance
problems.

• Indented Display toggles the Output display between the underlying JSON string (which does not have
extraneous whitespace) and a syntax highlighted and indented version that is easier to understand. It
defaults to the latter.

Actions

These actions are available when you right-click the JsonSchema node in the Nav tree.

• Generate Json executes the JSON code.

• Force Generate Json forces the generate action regardless of the current tuning settings.

• Clear Cache discards the last known values of bindings and cached query results.

• Clear Output sets the Out slot of this component to an empty string.

• Execute Queries forces an immediate execution of all the schemas queries. You can link this action to
some appropriate logic to trigger execution when needed.

• Unregister And Unsubscribe All (relative schema only) unsubscribes the registration from any base
items that the relative schema monitors for updates and removes cloud registration from all export-
marked entities in the station.

Parent topic: Components
Related concepts
Introduction
Quick JSON example
JSON Toolkit use cases
Transport protocols
Feature summary
Comparison to alternatives
License requirements
JSON schema service

Legal Notice

54

Supervisor
Related reference
Metrics (Json Schema Metrics)

Related information
Introduction

Config (Json Schema Config Folder)

This folder contains properties used to configure the entire schema.

Figure 1. Config folder properties

To access these properties, expand Config > JsonSchema, right-click Config and click Views > AX Property Sheet.

Property Value Description

Name Casing Rule drop-down list (defaults to Camel) Configures how the schema formats JSON
keys. Establishing a standard provides
naming convention uniformity.

Camel begins key names with a lower-case
letter and uses upper case to begin
concatenated words (camelCaseKey).

Pascal starts names with initial caps and
concatenates all words (PascalCaseKey).

Upper changes all letters to upper case
(UPPERCASEKEY).

Lower reduces all letters to lower case
(lowercasekey).

Preserve leaves the name unchanged as
entered.

Name Spacing Rule drop-down list (defaults to Remove) Promotes uniformity by defining the use of
spaces in JSON key names.

Remove removes all spaces ("SpaceTemp" :
...).

Keep leaves spaces unchanged ("Space
Temp" : ...).

Add injects a space between caseChanges

Hyphenate replaces each space with a
hyphen ("Space-Temp" : ...).

Underscore replaces each space with an
underscore ("Space_Temp" : ...).

Legal Notice

55

https://docs.niagara-community.com/bundle/docJsonToolkit/page/map/JSONIntroduction-MAP_0000046380.ditamap

Property Value Description

URL Encode adds a plus (+) between words
("Space+Temp" : ...).

Date Format Pattern text Defines a Java SimpleDateFormat pattern
for the time used by the schema when it
encounters AbsTime, for example, from a
history query or the Current Time
property. ISO 8601, for example, is yyyy-
MM-dd HH:mm:ss.SSSZ.

Numeric Precision number Defines the number of decimal digits to
show on exported floating point numbers.
Values are rounded. Point facets are not
used.

Use Escape Characters true (default) or false Turns on and off the use of escape
characters around characters that
otherwise would have special meaning.

When false, the schema removes the
escape characters it finds. For example,
$20 becomes a “ “ or space character.

Tuning Policy folder Contains properties to configure
performance.

Overrides folder Contains override programs.

Debug folder Contains troubleshooting information.

• Tuning Policy (Json Schema Tuning Policy)
These properties configure how a schema evaluates write requests and the acceptable freshness of
read requests.

• Overrides (Json Schema Overrides Folder)
Configures how to convert specific data types to JSON. This definition overrides the default conversion
behaviour and applies to anywhere the datatype is encountered in an entire schema.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)
CurrentTime (Json Schema Current Time Property)

Tuning Policy (Json Schema Tuning Policy)

These properties configure how a schema evaluates write requests and the acceptable freshness of read
requests.

Figure 1. Tuning Policy properties

Legal Notice

56

To access these properties, expand Config > JsonSchema > Config and double–click Tuning Policy.

Note:

Clicking Actions > Force Generate Json overrides all tuning policy settings. Export markers applied to numeric
points also have a CoV Tolerance property, which you can use to throttle output.

Property Value Description

Min Write Time hours minutes seconds Specifies the minimum amount of time
allowed between schema generation, so
that, for example, hundreds of concurrent
CoV changes over a short time do not
result in a deluge of JSON messages.

The default value of zero (0) disables this
rule causing all value changes to attempt
to generate.

Max Write Time hours minutes seconds If nothing else triggers a generate, this
property specifies the maximum amount
of time to wait before regenerating. Any
generation action resets this timer.

The default value of zero (0) disables this
rule resulting in no timed generation.

Write On Start true (default) or false Determines schema behaviour when a
station starts.

If true, a schema generation occurs when
the station starts.

If false, no generation occurs on station
start.

Write On Enabled true or false (default) Determines schema behaviour when a
status transitions from disabled to normal
(enabled).

If true, a generate occurs when the
schema transitions from disabled to
enabled.

If false, no generation occurs.

Update Strategy drop-down list Manages the control strategy in the
station.

Legal Notice

57

Property Value Description

COV updates JSON at change of value.

On Demand Only updates JSON only when
you right-click on the schema component
and click Actions > Generate.

Parent topic: Config (Json Schema Config Folder)
Related reference
Metrics (Json Schema Metrics)

Overrides (Json Schema Overrides Folder)

Configures how to convert specific data types to JSON. This definition overrides the default conversion behaviour
and applies to anywhere the datatype is encountered in an entire schema.

Examples might be where facets should be replaced to a locally understood value, such as ‘degC’ to ‘Celsius’;
defining a different format for Simple types, such as Color and RelTime; or perhaps to manage expectations for
+/- INF in a target platform.

Figure 1. An example of an Overrides folder

To access these slots, expand Config > JsonSchema > Config, right-click Overrides and click Views > AX Property
Sheet.

This example contains a type override.

Parent topic: Config (Json Schema Config Folder)
Related reference
TypeOverride (Type Override)
Metrics (Json Schema Metrics)

Debug (Json Schema Debug Folder)

This folder contains two slots. This information can help troubleshoot problems.

Figure 1. Debug containers

To access these containers, expand Config > JsonSchema > Config, right-click Debug and click Views > AX
Property Sheet.

Container Value Description

Schema Output History Debug Additional properties Displays the recent history of output from
a JSON schema.

Legal Notice

58

Container Value Description

Config, Debug, Metrics (JsonSchema) read-only folder Reports JSON statistics related to three
aspects of activity: queries, data
generation, and data subscription.

• Schema Output History Debug (Schema History Debug)
The report this view provides lists the recent history of output from a JSON schema.

• Metrics (Json Schema Metrics)
This folder exposes schema generation, query execution and CoV subscription metrics. If needed, you
can log or link individual metric values to generate alarms.

Parent topic: Components
Related tasks
Debugging errors (Schema History Debug)
Related reference
Metrics (Json Schema Metrics)

Schema Output History Debug (Schema History Debug)

The report this view provides lists the recent history of output from a JSON schema.

Figure 1. Schema Output History Debug properties

Right-clicking Schema Output History Debug followed by clicking Views > Spy Local or Spy Remote opens a
schemaOutputHistoryDebug tab. This tab displays the recent history of output from the schema. This
information is useful when the output updates rapidly, such as when a link calls a generate JSON in quick
succession, or, in a relative schema, when output quickly changes once per base item.

In addition to the standard property (Enabled), this property supports the Schema Output History Debug
component.

Property Value Description

History Max Size number (defaults to 10 records) Sets how many debug records to store in
the station.

Debug report

Figure 2. Debug report

To access this view, click the Output History button or right-click the Schema Output History Debug slot and click
Views > Spy Remote or Spy Local.

Legal Notice

59

Column Description

No. Identifies the row. You configure the number of allowed rows by setting the History Max Size value on the Debug Property
Sheet.

Date Identifies when the history was written to the database.

Base
Item

Identifies the slot from which the system generated the JSON.

Result Shows the JSON payload.

Parent topic: Debug (Json Schema Debug Folder)
Related reference
Metrics (Json Schema Metrics)

Metrics (Json Schema Metrics)

This folder exposes schema generation, query execution and CoV subscription metrics. If needed, you can log or
link individual metric values to generate alarms.

Metrics help with determining sizing and provisioning capacity on a cloud platform by estimating the traffic a
station is likely to generate with a given schema. They may also assist in identifying performance problems. To
assist debugging, use the reset action.

Figure 1. Metrics as reported from the schema

To view these values, expand Config > JsonSchema > Config > Debug and double–click Metrics.

Queries Generation Subscription

Query Folder Executions Request Schema Generations Subscribes

Individual Query Executions Schema Generations Unsubscribes

Legal Notice

60

Queries Generation Subscription

Query Fails Schema Generation Fails Subscription Events

Last Query Fail Reason Last Schema Generation Fail Reason Subscription Events Ignored

Last Query Execution Millis Output Changes Cache Hits

Query Execution Millis Total Last Output Size Cache Misses

Query Execution Millis Max Output Size Total

Query Execution Millis Avg Output Size Max

Output Size Avg

Resolve Errors

The metrics provide three categories of performance information: query performance, generate performance,
and subscription performance.

Most metrics are self-explanatory. Execution millis report the number of milliseconds spent performing a query.
Cache hits indicate the number of schema string generations that found a cached value for a binding. Cache
misses indicate the number of schema string generations that found no cached value for a binding.

Parent topic: Debug (Json Schema Debug Folder)
Related concepts
About this guide
Related documentation
Introduction
Quick JSON example
JSON Toolkit use cases
Transport protocols
Feature summary
Comparison to alternatives
License requirements
JSON schema service
Supervisor
Exporting with a JSON schema
Overrides
JSON schema metrics
Schema construction
Entities
Relative schema construction
Export markers
Queries
Alarms
Visualization
Importing JSON
About the Json Path selector
Handlers and alarm acknowledgments
Setpoint handler and writing to points
Export setpoint handler and export registration
Relative topic builder
Type Override example
Inline JSON Writer
Custom query style
Builder class / API
Useful methods
How schema generation works

Legal Notice

61

Subscription examples with bajascript
Inbound components
binding
payload
subscription
Related tasks
Debugging errors (Schema History Debug)
Creating a regular schema
Setting up queries
Exporting alarm records to the JsonAlarmRecipient
Exporting schema output (JsonExporter)
Exploring the examples
Connecting a device
Routing complete incoming messages
Routing part of a message
Applying a jsonPath selector
Working with Apache Velocity
Related reference
Document change log
Config folder
Tuning policy
Components
JsonSchema (Json Schema)
Config (Json Schema Config Folder)
Tuning Policy (Json Schema Tuning Policy)
Overrides (Json Schema Overrides Folder)
Debug (Json Schema Debug Folder)
Schema Output History Debug (Schema History Debug)
Metrics (Json Schema Metrics)
Queries (Json Schema Query Folder)
Query (Json Schema Query)
RelativeHistoryQuery (Relative History Query)
BoundQueryResult (Json Schema Bound Query Result)
Base Query (Base Query)
RelativeJsonSchema (Relative Json Schema)
JsonSchemaService (Json Schema Service)
S M A Expiration Monitor (S M A Expiration Monitor)
Global Cov Slot Filter (Subscription Slot Blacklist)
Object (Json Schema Object)
BoundObject (Json Schema Bound Object)
Array (Json Schema Array)
BoundArray (Json Schema Bound Array
FixedString (Json Schema String Property)
FixedNumeric (Json Schema Numeric Property)
FixedBoolean (Json Schema Boolean Property)
Count (Json Schema Count Property)
CurrentTime (Json Schema Current Time Property)
UnixTime (Json Schema Unix Time Property)
BoundProperty (Json Schema Bound Property)
BoundCSVProperty (Json Schema Bound Csv Property)
Facet (Json Schema Facet Property)
FacetList (Json Schema Facet List)
Tag (Json Schema Tag Property)
TagList (Json Schema Tag List)
JsonAlarmRecipient (Json Alarm Recipient)
AlarmRecordProperty (Json Schema Alarm Record Property)
BFormatProperty (B Format String)
ExportMarker (Json Export Marker)
AlarmExportMarkerFilter (Alarm Export Marker Filter)
HistoryExportMarkerFilter (History Export Marker Filter)

Legal Notice

62

JsonExportSetpointHandler (Json Export Setpoint Handler)
JsonExportRegistrationHandler (Json Export Registration Handler)
JsonExportDeregistrationHandler (Json Export Deregistration Handler)
JsonMessageRouter (Json Message Router)
JsonDemuxRouter (Json Dmux Router)
JsonPath (Json Path)
JsonAtArrayIndex (Json At Array Index)
JsonContainsKey (Json Contains Key)
JsonIndexOf (Json Index Of Key Selector)
JsonSum (Json Sum Selector)
JsonLength (Json Length Selector)
JsonFindAll (Json Find All Selector)
JsonArrayForEach (Json Array For Each)
AlarmUuidAckHandler (Alarm Uuid Ack Handler)
SetPointHandler (Json Set Point Handler)
EngineCycleMessageQueue (Engine Cycle Message Queue)
EngineCycleMessageAndBaseQueue (Engine Cycle Pair Queue)
InlineJsonWriter (Inline Json Writer)
TypeOverride (Type Override)
relativeTopicBuilder (Program)
Developer guide
JSON schema types

Related information
Legal Notice
docJsonToolkit.ditamap

Queries (Json Schema Query Folder)

This folder under a JSON schema stores search queries whose results are then available to be used by the
schema. Queries generate JSON payloads from the results of bql or neql searches. For example, a query may
include a report of overridden points, active alarms, or history logs for a given point.

Figure 1. Queries folder properties

To access these properties, expand Config > JsonSchema, right-click Queries and click Views > Ax Property
Sheet.

Property Value Description

Query Interval time Defines how often the schema executes its
queries, which determines how up-to-date
exported data are when the schema uses
an Update Strategy of COV.

If multiple queries exist, each time the
schema executes it runs each query in
parallel.

Last Query Completed Timestamp read-only (defaults to null) Reports the time the last query completed.

Queries, queriesMaxExecutionTime time Increases the amount of time granted to

Legal Notice

63

https://docs.niagara-community.com/bundle/docJsonToolkit/reference/JsonArrayForEach-JsonArrayForEach_0000086679.dita
https://docs.niagara-community.com/bundle/docJsonToolkit/page/docJsonToolkit.ditamap

Property Value Description

(hidden property on the Queries folder) complete all queries on each cycle. Failure
to complete within this time causes the
schema generation to fail.

• Query (Json Schema Query)
This JSON entity sets up a database search. A query can be any valid transform, neql or bql statement,
which returns a BITable.

• RelativeHistoryQuery (Relative History Query)
This query works in conjunction with a RelativeJsonSchema.

• BoundQueryResult (Json Schema Bound Query Result)
This entity determines where and how to insert the results of a query in the payload.

• Base Query (Base Query)
A base query feeds base components to a schema, which the query resolves against the schema one at
a time. When used with a relative schema, the base query allows you to limit the scope of your query
and to scale within that as you add new points or components.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)
Query (Json Schema Query)
RelativeHistoryQuery (Relative History Query)
BoundQueryResult (Json Schema Bound Query Result)

Related information
Query - MAP

Query (Json Schema Query)

This JSON entity sets up a database search. A query can be any valid transform, neql or bql statement, which
returns a BITable.

Figure 1. Query properties

To add a query to a schema (JsonSchema or RelativeJsonSchema), expand the Query folder in the palette and
drag a query to the Queries folder in the schema.

You access query properties by double-clicking the JsonSchema or RelativeJsonSchema node in the Nav tree,
expanding the Queries folder followed by expanding the query itself.

Property Value Description

Query Ord ord (defaults to null) Identifies the target object of the query.

Last Result Size read-only (defaults to 0) Reports the size of the query result the last
time the framework executed the query.

Parent topic: Queries (Json Schema Query Folder)
Parent topic: Components
Related concepts

Legal Notice

64

https://docs.niagara-community.com/bundle/docJsonToolkit/page/map/JSONQuery-MAP_0000071339.ditamap

Queries
Related reference
Metrics (Json Schema Metrics)
Queries (Json Schema Query Folder)

RelativeHistoryQuery (Relative History Query)

This query works in conjunction with a RelativeJsonSchema.

Figure 1. RelativeHistoryQuery properties

You add a RelativeHistoryQuery under the Queries folder in the RelativeJsonSchema. You access these
properties by double-clicking the RelativeJsonSchema node in the Nav tree and expanding the Queries folder.

Property Value Description

Last Result Size read-only (defaults to 0) Reports the size of the query result the last time the
framework executed the query.

Query Pattern bql Prepends to a bql query so query data can be included in
the payload for a given set of points or devices.

For example:
%baseHistoryOrd%?period=today|bql:select
timestamp, value

Example

Here is an example of how to use the Query Pattern property to pre-pend the current base item to a bql query.
This example includes query data in the payload for a given set of points or devices:

%baseHistoryOrd%?period=today|bql:select timestamp, value

You may use this with a base query to return a HistoryConfig or a HistoryExt (or the parent of these slots):

station:|slot:/JsonExampleComponents|bql:select * from history:HistoryConfig

CAUTION: When creating queries, bear in mind the potential performance implications of running queries
frequently. To reduce the scope of the query, focus the first part of the ord on the location where the data are
likely to be found, or use the stop keyword to prevent depth recursion.

Parent topic: Queries (Json Schema Query Folder)
Parent topic: Components
Related concepts
Queries
Related reference
Metrics (Json Schema Metrics)
Queries (Json Schema Query Folder)

Legal Notice

65

BoundQueryResult (Json Schema Bound Query Result)

This entity determines where and how to insert the results of a query in the payload.

Figure 1. BoundQueryResult properties

To add this component, expand the Query folder in the palette and drag a BoundQueryResult to the root JSON
schema Object of a relative JSON schema.

Property Value Description

Query drop-down list Associates this query result with a query
ord as defined by a query under the
Queries folder. This folder can contain
multiple queries.

Output Style drop-down list Defines the output style to render the
query in.

Parent topic: Queries (Json Schema Query Folder)
Parent topic: Components
Related concepts
Queries
Related reference
Metrics (Json Schema Metrics)
Queries (Json Schema Query Folder)

Base Query (Base Query)

A base query feeds base components to a schema, which the query resolves against the schema one at a time.
When used with a relative schema, the base query allows you to limit the scope of your query and to scale
within that as you add new points or components.

The Base Query component is located in the palette as part of any of the relative schema components (for
example, BasicRelativeSchema, RelativeHistorySchema, and others).

In addition to the standard properties (Status and Fault Cause), these properties support the Base Query.

Property Value Description

Base Query text Defines the scope of the query.

Publish Interval hours, minutes, seconds Specifies the amount of time between
query executions. It triggers a complete

Legal Notice

66

Property Value Description

publish output (of every returned
component) at the interval selected.

Last Publish Count read-only Indicates the number of times the query
executed.

Last Publish Time read-only Indicates the last time the query executed.

Parent topic: Queries (Json Schema Query Folder)
Related reference
Metrics (Json Schema Metrics)

RelativeJsonSchema (Relative Json Schema)

This schema enables the scaling of JSON payload generation, which provides faster processing than the speed
available using multiple simple schemata.

Figure 1. RelativeJsonSchema properties

You add a relative schema to a station by dragging a RelativeJsonSchema from the palette to the Config folder in
the Nav tree. From there, to access schema properties, expand the Config folder and double-click the schema.

In addition to the standard properties (Enabled, Status, and Fault Cause), these properties are unique to JSON.

Property Value Description

Last Updated read-only (defaults to null) Reports when the relative schema was
updated last.

Config folder Contains properties for configuring the
relative schema.

Queries folder Contains the search arguments.

Base Query additional properties Defines a query that is intended to resolve
targets in the station one at a time.

An example might be all BACnet devices.
The base query returns the objects that
the schema resolves against. The schema
objects (below the query) then pick out
appropriate values.

Legal Notice

67

Buttons

These actions are available when you click an icon and name to the right of the Output property on the schema
Property Sheet.

Figure 2. Relative JSON Schema action buttons on the right side

• Generate requests a rebuild and update of schema output. For relative schemata, this evaluates the
Base Query and publishes results.

• Copy copies the selected JSON to the clipboard.

• Clear Output sets the Out slot of this component to an empty string.

• Output History displays a history of the most recent schema output values in a new tab. This
information is useful to confirm output contents if the schema changes rapidly due to subscribed
points, and to have timestamps show how frequently it changes.

• Metrics reports information used to size and provision capacity as well as debug performance
problems.

• Indented Display toggles the Output display between the underlying JSON string (which does not have
extraneous whitespace) and a syntax highlighted and indented version that is easier to understand. It
defaults to the latter.

Actions

These actions are available when you right-click the JsonSchema node in the Nav tree.

• Generate Json executes the JSON code.

• Force Generate Json forces the generate action regardless of the current tuning settings.

• Clear Cache discards the last known values of bindings and cached query results.

• Clear Output sets the Out slot of this component to an empty string.

• Execute Queries forces an immediate execution of all the schemas queries. You can link this action to
some appropriate logic to trigger execution when needed.

• Unregister And Unsubscribe All (relative schema only) unsubscribes the registration from any base
items that the relative schema monitors for updates and removes cloud registration from all export-
marked entities in the station.

Parent topic: Components
Related reference

Legal Notice

68

Metrics (Json Schema Metrics)

JsonSchemaService (Json Schema Service)

This service supports JSON functionality and provides some station global filtering.

Figure 1. JsonSchemaService properties

You access these properties by double-clicking the JsonSchemaService under the Config > Services folder in the
Nav tree.

In addition to the standard properties (Status, Fault Cause, and Enabled), the following properties are unique to
the JsonSchemaService:

Property Value Description

Run As User text Specifies the user account to assume in the
event that a router processes an incoming
change. This is mandatory when using the
SetPointHandler, for example, so that the
framework can limit any changes triggered
by a cloud platform to areas where the
platform should have write access within
the station. This setting is also optionally
used for JSON schema export data.

This property is important for security.
Only a super user can configure it. The
framework requires it for incoming data
used to update a SetPointHandler. The set
operation succeeds only if a real user with
operator-write permission on the slot
issues the incoming JSON.

This property is optional when exporting
JSON with a schema. When set, the data
value of the exported slot defaults to an
empty string unless Run As User is a real
user with operator-read permission on the
slot.

S M A Expiration Monitor additional properties Configures a reminder of when the
framework Software Maintenance
Agreement is about to expire.

Global Cov Slot Filter Additional properties Provides some station global filtering by

Legal Notice

69

Property Value Description

identifying which slots should be ignored
when subscribed to bound values. The
default list of slots includes a good
example of why this function is necessary
in that changes to a component’s
wsAnnotation property (which details the
position and size of a component glyph on
the Wire Sheet), should generally be
excluded from the changes of value
reported to any upstream consumer of
data.

• S M A Expiration Monitor (S M A Expiration Monitor)
Given the JSON Toolkit’s requirement for active maintenance (SMA) on non-demo licenses, this monitor
increasingly notifies you as the license expiration date approaches. It runs on startup, then every 24
hours since the last check to establish if the expiration date is within the warning period or expired, and
generates an offNormal or Fault alarm accordingly.

• Global Cov Slot Filter (Subscription Slot Blacklist)
This filter denotes which slots to ignore when subscribed to bound values.

Parent topic: Components
Related concepts
JSON schema service
Related reference
Metrics (Json Schema Metrics)

Related information
JsonSchemaService

S M A Expiration Monitor (S M A Expiration Monitor)

Given the JSON Toolkit’s requirement for active maintenance (SMA) on non-demo licenses, this monitor
increasingly notifies you as the license expiration date approaches. It runs on startup, then every 24 hours since
the last check to establish if the expiration date is within the warning period or expired, and generates an
offNormal or Fault alarm accordingly.

Figure 1. S M A Expiration Monitor properties

To configure these properties, expand Config > Services, double-click JsonSchemaService and expand S M A
Expiration Monitor.

Although the alarms are likely the most accessibly notification method, the SMA monitor also logs messages to

Legal Notice

70

https://docs.niagara-community.com/bundle/docJsonToolkit/page/docJsonToolkit.ditamap#JsonSchemaService-1A2FBFE3

the station console and exposes the days remaining as a slot, which can be shown, for example, on a dashboard.

The station itself has an S M A Notification Setting under the UserService, which alerts you at the web login
screen.

As an extension of S M A requires a reboot to install the new license, the monitor performs no further checks,
once it detects an expired license, until the station starts again.

In addition to the standard Alarm Source Info properties, these properties are unique to the JSON Toolkit:

Property Value Description

Mode drop-down list (defaults to Early Warning) Configures when to activate an alarm
regarding a pending license expiration.

Early Warning generates an alarm before
the license expires.

Once Expired generates an alarm when the
license expires and thereafter.

Disable Monitor turns monitoring off.

Warn below number of days from 1 to 180 (defaults to
30 days)

Configures when to start warning of the
license expiration.

Remaining read-only Displays the number of days before the
license expires.

Parent topic: JsonSchemaService (Json Schema Service)
Related reference
Metrics (Json Schema Metrics)

Global Cov Slot Filter (Subscription Slot Blacklist)

This filter denotes which slots to ignore when subscribed to bound values.

Figure 1. Subscription Slot Blacklist

You access this list by expanding Config > Services > JsonSchemaService and double-clicking Global Cov Slot
Filter.

The default list includes a good example of why this function is necessary, in that changes to a component’s
wsAnnotation property (which details the position and size of a component glyph on the Wire Sheet) should,
generally, be excluded from the changes of value reported to any upstream consumer of data.

Parent topic: JsonSchemaService (Json Schema Service)
Related concepts

Legal Notice

71

JSON schema service
Related reference
Metrics (Json Schema Metrics)

Object (Json Schema Object)

This is an empty, named container that holds the other schema entities, which set up the JSON payload.

Figure 1. Example of an object container with JSON entities

To add the root object to a schema, expand the Objects folder in the palette and drag an Object to the
JsonSchema folder. To add another object to the schema, drag an Object from the palette to the root Object
container under the schema.

An object is a container. It has no properties of its own or additional containers. Inside this container, the JSON
objects and properties model the structure of the JSON message underneath the schema object. If you nest
items in this container within each other in a tree structure, they will appear nested in the JSON string.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

BoundObject (Json Schema Bound Object)

This entity is a named JSON object whose child name and value pairs are the slots within a target ord.

Figure 1. Example of a BoundObject

To add a bound object to a schema, expand the Objects folder in the palette and drag a BoundObject to the
schema folder, then double-click the bound object.

Legal Notice

72

Property Value Description

Binding ord, bql, neql, absolute path Establishes a relationship between a target
object, such as a point, slot, component,
tag, etc. and its representation in the
framework.

Json Name read-only Displays the name defined by the Json
Name Source.

Json Name Source drop-down list Selects a name for the source object based
on how it is defined elsewhere. Options
are:

Display Name is an explicitly-assigned
name for the object.

Target Name

Target Display Name

Target Parent Name

Target Path displays the ord for the object
rather than a name.

Slots To Include dop-down lists Identifies which slots from the target to
include in the resultant JSON. Options are:

All Slots reports data from all slots in the
target object.

All Visible Slots excludes hidden slots.

All Summary Slots includes only those with
the summary flag set.

Selected Slots manually selects slots from
a list.

Json Slot Name Source drop-down list Selects the name for a specific source slot.
Options are:

Display Name is an explicitly-assigned
name for the slot.

Name selects an alternate name.

Parent topic: Components
Related concepts
Entities
Related reference
Metrics (Json Schema Metrics)

Array (Json Schema Array)

This is an empty, named container for other schema entities, which set up the JSON payload.

To add an array to a schema object, expand the Arrays folder in the palette and drag an Array to the root object
folder in a schema.

An array has no properties of its own or additional containers.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

Legal Notice

73

BoundArray (Json Schema Bound Array

This is an empty named container for other schema entities.

Figure 1. BoundArray properties

To add a bound array to a schema object, expand the Arrays folder in the palette and drag a BoundArray to the
root object folder in a schema, then double-click the BoundArray component.

Property Value Description

Binding ord, bql, neql, absolute path Establishes a relationship between a target
object, such as a point, slot, component,
tag, etc. and its representation in the
framework.

Json Name read-only Displays the name defined by the Json
Name Source.

Json Name Source drop-down list Selects a name for the source object based
on how it is defined elsewhere. Options
are:

Display Name is an explicitly-assigned
name for the object.

Target Name

Target Display Name

Target Parent Name

Target Path displays the ord for the object
rather than a name.

Slots To Include drop-down lists Identifies which slots from the target to
include in the resultant JSON. Options are:

All Slots reports data from all slots in the
target object.

All Visible Slots excludes hidden slots.

All Summary Slots includes only those with
the summary flag set.

Selected Slots manually selects slots from
a list.

Parent topic: Components
Related concepts
Entities
Related reference
Metrics (Json Schema Metrics)

Legal Notice

74

FixedString (Json Schema String Property)

This property inserts a string value into the JSON payload.

Figure 1. FixedString property

To add this property to a schema object or array, expand the Properties folder in the palette and drag a
FixedString to the root object { } or to an array [] under the root object, then double-click the FixedString
component.

Fixed properties, such as names, appear as constants.

You can link in to these if you expect a name to vary. JSON includes the current value during the next generation
event triggered by a CoV on a bound entity or by the invocation of the Generate action. Changing the value of a
fixed property does not trigger a CoV generation event the same way that a bound equivalent does.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

FixedNumeric (Json Schema Numeric Property)

This property inserts a fixed numeric value.

Figure 1. FixedNumeric property

To add this property to a schema object or array, expand the Properties folder in the palette and drag a
FixedNumeric to the root object { } or to an array [] under the root object. To configure its property, double-click
it.

You can link in to this value if you expect it to vary. The next generation event includes the current value
triggered by CoV on a bound entity or by the invocation of the Generate action. A change in the value of any
fixed property does not trigger a CoV generation event in the way that a bound equivalent would.

Property Value Description

Numeric Value single-digit number to six decimal places
(defaults to 0.000000)

Sets up a numeric value.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

FixedBoolean (Json Schema Boolean Property)

This property inserts a fixed Boolean value, which defaults to false.

Figure 1. Fixed Boolean property

Legal Notice

75

To add this property to a schema object or array, expand the Properties folder in the palette and drag a
FixedBoolean to the root object { } or to an array [] under the root object, then double-click the FixedBoolean
component.

You can link in to this value if you expect it to vary. The next generation event includes the current value
triggered by CoV on a bound entity or by the invocation of the Generate action. A change in the value of any
fixed property does not trigger a CoV generation event in the way that a bound equivalent would.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

Count (Json Schema Count Property)

This fixed property defines a named value that increments by one each time the schema generates. You could
use this property for message IDs.

Figure 1. Count property

To add this property to a schema object or array, expand the Properties folder in the palette and drag a Count to
the root object { } or to an array [] under the root object, then double-click the Count component.

This property is a number that defaults to zero (0).

To return this value to zero, right-click the Count property and click Actions > Reset.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

CurrentTime (Json Schema Current Time Property)

This fixed property inserts the current time as defined by the Date Format Pattern in the JSON schema object.

Figure 1. CurrentTime property

To add this property to a schema object or array, expand the Properties folder in the palette and drag a
CurrentTime to the root object { } or to an array [] under the root object, then double-click the CurrentTime
component.

The format for the current time is: year-month-day hour:minute:second

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

Legal Notice

76

Config (Json Schema Config Folder)

UnixTime (Json Schema Unix Time Property)

This fixed property inserts the current time as Unix time. This system for identifying a point in time is the number
of seconds that have elapsed since 00:00:00 Thursday, 1 January 1970. It is widely used in systems that run the
Unix operating system.

Figure 1. UnixTime property

To add this property to a schema object or array, expand the Properties folder in the palette and drag a
UnixTime to the root object { } or to an array [] under the root object, then double-click the UnixTime
component.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

BoundProperty (Json Schema Bound Property)

This property inserts the current value of the object specified by the Binding property.

Figure 1. BoundProperty in a JsonSchema and RelativeJsonSchema

To add a bound property to a schema object or array, expand the BoundProperties folder in the palette and drag
a BoundProperty to the root object { } or to an array [] under the root object, then double-click the
BoundProperty component.

Property Value Description

Binding ord, bql, neql, absolute path Establishes a relationship between a target
object, such as a point, slot, component,
tag, etc. and its representation in the
framework.

Json Name read-only Displays the name defined by the Json
Name Source.

Json Name Source drop-down list Selects a name for the source object based

Legal Notice

77

Property Value Description

on how it is defined elsewhere. Options
are:

Display Name is an explicitly-assigned
name for the object.

Target Name

Target Display Name

Target Parent Name

Target Path displays the ord for the object
rather than a name.

Parent topic: Components
Related concepts
Schema construction
Related reference
Metrics (Json Schema Metrics)

BoundCSVProperty (Json Schema Bound Csv Property)

This bound property is a named JSON string, which renders child slots as a string, comma separated list (with no
surrounding [] or {}).

Figure 1. BoundCSVProperty properties

To add this bound property to a schema object or array, expand the BoundProperties folder in the palette and
drag a BoundCSVProperty to the root object { } or to an array [] under the root object, then double-click the
BoundCSVProperty component.

Property Value Description

Json Name read-only Displays the name defined by the Json
Name Source.

Json Name Source drop-down list Selects a name for the source object based
on how it is defined elsewhere. Options
are:

Display Name is an explicitly-assigned
name for the object.

Target Name

Target Display Name

Target Parent Name

Target Path displays the ord for the object
rather than a name.

Slots To Include dop-down lists Identifies which slots from the target to
include in the resultant JSON. Options are:

All Slots reports data from all slots in the
target object.

Legal Notice

78

Property Value Description

All Visible Slots excludes hidden slots.

All Summary Slots includes only those with
the summary flag set.

Selected Slots manually selects slots from
a list.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

Facet (Json Schema Facet Property)

This bound property defines a single facet value from a bound component to insert in the schema output, for
example the units of the current point.

Figure 1. Facet property

To add this bound property to a schema object or array, expand the BoundProperties folder in the palette and
drag a Facet to the root object { } or to an array [] under the root object, then double-click the bound
component.

Property Value Description

Ord ord Selects the ord to the component with the
facet applied.

Facet Key text Defines the name of a facet. Facet keys
should be added as follows: units, mix,
max.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

FacetList (Json Schema Facet List)

This bound property inserts a list of name/value facet properties based upon a comma separated list or * for all.

Figure 1. FacetList bound property

To add this bound property to a schema object or array, expand the BoundProperties folder in the palette and
drag a FacetList to an object { } or to an array [] under the root object, then double-click the bound component.

Legal Notice

79

Property Value Description

Binding ord, bql, neql, absolute path Establishes a relationship between a target
object, such as a point, slot, component,
tag, etc. and its representation in the
framework.

Facet Csv List text (defaults to * for all) Inserts a list of name and value facet
property pairs based upon a comma-
separated list or asterisk (*) for all. Add
facet keys as follows: units,mix,max.

Write Empty Strings For Missing Facets true or false (default) Determines if the JSON outputs an empty
string when facets are missing.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

Tag (Json Schema Tag Property)

This bound property inserts a single tag value from the bound component into the output.

Figure 1. Tag bound property

To add this bound property to a schema object or array, expand the BoundProperties folder in the palette and
drag a Tag to an object { } or to an array [] under the root object, then double-click the bound component.

Property Value Description

Binding ord, bql, neql, absolute path Establishes a relationship between a target
object, such as a point, slot, component,
tag, etc. and its representation in the
framework.

Tag Id tag syntax (n:name) Identifies a tag to use in the binding
search.

Search Parents (Tag) true or false (default) Configures the search to include parent
tags.

If the search does not find a tag on the
binding target, this property, when set to
true, searches up the hierarchy for the
closest component with a matching tag id.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

TagList (Json Schema Tag List)

This bound property defines a list of name/value properties based upon selected tags found upon a binding
target.

Legal Notice

80

Figure 1. TagList properties

To add this bound property to a schema object or array, expand the BoundProperties folder in the palette and
drag a TagList to the root object { } or to an array [] under the root object, then double-click the bound
component.

Property Value Description

Binding ord, bql, neql, absolute path Establishes a relationship between a target
object, such as a point, slot, component,
tag, etc. and its representation in the
framework.

Dictionary Namespace Filter drop-down list Limits the search based on a tag dictionary
name.

Tag Id List Filter text Identifies a comma-separated list to limit
the tags to be included in the output. For
example, n:name,n:type or * for all.

If Include Name Space is set to true, the
schema adds the tag dictionary prefix to
the key (for example, hs:hvac).

Include Name Space true (default) or false Configures the search to include the tag
dictionary prefix in the key.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

Query (Json Schema Query)

This JSON entity sets up a database search. A query can be any valid transform, neql or bql statement, which
returns a BITable.

Figure 1. Query properties

To add a query to a schema (JsonSchema or RelativeJsonSchema), expand the Query folder in the palette and
drag a query to the Queries folder in the schema.

You access query properties by double-clicking the JsonSchema or RelativeJsonSchema node in the Nav tree,
expanding the Queries folder followed by expanding the query itself.

Legal Notice

81

Property Value Description

Query Ord ord (defaults to null) Identifies the target object of the query.

Last Result Size read-only (defaults to 0) Reports the size of the query result the last
time the framework executed the query.

Parent topic: Queries (Json Schema Query Folder)
Parent topic: Components
Related concepts
Queries
Related reference
Metrics (Json Schema Metrics)
Queries (Json Schema Query Folder)

RelativeHistoryQuery (Relative History Query)

This query works in conjunction with a RelativeJsonSchema.

Figure 1. RelativeHistoryQuery properties

You add a RelativeHistoryQuery under the Queries folder in the RelativeJsonSchema. You access these
properties by double-clicking the RelativeJsonSchema node in the Nav tree and expanding the Queries folder.

Property Value Description

Last Result Size read-only (defaults to 0) Reports the size of the query result the last time the
framework executed the query.

Query Pattern bql Prepends to a bql query so query data can be included in
the payload for a given set of points or devices.

For example:
%baseHistoryOrd%?period=today|bql:select
timestamp, value

Example

Here is an example of how to use the Query Pattern property to pre-pend the current base item to a bql query.
This example includes query data in the payload for a given set of points or devices:

%baseHistoryOrd%?period=today|bql:select timestamp, value

You may use this with a base query to return a HistoryConfig or a HistoryExt (or the parent of these slots):

station:|slot:/JsonExampleComponents|bql:select * from history:HistoryConfig

CAUTION: When creating queries, bear in mind the potential performance implications of running queries
frequently. To reduce the scope of the query, focus the first part of the ord on the location where the data are
likely to be found, or use the stop keyword to prevent depth recursion.

Parent topic: Queries (Json Schema Query Folder)

Legal Notice

82

Parent topic: Components
Related concepts
Queries
Related reference
Metrics (Json Schema Metrics)
Queries (Json Schema Query Folder)

BoundQueryResult (Json Schema Bound Query Result)

This entity determines where and how to insert the results of a query in the payload.

Figure 1. BoundQueryResult properties

To add this component, expand the Query folder in the palette and drag a BoundQueryResult to the root JSON
schema Object of a relative JSON schema.

Property Value Description

Query drop-down list Associates this query result with a query
ord as defined by a query under the
Queries folder. This folder can contain
multiple queries.

Output Style drop-down list Defines the output style to render the
query in.

Parent topic: Queries (Json Schema Query Folder)
Parent topic: Components
Related concepts
Queries
Related reference
Metrics (Json Schema Metrics)
Queries (Json Schema Query Folder)

JsonAlarmRecipient (Json Alarm Recipient)

This component configures the recipient of JSON alarm output.

Figure 1. JsonAlarmRecipient properties

To use this component, expand the Alarm node in the palette and drag a JsonAlarmRecipient to the Config >
Services > AlarmService folder in the Nav tree.

Legal Notice

83

In addition to the standard properties (Days of the Week, Transitions, Publish Point and Enabled), these
properties configure this alarm recipient.

Property Value Description

Time Range Start Time, End Time Specify when during the day (start and
stop times) this recipient receives alarms.

Days Of Week check boxes Specifies the days of the week to include.

Transitions check boxes Selects which alarm transitions to display
in the console. Only those transitions
selected display although the station saves
all transitions in alarm history.

Options are: toOffnormal, toFault,
toNormal, toAlert

Route Acks true or false (default) Enables (true) and disables (false) the
routing of alarm acknowledgements to the
recipient. The framework does not route
trap (event notification)
acknowledgements if you select false.

Publish Point text (defaults to null) Selects the the point for which to process
alarms.

Parent topic: Components
Related concepts
Handlers and alarm acknowledgments
Alarms
Related reference
Metrics (Json Schema Metrics)

AlarmRecordProperty (Json Schema Alarm Record Property)

These properties are only supported on the JsonAlarmRecipients Schema.

Figure 1. Alarm record property

To use this property, expand the Alarm node in the palette and drag a AlarmRecordProperty to a schema’s object
folder.

Each of these added to the schema includes the selected Alarm Property in the output. For example the
sourceState, uuid, alarmClass etc. As with other schema Properties, the name is determined by renaming the
property, for example AlarmRecordProperty -> timestamp.

Property Value Description

Alarm Property drop-down list Selects alarm properties to add to the
JsonSchema.

Parent topic: Components
Related concepts
Handlers and alarm acknowledgments
Alarms

Legal Notice

84

Related reference
Metrics (Json Schema Metrics)

BFormatProperty (B Format String)

This property defines alarm data to extract from the Niagara alarm database. For example, if an engineer uses
the Metadata property of an AlarmExt to record the location of a point in a building, alarmData.location could
fetch this information and include it in the payload.

Figure 1. BFormatProperty

To use this property, expand the Alarm node in the palette and drag a BFormatProperty to a schema’s object
folder.

Property Value Description

Format B Format String Defines the BFormat string. For example:

"%idKey%" : "x","%valueKey%"
: y,"%slotNameKey%" : "slotNa
me"

Attempt Type Conversion true (default) or false Converts Booleans and numbers in a
formatted string to native JSON Booleans
and numbers.

true performs the conversion.

false leaves Booleans and numbers as they
are.

Error Substitute drop-down list, defaults to Blank Controls the role of an error substitute.

Ignore does nothing.

Key Only substitutes using the location ID.

Blank substitutes nothing.

Parent topic: Components
Related concepts
Handlers and alarm acknowledgments
Alarms
Related reference
Metrics (Json Schema Metrics)

ExportMarker (Json Export Marker)

Provides a way to mark a component for data export to JSON. You use this method rather than binding to an ord,

Legal Notice

85

bql, neql, or an absolute path.

The toolkit provides three ways to select control point data for export:

• Add an absolute ord binding to a JSON schema.

• Use bql or neql to identify control points to a relative JSON schema.

• Add a JsonExportMarker to a component.

Marking a component offers several benefits beyond just marking points to include in a RelativeJsonSchema. For
example, markers support the export of alarm and history data for specific points. Markers can store a unique
identifier supplied by a third party platform. This can be used to differentiate between registeredpoints with an
ID and unregistered points without an ID. For example, with markers JSON can send different payloads prior to
registration including more detailed information (units, min/max, descriptive tags) than should be sent upon
every change of value.

When applied to a numeric point, a JSON export marker introduces a CovTolerance property to reduce unwanted
updates from the station if a value changes only slightly. You may also use the export marker with incoming JSON
payloads.

Figure 1. ExportMarker properties

To use this marker, expand the ExportMarker node in the palette and drag an ExportMarker to a point in the
station.

Property Value Description

Id (ExportMarker) Provides an id from the cloud platform.
The expectation is that this value will be
unique, at least within each station as it
may be used by the cloud platform as a
primary key.

Platform Writable (ExportMarker) true or false (default) Used with the setpoint/override feature to
prevent writes from the upstream
platform.

filterEnabled true (default) or false Turns the filter on and off. When disabled,
the schema ignores CovTolerance.

CovTolerance number to two decimal places Sets up an amount that defines a range of
values within which a given value may vary
without requiring the station to update the
value. This eliminates the overhead
required to update when a value changes
only slightly.

lastPublishedValue read-only Reports the most recent value that was
exported.

Legal Notice

86

Examples

Example JSON

Base query station:|slot:/|bql:select * from jsonToolkit:JsonExportMarker

BoundProperty
binding ord

slot:.. (References the parent of the JsonMarker Base)

Parent topic: Components
Related concepts
Export markers
Related reference
Metrics (Json Schema Metrics)

AlarmExportMarkerFilter (Alarm Export Marker Filter)

This filter selects specific alarms before the station passes the data to an alarm recipient. Typically, the recipient
for the filtered alarms would be a JsonAlarmRecipient, but it could be an SNMP, BACnet, etc. recipient with the
source alarm class linked to the In slot of the filter.

Figure 1. AlarmExportMarkerFilter properties

To use this filter, expand the ExportMarker node in the palette and drag an AlarmExportMarkerFilter to a point
in the station.

Property Value Description

Current Export Id read-only Provides an ID for the export action.

For HistoryExportMarkerFilters, this ID
should be linked into the schema output to
provide identifying information. Or you
could even use a query to select data to
include if the target system could infer
useful data from it.

Count read-only Reports how many export marked alarms
where processed in the last invocation. It
resets when the station restarts.

Mode drop-down list (defaults to Marked With
ID)

Selects which alarm records to output to
the alarm recipient.

Marked With Id outputs records that have
an ExportMarker on the source component
with an Id set.

Marked outputs records that have an
ExportMarker on the source component.

Pass All outputs all alarms.

Block All outputs no alarms.

Legal Notice

87

Action

• Send Since queries the alarm database and passes existing records in to this filter (inclusive of the
supplied timestamp) so that the framework can check them for a suitable export marker and then pass
them on to the receiving JSON schema as required to create a new record for each alarm. The
timestamp, being in the past, should help identify when this mode is active.

Parent topic: Components
Related concepts
Export markers
Related reference
Metrics (Json Schema Metrics)

HistoryExportMarkerFilter (History Export Marker Filter)

This filter exports history data for points with an export marker. To do so, it adds a new query under the
schema’s Queries folder (if one does not already exist). A BoundQueryResult references this query.

Figure 1. HistoryExportMarkerFilter properties

To use this filter, expand the ExportMarker node in the palette and drag an HistoryExportMarkerFilter to a
location in the station.

You access these properties by double-clicking the HistoryExportMarkerFilter node in the Nav tree.

There is some overlap with the RelativeHistoryComponent, which can select point histories using many different
criteria, and an appropriate BaseQuery may also be used to generate history for each export marked point. The
HistoryExportMarkerFilter updates the timestamp stored on each ExportMarker, so that the schema sends only
recent history records to the remote system (typically records added since the last export).

The History Export Filter container is a JsonSchema nested under the filter. It determines the payload format,
and the output from that schema to link to a target transport point to complete the export.

If a point with an ExportMarker has more than one history extension, the schema exports each in turn.

Note: Since the ExportMarker relies on being added to a local control point in the station, it is not possible to
match histories imported over BACnet or the NiagaraNetwork using this filter. Instead, use a
RelativeJsonSchema.

In addition to the standard properties (Enabled, Status, and Fault Cause), the history export filter provides these
properties.

Property Value Description

Current Export Id read-only Provides an ID for the export action.

For HistoryExportMarkerFilters, this ID
should be linked into the schema output to

Legal Notice

88

Property Value Description

provide identifying information. Or you
could even use a query to select data to
include if the target system could infer
useful data from it.

Count read-only Reports how many export marked histories
where processed in the last invocation. It
resets when the station restarts.

CurrentQuery Identifies the query used by the
HistoryExportMarkerFilter’s schema. The
first query in the Queries folder is linked
on start, but it does not have to be the
only query, or output first data in the JSON
schema.

Columns CSV text Defines the columns to appear in the filter.

For example, timestamp, value,
status.

Update Send Since Time true or false (default) Enables and disables the updating of the
timestamp stored on the ExportMarker
every time the schema exports history.

If true, which means the most recent send
time was updated, the schema sends only
the changed records.

If false, the schema sends all history
records that meet the other criteria.

Actions

Send Since Last Export uses the timestamp stored in each ExportMarker to send only history records that have
not yet been sent.

Parent topic: Components
Related concepts
Export markers
Related reference
Metrics (Json Schema Metrics)

JsonExportSetpointHandler (Json Export Setpoint Handler)

This component allows an external JSON message to change the value of a control point identified by the ID
property of an export marker.

Locating target points like this can support a station where a unique key registers the points from the cloud
platform. Once the cloud platform returns a suitable identifier for an export-marked point, you can use this
setpoint handler to apply write messages from the platform using the ID, rather than the Niagara slot or handle
ord (for example).

Figure 1. JsonExportSetpointHandler properties

Legal Notice

89

To add this handler to a station, expand the ExportMarker folder in the palette and drag this component to the
router folder in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonExportSetpointHandler.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Id Key text Defines which top-level key in the JSON
payload represents the point Id.

Value Key text (defaults to value) Defines which top-level key in the JSON
payload represents the value to set.

Slot Name Key text (defaults to slotName) Defines the optional top-level key in the
JSON payload that represents the slot
name to write to.

Default Write Slot
(JsonExportSetpointHandler,
SetPointHandler)

text Defines the slot to write to by default if the
payload does not specify the slot.

Parent topic: Components
Related concepts
Export markers
Export setpoint handler and export registration
Related reference
Metrics (Json Schema Metrics)

JsonExportRegistrationHandler (Json Export Registration Handler)

This component works with the JsonExportSetpointHandler to apply a unique identifier from an external system
to an export marker.

Legal Notice

90

This allows the cloud (or other external system) target to assign it’s own identifier or primary key to export-
marked points in the Niagara station, which can be used to locate them in future, or included in exports to that
cloud system.

Figure 1. JsonExportRegistrationHandler properties

To add this handler to a station, expand the ExportMarker folder in the palette and drag this component to the
router folder in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonExportRegistrationHandler.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Remote Key text (defaults to platformId) Identifies the name of the JSON property
that denotes the point's identifier in the
remote system.

Local Key text (defaults to niagaraId) Identifies the name of the JSON property
that denotes the point’s identifier in the
Niagara station.

Syntax

The messages should be in this format:

{
 "messageType" : "registerId"
 "niagaraId" : "h:a032",
 "platformId" : "mooseForce123"
}

or

Legal Notice

91

{
 "messageType" : "deregisterId"
 "platformId" : "mooseForce123",
}

Note: This class does not use the messageType, which would be used simply to route it to this handler and so
can be changed as needed.

This Wire Sheet and JSON loosely demonstrate some of the routers and selectors based upon a fictional point
search JSON message.

Figure 2. Json Export Registration Handler example Wire Sheet and JSON

Parent topic: Components
Related concepts
Export markers
Export setpoint handler and export registration
Related reference
Metrics (Json Schema Metrics)

JsonExportDeregistrationHandler (Json Export Deregistration Handler)

This component works with the JsonExportSetpointHandler to remove a unique identifier from an external
system to an export marker.

Figure 1. JsonExportDeregistrationHandler properties

To add this handler to a station, expand the ExportMarker folder in the palette and drag this component to the
router folder in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonExportDeregistrationHandler.

Legal Notice

92

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Remote Key text (defaults to platformId) Identifies the name of the JSON property
that denotes the point's identifier in the
remote system.

Syntax

The messages should be in this format:

{
 "messageType" : "registerId"
 "niagaraId" : "h:a032",
 "platformId" : "mooseForce123"
}

or

{
 "messageType" : "deregisterId"
 "platformId" : "mooseForce123",
}

Note: This class does not use the messageType, which would be used simply to route it to this handler and so
can be changed as needed.

This Wire Sheet and JSON loosely demonstrate some of the routers and selectors based upon a fictional point
search JSON message.

Figure 2. Json Export Registration Handler example Wire Sheet and JSON

Legal Notice

93

Parent topic: Components
Related concepts
Export setpoint handler and export registration
Related reference
Metrics (Json Schema Metrics)

JsonMessageRouter (Json Message Router)

This component transfers inbound messages to an onward component that is suitable for processing or handling
the message.

This allows the cloud (or other external system) target to assign it’s own identifier or primary key to export-
marked points in the station, which can be used to locate them in future or included in exports to that cloud
system.

Figure 1. JsonMessageRouter properties

You add this router to a station by expanding the Inbound > Routers in the palette and dragging this component
to the Config folder in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonMessageRouter.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Legal Notice

94

Property Value Description

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Learn Mode true or false (default) true configures the JSON to add a dynamic
slot on input for any newly-found message
key.

Key text (defaults to messageType) Defines which part of the incoming
message to switch on)

Resend With Blank true or false (default) Turns on and off the resending of a
message if a duplicate or matching
message is received.

true causes the router to send an empty
string to the target slot, then resend the
output.

Without injecting an empty message, the
link does not propagate the change, which
could be an issue if the handler needed
other values in place to respond to this
message.

false does not send the empty string to the
target slot, which does not resend the
output.

Actions

These actions are available when you right-click on the JsonMessageRouter.

Figure 2. JsonMessageRouter action buttons

Legal Notice

95

• Route causes this component to process the String parameter and update the Out slot.

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

• Add Slot creates a new slot that appears as a row on the slot sheet.

Parent topic: Components
Related tasks
Routing complete incoming messages
Related reference
Metrics (Json Schema Metrics)

JsonDemuxRouter (Json Dmux Router)

Unlike the JsonMessageRouter, which forwards the whole JSON payload to the added slots intact, this
component passes a selected part of the message to the added slots. It is a very basic method of selecting data
of interest, and likely will become inefficient to use when faced with a large payload and chained routers. An
approach with far more features is JSON Path.

The added slots must match the key name and should be either Boolean, numeric or string to match the JSON
value.

Figure 1. JsonDemuxRouter properties

Legal Notice

96

You add this router to a station by expanding the Inbound > Routers in the palette and dragging this component
to the Config folder in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonDemuxRouter.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Learn Mode true or false (default) true configures the JSON to add a dynamic
slot on input for any newly-found message
key.

Default Missing true (default) or false Can set a dynamic slot’s value to its default
if the value is missing.

true sets the value to its default if the
inbound JSON message did not include a
value for the slot.

false ignores setting the default value.

Legal Notice

97

Actions

These actions are available when you right-click on the JsonDemuxRouter.

Figure 2. JsonDemuxRouter action buttons

• Route causes this component to process the String parameter and update the Out slot.

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

• Add Slot creates a new slot that appears as a row on the slot sheet.

Parent topic: Components
Related tasks
Routing part of a message
Related reference
Metrics (Json Schema Metrics)

JsonPath (Json Path)

Selectors are components that take an inbound JSON message, apply some selection criteria to it, and set up the
result an out slot. This might be a subset of the JSON. It could be, for example, the size of a message or the result
of an aggregate function, such as the sum of a repeated value. This selector component allows data to be
interactively located and extracted from JSON structures using a special notation to represent the payload
structure.

Figure 1. JsonPath properties

Legal Notice

98

You add this selector to a station by expanding Inbound > Selectors in the palette and dragging the JsonPath to a
JSON message router node in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonPath.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Out read-only Displays the result.

Path (JsonPath) text Defines the path.

Actions

These actions are available when you right-click on the JsonPath.

Figure 2. JsonPath action buttons

Legal Notice

99

• Route causes this component to process the String parameter and update the Out slot.

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

Parent topic: Components
Related concepts
About the Json Path selector
Related reference
Metrics (Json Schema Metrics)

JsonAtArrayIndex (Json At Array Index)

This component selects a value in a JSON array by array index.

Figure 1. JsonAtArrayIndex properties

You add this selector to a station by expanding Inbound > Selectors in the palette and dragging the
JsonAtArrayIndex to a message router in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonAtArrayIndex.

Legal Notice

100

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Out read-only Displays the result.

Index number Defines the index in the JSON array.

Actions

These actions are available when you right-click on the JsonAtArrayIndex.

Figure 2. JsonAtArrayIndex action buttons

• Route causes this component to process the String parameter and update the Out slot.

Legal Notice

101

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

JsonContainsKey (Json Contains Key)

This selector returns a Boolean value if the specified key is present in the payload.

Figure 1. JsonContainsKey properties

You add this selector to a station by expanding Inbound > Selectors in the palette and dragging the
JsonContainsKey to a message router in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonContainsKey.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Legal Notice

102

Property Value Description

Out read-only Displays the result.

Key text (defaults to messageType) Defines which part of the incoming
message to switch on)

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

JsonIndexOf (Json Index Of Key Selector)

This component returns the index of a given key within a JSON object.

Figure 1. JsonIdexOf properties

You add this selector to a station by expanding Inbound > Selectors in the palette and dragging the JsonIndexOf
to a message router in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonIndexOf.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

Legal Notice

103

Property Value Description

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Out read-only Displays the result.

Key text (defaults to messageType) Defines which part of the incoming
message to switch on)

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

JsonSum (Json Sum Selector)

This selector sums all values found in the payload that match the key (numeric values parsed only).

Figure 1. JsonSum properties

You add this selector to a station by expanding Inbound > Selectors in the palette and dragging the JsonSum to a
message router in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonSum.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Legal Notice

104

Property Value Description

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Out read-only Displays the result.

Key text (defaults to messageType) Defines which part of the incoming
message to switch on)

Actions

These actions are available when you right-click on the JsonSum.

Figure 2. JsonSum action buttons

• Route causes this component to process the String parameter and update the Out slot.

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

JsonLength (Json Length Selector)

This selector returns the length of the first object or array that matches the key.

Legal Notice

105

Figure 1. JsonLength properties

You add this selector to a station by expanding Inbound > Selectors in the palette and dragging the JsonLength
to a message router in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonLength.

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Out read-only Displays the result.

Key text (defaults to messageType) Defines which part of the incoming
message to switch on)

Actions

These actions are available when you right-click on the JsonLength.

Figure 2. JsonLength action buttons

Legal Notice

106

• Route causes this component to process the String parameter and update the Out slot.

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

JsonFindAll (Json Find All Selector)

This selector returns all values in an array that match the key.

Figure 1. JsonFindAll properties

You add this selector to a station by expanding Inbound > Selectors in the palette and dragging the JsonFindAll
to a message router in the Nav tree.

In addition to the standard property (Enabled), these properties support the JsonFindAll.

Legal Notice

107

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Out read-only Displays the result.

Key text (defaults to messageType) Defines which part of the incoming
message to switch on)

Actions

These actions are available when you right-click on the JsonFindAll.

Figure 2. JsonFindAll action buttons

• Route causes this component to process the String parameter and update the Out slot.

Legal Notice

108

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

AlarmUuidAckHandler (Alarm Uuid Ack Handler)

If the alarms exported from a station include a unique ID (UUID), this component passes back the UUID.

Message handlers are components designed to perform a specific task with the data routed and selected via the
other inbound components.

Figure 1. AlarmUuidAckHandler properties

You add this handler to a station by expanding the Inbound > Handlers folder in the palette and dragging this
component to a message router in the Nav tree.

In addition to the standard property (Enabled), these properties support the AlarmUuidAckHandler:

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process

Legal Notice

109

Property Value Description

for any reason, such as invalid JSON or
missing expected values in the JSON.

Ack Source text Configures a string to append to every
alarm record acknowledgement. This
string can provide additional information
for future auditing. The alarm data record
stores it as AckSource.

Ack Result Reports the results of the alarm
acknowledgment for logging or post
processing activity.

Example

The expected format for this component is:

{
 "user": "Maya",
 "alarms": ["5cf9c8b2-1542-42ba-a1fd-5f753c777bc0"]
}

This array allows the system to acknowledge multiple alarms at once.

The alarm record stores the user value, which identifies the user who acknowledged the alarm in the remote
application. If the user key is omitted, the component still tries to acknowledge the alarms using the fallback
name: AlarmUuidAckUser.

Note:

The JsonSchemaService’s Run As User property is a prerequisite for this handler to work. The specified user
must have admin write permissions for the alarm class of the records being acknowledged.

Actions

These actions are available when you right-click on the AlarmUuidAckHandler.

Figure 2. AlarmUuidAckHandler action buttons

Legal Notice

110

• Route causes this component to process the String parameter and update the Out slot.

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

Parent topic: Components
Related concepts
Handlers and alarm acknowledgments
Related reference
Metrics (Json Schema Metrics)

SetPointHandler (Json Set Point Handler)

This handler sets incoming setpoint values to control writable control points.

Override, duration, the status parameter and nested keys are not supported.

Figure 1. SetpointHandler properties

You add this handler to a station by expanding the Inbound > Handlers folder in the palette and dragging this
component to a message router in the Nav tree.

Legal Notice

111

Note: The Run As User property in the JsonSchemaService is required to use the SetPointHandler.

In addition to the standard property (Enabled), these properties support the SetPointHandler:

Property Value Description

Last Result read-only Reports the results of the alarm
acknowledgment to allow for logging or
post-processing activity. Example output:

Unable to find messagge key:

Problem parsing messageType

Last Result Time read-only Reports when the handler ran last.

Last Input read-only Reports the last JSON string input, which
was routed through this component. This
string either successfully altered a setpoint
or failed as indicated by the Status
property.

Status read-only Reflects the current status of the
component.

Ok indicates the JSON processed
successfully.

fault indicates the JSON did not process
for any reason, such as invalid JSON or
missing expected values in the JSON.

Id Key text Defines which top-level key in the JSON
payload represents the point Id.

Value Key text (defaults to value) Defines which top-level key in the JSON
payload represents the value to set.

Slot Name Key text (defaults to slotName) Defines the optional top-level key in the
JSON payload that represents the slot
name to write to.

Default Write Slot text Defines the slot to write to by default if the
payload does not specify the slot.

Actions

These actions are available when you right-click on the SetPointHandler.

Figure 2. SetPointHandler action buttons

Legal Notice

112

• Route causes this component to process the String parameter and update the Out slot.

• Run Last Input executes the last input again.

• Clear Output sets the Out slot of this component to an empty string.

Parent topic: Components
Related concepts
JSON schema service
Related reference
Metrics (Json Schema Metrics)

EngineCycleMessageQueue (Engine Cycle Message Queue)

When the system generates JSON very quickly, this component can provide a buffer between the data source
and destination control point to prevent potential discards within the same engine cycle. Using this component
ensures that the JSON processes all messages.

Figure 1. EngineCycleMessageQueue property

You add this queue to a station by expanding the Inbound > Handlers folder in the palette and dragging this
component to a message router in the Nav tree.

For example, you can link a string output slot to onward points or, where necessary, to an
EngineCycleMessageQueue.

To buffer incoming messages when using this component, it is advisable to link from the readValue on a proxyExt
rather than from the out slot of its parent point.

Property Value Description

Out read-only Displays the result.

Legal Notice

113

Parent topic: Components
Related concepts
Transport protocols
Related reference
Metrics (Json Schema Metrics)

EngineCycleMessageAndBaseQueue (Engine Cycle Pair Queue)

This component buffers the output of a relative schema so the base item that prompted schema generation is
also wrapped and buffered in the output. This allows, for example, an ongoing topic or URL to be altered to
include the base items, such as: /upload/device/BASE_ITEM_NAME.

To use this component, link the currentBaseAndOutput slot of a relative schema to the enqueue action of this
queue. Then, each time the relative schema generates a new output for a base item, a BaseAndOutput pair
object containing the current schema output and the base item used to generate that output, is passed to the
queue.

Figure 1. EngineCycleMessageAndBaseQueue property

You add this queue to a station by expanding the Queues folder in the palette and dragging this component to
the Config folder under the JsonSchema.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

InlineJsonWriter (Inline Json Writer)

This feature supports custom JSON code.

You achieve this using a program object as per the example in the Programs folder of the jsonToolkit palette. You
can extend BAbstractInlineJsonWriter. Extending the abstract class would be preferred where the
program object may be widely distributed, as code contained in a module is easier to maintain.

Figure 1. InlineJsonWriter code properties

To use this program object, drag it from the Programs folder in the jsonToolkit palette to the Config folder in the
station. To open this AX Property Sheet, double-click the InlineJsonWriter component in the station.

Legal Notice

114

To view the example code, right–click the Program node, clickViews > Program Editor and click the Edit tab.

In addition to the standard properties (Status and Fault Cause), these properties support the InlineJsonWriter.

Property Value Description

Class Name read-only Reports the name that describes this
object. Each object is created from a single
class. One class can instantiate multiple
objects.

Class File read-only Reports the name of the file that contains
the custom program.

Dependencies read-only Identifies the dependent modules.

Signature read-only Identifies the mathematical scheme used
to verify the authenticity of the program.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

TypeOverride (Type Override)

This component is an example of a program to override a data type.

Figure 1. TypeOverride properties

To use this program object, drag it from the Programs folder in the jsonToolkit palette to the Config folder in the
station. To open its AX Property Sheet, double-click the TypeOverride object in the station.

To view the example code, right–click the ExampleOverride node, clickViews > Program Editor and, if needed,
click the Edit tab.

In addition to the standard properties (Status and Fault Cause), these properties support the TypeOverride
example. These properties are part of the Program component from the Program module and are not specific to
the JSON Toolkit.

Legal Notice

115

Property Value Description

Class Name read-only Reports the name that describes this
object. Each object is created from a single
class. One class can instantiate multiple
objects.

Class File read-only Reports the name of the file that contains
the custom program.

Dependencies read-only Identifies the dependent modules.

Signature read-only Identifies the mathematical scheme used
to verify the authenticity of the program.

Source read-only Displays the program’s source code.

User Defined Imports read-only Displays user-defined custom imports of
the types used in the source code.

Action-Override

These action are available when you right-click on the TypeOverride. This action overrides the existing types of
program code.

Figure 2. TypeOverride action button

• Override executes the command.

Parent topic: Components
Related reference
Overrides (Json Schema Overrides Folder)
Metrics (Json Schema Metrics)

Legal Notice

116

relativeTopicBuilder (Program)

This program object uses an instance-based class file to implement your component logic. You view and edit the
program using the ProgramEditor.

Figure 1. relativeTopicBuilder properties

To use this object, drag it from the Programs folder in the jsonToolkit palette to the Config folder in the station.
To open this AX Property Sheet, double-click the relativeTopicBuilder component in the station.

In addition to the standard properties (Status and Fault Cause), these properties support the
relativeTopicBuilder.

Property Value Description

Class Name read-only Reports the name that describes this
object. Each object is created from a single
class. One class can instantiate multiple
objects.

Class File read-only Reports the name of the file that contains
the custom program.

Dependencies read-only Identifies the dependent modules.

Signature read-only Identifies the mathematical scheme used
to verify the authenticity of the program.

Source read-only Displays the program’s source code.

User Defined Imports read-only Displays user-defined custom imports of
the types used in the source code.

topicTemplate text Defines a template string for the output
topic in a Java-format style.

For example, %s represents a replaceable
substring. The schema resolves these
against the object it passes to the input
slot and writes the result to the
topicOutput.

topicOutput read-only Identifies the destination for the output

Legal Notice

117

Property Value Description

JSON.

Actions

baseItemChanged links from the RelativeJsonSchema's "Current Base Output" topic to this "Base Item Changed"
action, and then from this component to the publish point, so the topic is updated for each item returned by the
base query.

Parent topic: Components
Related reference
Metrics (Json Schema Metrics)

Legal Notice

118

Developer guide

Developers can use JSON to create complex queries and apps. They can extend the Toolkit by creating their own
query styles.

• JSON schema types
All components that contribute to the string output of the schema are called members and are nested
under the schema. During generation, the system processes each member recursively (top down),
appending each member’s result to a JSON writer. This creates the final JSON output string.

• Relative topic builder
If the recipient requires a different topic or URL per point or device, the relativeTopicBuilder component
is an example of building a topic (for MQTT) or path (for HTTP url) as the output from the current base
item of a relative schema changes.

• Type Override example
At the core of the JSON Toolkit is a method that maps baja object types to JSON. This determines, for
example, how any encountered BControlPoint, Facets, BAbsTime etc. should be encoded in the output.

• Inline JSON Writer
This writer allows the schema to defer control to a developer’s own code in the tree of schema
members. This means that you can add any form of dynamic content into the schema output.

• Custom query style
Third–party systems may require query results to be formatted in a manner other than the options
provided in the JSON Toolkit.

• Builder class / API
To support the programmatic creation of JSON schemata by developers, the JsonSchemaBuilder
class provides suitable methods.

• Useful methods
These are some methods you might regularly use to create custom content.

• How schema generation works
Two actions cause the JSON schema to generate or regenerate it’s output.

• Working with Apache Velocity
Apache Velocity is a Java-based template language anyone can use to reference objects defined in Java
code. You can use it to expose the output of a JSON schema via the Jetty Web Server in Niagara 4. This
tool may be beneficial for applications that expect to consume data provided by the Niagara station, for
example, a visualization or machine-learning library.

• Subscription examples with bajascript
Whilst Velocity is a very convenient means to inject data into an html document, one of many benefits
of using bajascript in your application is support for subscriptions, which update the graphic as data
change.

• Inbound components
Inbound components route JSON messages to control points and devices.

Related reference
Metrics (Json Schema Metrics)

JSON schema types

All components that contribute to the string output of the schema are called members and are nested under the
schema. During generation, the system processes each member recursively (top down), appending each
member’s result to a JSON writer. This creates the final JSON output string.

Example 1

Three interfaces represent three structural types of the JSON payload:

• Property (key/value pair)

Legal Notice

119

• Object

• Array

A getJsonName() defines each schema member.

Figure 1. Schema types

Three interfaces represent the three structural types of a JSON payload: property (key and value pair), object
and array. All schema members have a name defined by getJsonName().

All schema members inherit the default processChildJsonMembers() behaviour, which allows us to recursively
call process() on each member down through the nested schema structure.

All schema member types extend BJsonSchemaMember and most implement one of the three interface types.
The base class lets us define the parent-child legal checks. This restricts nested types to just other
BJsonSchemaMembers. This is where the JSON passes global schema events, for example, unsubscribe.

Different types of JSON schema members may be nested under a schema. These are logically grouped by
common behaviour.

Figure 2. Json schema members

When developing against the toolkit, most of these classes are open to extension.

Consider a requirement for a new key and value pair to represent a device’s startup time as a string value. You
might simply extend the BJsonSchemaProperty<T> as type <String> using your own date format or
type <BAbsTime> allowing the schema to render the date automatically using the schema date config. Now,
you just need to implement getJsonValue() to return the appropriate value.

 @NiagaraType

Legal Notice

120

 public class BDeviceTimeProperty extends BJsonSchemaProperty<BAbsTime>
 {
 /*+ ------------ BEGIN BAJA AUTO GENERATED CODE ------------ +*/

 /*+ ------------ END BAJA AUTO GENERATED CODE -------------- +*/

 @Override
 public BAbsTime getJsonValue()
 {
 return (BAbsTime) // this will use the schemas date format config
 }
 }

Example 2

This requirement is for an object that contains a key and value pair for each slot on the target component, but
only those with a user defined 1 flag. You might extend BJsonSchemaBoundObject, hide the slotsToInclude slot,
and override the method getPropertiesToIncludeInJson() to only return properties with the user defined flag.

 @NiagaraType
 @NiagaraProperty(name = "slotsToInclude", type = "jsonToolkit:SlotSelection
Type",
 defaultValue = "BSlotSelectionType.allVisibleSlots",flags = Flags.HIDDEN,
 override = true) public class BUserDefinedFlags extends BJsonSchemaBoundObj
ect
 {
 /*+ ------------ BEGIN BAJA AUTO GENERATED CODE ------------ +*/

 /*+ ------------ END BAJA AUTO GENERATED CODE -------------- +*/
 @Override
 public List <String>getPropertiesToIncludeInJson(BComplex resolvedTarget)
 {
 if (resolvedTarget == null)
 {
 return Collections.emptyList(); // or try to resolve it!
 }
 return Arrays.stream(resolvedTarget.getPropertiesArray())
 .filter(prop -> (resolvedTarget.getFlags(prop) & Flags.USER_DEFINED_1)
!= 0)
 .map(prop -> prop.getName())
 .collect(Collectors.toList());
 }
}

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Relative topic builder

If the recipient requires a different topic or URL per point or device, the relativeTopicBuilder component is an
example of building a topic (for MQTT) or path (for HTTP url) as the output from the current base item of a
relative schema changes.

This program object is in the Programs folder of the jsonToolkit palette.

As an example, to update each item returned by the base query, you would link from the RelativeJsonSchema’s
Current Base Output topic to the Base Item Changed property, and then from the output slot to the publish

Legal Notice

121

points proxyExt.

Other properties of the base could be inserted to the topic as desired (not just the name).

The example that is included in the palette illustrates the %s variable substituted by this: "/an/mqtt/
example/%s".

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Type Override example

At the core of the JSON Toolkit is a method that maps baja object types to JSON. This determines, for example,
how any encountered BControlPoint, Facets, BAbsTime etc. should be encoded in the output.

The payload includes many variations for the supported Niagara types. Our approach to accommodating this is
to allow a developer or power user the ability to override specific types as they are converted to JSON.

For a small JsonSchema, the example in the jsonToolkit palette demonstrates how to use a program
object[^1] to replace units:

/**
 * Allows Json types to to be overridden when placed under JsonSchema/conf
ig/overrides/
 */
 public BValue onOverride(final BValue input)
 {
 if (input instanceof BUnit)
 {
 javax.baja.units.UnitDatabase unitDB = javax.baja.units.UnitDatabase.g
etDefault()
 javax.baja.units.UnitDatabase.Quantity quantity =
 unitDB.getQuantity(input.as(BUnit.class))
 if (quantity != null)
 {
 return BString.make(input.as(BUnit.class).getSymbol() + ":" + quanti
ty.getName())
 }
 }

 // If we can't override the value then just return it as we found it
 return input
 }

[^1]: To improve maintainability and station loading time in the event that a program object is duplicated
repeatedly, use the ProgramBuilder.

To use the program, drag this component into the Config > Overrides folder of the schema.

Figure 1. TypeOverride component in jsonSchema

Legal Notice

122

Developers could also override the doOverride(BValue value) method in their own BTypeOverride
variant.

Parent topic: Developer guide
Related concepts
Overrides
Related reference
Metrics (Json Schema Metrics)

Inline JSON Writer

This writer allows the schema to defer control to a developer’s own code in the tree of schema members. This
means that you can add any form of dynamic content into the schema output.

To add custom dynamic content, use a program object as per the example in the Programs folder of the
jsonToolkit palette. Or you can extend BAbstractInlineJsonWriter. As code contained in a module is
easier to maintain, extending the abstract class would be preferred where the program object may be widely
distributed.

This palette example implements a method: public BValue onOverride(final
BInlineJsonWriter input), which you can customize to meet your project’s needs. The
InlineJsonWriter has two important methods:

• JSONWriter jsonWriter = in.getJsonWriter();

• BComplex base = in.getCurrentBase();

Demonstrated below:

/**
 * The override method allows control of the writer and current base to be p
assed
 * to the code below * allowing JSON to be dynamically constructed within a
schema.
 *
 * @param BInlineJsonWriter wraps two things:
 * JSONWriter jsonWriter = in.getJsonWriter();
 * BComplex base = in.getCurrentBase();
 *
 * @return BValue allows logging of the "result" when fine logging is enable
d
 * (this does not need to match what happened to the JSON...)
 */
public BValue onOverride(final BInlineJsonWriter in)

Legal Notice

123

{
 //current base is set by the parent schema as each point is submitted fo
r publishing
 BComplex base = in.getCurrentBase()

 //if (base instanceof BComponent)

 JSONWriter jsonWriter = in.getJsonWriter()

 jsonWriter.key("highLimit")
 jsonWriter.value("1024")

 // do not close writer

 return null
}

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Custom query style

Third–party systems may require query results to be formatted in a manner other than the options provided in
the JSON Toolkit.

To render query data differently, extend BQueryResultWriter and register the class as an agent on
jsonToolkit:JsonSchemaBoundQueryResult.

This example shows how to format the contents of the QueryResultHolder for an external system:

package com.tridiumx.jsonToolkit.outbound.schema.query

import static com.tridiumx.jsonToolkit.outbound.schema.support.JsonSchemaUti
l.toJsonType

import java.util.concurrent.atomic.AtomicInteger
import javax.baja.nre.annotations.AgentOn
import javax.baja.nre.annotations.NiagaraType
import javax.baja.sys.BString
import javax.baja.sys.Sys
import javax.baja.sys.Type

import com.tridiumx.jsonToolkit.outbound.schema.query.style.BQueryResultWrit
er
import com.tridium.json.JSONWriter

/**
 * An example custom query result writer.
 *
 * @author Nick Dodd
 */
@NiagaraType(agent = @AgentOn(types = "jsonToolkit:JsonSchemaBoundQueryResul
t"))
public class BCowSayJson extends BQueryResultWriter
{
/*+ ------------ BEGIN BAJA AUTO GENERATED CODE ------------ +*/
/*@ $com.tridiumx.jsonToolkit.outbound.schema.query.style.BObjectsArray(4046

Legal Notice

124

064316)1.0$ @*/
/* Generated Thu Dec 13 11:24:58 GMT 2018 by Slot-o-Matic (c) Tridium, Inc.
2012 */

//
// Type
//

 @Override
 public Type getType() { return TYPE }
 public static final Type TYPE = Sys.loadType(BCowSayJson.class)

/*+ ------------ END BAJA AUTO GENERATED CODE -------------- +*/

 @Override
 public BString previewText()
 {
 return BString.make("A demonstration result writer")
 }

 @Override
 public void appendJson(JSONWriter jsonWriter, QueryResultHolder result)
 {
 jsonWriter.object()

 try
 {
 jsonWriter.key("mooo01").value("____________________________")
 headerCsv(jsonWriter, result)
 dataCsv(jsonWriter, result)
 jsonWriter.key("mooo02").value("----------------------------")
 jsonWriter.key("mooo03").value(" \\ ^__^ ")
 jsonWriter.key("mooo04").value(" \\ (oo)_______ ")
 jsonWriter.key("mooo05").value(" (__)\\)\\/\\")
 jsonWriter.key("mooo06").value(" ||----w | ")
 jsonWriter.key("mooo07").value(" || || ")
 }
 finally
 {
 jsonWriter.endObject()
 }
 }

 private void headerCsv(JSONWriter jsonWriter, QueryResultHolder result)
 {
 jsonWriter.key("columns").value(String.join(",", result.getColumnName
s()))
 }

 private void dataCsv(JSONWriter jsonWriter, QueryResultHolder result)
 {
 AtomicInteger rowCount = new AtomicInteger()

 result.getResultList().forEach(map - {

 jsonWriter.key("data" + rowCount.incrementAndGet())
 jsonWriter.array()
 try
 {
 map.values()

Legal Notice

125

 .forEach(value - jsonWriter.value(toJsonType(value, getSchema().ge
tConfig())))
 }
 finally
 {
 jsonWriter.endArray()
 }
 })

 processChildJsonMembers(jsonWriter, false) // append any nested members
content
 to the json
 }
}

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Builder class / API

To support the programmatic creation of JSON schemata by developers, the JsonSchemaBuilder class
provides suitable methods.

For example:

BJsonSchema schema =
 new JsonSchemaBuilder()
 .withUpdateStrategy(BJsonSchemaUpdateStrategy.onDemandOnly)
 .withQuery("Bacnet Query", "station:|slot:/Drivers/BacnetNetwork|b
ql:select
 out.value AS 'v', status from control:ControlPoint")
 .withRootObject()
 .withFixedNumericProperty("Version", BDouble.make(1.23))
 .withFixedObject("Config")
 .stepDown()
 .withBoundProperty("BacnetAddress", BOrd.make(String.format
 ("station:|slot:/Drivers/BacnetNetwork/%s/address", deviceNam
e)))
 .withBoundObject("DeviceSettings", BOrd.make(String.format
 ("station:|slot:/Drivers/BacnetNetwork/%s/config/deviceObject",
deviceName)))
 .stepUp()
 .withBoundQueryResult("Data", "Bacnet Query", BObjectsArray.TYPE.g
etTypeSpec())
 .build()

The above schema would result in this output:

{
 "Version":1.23,
 "Config":{
 "BacnetAddress":"192.168.1.24",
 "DeviceSettings":{
 "pollFrequency":"Normal",
 "status":"{ok}",
 "faultCause":"",
 "objectId":"device:100171",

Legal Notice

126

 …….
 }
 },
 "Data":[
 {
 "v":0.45,
 "status":"{down,stale}"
 },
 ……*
]
 }

Note: This example has been trimmed for demonstration purposes.

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Useful methods

These are some methods you might regularly use to create custom content.

What to do (usage goal) Class Method

Override to return a different key. This skips the schema’s
config settings for name case/space handling.

BIJsonSchemaMember getJsonName()

Override to append customized content to the current
JSON stream via json.key() and json.value(),
etc. The Boolean parameter indicates if the syntax of the
keys are currently valid (for example, not inside an array)

BIJsonSchemaMember process(JSONWriter json, boolean
jsonKeysValid)

Override to react to events, such as the base item
changing or subscription disabled.

BJsonSchemaMember onSchemaEvent(BSchemaEvent
event)

Quickly get a reference to the parent schema BJsonSchemaMember getSchema()

Write a JSON key with the schema’s current case and
space-handling rules applied.

JsonSchemaNameUtil writeKey(BIJsonSchemaMember
member, JSONWriter jsonWriter,
String name)

Convert any Java value to a native JSON type (String or
Number or Boolean) with some default handling of some
baja types, and filter out sensitive types.

JsonSchemaUtil toJsonType(Object value,
BJsonSchemaConfigFolder config)

Convert core Java type values (Numerics or Strings or
Booleans) to BValue equivalents. If the parameter is
already a BValue, this method returns a copy.

JsonSchemaUtil toBValue(Object value)

Get a live resolved reference to the ord bindings target. BJsonSchemaBoundMember getOrdTarget() / getTarget()

Override the schema’s default behaviour for handling a
subscription event from a binding target. Depending on
the content, the schema’s default behaviour is to
unsubscribe, ignore or request schema generation.

BJsonSchemaBoundMember handleSubscriptionEvent(Subscription
subscription, BComponentEvent
event)

Override to return a different set of slot values for the BJsonSchemaBoundSlotsContainer getPropertiesToIncludeInJson(target)

Legal Notice

127

What to do (usage goal) Class Method

resolved target.

Implement to perform any lifecycle, cleanup or reporting
task after a schema has completed output generation (or
failed, in which case, the exception is non-null).

BIPostProcessor postProcess(BJsonSchema schema,
Exception exception)

Extract values from incoming JSON payloads using
various methods.

JsonKeyExtractUtil lookup*()

Implement to handle an incoming JSON payload or throw
a RoutingFailedException if unable to process the
message.

BJsonInbound routeValue(BString message, Context
cx)

Override to locate a control point by another means than
the handle ord, for example by slot path or name.

BJsonSetPointHandler lookupTarget(BString msg, String id)

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

How schema generation works

Two actions cause the JSON schema to generate or regenerate it’s output.

This charts the flow through the schema logic.

Figure 1. Generate actions

Legal Notice

128

doGenerateJson() doForceGenerateJson()

generateOutputJson()

Min write
time

exceeded?

Enabled? Licensed?return throw

Set up
security context

Relative
schema?

CoV mode?
Query timer

running?

doExecuteQueries()Start query timer

no

no yes no

no yesno

yes

process(JSONWriter)

Update output stringpostProcess()

QueryException

JSON/PermissionException

yes

recurse

recurse

yes

yes

no

Binding ords resolve against the current base item of the schema. Unless you are using a relative JSON schema,
this is the station that uses the current result of the base query. Currently, base queries resolve against the
station.

Figure 2. Regular JSON schema with absolute ord bindings that resolve against the station

Legal Notice

129

Relative JSON schema with relative ord bindings resolve against the current base item. This process repeats until
there are no more base items, and results in several output strings.

Figure 3. Relative JSON schema with relative ord bindings that resolve against the current base item

External access to schema output

A URL like the following also allows access to the schema output via the JsonExporter:

http://127.0.0.1/ord/
station:%7Cslot:/JsonSchema%7Cview:jsonToolkit:JsonExporter

This could allow access to an external application consuming data from Niagara.

Parent topic: Developer guide
Related concepts
Relative schema construction
Related reference
Metrics (Json Schema Metrics)

Working with Apache Velocity

Apache Velocity is a Java-based template language anyone can use to reference objects defined in Java code. You
can use it to expose the output of a JSON schema via the Jetty Web Server in Niagara 4. This tool may be
beneficial for applications that expect to consume data provided by the Niagara station, for example, a
visualization or machine-learning library.

Legal Notice

130

Given JSON’s origin as a data exchange format for the web, many libraries expect to receive input in this format.
The Google Chart library is such an example. The following example is from the Google Chart project web site.
Notice that the var data is populated with JSON data. Replacing hard-coded data with the output from a
suitably-configured JSON schema in your station draws a chart from the Niagara station data.

<html>
 <head>
 <script type="text/javascript" src="https://www.gstatic.com/charts/loade
r.js"></script>
 <script type="text/javascript">
 google.charts.load('current', {'packages':['corechart']});
 google.charts.setOnLoadCallback(drawChart);
 function drawChart() {
 var data = google.visualization.arrayToDataTable([
 ['Year', 'Sales', 'Expenses'],
 ['2004', 1000, 400],
 ['2005', 1170, 460],
 ['2006', 660, 1120],
 ['2007', 1030, 540]
]);
 var options = {
 title: 'Company Performance',
 curveType: 'function',
 legend: { position: 'bottom' }
 };

 var chart = new google.visualization.LineChart
 (document.getElementById('curve_chart'));

 chart.draw(data, options);
 }
 </script>
 </head>
 <body>
 <div id="curve_chart" style="width: 900px height: 500px"></div>
 </body>
</html>

1. Create a new file chart.vm and paste into it the code example of a sample chart from the json-
consuming-charting library of your choice.

2. Replace the JSON data with a velocity variable, for example, $schema.output,

var data = google.visualization.arrayToDataTable([
 $schema.output
])

3. After saving the file, open the axvelocity palette and add a VelocityServlet named “chart” to your
station.

4. Add a VelocityDocument below the servlet and change the Template File property to point to the
chart.vm file you created earlier.

5. Add a new ContextOrdElement named Schema to the VelocityContext of your
VelocityDocument.

6. Update the Schema Ord element to point to a suitable jsonSchema added to your station.
This schema could output live station data or the result of a query or transform. Both would be suitable
for charting libraries, although it may be necessary to modify the time and date format form the
schema default settings or to reduce the presented interval of data by using a SeriesTransform
Rollup function.

So, what did we achieve? The template HTML file has a variable, which when accessed via the station’s velocity

Legal Notice

131

servlet will be replaced with the output from our schema.

If you add a WebBrowser from the Workbench palette to a Px Page and set the ord property to
http:\\127.0.0.1\velocity\chart, you should see a chart when you view the page in a web browser. If not,
use the developer tools to view the source code and ensure that the output of your schema is replacing the
$schema.output variable.

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Subscription examples with bajascript

Whilst Velocity is a very convenient means to inject data into an html document, one of many benefits of using
bajascript in your application is support for subscriptions, which update the graphic as data change.

Of course, you could build this schema output in bajascript by executing queries or by directly subscribing to the
components required, but a jsonSchema may reduce some of the work needed in JavaScript, allowing
subscription only to the output slot, which can fetch the required data from the station.

Example html file for showing Chart.js

<!DOCTYPE html
<!-- @noSnoop --
<html
<head
 <titleHTML Page</title>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.m
in.js">
 </script>

 <script type='text/javascript' src='/requirejs/config.js'></script>
 <script type='text/javascript' src='/module/js/com/tridium/js/ext/require/
require.min
 .js?'></script>

 <!-- note the special syntax for downloading JS file from the 'bajascript'
folder
 you add in your station -->
 <script type='text/javascript' src='/ord/file:%5Ebajascript/basic.js%7Cvie
w:web
 :FileDownloadView'></script>

</head>
<body>

 <canvas class="my-4 w-100" id="myChart" width="800" height="450"></canvas>

</body>
</html>

Example basic.js file to fetch chart data

The data array in the payload below uses bound properties. A single-column query would allow historical data to
be used instead from a bql query on the history database.

Legal Notice

132

// Subscribe to a Ramp. When it changes, print out the results.
require(['baja!'], function (baja) {
 "use strict"

 // A Subscriber is used to listen to Component events in Niagara.
 var sub = new baja.Subscriber()

 var update = function () {

 // Graphs
 var ctx = $('#myChart')

 var newJson = JSON.parse(this.getOutput())

 var myChart = new Chart(ctx, newJson)
 }

 // Attach this function to listen for changed events.
 sub.attach('changed', update)

 // Resolve the ORD to the Ramp and update the text.
 baja.Ord.make('station:|slot:/ChartsJS/JsonSchema').get({ok: update, sub
scriber: sub})
 })

Example schema output for chart

{
 "type": "line",
 "data": {
 "labels": [
 "Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday"
],
 "datasets": [
 {
 "data": [
 202,
 240,
 202,
 3,
 150
],
 "backgroundColor": "transparent",
 "borderColor": "#007bff",
 "borderWidth": 3,
 "lineTension": 0
 },
 {
 "data": [
 3,
 202,
 150,
 202,
 240
],

Legal Notice

133

 "backgroundColor": "transparent",
 "borderColor": "#ff0033",
 "borderWidth": 3,
 "lineTension": 0
 }
]
 },
 "options": {
 "scales": {
 "yAxes": [
 {
 "ticks": {
 "beginAtZero": false
 }
 }
]
 },
 "legend": {
 "display": false
 },
 "title": {
 "display": true,
 "text": "Philips Hue Light Demo"
 },
 "tooltips": {
 "intersect": true,
 "mode": "index"
 },
 "hover": {
 "intersect": true,
 "mode": "nearest"
 }
 }
}

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Inbound components

Inbound components route JSON messages to control points and devices.

To create a new inbound type, you extend one of the three main types: BJsonRouter, BJsonSelector or
BJsonHandler and implement routeValue(BString message, Context cx) throws
RoutingFailedException. You can create a new RoutingFailedException at any stage to report
an error and update the lastResult slot.

When extending any of the BJsonInbound types, you may specify which property triggers an automatic re-
routing of the last input with Property[] getRerunTriggers(). The helper interface
JsonKeyExtractUtil contains several methods for extracting values from a JSON payload.

Parent topic: Developer guide
Related reference
Metrics (Json Schema Metrics)

Legal Notice

134

binding

A relationship between a widget in a station and a data source, such as a point, slot, component, tag, etc.

The most common binding, a value binding, provides information for presentation as text or a graphic. Bindings
include mouse-over and right-click actions, and a way to animate any property of its parent widget using
converters that convert the target object into a property value.

Related reference
Metrics (Json Schema Metrics)

Legal Notice

135

payload

The objects, arrays and key/value pairs contained between open and close curly brackets that conform to JSON
syntax.
Related reference
Metrics (Json Schema Metrics)

Legal Notice

136

subscription

A method for updating a station with the current value of a remote component. When a remote component’s
value changes, subscription synchronizes the related proxy point’s value in the station with the current value of
the remote component. Subscription occurs in real time.
Related reference
Metrics (Json Schema Metrics)

Legal Notice

137

	Legal Notice
	Confidentiality
	Trademark notice
	Copyright and patent notice

	About this guide
	Document change log
	October 4, 2021
	August 10, 2021
	December 9, 2019
	Related documentation
	Internal resources
	External resources

	Introduction
	Quick JSON example
	JSON Toolkit use cases
	Typical use cases
	Transport protocols
	Feature summary
	Comparison to alternatives
	License requirements
	SMA Expiration Monitor
	JSON schema service
	Global Cov Slot Filter
	Run As User
	Debugging with Spy page
	Supervisor
	NiagaraNetwork point export
	System database
	NiagaraNetwork schema export
	Proxy

	Exporting with a JSON schema
	Overview
	What can a Schema contain?
	What structure is allowed?
	Config folder
	Tuning policy
	Overrides
	Debugging errors (Schema History Debug)
	JSON schema metrics
	Schema construction
	Binding configuration, about binding
	Slot selection
	Target types
	Naming
	Entities
	Objects
	Arrays
	Fixed properties
	Bound properties
	Creating a regular schema
	Relative schema construction
	Base query examples
	Export markers
	Export marker: selecting control points
	Export marker filters
	Alarm export marker filter
	History export marker filter

	Queries
	Query folder
	Query
	Relative history query
	BoundQueryResult
	Setting up queries

	Alarms
	AlarmRecipient
	Alarm Record Property
	BFormat Property
	Exporting alarm records to the JsonAlarmRecipient

	Exporting schema output (JsonExporter)
	Exploring the examples
	Connecting a device
	Visualization

	Importing JSON
	Routing complete incoming messages
	Routing part of a message
	About the Json Path selector
	Applying a jsonPath selector

	Handlers and alarm acknowledgments
	Setpoint handler and writing to points
	Export setpoint handler and export registration
	Export registration
	Example

	Components
	JsonSchema (Json Schema)
	root
	Buttons
	Actions
	Config (Json Schema Config Folder)
	Tuning Policy (Json Schema Tuning Policy)
	Overrides (Json Schema Overrides Folder)

	Debug (Json Schema Debug Folder)
	Schema Output History Debug (Schema History Debug)
	Debug report
	Metrics (Json Schema Metrics)

	Queries (Json Schema Query Folder)
	Query (Json Schema Query)
	RelativeHistoryQuery (Relative History Query)
	Example
	BoundQueryResult (Json Schema Bound Query Result)
	Base Query (Base Query)

	RelativeJsonSchema (Relative Json Schema)
	Buttons
	Actions
	JsonSchemaService (Json Schema Service)
	S M A Expiration Monitor (S M A Expiration Monitor)
	Global Cov Slot Filter (Subscription Slot Blacklist)

	Object (Json Schema Object)
	BoundObject (Json Schema Bound Object)
	Array (Json Schema Array)
	BoundArray (Json Schema Bound Array
	FixedString (Json Schema String Property)
	FixedNumeric (Json Schema Numeric Property)
	FixedBoolean (Json Schema Boolean Property)
	Count (Json Schema Count Property)
	CurrentTime (Json Schema Current Time Property)
	UnixTime (Json Schema Unix Time Property)
	BoundProperty (Json Schema Bound Property)
	BoundCSVProperty (Json Schema Bound Csv Property)
	Facet (Json Schema Facet Property)
	FacetList (Json Schema Facet List)
	Tag (Json Schema Tag Property)
	TagList (Json Schema Tag List)
	Query (Json Schema Query)
	RelativeHistoryQuery (Relative History Query)
	Example
	BoundQueryResult (Json Schema Bound Query Result)
	JsonAlarmRecipient (Json Alarm Recipient)
	AlarmRecordProperty (Json Schema Alarm Record Property)
	BFormatProperty (B Format String)
	ExportMarker (Json Export Marker)
	Examples
	AlarmExportMarkerFilter (Alarm Export Marker Filter)
	Action
	HistoryExportMarkerFilter (History Export Marker Filter)
	Actions
	JsonExportSetpointHandler (Json Export Setpoint Handler)
	JsonExportRegistrationHandler (Json Export Registration Handler)
	Syntax
	JsonExportDeregistrationHandler (Json Export Deregistration Handler)
	Syntax
	JsonMessageRouter (Json Message Router)
	Actions
	JsonDemuxRouter (Json Dmux Router)
	Actions
	JsonPath (Json Path)
	Actions
	JsonAtArrayIndex (Json At Array Index)
	Actions
	JsonContainsKey (Json Contains Key)
	JsonIndexOf (Json Index Of Key Selector)
	JsonSum (Json Sum Selector)
	Actions
	JsonLength (Json Length Selector)
	Actions
	JsonFindAll (Json Find All Selector)
	Actions
	AlarmUuidAckHandler (Alarm Uuid Ack Handler)
	Example
	Actions
	SetPointHandler (Json Set Point Handler)
	Actions
	EngineCycleMessageQueue (Engine Cycle Message Queue)
	EngineCycleMessageAndBaseQueue (Engine Cycle Pair Queue)
	InlineJsonWriter (Inline Json Writer)
	TypeOverride (Type Override)
	Action-Override
	relativeTopicBuilder (Program)
	Actions

	Developer guide
	JSON schema types
	Example 1
	Example 2
	Relative topic builder
	Type Override example
	Inline JSON Writer
	Custom query style
	Builder class / API
	Useful methods
	How schema generation works
	External access to schema output
	Working with Apache Velocity
	Subscription examples with bajascript
	Example html file for showing Chart.js
	Example basic.js file to fetch chart data
	Example schema output for chart
	Inbound components

	binding
	payload
	subscription

